
International Journal of Approximate Reasoning 152 (2023) 357–389
Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

journal homepage: www.elsevier.com/locate/ijar

The possibilistic horn non-clausal knowledge bases

Gonzalo E. Imaz

Artificial Intelligence Research Institute (IIIA) - CSIC, Barcelona, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 November 2021
Received in revised form 3 November 2022
Accepted 3 November 2022
Available online 10 November 2022

Keywords:
Possibilistic logic
Horn
Non-clausal
Inconsistency
Resolution
Satisfiability testing

Non-clausal deduction in classical logic is one of the oldest areas in artificial intelligence.
It first appeared in the sixties and consequently a large body of research has been devoted
to it. Within the last decades, computing with non-clausal formulas has been considered in
several fields, and in particular, in answer set programming, wherein non-clausal or nested
logic programs were conceived in 1999.
Possibilistic logic is the most extended approach to handle uncertain and partially
inconsistent information. Here, we generalize some well-known clausal outcomes in
possibilistic reasoning to the non-clausal setting, concretely the objective of our proposal
is: (i) to extend available insights from clausal to non-clausal form; (ii) to show that
possibilistic reasoning admits feasible classes also at the non-clausal level; (iii) to
combine the high expressiveness of non-clausal possibilistic logic with the highest efficient
(polynomial) reasoning mechanisms; and (iii) to suggest that some meaningful subclasses
of possibilistic nested programs can be efficiently processed.
Firstly, we define the class of Possibilistic Horn Non-Clausal formulas, or H�, which covers
the classes: possibilistic Horn and propositional Horn-NC. H� is shown to be non-clausal,
analogous to the standard Horn class.
Secondly, we define Possibilistic Non-Clausal Unit-Resolution, or UR�, and prove that UR�

correctly computes the inconsistency degree of Horn-NC bases. UR� is formulated in a
clausal-like manner, which eases its understanding, formal proofs and future extension
towards full non-clausal resolution.
Thirdly, we prove that computing the inconsistency degree of Horn-NC bases takes
polynomial time. Although there already exist tractable classes in possibilistic logic, all
of them are clausal, and thus, H� turns out to be the first characterized polynomial non-
clausal class within possibilistic reasoning.
We discuss that our approach serves as a starting point to developing uncertain non-clausal
reasoning on the basis of both methodologies: DPLL and resolution.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Possibilistic logic is the most popular approach to represent and reason with uncertain and partially inconsistent knowl-
edge, and the vast research carried out for several decades in the field has led to numerous theoretical discoveries and
pragmatic progress. Regarding normal forms, important research has been developed and notable improvements have been
accomplished in the standard clausal form, however little effort has been devoted so far to possibilistic reasoning in non-
clausal form, on which our contributions are centered.

E-mail address: gonzalo@iiia.csic.es.
https://doi.org/10.1016/j.ijar.2022.11.002
0888-613X/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ijar.2022.11.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijar.2022.11.002&domain=pdf
mailto:gonzalo@iiia.csic.es
https://doi.org/10.1016/j.ijar.2022.11.002

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
We emphasize, however, that our approach is not aimed at being an alternative to methods or developments based
on clausal form. On the contrary, it is complementary to them, showing that some nice properties enjoyed by clausal
possibilistic reasoning are generalizable to the non-clausal level. Simultaneously, we suggest that non-clausal possibilistic
reasoning is, despite its scientific and technological interest, seldom studied, and so, it remains an open domain wherein
research efforts are worthwhile.

Our new results, as aforesaid, stem from recognized clausal ones, and specifically, we lift to the non-clausal level: the
Horn possibilistic class as well as possibilistic unit-resolution. More specifically, this means that we: (i) characterize the
possibilistic Horn non-clausal (Horn-NC) bases and prove that obtaining their inconsistency degree is polynomial; and (ii)
design possibilistic non-clausal unit-resolution and demonstrate its correctness for calculating the inconsistency degree of
Horn-NC bases.

Reasoning in classical logic and non-clausal form is one of the oldest fields in artificial intelligence, as it took off in
the 1960’s, and is an actual concern in the principal fields of classical logic, namely, satisfiability solving [81,73,59,43],
theorem proving [40,72], quantified boolean formulas [39,15] and answer set programming [19,16]; and also in many other
automated reasoning areas such as symbolic model checking [83], formal verification [27], supervisory control [18], circuit
verification [26], knowledge compilation [23], heuristics [7], encodings [66], deductive databases [24], linear constraints [80],
constraint handling rules [45], dynamic systems [76], constrained Horn clauses [56], Horn clause verification [82], planning
[77], stochastic search [63] and hard problems [66].

We stress the relevance that processing with non-clausal formulas has in the field of answer set programming [6,60], a
current and prominent problem-solving artificial intelligence methodology. In fact, answer sets were enriched to non-clausal
or nested programs by Lifschitz et al. [61] in 1999, and since then, they have been determining in many theoretical issues
and practical applications. It is worthwhile mentioning here that the authors in [68,69] extended the nested programs to
possibilistic logic and, moreover, showed their practical utility by successfully solving real-world problems from the medical
domain. Besides, the approach in [68,69] is, to the best of our knowledge, the only existing one to deal with possibilistic
non-clausal formulas.

Switching to non-classical logic, non-clausal formulas with different functionalities have been studied in a profusion of
languages: signed many-valued logic [65,10,79], Łukasiewicz logic [58], Levesque’s three-valued logic [17], Belnap’s four-
valued logic [17], M3 logic [1], fuzzy logic [48], fuzzy description logic [47], intuitionistic logic [74], modal logic [74],
lattice-valued logic [84] and regular many-valued logic [54].

When the formula issued from modeling a real problem is naturally expressed in non-clausal form, technical drawbacks
summarized below make it inadvisable to employ clausal-form translators and so advocate computing the formula in its
original non-clausal structure. The drawbacks below have been gathered by many authors across several fields, e.g. the
authors in [38,78,39] report them within the area of quantified boolean formulas.

Two kinds of clausal form transformation are known. The first one, applying distributivity to the non-clausal formulas
until obtaining an equivalent clausal formula, is clearly infeasible as it leads to an exponential increase of the size of the
clausal formula.

The second one, Tseitin-transformation, usually produces an increase of formula size and number of variables, and also
a loss of information about the formula’s original structure. Besides, the normal form is not unique in most cases and,
however, deciding how to perform the transformation heavily influences the solving process and it is usually impossible to
predict which strategy is going to be the best, as this depends on the concrete solver used and on the kind of problem to
be solved. Further, Tseitin-transformation preserves satisfiability but loses logical equivalence, which impedes its usage in
many applications.

In view of such drawbacks, we abandon the assumption that the input formula should be transformed to clausal form
and directly process it in its original nested structure. We allow an arbitrary nesting of conjunctions and disjunctions and
only limit the scope of the negation connective that applies to exclusively literals. The non-clausal form considered here is
popularly called negation normal form (NNF) and can be obtained deterministically, causing only a negligible increase of
the formula size.

The second cornerstone of our proposal is the class of Horn clausal formulas. Horn formulas are recognized as central for deduc-
tive databases, declarative programming, and more generally, for rule-based systems. In fact, Horn formulas have received a
great deal of attention since 1943 [62,51] and, at present, there is a broad span of areas within artificial intelligence relying
on them, and their scope covers a fairly large spectrum of realms spread across many logics and a variety of reasoning
settings (see [52] for details).

Computing the inconsistency degree of possibilistic Horn formulas is a tractable problem [57] and Section 5 states that
O (n × log m) is its best worst-case complexity known up to now. Related to this class but going beyond clausal form, we
present the novel possibilistic class Horn-NC that is non-clausal and which we will denote by H� . We will demonstrate
that H� is non-clausal, analogous to the Horn clausal class, and that besides the latter, H� also subsumes the class of
propositional Horn-NC formulas which have been previously characterized in propositional [52] and regular many-valued
[54] logics.

Computationally, we will prove that determining the inconsistency degree of Horn-NC bases is a polynomial problem.
This result signifies that polynomiality is preserved when upgrading both from clausal to non-clausal form and from propo-
sitional to possibilistic logic: in the former upgrading, because the possibilistic Horn [57] and possibilistic Horn-NC classes
358

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
are both tractable, and in the latter, because the propositional Horn-NC [52] and possibilistic Horn-NC classes are both
tractable as well.

Firstly, we determine the syntactical Horn-NC restriction by lifting the Horn clausal restriction “a formula is Horn if
all its clauses have any number of negative literals and at most one positive literal”, to the non-clausal level as follows:
“a propositional NC formula is Horn-NC if all its disjunctions have any number of negative disjuncts and at most one non-negative
disjunct”. By extending such definition to possibilistic logic, we establish straightforwardly that a possibilistic NC formula is
Horn-NC only if its propositional formula is Horn-NC, and denote the class of possibilistic Horn-NC formulas by, as said above,
H� . Note that H� naturally subsumes the standard possibilistic Horn clausal class.

Example 1.1. Below we give a specific possibilistic non-clausal base � expressed in suffix notation (explained in detail in
Section 2). P , Q , . . . and ¬P , ¬Q , . . . are positive and negative literals, respect., and φ1, φ2 and φ3 are NC propositional
formulas. (∨k ϕ1 . . . ϕk) and [∧k ϕ1 . . . ϕk] express the disjunction and conjunction, respect., of formulas ϕ1 to ϕk

ϕ = [∧3 P (∨2 ¬Q [∧3 (∨ ¬P ¬Q R) (∨2 φ1 [∧ φ2 ¬P]) Q]) φ3]
� = {〈ϕ : 0.8〉 〈P : 0.8〉 〈¬Q : 0.6〉 〈R : 0.6〉 〈φ1 : 0.3〉 〈φ3 : 1.0〉]

and subindex k in connectives ∨k and ∧k indicates their arity. We will show that � is Horn-NC only if φ1, φ2 and φ3 are
Horn-NC and at least one of φ1 or φ2 is negative.

We will demonstrate the following relationships of H� with (1) its subclass H� of Horn-clausal formulas and with (2)
its superclass of non-clausal formulas: (1) H� subsumes syntactically H� but both classes are semantically equivalent; and
(2) H� contains all non-clausal formulas whose clausal form is Horn. In view of (1) and (2), one can conclude that H� is
non-clausal, analogous to the standard Horn class.

Secondly, we establish the calculus Possibilistic Non-Clausal Unit-Resolution, or UR� , and then prove that it correctly com-
putes the inconsistency degree of the Horn-NC bases. UR� is the generalization of non-clausal unit-resolution from propo-
sitional [52] to possibilistic logic and we formulate it here in a clausal-like fashion, which contrasts with the functional-like
fashion of the existing non-clausal (full) resolution [64].

Thirdly, we prove that computing the inconsistency degree of Horn-NC bases has polynomial complexity. There indeed
exist polynomial classes in possibilistic logic but all of them are clausal [57], and so, the tractable non-clausal fragment was
empty so far. We think that this is just a first tractable result in possibilistic non-clausal reasoning and that the approach
presented here will serve as a starting point to find further classes, and so to widen the tractable possibilistic non-clausal
fragment.

Summing up, the list of properties of H� is given below (the last two properties have been shown in [52] for proposi-
tional logic but are preserved in H�), where H� denotes the classical possibilistic Horn clausal class:

• Computing the inconsistency-degree of H� bases is tractable.

• H� subsumes syntactically H� .

• H� and H� are semantically equivalent.

• H� contains all non-clausal formulas whose clausal form is Horn.

• H� is linearly recognizable [52].

• H� is strictly more succinct1 than H� [52].

Given that Horn formulas are suitable for many applications as pointed out above, Horn-NC formulas are potentially
useful for generalizing such applications. We outline the potential applicability of Horn-NC formulas in nested logic pro-
gramming [61] as follows.

Just as the Horn-clausal class underpins standard definite (heads are literals) logic programming [14], it can be proven
[53] (ongoing work) that the Horn-NC class underpins definite nested logic programming. In a nutshell, Horn-NC programs
are definite nested programs, i.e. they are the non-clausal counterpart of definite or Horn clausal programs. In fact, it is
proven in [53] that Horn-NC programs also enjoy many recognized properties of Horn programs, for instance, Horn-NC
programs have only one minimal model.

In order to illustrate the utility of the Horn-NC class in the nested logic programming field, we provide an example
below. Further examples can be found in Appendix (and also in [53]). As nested programs are up to an exponential factor
more succinct than their equivalent unnested programs, their interpreter requires to evaluate substantially less literals and
connectives, and so it achieves higher efficiency. The extension of H� to possibilistic nested logic programming is briefly
discussed also in Appendix. Yet, as can be seen there, it requires additional research that will be reported in a forthcoming
work.

1 Succinctness was defined in [46].
359

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
Example 1.2. The twelve traditional definite rules in the first two lines are equivalent to the Horn-NC rule in the third line.
This nested rule is Horn-NC because, as it will be shown, its nested head and the whole rule are both Horn-NC formulas.
Note the contrast between the 33 literals in the twelve non-nested rules and the 9 literals plus the constant � in the unique
nested rule; besides in this particular case, no literal repetition is needed.

b ← a b ← c b ← m c ← a,b c ← e,b c ← m,b

g ← a,d g ← e,d g ← m,d g ← a, f g ← e, f g ← m, f

(∨2 [∧ ¬a ¬e ¬m] [∧3 (∨ ¬b c) b (∨2 g [∧ ¬d ¬ f])]) ← �
In the context of answer set programming, the first two lines would represent a classical reduct, while the second line

would correspond to its equivalent nested reduct. �
Altogether, Horn-NC or definite nested programs can compact traditional definite programs up to an exponential factor

while preserving their nice semantical properties (proven in [53]), and besides, Horn-NC programs: (1) mitigate redundan-
cies inherent to traditional logic programs; and (2) form a highly flexible and expressive logic programming language, which
helps users to more naturally represent their expertise.

Possibilistic logic can be seen as an encapsulation of propositional logic. Thus the inconsistency degree of Horn-NC, and
in general of non-clausal bases, can be calculated through a number (at most logarithmic) of calls to a non-clausal SAT
solver or through non-clausal propositional queries. Hence, this principle remains sufficiently general to take advantage of
any potential progress made at the level of non-clausal propositional logic.

The presented approach serves as a base to develop approximate non-clausal reasoning based on the DPLL and resolution
schemes: (1) it paves the way to define DPLL in non-clausal form as its procedure, unit-propagation for non-clausal formulas,
is based on UR�; and (2) the existing non-clausal resolution [64] presents some deficiencies derived from its functional-
like formalization, such as not precisely defining the potential resolvents. The given clausal-like formalization of UR� skips
such deficiencies and signifies a step forward towards defining non-clausal resolution for at least those uncertainty logics
for which clausal resolution is already defined, e.g. possibilistic logic [30,31].

This paper is organized as follows. Section 2 and 3 present background on propositional non-clausal formulas and on
possibilistic logic, respectively. Section 4 defines the class H� . Section 5 introduces the calculus UR� . Section 6 provides
examples illustrating how UR� computes Horn-NC bases. Section 7 provides the formal proofs. Section 8 is devoted to both
related and future work. Last section summarizes the main contributions.

A supplied appendix includes further examples of the equivalence between Horn and Horn-NC programs, and also,
discusses the relationships between Horn-NC programs and both answer sets with aggregates [41] and nested programs
with preferences [19].

2. Propositional non-clausal logic

This section presents the terminologies used in this paper and background on non-clausal (NC) propositional logic (see
[11] for a complete background).

The NC language is formed by: constants {⊥,�}, propositions P = {P, Q, . . . }, connectives {¬, ∨, ∧} and auxiliary symbols
“(”, “)”, “[”, and “]”. X ∈ P (resp. ¬X) is a positive (resp. negative) literal. L is the set of literals. ⊥,� and the literals are
atoms. (∨ �1 . . . �k), with �i ∈ L, is a clause. A clause with at most one positive literal is Horn. [∧ C1 . . . Cn], the Ci ’s being
clauses (resp. Horn clauses) is a clausal (resp. Horn) formula.

Note. For the sake of readability of non-clausal formulas, we will employ: (1) prefix notation as it requires only one
∨/∧-connective per formula, while infix notation requires k − 1, k being the arity of ∨/∧; (2) two formula delimiters,
(∨k ϕ1 . . . ϕk) for disjunctions and [∧k ϕ1 . . . ϕk] for conjunctions, to better distinguish them inside non-clausal formulas.

Our first definition is that of non-clausal formulas, whose differential feature is that the connective ¬ can only occur in
front of propositions, i.e. at atomic level.

Definition 2.1. NC is the smallest set such that the following conditions hold:

• {⊥, �} ∪L ⊂ NC .

• If ϕ1, . . . , ϕk ∈NC then [∧k ϕ1 . . . ϕi . . . ϕk] ∈NC .

• If ϕ1, . . . , ϕk ∈NC then (∨k ϕ1 . . . ϕi . . . ϕk) ∈NC .

We will omit the subindex k in the connectives when ϕ1 . . . ϕk are exclusively literals.
360

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
Example 2.2. ϕ1 and ϕ2 below are NC formulas, while ¬(∨ ϕ1 ϕ2) is not.

• ϕ1 = [∧2 (∨ ¬P Q ⊥) (∨2 Q [∧ ¬R S �])]
• ϕ2 = (∨3 [∧ ¬P �] [∧2 (∨ ¬P R) [∧2 Q (∨ P ¬S)]] [∧ ⊥ Q]) �

Definition 2.3. The unique sub-formula of an atom is the atom itself. The sub-formulas of ϕ = [�k ϕ1 . . . ϕi . . . ϕk], �k ∈
{∧k, ∨k}, are ϕ itself plus the sub-formulas of the ϕi ’s.

Definition 2.4. NC formulas are modeled by trees in the following way: (i) each atom is a leaf and each occurrence of a
connective is an internal node; and (ii) each sub-formula [�k ϕ1 . . . ϕk], �k ∈ {∧k, ∨k} is a k-ary hyper-arc linking the node
of �k with, for every i, the node of ϕi if ϕi is an atom and with the node of its connective otherwise.

Remark. Our approach also applies when NC formulas are represented and implemented by DAGs. Nevertheless, for sim-
plicity, we will use only formulas represented by trees.

Definition 2.5. An interpretation ω maps NC into {0, 1} and is extended from {⊥, �} ∪P to NC via the rules below, where
X ∈P and ϕi ∈NC .

• ω(⊥) = ω((∨)) = 0 and ω(�) = ω([∧]) = 1.

• ω(X) + ω(¬X) = 1.

• ω((∨k ϕ1 . . . ϕi . . . ϕk)) = 1 iff ∃i, ω(ϕi) = 1.

• ω([∧k ϕ1 . . . ϕi . . . ϕk]) = 1 iff ∀i, ω(ϕi) = 1.

Definition 2.6. Let ϕ, ϕ′ ∈ NC . An interpretation ω is a model of ϕ if ω(ϕ) = 1. If ϕ has a model then it is consistent and
otherwise inconsistent. ϕ and ϕ′ are equivalent, or ϕ ≡ ϕ′ , if ∀ω, ω(ϕ) = ω(ϕ′). ϕ′ is consequence of ϕ , or ϕ |= ϕ′ , if ∀ω,
ω(ϕ) ≤ ω(ϕ′).

Trivially ⊥ ≡ (∨) and � ≡ [∧]. Formulas can be simplified by recursively using the equivalences: [∧ � ϕ] ≡ ϕ ≡
(∨ ⊥ ϕ), (∨ � ϕ) ≡ �, and [∧ ⊥ ϕ] ≡ ⊥.

Note. For simplicity and since constants are easily removed as indicated above, the unique formula with constants handled
in this paper will be ⊥.

3. Necessity-valued possibilistic logic

Let us have a brief refresher on necessity-valued possibilistic logic [29,32,33].

3.1. Semantics

At the semantic level, possibilistic logic is defined in terms of a possibilistic distribution π on the universe � of inter-
pretations, i.e. an � → [0, 1] encodes for each ω ∈ � to what extent it is plausible that ω is the actual world. π(ω) = 0
means that ω is impossible, π(ω) = 1 means that nothing prevents ω from being true, whereas 0 < π(ω) < 1 means that
ω is only somewhat possible to be the real world. Possibility degrees are interpreted qualitatively: when π(ω) > π(ω′),
ω is considered more plausible than ω′ . A possibilistic distribution π is normalized if ∃ω ∈ �, π(ω) = 1, i.e. at least one
interpretation is plausible.

A possibility distribution π induces two uncertainty functions from NC to [0, 1], called possibility and necessity func-
tions and denoted by 	 and N , respectively, which allow us to rank formulas. 	 is defined by Dubois et al. (1994) [29]
as:

	(ϕ) = max{π(ω) | ω ∈ �,ω |= ϕ},
and evaluates the extent to which ϕ is consistent with the beliefs expressed by π . The dual necessity measure N is defined
by:

N(ϕ) = 1 − 	(¬ϕ) = inf{1 − π(ω) | ω ∈ �,ω � ϕ},
and evaluates the extent to which ϕ is entailed by the available beliefs [29]. So the lower the possibility of an interpretation
that makes ϕ False, the higher the necessity degree of ϕ . N(ϕ) = 1 means ϕ is totally certain, whereas N(ϕ) = 0 expresses
the complete lack of knowledge of priority about ϕ . Note that N(�) = 1 for any possibility distribution, while 	(�) = 1
361

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
(and, related, N(⊥)=0) only holds when the possibility distribution is normalized, i.e. only normalized distributions can
express consistent beliefs [29].

A major property of N is Min-Decomposability: ∀ϕ, ψ, N(ϕ ∧ ψ) = min(N(ϕ), N(ψ)). However, for disjunctions only
N(ϕ ∨ ψ) ≥ max(N(ϕ), N(ψ)) holds. Further, one has N(ϕ) ≤ N(ψ) if ϕ |= ψ , and hence, N(ϕ) = N(ψ) if ϕ ≡ ψ .

3.2. Syntactics

A possibilistic formula is a pair 〈ϕ : α〉 ∈ NC × (0, 1], where α ∈ (0, 1] expresses the certainty that ϕ is the case, and
it is interpreted as the semantic constraint N(p) ≥ α. So formulas 〈ϕ : 0〉 are excluded. A possibilistic base � is a collection
of possibilistic formulas � = {〈ϕi : αi〉 | i = 1, . . . , k } and corresponds to a set of constraints on possibility distributions. The
propositional knowledge base of � is denoted as �∗ , namely �∗ = {ϕ|〈ϕ : α〉 ∈ �}. � is consistent if and only if �∗ is
consistent. It is noticeable that, due to Min-Decomposability, a possibilistic logic base can be easily put in clausal form.2

Typically, there can be many possibility distributions that satisfy the set of constraints N(ϕ) ≥ α but we are usually only
interested in the least specific possibility distribution, i.e. the possibility distribution that makes minimal commitments, namely,
the greatest possibility distribution w.r.t. the following ordering: π is a least specific possibility distribution compatible with
� if for any π ′ , π ′ �= π , compatible with �, one has ∀ω ∈ �, π(ω) ≥ π ′(ω). Such a least specific possibility distribution
always exists and is unique [29].

Thus, for a given 〈ϕ : α〉, possibilistic distributions should consider that an ω that makes ϕ True is possible at the
maximal level, say 1, while an ω that makes ϕ False is possible at most at level 1 − α. Thus the semantic counterpart of a
base �, or the least specific distribution π� is defined by, ∀ω, ω ∈ �:

π�(ω) =
{

1 if ∀〈ϕi,αi〉 ∈ �,ω |= ϕi

min{1 − αi |ω � ϕi, 〈ϕi,αi〉 ∈ �} otherwise

Proposition 3.1. Let � be a possibilistic base. For any possibility distribution π on �, π satisfies � if and only if π ≤ π� .

Proposition 3.1 says that π� is the least specific possibility distribution satisfying � and it has been shown in reference
[29].

3.3. Syntactic deduction

This subsection introduces some few notions about deduction in possibilistic logic and starts by the well-known possi-
bilistic inference rules to be handled in this article:

Definition 3.2. We define below three rules, where � ∈ L; ϕ, ψ ∈ NC and α, β ∈ (0, 1]. The first is possibilistic resolution
[30,31]; the second rule is Min-Decomposability; and the third rule, Max-Necessity, follows from the semantic constraint
meaning of 〈ϕ : α〉.

• Resol : 〈 (∨ � ϕ) : α〉, 〈 (∨ ¬� ψ) : β 〉 � 〈 (∨ ϕ ψ) : min{α, β} 〉.

• MinD : 〈ϕ : α〉, 〈ψ : β〉 � 〈 [∧ ϕ ψ] : min{α, β} 〉.

• MaxN : 〈ϕ : α〉, 〈ϕ : β〉 � 〈 ϕ : max{α, β} 〉.

Before formulating the completeness theorem in possibilistic logic, we need the next concept of α-cut; the α-cut (resp.
strict α-cut) of �, denoted �≥α (resp. �>α), is the set of classical formulas in � having a necessity degree at least equal to
α (resp. strictly greater than α), namely �≥α = {ϕ | 〈ϕ : β〉 ∈ �, β ≥ α} (resp. �>α = {ϕ | 〈ϕ : β〉 ∈ �, β > α}).

Theorem 3.3. The following soundness and completeness theorem holds:

� |=π 〈ϕ : α〉 ⇔ � �Res 〈ϕ : α〉 ⇐⇒ �∗≥α |= ϕ ⇔ �∗≥α � ϕ

where |=π means any ω compatible with � is also compatible with 〈ϕ : α〉, or formally, ∀ω, π�(ω) ≤ π{〈p:α〉}(ω). �Res relies on the
repeated use of possibilistic resolution.

The last half of the above expression reduces to the soundness and completeness of propositional logic applied to each
cut level of �, which is an ordinary propositional base.

2 Nevertheless, as said previously, this translation can blow up exponentially the size of formulas and so can dramatically reduce the overall efficiency of
the clausal reasoner.
362

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
3.4. Partial inconsistency

The inconsistency degree of a base � in terms of its α-cut can be equivalently defined as the largest weight α such that
the α-cut of � is inconsistent:

Inc(�) = max{α |�≥α is inconsistent}.
Inc(�) = 0 entails �∗ is consistent. In [29], the inconsistency degree of � is defined by the least possibility distribution

π� , concretely Inc(�) = 1 − supω∈�π�(ω).
To check whether ϕ follows from �, one should add 〈¬ϕ : 1〉 to � and then check whether � ∪ {〈¬ϕ : 1〉} � 〈⊥ : α〉.

Equivalently the maximum α s.t. � |= 〈ϕ : α〉 is given by the inconsistency degree of � ∪ {〈¬ϕ : 1〉}, i.e. � |= 〈ϕ : α〉 iff
α = Inc(� ∪ {〈¬ϕ, 1〉}).

Proposition 3.4. The next statements are proven in [29]:

� |= 〈ϕ : α〉 iff � ∪ {〈¬ϕ : 1〉} � 〈⊥ : α〉 iff α = Inc(� ∪ {〈¬ϕ : 1〉}) iff �∗≥α � ϕ.

This result shows that any deduction problem in possibilistic logic can be viewed as computing an inconsistency degree.

A base � = {〈ϕi : αi〉 | i = 1, . . . , k } is called Horn, clausal or NC if ϕi, 1 ≤ i ≤ 1, are Horn, clausal or NC, respectively.
The novel class to be defined will be called Horn-NC. Computing the inconsistency degree of such classes has the following
complexities:

• Co-NP-complete [57] for clausal bases and polynomial [57] for Horn bases.

• Co-NP-complete for NC bases. This claim stems from: (i) Theorem 3.3 applies to both clausal and NC bases; and (ii)
checking whether an interpretation is a model of an NC propositional formula is polynomial as for clausal formulas.

• Polynomial for Horn-NC bases as proven in Section 7.2.

4. The possibilistic horn-NC class: H�

Subsection 4.1 defines informally the Horn-NC formulas and Subsection 4.2 formally.

The formal proofs have been relegated to Subsection 7.1.

We will denote the class of possibilistic Horn clausal formulas by H� .

4.1. Informal definition of H�

We start with the negative formulas that extend the negative literals in the clausal setting.

Definition 4.1. A possibilistic formula is negative if its propositional formula has uniquely negative literals. We will denote
the set of negative possibilistic formulas by N−

� .

Example 4.2. 〈 (∨2 [∧ ¬P ¬R] [∧2 ¬S (∨ ¬P ¬Q)]) : 0.5 〉 ∈N−
� . �

Next we upgrade the Horn pattern “a Horn clause has (any number of negative literals and) at most one positive literal”
to the NC context in the next way:

Definition 4.3. A propositional formula is Horn-NC if all the disjunctions have any number of negative disjuncts and at most
one non-negative disjunct. A possibilistic formula is Horn-NC if its propositional formula is Horn-NC. We denote the class
of possibilistic Horn-NC formulas by H� . A Horn-NC possibilistic base is a subset of H� .

Clearly H� ⊂H� .

By Definition 4.3, all sub-formulas of any Horn-NC are Horn-NC too. Yet, the converse does not hold: there are non-
Horn-NC formulas whose all sub-formulas are Horn-NC.

Example 4.4. The propositional part of ϕ1 below has only one non-negative disjunct and so ϕ1 is Horn-NC, while ϕ2 is not
Horn-NC as its formula has two non-negative disjuncts.

ϕ1 = 〈 (∨ [∧ ¬Q ¬S] [∧ R P]) : 0.7 〉 ϕ2 = 〈 (∨ [∧ ¬Q S] [∧ R ¬P]) : 0.6 〉

363

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
Example 4.5. We now consider ϕ and ϕ′ below. ϕ′ results from ϕ by switching the leftmost ¬P for P . All disjunctions of
ϕ , i.e. (∨ ¬P R), (∨ P ¬S) and the whole formula, have one non-negative disjunct; so ϕ is Horn-NC. Yet, ϕ′ is of the kind
(∨ P φ), φ being non-negative, and so it has two non-negative disjuncts; thus ϕ′ is not Horn-NC.

• ϕ = 〈 (∨ ¬P [∧ (∨ ¬P R) [∧ Q (∨ P ¬S)]]) : 0.6 〉
• ϕ′ = 〈 (∨ P [∧ (∨ ¬P R) [∧ Q (∨ P ¬S)]]) : 0.3 〉 �

4.2. Formal definition of H�

We first individually specify Horn-NC conjunctions and Horn-NC disjunctions, and subsequently, by merging both speci-
fications, we compactly and formally specify H� .

Just as conjunctions of propositional Horn clausal formulas are Horn, likewise conjunctions of propositional Horn-NC
formulas are also Horn-NC.

Proposition 4.6. Let α, αi ∈ (0, 1]. Possibilistic Horn-NC formulas verify:

〈 [∧ ϕ1 . . . ϕi . . . ϕk] : α 〉 ∈ H� iff for 1 ≤ i ≤ k, 〈ϕi : αi 〉 ∈ H�.

The proof is straightforward and so is omitted.

One can verify that the propositional condition in Definition 4.3 can be equivalently reformulated inductively as: “an
NC is Horn-NC if all its disjunctions have any number of negative disjuncts and one disjunct is Horn-NC”. This leads to the next
formalization:

Lemma 4.7. Let α, αi, α j ∈ (0, 1]. Possibilistic Horn-NC formulas hold the next property:

〈 (∨ ϕ1 . . . ϕi . . . ϕk) : α 〉 ∈ H� iff ∃i s.t. 〈ϕi : αi 〉 ∈ H� and ∀ j �= i, 〈ϕ j : α j 〉 ∈ N−
� .

Ĥ� is defined below using Lemmas 4.6 and 4.7.

We recall that the connective ¬ applies only at the literal level.

Definition 4.8. We define the set Ĥ� as the smallest set such that the conditions below hold, where k ≥ 1, α ∈ (0, 1] and
L is the set of literals:

(1) 〈� : α 〉 ∈ Ĥ�, where � ∈L.

(2) If ∀i, 〈ϕi : αi〉 ∈ Ĥ� then 〈 [∧ ϕ1 . . . ϕi . . . ϕk] : α 〉 ∈ Ĥ� .

(3) If 〈 ϕi : αi〉 ∈ Ĥ� and ∀ j �= i, 〈ϕ j : α j 〉 ∈N−
� then 〈 (∨ ϕ1 . . . ϕi . . . ϕk) : α 〉 ∈ Ĥ� .

Theorem 4.9. We have that Ĥ� =H� .

Example 4.10. Viewed from Definition 4.8, below we analyze ϕ and ϕ′ from Example 4.5, where α ∈ (0, 1]:

• By (3), 〈 (∨ ¬P R) : α 〉 ∈H� .

• By (3), 〈 (∨ P ¬S) : α 〉 ∈H� .

• By (2), 〈 [∧ Q (∨ P ¬S)] : α 〉 ∈H� .

• By (2), 〈 φ = [∧ (∨ ¬P R) [∧ Q (∨ P ¬S)]] : α 〉 ∈H� .

• By (3), ϕ = 〈 (∨ ¬P φ) : 0.6 〉 ∈H�

• By (3), ϕ′ = 〈 (∨ P φ) : 0.3 〉 /∈H� . �
Example 4.11. We analyze 〈ϕ : 0.8〉 from Example 1.1. We can rewrite ϕ as follows:

• ψ1 = (∨ ¬P ¬Q R). ψ2 = (∨ φ1 [∧ φ2 ¬P]).

• ψ3 = (∨ ¬Q [∧ ψ1 ψ2 Q]). ϕ = [∧ P ψ3 φ3].

Below we analyze one-by-one such disjunctions and finally the proper ϕ , with α ∈ (0, 1]:
364

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
• 〈ψ1 : α〉 ∈H� because ψ1 is Horn.

• 〈ψ2 : α〉 ∈H� if at least one 〈φ1 : α〉 or 〈φ2 : α〉 belongs to N� .

• 〈ψ3 : α〉 ∈H� if 〈ψ2 : α〉 ∈H� (as 〈ψ1 : α〉 ∈H�).

• 〈ϕ : 0.8〉 ∈H� if 〈ψ2 : α〉, 〈φ3 : α〉 ∈H� (as 〈ψ3 : α〉 ∈H� if 〈ψ2 : α〉 ∈H�).

Summarizing, we have that:

〈ϕ : 0.8〉 ∈H� if 〈φ3 : α〉 ∈H� and if at least one of 〈φ1 : α〉 or 〈φ2 : α〉 is in N� . �
Example 4.12. One can check that the nested head in Example 1.2 is a propositional Horn-NC formula. Also, the formula of
the whole nested rule, which is the disjunction of its head and the negation of its body, is a propositional Horn-NC formula.

The next three theorems state the relationships between H� and the standard Horn and NC possibilistic classes. The
first one states that applying distributivity to a Horn-NC formula 〈ϕ : α〉 ∈H� leads to a Horn formula.

Theorem 4.13. Denoting by cl(ϕ) the clausal form of ϕ , we have:

〈ϕ : α〉 ∈ H� entails 〈cl(ϕ) : α〉 ∈ H�.

Clearly, H� ⊂H� .

We now prove that both classes are semantically equivalent, namely they both have the same expressiveness and their
syntactical difference is that possibilistic Horn-NC bases may need exponentially less symbols than their equivalent Horn
clausal bases.

Theorem 4.14. Let us consider the classes H� and H� . Each formula in a class is logically equivalent to some formula in the other
class and formally:

〈ϕ : α〉 ∈ H� iff 〈H : α〉 ∈ H� where ϕ ≡ H .

Proof. By Theorem 4.13, for every 〈ϕ : α〉 ∈ H� there exists 〈cl(ϕ) : α〉 ∈ H� and obviously ϕ ≡ cl(ϕ). The converse follows
from the fact that H� ⊂H� . �

Corollary 4.15. Every consistent 〈ϕ : α〉 ∈H� have only one minimal model.

Proof. It follows from Theorem 4.14 and the well-known fact that consistent Horn clausal formulas have only one minimal
model. �

The next theorem makes it explicit how the classes Horn-NC and NC are related.

Theorem 4.16. H� contains the next NC fragment: if applying distributivity to an NC formula 〈ϕ : α〉 results in a Horn formula, then
〈ϕ : α〉 is Horn-NC; formally:

〈ϕ : α〉 ∈ NC� and 〈cl(ϕ) : α〉 ∈ H� implies 〈ϕ : α〉 ∈ H�.

where NC� is the set of possibilistic NC formulas and cl(ϕ) is the clausal form of ϕ .

In view of the last three theorems, we can conclude that H� is non-clausal, analogous to the standard possibilistic Horn
class H� .

5. Possibilistic NC unit-resolution UR�

Possibilistic clausal resolution was defined in the 1980s [30,31] but its non-clausal generalization has not been proposed
yet. This section is a step forward towards its definition as we define possibilistic NC unit-resolution, denoted UR� . The
main rule of UR� is called UR� , and while the other rules in UR� are simple, UR� is somewhat involved and so is
presented in two steps:

− for quasi-clausal Horn-NC bases in Subsection 5.1; and

− for general Horn-NC bases in Subsection 5.2.
365

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
Afterwards, Subsection 5.3 describes UR� , which besides UR� , comprises some propositional rules. Subsection 5.4 gives
two further inferences rules, not needed for warranting completeness. Subsection 5.5 determines the inconsistency degree
of a Horn-NC base. Finally, Subsection 5.6 explains the reasoning by contradiction in Horn-NC bases. The formal proofs are
included in Subsection 7.2.

5.1. Quasi-clausal unit-resolution

We start with propositional and then switch to possibilistic logic. Assume the quasi-clausal formulas below; � and ¬�3

are complementary literals and the ϕ ’s and φ’s are formulas:

[∧ ϕ1 . . . ϕl−1 � ϕl+1 . . . ϕi−1 (∨ φ1 . . . φ j−1 ¬� φ j+1 . . . φk) ϕi+1 . . . ϕn]
These formulas are quasi-clausal as if the ϕ ’s and φ’s were clauses and literals, respectively, then they would be clausal.

Obviously a quasi-clausal formula is equivalent to:

[∧ ϕ1 . . . ϕl−1 � ϕl+1 . . . ϕi−1 (∨ φ1 . . . φ j φ j+1 . . . φk) ϕi+1 . . . ϕn]
Thus, for propositional formulas, one can derive the next simple inference rule:

� , (∨ φ1 . . . φ j ¬� φ j+1 . . . φk)

(∨ φ1 . . . φ j φ j+1 . . . φk)
(1)

Switching to possibilistic logic, NC unit-resolution is applicable when � has a unit clause 〈� : α〉 and a formula
〈 [∧ ϕ1 . . . ϕi (∨ φ1 . . . φ j−1 ¬� φ j+1 . . . φk) ϕi+1 . . . ϕn] : β 〉. Then, by using Min-Decomposability (Definition 3.2), one
can easily derive:

〈� : α〉 , 〈 (∨ φ1 . . . φ j ¬� φ j+1 . . . φk) : β〉
〈 (∨ φ1 . . . φ j φ j+1 . . . φk) : min{α,β} 〉 (2)

Notice that for clausal formulas, Rule (2) coincides with possibilistic clausal unit-resolution. The soundness of (2) follows
from the property Min-Decomposability. If D stands for (∨ φ1 . . . φ j φ j+1 . . . φn), then (2) can be concisely rewritten as:

〈� : α〉 , 〈 (∨ ¬� D : β〉
〈D : min{α,β} 〉 (3)

Notice that the previous rule amounts to substituting the formula referred to by the right conjunct in the numerator
with the formula in the denominator, and in practice, to just eliminate ¬� and update the necessity weight. Let us illustrate
these notions.

Example 5.1. Let � be a base including 〈P : 0.8〉 and ϕ below, where φ is a formula:

ϕ = 〈 [∧4 φ (∨ ¬R ¬P S) (∨2 S [∧ ¬Q ¬P]) R] : 0.6〉.
Taking 〈P : 0.8〉 and the left-most ¬P in ϕ , we have D = (∨ ¬R S), and by applying Rule (3) to ϕ , the formula below is

deduced and added to the base �.

〈 [∧4 φ (∨ ¬R S) (∨2 S [∧ ¬Q ¬P]) R] : 0.6 〉. �
We now extend our analysis from formulas with pattern 〈 (∨ ¬� D) : β〉 to those with pattern 〈 (∨ C(¬�) D) : β 〉,

where C(¬�) is the maximal sub-formula in � that becomes false when ¬� is false, namely C(¬�) is the maximal sub-
formula in � equivalent to a conjunction of the kind ¬� ∧ ψ , i.e. C(¬�) ≡ ¬� ∧ ψ .

Example 5.2. If � contains 〈� : α〉 and another formula of the kind:

ϕ = 〈 (∨3 ϕ1 [∧3 φ1 [∧2 ¬� (∨ φ2 ¬P)] φ3] ϕ2) : 0.7 〉
then C(¬�) = [∧3 φ1 [∧2 ¬� (∨ φ2 ¬P)] φ3] because C(¬�) verifies:

(i) C(¬�) ≡ ¬� ∧ ψ = ¬� ∧ [∧3 φ1 (∨ φ2 ¬P) φ3] (namely, if ¬� is false so is C(¬�));

(ii) no sub-formula of ϕ including C(¬�) verifies (i). �
3 For colors see the web version of the article.
366

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
Example 5.3. Let us consider ϕ below. If we take ¬P , then ϕ has a sub-formula with pattern (∨ C(¬P) D), in which
C(¬P) = [∧ ¬P (∨ S ¬R)] and D = (∨ ¬R S).

ϕ = 〈 [∧4 φ (∨3 ¬R [∧2 ¬P (∨ S ¬R)] S) φ1 R] : 0.6 〉 �
Regarding the inference rule, we have that when � has both a unitary clause 〈� : α〉 and another formula 〈ϕ : β〉 such

that ϕ has the pattern (∨ C(¬�) D), then the possibilistic NC unit-resolution rule is easily obtained by extending Rule (3)
as follows:

〈� : α〉 , 〈 (∨ C(¬�) D) : β 〉
〈D : min(α,β) 〉 (4)

Proposition 5.4. Rule (4) is sound:

〈� : α〉 , 〈 (∨ C(¬�) D) : β〉 |= 〈D : min{α,β} 〉.

Example 5.5. Rule (4) with ϕ1 = 〈P : 0.3〉 and with ϕ from Example 5.3 derives:

〈 [∧4 φ (∨ ¬R S) φ1 R] : 0.3 〉.

5.2. NC unit-resolution rule

Coming back to the almost-clausal pattern expressed previously and extending its literal ¬� to C(¬�), we now rewrite
it compactly as indicated below, where 	 and 	′ denote a concatenation of formulas, namely 	 = ϕ1 . . . ϕi−1 and 	′ =
ϕi+1 . . . ϕn:

〈 [∧ 	 (∨ C(¬�) D) 	′] : β 〉
We now analyze when NC unit-resolution can be indeed applied to Horn-NC bases �. That is, � must have a unit-clause

〈� : α〉 and a possibilistic Horn-NC formula, denoted 〈	 : β〉, with a syntactical pattern of the kind below,

〈 [∧ 	1 (∨2 . . . [∧k 	k (∨ C(¬�) D) 	′
k] . . .) 	′

1] : β 〉
where all the 	 j ’s and 	′

j ’s are concatenations of formulas, e.g. for the nesting level j, 1 ≤ j ≤ k, we have 	 j =
ϕ j1 . . . ϕ ji−1 and 	′

j = ϕ ji+1 . . . ϕ jn j
. By following the same principle that led us to Rule (4) and taking into account that

N(ϕ1 ∧ ϕ2) = min{N(ϕ1), N(ϕ1)}, one obtains the possibilistic NC unit-resolution rule UR�:

〈� : α〉 , 〈 [∧1 	1 . . . [∧k 	k (∨ C(¬�) D) 	′
k] . . . 	′

1] : β 〉
〈 [∧1 	1 . . . [∧k 	k D 	′

k] . . . 	′
1] : min{α,β} 〉 UR� (5)

Recapitulating, Rule (5) indicates that if the Horn-NC base � has two formulas such that one is a unit clause 〈� : α〉 and
the other 〈	 : β〉 has the pattern of the right conjunct in the numerator, then 	 can be replaced with the formula in the
denominator. In practice, applying (5) amounts to just removing C(¬�) from 	 and updating the necessity weight.

We now denote the right conjunct in the numerator of (5) by 	 and denote that (∨ C(¬�) D) is a sub-formula of 	 by
	 � (∨ C(¬�) D). Rule (5) above can be compacted, giving rise to a more concise formulation of UR�:

〈� : α〉 , 〈 	 � (∨ C(¬�) D) : β 〉
〈 	 � D : min{α,β} 〉 UR�

Proposition 5.6. Te rule UR� is sound:

〈� : α〉 , 〈	 � (∨ C(¬�) D) : β〉 |= 〈D : min{α,β} 〉.

Corollary 5.7. UR� coincides with clausal unit-resolution [29,33] for clausal formulas.

The corollary is easy to verify.

Examples 6.1 and 6.2, using two simple formulas, illustrate how UR� works. Two more complete formulas are given in
Examples 6.5 and 6.8 but they make use of other inferential mechanisms that are described in the remainder of this
section.
367

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
Note. The clausal-like formulation of NC unit-resolution contrasts with the functional-like one of NC (full) resolution [64]
handled until now in the literature (see also [5]). We believe that our version, as previously said, is more suitable to
understand, implement and formally analyze.

5.3. NC unit-resolution calculus

UR� , besides UR� , also includes: (a) propositional NC unit-resolution, or URP , which is UR� adapted to propositional
logic, and (b) rules to simplify propositional formulas.

Propositional NC Unit-Resolution. A major difference between computing the inconsistency degree of clausal and non-clausal
bases is that the unity members of the former, i.e. clauses, are always consistent, while a non-clausal formula can itself be
inconsistent. That is, � can contain a formula 〈	 : α〉 where 	 is inconsistent, and if so, 〈	 : α〉 is equivalent to 〈⊥ : α〉,
which brings to:

Proposition 5.8. If 〈	 : α〉 ∈ � and 	 is inconsistent then Inc(�) ≥ α.

Proof. By definition Inc(�) = max{β | �≥β is inconsistent}. If 	 is inconsistent, then trivially 〈⊥ : α〉 ∈ �≥α , and thus, �∗≥α
is inconsistent. So Inc(�) ≥ α. �

Hence, first of all, the propositional formula 	 of each 〈	 : α〉 ∈ � must be checked for consistency. If 	 is inconsistent,
then, by definition, Inc(�) is the maximum of α and the inconsistency degree of the strict α-cut of �. Thus, one can remove
from � all formulas 〈	 : β〉 such that β ≤ α and search whether Inc(�>α) > 0.

The propositional rule URP , which tests the consistency of 	 when 〈	 : α〉 ∈ �, is easily derived from UR� by considering
that the conjunction of a unit clause � and of a sub-formula C(¬�) happens inside 	. Thus URP is formalized as follows:

〈 � ∧ 	 � (∨ C(¬�) D) : α 〉
〈 	 � D : α〉 URP (6)

Lemma 5.9. A propositional Horn-NC formula ϕ is inconsistent iff URP = {URP , ⊥∨, ⊥∧, �φ, ��} ⊂ UR� applied to 〈ϕ : α〉
derives 〈⊥ : α〉.

Proposition 5.10. Testing the propositional consistency of ϕ such that 〈ϕ : α〉 ∈ H� with inferences {URP , ⊥∨, ⊥∧, �φ, ��} ⊂
UR� is polynomial.

Examples. A complete example through which we show how URP proceeds is Example 6.3 and Example 6.4 illustrates the
effects of applying Proposition 5.8.

Simplification Rules. Each application of UR� and URP demands the subsequent application of trivial logical simplifications of
propositional formulas. For instance, the formulas (∨ ϕ (∨ P (∨ ¬R φ))) and (∨ P [∧ (∨) ϕ]) can be obviously substituted
by their equivalent (∨ ϕ P ¬R φ) and P , respectively. Assuming that 〈	 : α〉 ∈ �, the first two rules below simplify formulas
by (upwards) propagating (∨):

• 〈 	 � (∨ φ1 . . . φi−1 (∨)φi+1 . . . φk) : α〉
〈 	 � (∨ φ1 . . . φi−1 φi+1 . . . φk) : α 〉 ⊥∨

• 〈 	 � [∧ ϕ1 . . . ϕi−1 (∨)ϕi+1 . . . ϕk] : α〉
〈 	 � (∨) : α 〉 ⊥∧

The next two rules remove redundant connectives. The first one removes � ∈ {∧, ∨} if it is applied to a single formula,
e.g. (∨ φ1). The second one removes � if it is inside another equal �, i.e. applies to sub-formulas ‖�1 ϕ1 . . . ϕi−1 ‖ �2
φ1 . . . φn ‖ ϕi+1 . . . ϕk ‖, where �1 = �2 and where ‖ � . . .‖ stands for both (∨ . . .) and [∧ . . .]. So formally, the rules are:

• 〈 	 � ‖�1 ϕ1 . . . ϕi−1 ‖ �2 φ1‖ ϕi+1 . . . ϕk ‖ : α〉
〈 	 � ‖�1 ϕ1 . . . ϕi−1 φ1 ϕi+1 . . . ϕk ‖ : α〉 �φ

• 〈 	 � ‖�1 ϕ1 . . . ϕi−1 ‖ �2 φ1 . . . φn ‖ϕi+1 . . . ϕk ‖ : α 〉,�1 = �2 ��
〈 	 � ‖�1 ϕ1 . . . ϕi−1 φ1 . . . φn ϕi+1 . . . ϕk ‖ : α 〉
368

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
The Calculus UR�. The calculus UR� is composed of all the above inference rules, which are recalled in the next defi-
nition:

Definition 5.11. We define UR� as the calculus formed by UR� , URP and the simplification rules, namely UR� =
{UR�, URP , ⊥∨, ⊥∧, � φ, �� } and thus where:

• 〈� : α〉 , 〈 	 � (∨ C(¬�) D) : β 〉
〈 	 � D : min{α,β} 〉 UR�

• 〈 � ∧ 	 � (∨ C(¬�) D) : α 〉
〈 	 � D : α〉 URP

• 〈 	 � (∨ φ1 . . . φi−1 (∨)φi+1 . . . φk) : α〉
〈 	 � (∨ φ1 . . . φi−1 φi+1 . . . φk) : α 〉 ⊥∨

• 〈 	 � [∧ ϕ1 . . . ϕi−1 (∨)ϕi+1 . . . ϕk] : α〉
〈 	 � (∨) : α 〉 ⊥∧

• 〈 	 � ‖�1 ϕ1 . . . ϕi−1 ‖ �2 φ1‖ ϕi+1 . . . ϕk ‖ : α〉
〈 	 � ‖�1 ϕ1 . . . ϕi−1 φ1 ϕi+1 . . . ϕk ‖ : α〉 �φ

• 〈 	 � ‖�1 ϕ1 . . . ϕi−1 ‖ �2 φ1 . . . φn ‖ϕi+1 . . . ϕk ‖ : α 〉,�1 = �2

〈 	 � ‖�1 ϕ1 . . . ϕi−1 φ1 . . . φn ϕi+1 . . . ϕk ‖ : α 〉 ��

Remark. Having established possibilistic NC unit-resolution UR� , the procedure NC unit-propagation for possibilistic NC
formulas can be designed, and on top of it, the possibilistic NC DPLL scheme can be defined (see related and future work
section).

Possibilistic Rules. We recall the possibilistic rules in Definition 3.2. We will pay special attention to the deduction of con-
junctions 〈 [∧ ϕ1 . . . ϕi . . . ϕk] : α〉. In this case, we can deduce that the necessity weight of each individual ϕi is α. The last
rule is MaxN:

〈 [∧ ϕ1 . . . ϕk] : α〉
{〈ϕ1 : α〉, . . . , 〈ϕk : α〉} MinD

〈ϕ : α〉, 〈ϕ : β〉
〈ϕ : max{α,β}〉 MaxN

Example. Example 6.5 illustrates how UR� searches for just one empty clause 〈⊥ : α〉.

Lemma 5.12. Let � ∈H� . � is inconsistent iff applying UR� , MinD and MaxN to � the formula 〈(∨) : α〉 is derived, and if 〈(∨) : α〉
is derived then Inc(�) ≥ α.

Proposition 5.13. Calculating the inconsistency degree of any � ∈H� is polynomial.

Proof. It follows from Proposition 5.10 and the fact that dichotomic search, which is outlined in Subsection 5.5, requires at
most log n calls to the propositional solver. �

5.4. Further inferences rules

We now present two further inferences not required to ensure completeness but, since they allow shorter proofs, their
appropriate management can yield significant speed-ups.

Propositional NC Local-Unit-Resolution. URP could also apply to propositional sub-formulas and can be used in the general
framework of non-Horn-NC bases. The URP local application means that applying URP to sub-formulas ϕ of any formula
	, where 〈	 : α〉 ∈ �, such that ϕ has the URP numerator pattern, should be authorized. Namely, applying URP to sub-
formulas with pattern ϕ = � ∧ 	 � (∨ C(¬�) D) should be permitted and ϕ could be substituted with � ∧ 	 � D. Hence,
the formal specification of the Propositional NC Local-Unit-Resolution rule, LUR, for any NC 〈ϕ : α〉 is:

〈 	 � (� ∧ ϕ � (∨ C(¬�) D)) : α 〉
〈 	 � (� ∧ ϕ � D) : α 〉 LUR
369

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
This inference rule should be read: if 〈	 : α〉 ∈ � and 	 has a sub-formula with a literal � conjunctively linked to a
sub-formula ϕ having pattern (∨ C(¬�) D), then its component C(¬�) can be eliminated.

Example. Example 6.6 illustrates the functioning of LUR.

Remark. The introduction of this new rule LUR applicable to certain sub-formulas habilitates new sequences of inferences,
and so, shorter proofs are now available.

Proposition 5.14. If applying LUR to 	 results in 	′ , then 〈	 : α〉 and 〈	′ : α〉 are logically equivalent.

Proof. The soundness of LUR follows from that of URP which is proven in Lemma 5.9. �

Possibilistic NC Hyper-Unit-Resolution. The rule of possibilistic NC unit-resolution UR� can be extended in order to obtain
Possibilistic NC Hyper-Unit-Resolution (HUR), which is formalized as follows. Assume that the possibilistic base has a unit-
clause 〈� : α〉 and two sub-formulas (∨ C(¬�1) D1) and (∨ C(¬�2) D2), where ¬�i denotes a specific occurrence of ¬�.
The simultaneous application of NC unit-resolution with two sub-formulas is formally expressed as follows:

〈� : α〉 , 〈	1 � (∨ C(¬�1) D1) : β1〉 , 〈	2 � (∨ C(¬�2) D2) : β2〉
〈	1 � D1 : min{α,β1} 〉 , 〈	2 � D2 : min{α,β2} 〉

If the sub-formula 〈	i � (∨ C(¬�i) Di) : β i〉 is denoted by 〈	, CD(¬�), β〉i and the sub-formula 〈	i � Di : β i〉 by
〈	, D, β ′〉i , where β ′ = min{α, β i} for i, 1 ≤ i ≤ k, then HUR for k sub-formulas is formally expressed:

〈� : α〉 , 〈	,CD(¬�),β〉1 , . . . , 〈	,CD(¬�),β〉i , . . . , 〈	,CD(¬�),β〉k

〈	,D, β ′〉1 , . . . , 〈	,D, β ′〉i , . . . , 〈	,D, β ′〉k
HUR

Since ¬�i, 1 ≤ i ≤ k, are literal occurrences that are pairwise different, so are the sub-formulas CDi , and so Di , in the
numerator and denominator of HUR, respectively. However, the formulas 	i are not necessarily different.

Example. The last concrete question and in general the working of the rule HUR is illustrated in Example 6.7.

Note. An NC hyper unit-resolution rule, more general than HUR, can be devised to include simultaneously k ≥ 2 unit-clauses
so that for each unit-clause 〈� : α〉, one considers n ≥ 2 sub-formulas 〈	i � (∨ C(¬�i) Di) : β i〉. In other words, one can
consider applying simultaneously k ≥ 2 HUR rules.

5.5. Finding the inconsistency degree

UR� can determine just one subset of contradictory formulas, along with its inconsistency degree, whereas a given
possibilistic base � can typically contain many contradictory subsets, each of them inducing the deduction of an empty
formula 〈⊥ : α〉 with a specific weight α. Thus by definition of Inc(�) and by Proposition 3.4, we have that:

Inc(�) = max{α : �≥α is inconsistent} = max{α |� � 〈⊥ : α〉}. (7)

Below, we give two alternative methods to determine the inconsistency degree of Horn-NC bases. The first one is based
on Dichotomic Search and calls to a propositional SAT (DS-SAT) solver, while the second one Finds the Inconsistency degree
through calls to logical calculi UR� (FI-UR). We demonstrate that both methods are polynomial for possibilistic Horn-NC
bases and that neither of them outperforms the other for all such bases, to put it another way, their performance depends
on the specific features of the Horn-NC base to be solved. Thus an efficient methodology for practical applications is likely
to be derived from an appropriate amalgamation of both methods.

Dichotomic Search (DS-SAT). Just as for possibilistic clausal formulas [57], we can rank the weights α occurring in an input
Horn-NC base � and then, with dichotomic search, check whether Inc(�) > α for some of such weights α. For that purpose,
the strict α-cut �>α of � is obtained and its propositional part �∗

>α is checked for consistency through the invocation of a
solver for propositional Horn-NC formulas. Thus, if �∗

>α
is found consistent (resp. inconsistent), then the next weight β < α

(resp. β > α) in the dichotomic search is selected, and subsequently, whether �∗
>β

is consistent is verified.
Dichotomic search invokes the propositional solver to a maximum of log m times, m being the number of different

weights in �. Since propositional Horn-NC formulas are tested for consistency in polynomial time (see Proposition 5.10,
Section 7.2), DS-SAT also needs just polynomial time to calculate the inconsistency degree of Horn-NC bases.

Along these lines, the following worst-case complexity of determining the inconsistency degree of standard possibilistic
Horn bases can be easily established and which, however, had not been done up to now (to the best of our knowledge):
370

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
Proposition 5.15. The worst-case complexity of DS-SAT to determine the inconsistency degree of standard Horn possibilistic bases �
is O (n × logm), where n is the size of �∗ and m is the number of distinct weights in �.

The proof follows immediately from the facts that dichotomic search needs only log m calls to a Horn-SAT solver and
that testing the satisfiability of propositional Horn formulas was proven to be a strictly-linear complexity problem [25,55,37].

Practical Issues. In the case of Horn-NC bases, DS-SAT can skip easy and short proofs and, in some cases, become unsuitably
redundant. Below, we first give counterexamples for DS-SAT on which DS-SAT is substantially outperformed by the second
method FI-UR to be described, but subsequently, we will take the opposite direction and provide counterexamples for FI-UR
on which DS-SAT notably improves FI-UR.

Example 5.16. Let us consider the next standard possibilistic Horn base:

� = {〈(∨ P1 ¬Q 1) : .125〉, 〈(∨ Q 1¬Q 2) : .25〉, 〈(∨ ¬Q 1 Q 2) : .375〉, 〈(∨ ¬Q 1 ¬Q 2) : .5〉,
〈(∨ ¬P1 ¬P2) : .625〉, 〈(∨ P1 ¬P2) : .625〉, 〈(∨ ¬P1 Q 1) : .75〉, 〈(∨ ¬P1 Q 2) : .875〉,
〈S1 : 1.〉, 〈S2 : 1.〉, 〈(∨ ¬S1 ¬S2) : 1.〉}

When applying DS-SAT to �, the following claims arise and are easily verifiable:

– �∗ is Horn and so is Horn-NC.

– �≥1. = {〈S1 : 1.〉, 〈S2 : 1.〉, 〈(∨ ¬S1 ¬S2) : 1.〉} ⊂ � is inconsistent.

– ∀α > 0: �∗
>α includes the inconsistent subset �∗≥1. .

– The strict α-cuts checked for inconsistency are α ∈ {.0, .5, .75, .875, 1.}.

– All five performed calls end for the same cause: �∗≥1. is inconsistent.

Therefore, the behavior of DS-SAT is heavily redundant for this example. �
The concrete Horn possibilistic base specified in Example 5.16 is parameterized and then generalized by the pattern of

possibilistic Horn bases given next:

Example 5.17. Consider the next pattern of Horn bases (the Ci, j ’s are Horn clauses):

� = {〈C1,1 : α1〉, . . . , 〈C1,n1 : α1〉, . . . , 〈Cm−1,1 : αm−1〉,
. . . , 〈Cm−1,nm−1 : αm−1〉, 〈Cm,1 : 1.〉, 〈Cm,nm : 1.〉 }

in which we will assume that we have:

– �∗≥1 = {Cm,1, . . . , Cm,nm } is inconsistent.

– For 1 ≤ i ≤ m − 1, 1 ≤ j ≤ ni , Ci, j , is not unitary.

– �≥1 and �/�≥1 do not share any literal.

– The weights αi verify the following condition:

αi = 1/2m + 2/2m + . . . + 2i/2m, for 1 ≤ i ≤ m − 1.

Proposition 5.18. The worst-case complexity of DS-SAT for possibilistic Horn bases � having the pattern of Example 5.17 is O (n ×
log m), where n = size(�∗≥1).

The proof is obtained following the reasoning sketched in Example 5.16.

Below, we describe the second method.

Finding Inconsistency via UR� (FI-UR). We next tackle with algorithm FI-UR whose complexity is proven to be O (n) for
possibilistic bases having the pattern of Example 5.17, and so that it improves that of DS-SAT by a factor log m. FI-UR relies
on calls to logical calculi UR� , does not require any propositional solver and its principle is as follows.

Let us assume that FI-UR has deduced the first empty formula 〈⊥ : α1〉, indicating that there is an inconsistent subset
with degree α1, and so that Inc(�) ≥ α1. Then, FI-UR recursively verifies whether the strict α1-cut �>α1 is inconsistent, and
again using UR� , attempts to deduce 〈⊥ : α2〉. If so, obviously Inc(�) ≥ α2 > α1 and the process goes on with the strict
α2-cut �>α2 . These operations are recursively performed until consistency is attained, and at that moment, FI-UR stops the
371

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
search and returns the weight αk of the last deduced formula 〈⊥ : αk〉. The algorithm FI-UR specified below materializes the
principle we have just described and must be called with its input value: Inc = 0.

FI-UR(�, Inc)

(1) Apply UR� to � adding resolvents to �.

(2) If 〈⊥ : α〉 ∈ � then: �α := α-cut(�), Inc := α, FI-UR(�α , Inc).

(3) Else Return Inc.

Lemma 5.19. For any � ∈H� , we have: Inc(�) = FI-UR(�, 0).

Lemma 5.20. For any � ∈H� , FI-UR(�, 0) ends in polynomial time in size(�).

Example 5.21. Let us consider the next possibilistic Horn-NC base:

� = {〈(∨ P1) : .5〉, 〈{∧ ¬Q 1 Q 2} : .6〉, 〈(∨ {∧¬P1 ¬P2} {∧ Q 1 Q 2}) : .4〉,
〈(∨ ¬Q 1) : .5〉, 〈(∨ Q 1 ¬Q 2) : .6〉, 〈(∨ ¬Q 1 Q 2) : .5〉, 〈(∨ Q 2) : .5〉,

Below, we specify step-by-step the operations executed by FI-UR running on �:

• In step (1), UR� picks up 〈(∨ P1) : .5〉 and 〈(∨ {∧¬P1 ¬P2} {∧ Q 1 Q 2}) : .4〉.

• UR� deduces 〈(∨ {∧ Q 1 Q 2}) : .4〉 and adds it to �.

• 〈(∨ {∧¬P1 ¬P2} {∧ Q 1 Q 2}) : .4〉 is now subsumed and so canceled.

• After simplifications, 〈{∧ Q 1 Q 2} : .4〉 is added to �.

• Rule �φ with 〈{∧ Q 1 Q 2} : .4〉 adds 〈Q 1 : .4〉 and 〈Q 2 : .4〉.

• Rule �φ with 〈{∧ ¬Q 1 Q 2} : .6〉 adds 〈¬Q 1 : .6〉 and 〈Q 2 : .6〉.

• UR� with 〈¬Q 1 : .6〉 and 〈Q 1 : .4〉 deduces 〈⊥ : .4〉.

• In step (2), the obtained strict .4-cut is:

�>.4 = {〈(∨ ¬Q 1) : .5〉, 〈(∨ Q 1 ¬Q 2) : .6〉, 〈(∨ ¬Q 1 Q 2) : .5〉, 〈(∨ Q 2) : .5〉}
• FI-UR(�>.4, .4) is recursively called.

• In step (1), the reiterative application of UR� leads to 〈⊥ : .5〉.

• In step (2), the obtained strict .5-cut is: �>.5 = {〈(∨ Q 1 ¬Q 2) : .6〉}.

• FI-UR(�>.5, .5) is recursively called.

• In step (1), UR� cannot deduce any 〈⊥ : α〉.

• Step (2) is skipped.

• In step (3), FI-UR returns Inc= .5. �
Example 6.8, which is the continuation of Example 6.5, also shows the process followed by FI-UR that interleaves inference
rules of UR� with α-cuts, in order to determine the inconsistency degree of a possibilistic Horn-NC base.

Algorithm FI-UR guides its deduction search through unit-clauses, which allows to it to become quicker than DS-SAT for
certain Horn-NC bases. We next check this claim by employing the possibilistic bases in Examples 5.16 and 5.17:

Example 5.16. FI-UR, running on � in Example 5.16, works as follows:

– In step (1), UR� is applied to �.

– Since UR� requires unit clauses, only 〈(∨ ¬S2) : 1.〉 and 〈⊥ : 1.〉 are deduced.

– In step (2), we have: �>1 = ∅ and Inc := 1

– FI-UR(∅, 1.) is recursively called.
372

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
– In step (1), no inference is performed.

– Step (2) is skipped.

– In step (3), FI-UR returns Inc = 1. �
Consequently, FI-UR, which executes just once NC unit-resolution and exclusively on formulas in �≥1, outperforms DS-

SAT in the solving of Example 5.16. This improvement is more formally and accurately generalized by applying FI-UR to
Example 5.17:

Proposition 5.22. The worst-case complexity of FI-UR to determine the inconsistency degree of Horn bases � with the pattern of
Example 5.17 is O (n), where n = size(�∗≥1).

Proof. (Sketch) The proof follows from the following facts:

– �∗≥1. is the unique subset with unit-clauses, by the assumptions in Example 5.17.

– Resolvents subsume their non-unitary “father” clause because:

– The resolvent inherits the weight of its non-unitary “father”.

– Hence, FI-UR keeps constant the number of formulas in �≥1 and �.

– UR� recovers classical unit-resolution if applied to Horn bases.

– The same datastructure of linear Horn-SAT solvers [25,55,37] can be used. �
Even though FI-UR is more efficient than DS-SAT on the previous bases, it is not the case for all Horn-NC bases: for some

of them, the behavior of both methods is the inverse one. In fact, UR� can add a quadratic number of formulas to � in
some detrimental cases, and so, be heavily defeated by DS-SAT. We give a counterexample for FI-UR next:

Example 5.23. Let us study the next possibilistic Horn base:

� = {〈(∨ ¬P1 . . . ¬Pm) : α〉, 〈(∨ P1) : β1〉, . . . , 〈(∨ Pm) : βm〉}
where we suppose: β1 < . . . < βi < . . . < βm < α.

(1) In a first stage, UR� can deduce m formulas of the kind:

Ci = 〈(∨ ¬P1 . . .¬Pi−1¬Pi+1 . . .¬Pm) : βi〉, for 1 ≤ i ≤ m,

whose parent 〈(∨ ¬P1 . . .¬Pi . . . ¬Pm) : α〉 is not subsumed because βi < α.

(2) In a second stage, for each Ci issued from the first stage and the unit formulas
〈(∨ P j) : β j〉, i �= j, belonging to �, UR� can deduce formulas of type:

Ci, j = 〈(∨ ¬P1 . . .¬Pi−1¬Pi+1 . . .¬P j−1¬P j+1 . . .¬Pm) : βi, j〉,
where βi, j = min{βi, β j}. In such a case, we have that:

– if βi > β j then βi, j = β j and Ci, j does not subsume Ci ; however

– if βi < β j then βi, j = βi and Ci, j subsumes Ci ;

In the latter case, Ci could be removed if a subsumption rule was added to UR� .

(3) Therefore, after having applied unit-resolution k times, one obtains formulas:

Ci, j = 〈(∨ ¬P ′
1¬P ′

k) : β ′
k+1,...,m〉, where

{P ′
1, . . . P ′

k, P ′
k+1 . . . , P ′

m} = {P1, . . . , Pm}, β ′
k+1,...,m = min{β ′

k+1, . . . , β
′
m}

and where β ′
k+ j comes from a formula 〈(∨ P ′

k+ j) : β ′
k+ j〉 ∈ �.

It is not hard to check (we omit the details for space saving purposes) that if the unitary formulas are selected in
decreasing order w.r.t. their weights, that is, first 〈(∨ Pm) : βm〉, then 〈(∨ Pm−1) : βm−1〉, and so on, the number of generated
clauses is:
373

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
m2 <

m∑
k=1

k × (m − k) < m3

whereas if they are chosen in increasing order, then such a number is bounded by:

m∑
k=1

k = m × (m − 1)/2

and the latter quantity of clauses belongs to O (m2). �
Proposition 5.24. The worst-case complexity of FI-UR to determine the inconsistency degree of possibilistic bases � from Example 5.23,
is O (m2), where m is the maximum number of literals in a specific clause in �∗.

On the contrary, for bases specified in Example 5.23, DS-SAT warrants an O (n × log m) complexity by Proposition 5.18,
and so it ameliorates algorithm FI-UR. Besides, please remark that Proposition 5.24 entails that FI-UR is at least quadratic
for standard Horn bases, so it is outperformed by DS-SAT as well.

Altogether, high practical efficiency is probably achievable by a suitable combination of both kinds of searching principles.
We believe that one of such suitable integrations could rely on using DS-SAT to guide the global search and applying FI-UR
to certain local sub-formulas encountered in the searching process. Nonetheless, this aspect demands further investigation.

5.6. Reasoning by contradiction

In classical logic, to know whether a question ϕ follows from a knowledge base �, one reasons by contradiction and
checks whether � ∧ ¬ϕ is inconsistent. In possibilistic logic [29,57], one adds 〈¬ϕ : 1.〉 to � and searches Inc(� ∪ {〈¬ϕ :
1.〉}).

With clausal bases, if ϕ is a literal conjunction then ¬ϕ is a clause, and if ϕ is a clause then 〈¬ϕ : 1.〉 is equivalent to a
set of clauses 〈� : 1.〉, where � is a literal. Hence, in both cases, in order to determine Inc(� ∪ {〈¬ϕ : 1.〉}), we can use the
same inference mechanisms which allow the determination of the inconsistency of clausal bases.

With Horn-NC bases, that advantage is lost because if the question ϕ is Horn-NC then ¬ϕ is not Horn-NC (it is dual
Horn-NC). Then, there exist two possibilities briefly discussed below to determine Inc(� ∪ {〈¬ϕ : 1.〉}), being both options
polynomial-time solvable and making use of only a solver for propositional Horn-NC formulas.

The first one consists of language restriction for questions ϕ . Concretely, allowing only positive formulas for ϕ would
entail that ¬ϕ would be negative and so Horn-NC as well. Note that some sort of limitation also exists in the clausal setting:
one cannot submit as a question a clausal formula, and yet, clausal formulas form the language of the clausal bases. So, one
cannot use for questions ϕ the full language used for bases.

The second possibility allows for handling the same Horn-NC language for bases and for questions ϕ . It takes advantage
that consistent Horn-NC bases have only one minimal model (Corollary 4.15) and its first step consists in determining the
inconsistency degree Inc(�) = α, which means that �∗

>α is consistent and also that Inc(� ∪ {〈¬ϕ : 1.〉}) ≥ α.
Subsequently, by using non-clausal unit-resolution one can obtain the minimal model of �∗

>α , just as it can be done in
the clausal setting with clausal unit-resolution and Horn clausal formulas, and then evaluate ϕ within it.

According to the value of ϕ within the minimal model of �∗
>α we have:

(1) True entails �∗
>α |= ϕ; so �∗

>α ∧ ¬ϕ is inconsistent.

(2) False entails �∗
>α |= ¬ϕ and thus �∗

>α �|= ϕ and �∗
>α ∧ ¬ϕ is consistent.

(3) Undefined entails �∗
>α and ϕ share models but �∗

>α �|= ϕ and �∗
>α ∧ ¬ϕ is consistent.

Case (1): if the minimal model of �∗
>α evaluates ϕ to true, then we have that both �∗

>α is consistent and �∗
>α ∧ ¬ϕ is

inconsistent. Therefore, Inc(� ∪ {〈¬ϕ : 1.〉}) > α is the smallest weight β occurring in �∗
>α .

Case (3): in case the minimal model of �∗
>α evaluates ϕ to undefined, then �∗

>α ∧ ¬ϕ is consistent and then one can
check that: Inc(� ∪ {〈¬ϕ : 1.〉}) = Inc(�) = α.

Case (2): if the minimal model of �∗
>α evaluates ϕ to false, then it is still possible that for a certain β > α, we could

have �∗
>β �|= ¬ϕ and even that �∗

>β |= ϕ . Thus, the process is continued searching for a bigger β-cut such that the minimal
model of �∗

>β evaluates ϕ to true or undefined. In the former case and by Case (1) above, Inc(� ∪ {〈¬ϕ : 1.〉}) = β , and in
the latter case and by Case (3) above, Inc(� ∪ {〈¬ϕ : 1.〉}) = α.

Example 5.25. Assume that for Inc(�) = 0.5 and that �>0.5 and ϕ are as follows:

�>0.5 = {〈a,0.6〉, 〈b,0.7〉, 〈(∨ ¬a d),0.8〉 } ϕ = [∧ ¬a (∨ b ¬d)]

374

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
One can obtain with propositional NC unit-resolution that the minimal model of �∗
>0.5 is {a, b, d} and that ϕ is evaluated

to false within it. Hence, as mentioned above, the search continues with a value β > 0.5. Then the minimal model of �∗
>0.6

is {b} in which ϕ is true. Thus, by applying Case (1) above, we have that Inc(� ∪ {〈¬ϕ : 1〉}) = 0.7.
Assume that we maintain the same base �>0.5 but that now ϕ = [∧ ¬a ¬b (∨ b ¬d)]. We have: (i) the minimal

model {a, b, d} of �>0.5 evaluates ϕ to false; (ii) the minimal model {b} of �∗
>0.6 evaluates ϕ to false; and (iii) the minimal

model ∅ of �∗
>0.7 = {〈(∨ ¬a d), 0.8〉 } evaluates ϕ to undefined. Hence, we have to apply Case (3) above, which leads to

Inc(� ∪ {〈¬ϕ : 1〉}) = 0.5. �
The complexity of determining Inc(� ∪ {〈¬ϕ : 1〉}) is clearly polynomial because:

(1) evaluating a non-clausal formula φ in a specific interpretation takes only linear time;

(2) the propositional Horn-NC solver ends in polynomial time (see Section 7.2); and

(3) the number of dichotomic steps is at most logarithmic.

6. Illustrative examples

The notions defined or discussed above are illustrated by the following examples:

– Example 6.1: a simple inconsistent Horn-NC base.

– Example 6.2: a simple consistent Horn-NC base.

– Example 6.3: an inconsistent propositional Horn-NC formula.

– Example 6.4: a base with an inconsistent propositional formula.

– Example 6.5: a complete Horn-NC base.

– Example 6.6: NC Local Unit-Resolution.

– Example 6.7: NC Hyper Unit-Resolution.

– Example 6.8: algorithm Find.

We highlight Examples 6.5 and 6.8 as a rather complete Horn-NC base solved in two phases: the first one in Example 6.5
and the second one in Example 6.8.

Example 6.1. Let us assume the next possibilistic Horn-NC base:

�0 = {〈P : 0.8〉, 〈ϕ = (∨2 [∧ ¬P ¬Q] Q) : 0.6〉, 〈 (∨ ¬P ¬Q) : 0.7〉}
• UR� with 〈P : 0.8〉 and ϕ gives rise to the next matchings:

	 = ϕ = (∨ C(¬P) D) C(¬P) = [∧ ¬P ¬Q] D = Q

• Hence, UR� adds: �1 ← �0 ∪ 〈 (∨ Q) : 0.6〉
• Applying simplifications to the last formula: �2 ← �1 ∪ 〈Q : 0.6〉
• UR� with 〈Q : 0.6〉 and with the last formula in �0 gives:

	 = (∨ ¬P ¬Q) = (∨ C(¬Q) D) C(¬Q) = ¬Q D = ¬P

• Hence, UR� adds: �3 ← �2 ∪ 〈 (∨ ¬P) : 0.6〉
• Resolving 〈P : 0.8〉 in �0 with the last added formula: �4 ← �3 ∪ 〈(∨) : 0.6〉
• Therefore UR� obtains Inc(�) = 0.6 �

Example 6.2. Let us assume that �0 is the next possibilistic Horn-NC base:

�0 = {〈Q : 0.8〉, 〈ϕ = (∨2 ¬Q [∧2 R (∨2 ¬Q [∧ S ¬P])]) : 0.6〉, 〈 (∨ ¬P ¬Q) : 0.7〉}
• UR� with 〈Q : 0.8〉 and with the rightest ¬Q in ϕ gives the next matchings:

– 	 = ϕ;

– (∨ C(¬Q) D) = (∨2 ¬Q [∧ S ¬P]);

– C(¬Q) = ¬Q ;

– D = [∧ S ¬P].
375

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
Fig. 1. Formulas ϕ (left) and ϕ′ (right).

• Hence, UR� adds: �1 ← �0 ∪ 〈 (∨2 ¬Q [∧2 R (∨1 [∧ S ¬P])]) : 0.6〉
• After simplifications: �2 ← �1 ∪ 〈 (∨2 ¬Q [∧ R S ¬P]) : 0.6〉
• Using again 〈Q : 0.8〉 and the last formula in �2, we have the matchings:

– 	 = (∨2 ¬Q [∧ R S ¬P]) = (∨ C(¬Q) D)

– C(¬Q) = ¬Q

– D = [∧ R S ¬P]
• Hence, UR� adds: �3 ← �2 ∪ 〈 (∨1 [∧ R S ¬P]) : 0.6〉
• After simplifications: �4 ← �3 ∪ 〈 [∧ R S ¬P] : 0.6〉
• Applying MinD: �5 ← �4 ∪ {〈R : 0.6〉, 〈S : 0.6〉, 〈¬P : 0.6〉}.

• Using the first and last formulas in �0: �6 ← �5 ∪ 〈 (∨ ¬P) : 0.7〉
• Applying MaxN with 〈¬P : 0.6〉 and 〈 (∨ ¬P) : 0.7〉 the former is eliminated.

• Since no more resolvents apply, �6 is consistent, and so Inc(�) = 0. �
Next, we give a rather elaborated propositional formula and show how the propositional NC unit-resolution, or URP ,

together with the simplification rules, detect its inconsistency.

Example 6.3. Let us assume that the input � has a possibilistic Horn-NC 〈ϕ : α〉 given below, where φ1 and φ2 are assumed
to be Horn-NC formulas.

〈 ϕ = [∧3 (∨ R φ1) (∨2 ¬P [∧3 (∨ ¬P ¬R) (∨2 φ2 [∧ ¬Q ¬P]) R]) P] : α 〉
The tree associated with ϕ is depicted in Fig. 1, on the left. Thus, before computing the inconsistency degree of �, one

needs to check whether its propositional formulas are inconsistent. We show below how URP checks the inconsistency of
ϕ . URP with P and the right-most ¬P yields the next matchings in the URP numerator:

– 	 = (∨2 ¬P [∧3 (∨ ¬P ¬R) (∨2 φ2 [∧ ¬Q ¬P]) R])
– (∨ C(¬P) D) = (∨2 φ2 [∧ ¬Q ¬P])
– C(¬P) = [∧ ¬Q ¬P]
– D = φ2

Applying URP to ϕ yields:

ϕ′ = 〈 [∧3 (∨ R φ1) (∨2 ¬P [∧3 (∨ ¬P ¬R) (∨ φ2) R]) P] : α 〉
The resulting tree is the right one in Fig. 1. Assume that we proceed now with a second NC unit-resolution step by picking
the same P and the left-most ¬P (colored blue in Fig. 1, on the right). Then, the right conjunct of the numerator of URP is
as follows:

– 	 = (∨2 ¬P [∧3 (∨ ¬P ¬R) (∨ φ2) R])
376

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
Fig. 2. Example 6.3 continued.

– (∨ C(¬P) D) = 	

– C(¬P) = ¬P

– D = [∧3 (∨ ¬P ¬R) (∨ φ2) R]

By applying URP to ϕ′ , the obtained formula is depicted in Fig. 2, on the left.
After three simplifications, one gets the formula associated with the right tree in Fig. 2. Finally, two applications of URP

to the two pairs R and ¬R , and P and ¬P , lead the calculus to derive 〈(∨) : α〉. �
In the next example, we illustrate the effects of Proposition 5.8.

Example 6.4. Let ϕ be the formula from Example 6.3 and �1 be � from Example 6.1 and let us analyze the base � = �1 ∪
{〈ϕ : 0.6〉}. Then, firstly the propositional rules of UR� are applied to each propositional Horn-NC in �, and in particular,
to 〈ϕ : 0.6〉, which, according to Example 6.3, yields 〈(∨) : 0.6〉. Then �1 is reduced to �1 = {〈P : 0.8〉, 〈 (∨ ¬P ¬Q) : 0.7〉}.
Since �1 is consistent, one can conclude that Inc(�) = 0.6.

We next give a complete formula and illustrate how UR� determines just one inconsistent subset �′ ⊆ � and its degree
Inc(�′). By now, we are not concerned with finding Inc(�), but just in finding one inconsistent subset. Later, in Example 6.8,
we will illustrate the process performed by FI-UR to obtain Inc(�).

Example 6.5. Let us assume that �0 is the next possibilistic Horn-NC base:

�0 = {〈P : 0.8〉, 〈ϕ1 : 0.6〉, 〈ϕ2 : 0.5〉, 〈 [∧ ¬P ¬Q] : 0.7〉}
wherein the propositional formulas ϕ1 and ϕ2, both individually consistent, are as follows:

• ϕ1 = (∨ [∧ ¬P ¬Q] [∧ Q P])
• ϕ2 = (∨ ¬Q [∧ R (∨ ¬Q [∧ S ¬P])])

The input base � is inconsistent and below, we step-by-step provide the inferences carried out by the calculus UR� to
derive one empty formula 〈⊥ : α〉.

• We apply UR� with 〈P : 0.8〉 and 〈 ϕ1 : 0.6〉 and the next matchings:

– 	 = ϕ1 = (∨ C(¬P) D)

– C(¬P) = [∧ ¬P ¬Q]
– D = [∧ Q P]

• Hence, UR� adds: �1 ← �0 ∪ 〈 (∨ [∧ Q P]) : 0.6〉
• Simplifying the last formula: �2 ← �1 ∪ 〈 [∧ Q P] : 0.6〉
• Applying MinD to the last formula: �3 ← �2 ∪ 〈 Q : 0.6〉 ∪ 〈P : 0.6〉
• Since 〈P : 0.8〉, 〈P : 0.6〉 ∈ �, by MaxN: �4 ← �3/〈P : 0.6〉
• Applying UR� with 〈 Q : 0.6〉 and the rightest ¬Q of 〈 ϕ2 : 0.5〉:

	 = ϕ2 (∨ C(¬Q) D) = (∨2 ¬Q [∧ S ¬P]) C(¬Q) = ¬Q D = [∧ S ¬P]

377

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
• Thus UR� adds: �5 ← �4 ∪ 〈 (∨2 ¬Q [∧2 R (∨2 [∧ S ¬P])]) : 0.5〉
– We denote the last added formula by 〈ϕ3 : 0.5〉.

• Applying UR� with again 〈 Q : 0.6〉 and 〈ϕ3 : 0.5〉:

– 	 = ϕ3 = (∨ C(¬Q) D
– C(¬Q) = ¬Q

– D = [∧2 R (∨1 [∧ S ¬P])]
• Hence UR� adds: �6 ← �5 ∪ 〈 (∨1 [∧2 R (∨1 [∧ S ¬P])]) : 0.5〉
• Simplifying the last formula: �7 ← �6 ∪ 〈 [∧ R S ¬P] : 0.5〉
• Using the rule InvMinD: �8 ← �7 ∪ {〈 R : 0.5〉, 〈 S : 0.5〉, 〈 ¬P : 0.5〉}
• From 〈 ¬P : 0.5〉 and 〈P : 0.8〉 in the initial �0: �9 ← �8 ∪ 〈 (∨) : 0.5〉.

• So the (first) inconsistency degree found is 0.5. �
Example 6.6. Consider again ϕ from Example 6.3: One can check that its sub-formula

φ = (∨2 ¬P [∧3 (∨ ¬P ¬R) (∨2 φ2 [∧ ¬Q ¬P]) R])
has the pattern of the LUR numerator regarding ¬R and R . Thus LUR can be applied and so φ be replaced, after simplifica-
tions, with (∨2 ¬P [∧3 ¬P (∨2 φ2 [∧ ¬Q ¬P]) R]) in ϕ . In this specific example, only one literal is removed, but
in a general case, big sub-formulas may be eliminated. �
Example 6.7. Let us reconsider also the formula in previous Example 6.3 (recall that the i superscript in literal �i denotes
an specific literal occurrence of �):

〈 [∧3 (∨ R φ1) (∨2 ¬P 1 [∧3 (∨ ¬P 2 ¬R) (∨2 φ2 [∧ ¬Q ¬P 3]) R]) P] : α 〉
One can apply NC Hyper Unit-Resolution with P and the three literals ¬P i . The formula 	 in the numerator of HUR is

the same for the three literals, so it is denoted by 	1,2,3, but the formulas (∨ C(¬P i) Di) are different and are given
below:

– 	1,2,3 = (∨2 ¬P [∧3 (∨ ¬P ¬R) (∨2 φ2 [∧ ¬Q ¬P]) R])
– (∨ C(¬P 1) D1) = 	1,2,3

– (∨ C(¬P 2) D2) = (∨ ¬P 2 ¬R)

– (∨ C(¬P 3) D3) = (∨2 φ2 [∧ ¬Q ¬P 3])
By applying NC Hyper Unit-Resolution, one gets:

〈 [∧3 (∨ R φ1) (∨1 [∧3 (∨ ¬R) (∨ φ2) R]) P] : α 〉
After simplifying:

〈 [∧5 (∨ R φ1) ¬R φ2 R P] : α 〉
Clearly, a simple NC unit-resolution deduces 〈(∨) : α〉. Altogether, in this particular example, the rule HUR accelerates

considerably the proof of inconsistency.

Example 6.8. Let us continue with Example 6.5. Since 〈 (∨) : 0.5〉 was found, for checking whether Inc(�) > 0.5, all possi-
bilistic formulas whose necessity weight is not strictly bigger than 0.5 are useless, that is, one can obtain the strict 0.5-cut
of �. Thus, the new base is �>0.5 = �′ ∪ �′′ , where �′ and �′′ are the strict 0.5-cut of the initial formulas and of the
deduced formulas, respectively, and which are given below:

�′ = { 〈P : 0.8〉, 〈ϕ1 : 0.6〉, 〈 [∧ ¬P ¬Q] : 0.7〉 }
�′′ = {〈 (∨ [∧ Q P]) : 0.6〉, 〈 [∧ Q P] : 0.6〉, 〈 Q : 0.6〉, }

One can check that, since 〈P : 0.8〉 and 〈 Q : 0.6〉 belong to �>0.5 = �′ ∪ �′′ , then the only non-subsumed formulas
are { 〈P : 0.8〉, 〈 Q : 0.6〉, 〈 [∧ ¬P ¬Q] : 0.7〉 }, which form the new base �0. Now, FI-UR newly launches the process to
compute the inconsistency of the new �0 and with Inc = 0.5 and follows the next steps:
378

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
• Using 〈 Q : 0.6〉 and right-most formula in �0 yields: 〈 (∨) : 0.6〉.

• The new base is �0 = {〈P : 0.8〉, 〈 [∧ ¬P ¬Q] : 0.7〉} and the new Inc is 0.6.

• UR� is relaunched and finds 〈 (∨) : 0.7〉.

• The new �0 is { 〈P : 0.8〉 } and the new Inc is 0.7.

• UR� finds �0 is consistent and hence FI-UR returns Inc = 0.7.

7. Formal proofs

7.1. Proofs of Section 4

Lemma 4.7. Let α, αi, α j ∈ (0, 1]. Possibilistic Horn-NC formulas hold the next property:

〈 (∨ ϕ1 . . . ϕi . . . ϕk) : α 〉 ∈ H� iff ∃i s.t. 〈ϕi : αi 〉 ∈ H� and ∀ j �= i, 〈ϕ j : α j 〉 ∈ N−
� .

Proof. If: Formulas ∀ j �= i, ϕ j have no positive literals, thus the non-negative disjunctions of ϕ = (∨ ϕ1 . . . ϕi . . . ϕk) are only
those of ϕi . Since by hypothesis 〈ϕi : αi〉 ∈H� then ϕ obviously verifies Definition 4.3 and hence, 〈 ϕ : α 〉 ∈H� .

Only-If: It is easy to prove by contradiction that 〈 ϕ : α 〉 /∈H� if any of the two conditions of the lemma are unsatisfied,
i.e. (i) ∃i, ϕi /∈H� or (ii) ∃i, j, i �= j, 〈ϕi : αi 〉, 〈ϕ j : α j 〉 /∈N−

� . �

Theorem 4.9. We have that Ĥ� =H� .

Proof. We prove first Ĥ� ⊆H� and then Ĥ� ⊇H� .

• Ĥ� ⊆H� is easily proven by structural induction as outlined below:

(1) L ⊂H� trivially holds.

(2) The non-nested Ĥ� conjunctions are literal conjunctions, which trivially verify Definition 4.3 and so are in H� .
Assume that Ĥ� ⊆ H� holds until a given inductive step and that 〈ϕi : αi 〉 ∈ Ĥ�, 〈ϕi : αi 〉 ∈ H�, 1 ≤ i ≤ k. In the next
recursion, any 〈[∧ ϕ1 . . . ϕi . . . ϕk] : α〉 may be added to Ĥ� . On the other hand, by Lemma 4.6, 〈[∧ ϕ1 . . . ϕi . . . ϕk] : α〉 ∈H� .
Therefore Ĥ� ⊆H� holds.

(3) The non-nested disjunctions in Ĥ� are exclusively formed by literals, and so they are clearly Horn clauses. The latter
are in H� because they have at least one non-negative disjunct (literal) and so fulfill Definition 4.3. Then assuming that for
a given recursive level Ĥ� ⊆ H� holds, in the next recursion, only disjunctions in (3) are added to Ĥ� . But the condition
of (3) and that of Lemma 4.7 coincide. Thus Ĥ ⊆H� holds.

• Ĥ� ⊇H� . Given that the structures to define NC and Ĥ� in Definition 2.1 and Definition 4.8, respectively, are equal,
the potential inclusion of each NC formula 〈ϕ : α〉 in Ĥ� is systematically considered. Further, the statement: if 〈ϕ : α〉 ∈H�

then 〈ϕ : α〉 ∈ Ĥ� , is proven by structural induction on the depth of formulas, by applying a reasoning similar to that of the
Ĥ� ⊆H� case and by also using Lemmas 4.6 and 4.7. �

Definition 7.1. For every ϕ ∈NC , we define cl(ϕ) as the unique clausal formula that results from applying ∨/∧ distributivity
to ϕ until a clausal formula, viz. cl(ϕ), is obtained.

Theorem 7.2. Let 〈ϕ = (∨ ϕ1 . . . ϕi . . . ϕk) : α〉 ∈ H� , H be the class of propositional Horn clausal formulas and N− be the class of
propositional negative NC formulas. Then:

cl((∨ ϕ1 . . . ϕi . . . ϕk)) ∈ H iff (1) ∃i, s.t. cl(ϕi) ∈ H and (2) ∀ j �= i,ϕ j ∈ N−.

Proof. If-then. By refutation: let cl((∨ ϕ1 . . . ϕi . . . ϕk)) ∈H and prove that if (1) or (2) are violated, then cl(ϕ) /∈ H.

• (1) �i, s.t. cl(ϕi) ∈H

− If we take the case k = 1, then ϕ = ϕ1.

− But cl(ϕ1) /∈H implies cl(ϕ) /∈ H.

• (2) ∃ j �= i, ϕ j /∈N− .

− So by assumption ϕi , ϕ j /∈N− with j �= i.

− We take k = 2, ϕ1 = P and ϕ2 = Q .
379

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
− So, ϕ = (∨ ϕ1 ϕ2) = (∨ P Q), and hence cl(ϕ) /∈ H.

Only-If. Without loss of generality, we consider that (∨ ϕ1 . . . ϕi . . . ϕk−1) = ϕ− ∈ N− and 〈ϕk : αk〉 ∈ H� , and prove by
structural induction on the formulas:

cl(ϕ) = cl((∨ ϕ1 . . . ϕi . . . ϕk−1 ϕk)) = cl((∨ ϕ− ϕk)) ∈ H.

Clearly the statement is verified for non-nested formulas, i.e. Horn clauses. Assume that it is verified for ϕk , namely if
〈ϕk : αk〉 ∈H� then cl(ϕk) ∈H.

− To obtain cl(ϕ), one must obtain first cl(ϕ−) and cl(ϕk), and so

(i) cl(ϕ) = cl((∨ ϕ− ϕk)) = cl((∨ cl(ϕ−) cl(ϕk))).

− By definition of ϕ− ∈N− ,

(ii) cl(ϕ−) = [∧ D−
1 . . . D−

m−1 D−
m]; the D−

i ’s being negative clauses.

− By induction hypothesis,

(iii) cl(ϕk) = H = [∧ h1 . . .hn−1 hn]; the hi ’s being Horn clauses.

− By (i), (ii) and (iii),

cl(ϕ) = cl((∨ [∧ D−
1 . . . D−

m−1 D−
m] [∧ h1 . . .hn−1 hn])).

− Applying ∨/∧ distributivity to cl(ϕ) and noting Ci = (∨ D−
1 hi),

cl(ϕ) = cl([∧ [∧ C1 . . . Ci . . . Cn] (∨ [∧ D−
2 . . . D−

m−1 D−
m] H)]).

− The Ci = (∨ D−
1 hi)’s are Horn clauses, and so:

[∧ C1 . . . Ci . . . Cn] = H1 ∈ H.

cl(ϕ) = cl([∧ H1 (∨ [∧ D−
2 . . . D−

m−1 D−
m] H)]).

− For j < m we have,

cl(ϕ) = cl([∧ H1 . . . H j−1H j (∨ [∧ D−
j+1 . . . D−

m−1 D−
m] H)]).

− For j = m, cl(ϕ) = [∧ H1 . . . Hm−1 Hm H] = H′ ∈H.

− Hence cl(ϕ) ∈H. �

Theorem 4.13. Denoting by cl(ϕ) the clausal form of ϕ , we have:

〈ϕ : α〉 ∈ H� entails 〈cl(ϕ) : α〉 ∈ H�.

Proof. We consider Definition 4.8 of H� . The proof is done by structural induction on the depth r(ϕ) of any 〈ϕ : α〉 ∈ H�

and defined below, where � is a literal:

r(ϕ) =
{

0 ϕ = �.

1 + max {r(ϕ1), . . . , r(ϕk−1), r(ϕk)} ϕ = [� ϕ1 . . . ϕk−1 ϕk].
• Base Case: r(ϕ) = 0.

– Clearly, r(ϕ) = 0 entails ϕ = � ∈H.

– So cl(ϕ) = ϕ ∈H.

• Induction hypothesis: ∀ϕ, r(ϕ) ≤ n, 〈ϕ : α〉 ∈H� entails cl(ϕ) ∈H.

• Induction proof: r(ϕ) = n + 1.

By Definition 4.8, lines (2) ad (3) below arise:

(2) ϕ = [∧ ϕ1 . . . ϕi . . . ϕk], where k ≥ 1.
380

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
− By definition of r(ϕ),

r(ϕ) = n + 1 entails 1 ≤ i ≤ k, r(ϕi) ≤ n.

− By induction hypothesis,

〈ϕi : αi〉 ∈H� and r(ϕi) ≤ n entail cl(ϕi) ∈H.

− It is obvious that,

cl(ϕ) = [∧ cl(ϕ1) . . . cl(ϕi) . . . cl(ϕk)].
− Therefore,

cl(ϕ) = [∧ H1 . . . Hi . . . Hk] = H ∈H.

(3) ϕ = (∨ ϕ1 . . . ϕi . . . ϕk−1 ϕk), where by Definition 4.8:

k ≥ 1, 0 ≤ i ≤ k − 1, ϕi ∈N− and 〈ϕk : αk〉 ∈H� .

− By definition of r(ϕ),

r(ϕ) = n + 1 entails r(ϕk) ≤ n.

− By induction hypothesis,

r(ϕk) ≤ n and 〈ϕk : αk〉 ∈H� entail cl(ϕk) ∈H.

− By Theorem 7.2, only-if,

0 ≤ i ≤ k − 1, ϕi ∈N− and cl(ϕk) ∈H entail:

cl((∨ ϕ1 . . . ϕi . . . ϕk−1 ϕk)) ∈H. �

Theorem 4.16. H� contains the NC fragment:

〈ϕ : α〉 ∈ NC� and 〈cl(ϕ) : α〉 ∈ H� then 〈ϕ : α〉 ∈ H�.

where NC� is the set of possibilistic NC formulas and cl(ϕ) is the clausal form of ϕ .

Proof. It is done by structural induction on the depth d(ϕ) of ϕ defined as

d(ϕ) =
{

0 � ∈ L.

1 + max {d(ϕ1), . . . ,d(ϕi), . . . ,d(ϕk)} ϕ = [� ϕ1 . . . ϕi . . . ϕk].
• Base case: d(ϕ) = 0.

− d(ϕ) = 0 entails � ∈L.

− By Definition 4.8, 〈� : α〉 ∈H� .

• Inductive hypothesis: ∀ϕ ∈NC, d(ϕ) ≤ n, cl(ϕ) ∈H entail 〈ϕ : α〉 ∈H� .

• Induction proof: d(ϕ) = n + 1.

By Definition 2.1 of NC , cases (i) and (ii) below arise.

(i) ϕ = cl([∧ ϕ1 . . . ϕi . . . ϕk]) ∈H and k ≥ 1.

− Hence, 1 ≤ i ≤ k, cl(ϕi) ∈H.

− By definition of d(ϕ),

d(ϕ) = n + 1 entails 1 ≤ i ≤ k, d(ϕi) ≤ n.

− By induction hypothesis,

1 ≤ i ≤ k, d(ϕi) ≤ n, cl(ϕi) ∈H entail 〈ϕi : α〉 ∈H� .

− By Definition 4.8, line (2),

1 ≤ i ≤ k, 〈ϕi : αi〉 ∈H� entails 〈ϕ : α〉 ∈H� .
381

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
(ii) cl(ϕ) = cl((∨ ϕ1 . . . ϕi . . . ϕk−1 ϕk)) ∈H and k ≥ 1.

− By Theorem 7.2, if-then,

0 ≤ i ≤ k − 1, ϕi ∈N− and cl(ϕk) ∈H.

− By definition of d(ϕ),

d(ϕ) = n + 1 entails d(ϕk) ≤ n.

− By induction hypothesis,

d(ϕk) ≤ n and cl(ϕk) ∈H entail 〈ϕk : αk〉 ∈H� .

− By Definition 4.8, line (3),

0 ≤ i ≤ k − 1, 〈ϕi : αk〉 ∈N−
� and 〈ϕk : α〉 ∈H� entail:

〈(∨ ϕ1 . . . ϕi . . . ϕk−1 ϕk) : α〉 ∈H� . �

7.2. Proofs of Section 5

Proposition 5.4. Rule (4) is sound:

〈� : α〉 , 〈 (∨ C(¬�) D) : β〉 |= 〈D : min{α,β} 〉.

Proof. Denoting 〈� : α〉 , 〈 (∨ C(¬�) D) : β〉 by F , we have:

- By MinD, F |= 〈 (∨ � ∧ C(¬�) � ∧D : min{α, β} 〉.

- Since � ∧ C(¬�) ≡ ⊥ then: F |= 〈 � ∧D : min{α, β} 〉.

- By MinD, F |= 〈 D : min{α, β} 〉. �

Proposition 5.6. The rule UR� is sound:

〈� : α〉 , 〈	 � (∨ C(¬�) D) : β〉 |= 〈D : min{α,β} 〉.

Proof. Denoting 〈� : α〉 , 〈 	 � (∨ C(¬�) D) : β〉 by F , we have:

− By MinD, F |= 〈� ∧ 	 � (∨ C(¬�) D) : min{α, β}〉.

− Then, F |= 〈� ∧ 	 � (∨ � ∧ C(¬�) � ∧D) : min{α, β}〉.

− Since � ∧ C(¬�) |= ⊥ then, F |= 〈� ∧ 	 � � ∧D : min{α, β} 〉.

− Then, F |= 〈� ∧ 	 �D : min{α, β} 〉.

− By MinD, F |= 〈	 �D : min{α, β} 〉. �

Lemma 5.9. A propositional Horn-NC formula ϕ is inconsistent iff URP = {URP , ⊥∨, ⊥∧, �φ, ��} ⊂ UR� applied to 〈ϕ : α〉
derives 〈⊥ : α〉.

Proof. We analyze below both directions of the lemma.

• ⇒ Let us assume that ϕ is inconsistent. Then ϕ must have a sub-formula verifying the URP numerator; otherwise, all
complementary pairs of literals � and ¬� are included in disjunctions. In this case, since all disjunctions of ϕ , by definition
of Horn-NC formula, have at least one negative literal, ϕ would be satisfied by assigning to all propositions the value 0,
which contradicts the initial hypothesis. Therefore, URP is applied to ϕ with two complementary literals � and ¬� and
the resulting formula is simplified. The new formula is equivalent to ϕ and has at least one literal less than ϕ . Hence, by
induction on the number of literals of ϕ , we obtain that URP ends only when 〈(∨) : α〉 is derived.

• ⇐ Let us assume that URP has been iteratively applied until a formula ϕ′ different from 〈(∨) : α〉 is obtained. Clearly,
if the URP numerator is not applicable then there is not a conjunction of a literal � with a disjunction including ¬�. Then
we have, firstly, since URP is sound, that ϕ and ϕ′ are equivalent. Secondly, if ϕ′ has complementary literals, then they
are integrated in disjunctions. Thus ϕ′ is satisfied by assigning the value 0 to all its unassigned propositions, since, by
definition of Horn-NC formula, all disjunctions have at least one negative disjunct. Therefore, since ϕ′ is consistent so is ϕ ,
a contradiction. �
382

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
Proposition 5.10. Testing the propositional consistency of ϕ such that 〈ϕ : α〉 ∈H� with the inferences {URP , ⊥∨, ⊥∧, �φ, ��} ⊂
UR� is polynomial.

Proof. Each application of rule URP deletes at least one literal, and so the maxim number required of such inference is
bounded by the formula size. Each application of the rules {⊥∨, ⊥∧, �φ, ��} removes at least a connective, and hence,
the maxim number required of such inferences is limited by the formula size. On the other hand, it is not difficult to find
data structures to execute polynomially each rule. Hence, the lemma holds. �

Lemma 5.12. Let � ∈H� . UR� , MinD and MaxN derive 〈(∨) : α〉 iff � is inconsistent, and if 〈(∨) : α〉 is derived then Inc(�) ≥ α.

Proof. The propositional component of possibilistic NC unit-resolution verifies Lemma 5.9, and hence, UR� derives an
empty formula 〈(∨) : α〉 iff the conjunction of the propositional formulas in the base � is inconsistent, namely if �∗ is
inconsistent. If UR� derives 〈(∨) : α〉, then by Lemma 5.9, UR� detects a subset �1 ⊆ � which is indeed inconsistent.
Then by Proposition 5.6, the degree α found by UR� corresponds to Inc(�1). Since obviously Inc(�1) ≤ Inc(�), the lemma
holds. �

The remainder of this section is devoted to prove the correctness and polynomial complexity of the algorithm FI-UR, i.e.
of Lemma 5.19.

Lemma 5.19. If FI-UR(�, 0) returns α then Inc(�) = α.

Proof. We use �′ and Inc to denote the variables of Find in a given recursion. Let us prove that the next hypothesis holds
in every call to FI-UR:

�>Inc = �′ and Inc(�) = max{Inc(�′), Inc}
– We check that the initial call FI-UR(�, 0) verifies the hypothesis:

- We have �′ = � and Inc = 0.

- Thus �>0 = �′ and max{Inc(�′), 0} = Inc(�)

– We prove that if the hypothesis holds for k ≥ 1 then it holds for k + 1.

– First of all, UR� is applied to �′ .
– By Lemma 5.12, if UR� derives 〈⊥ : α〉 then Inc(�′) ≥ α, else �′ is consistent.

– Case �′ is consistent: Inc(�′) = 0.

- By induction hypothesis Inc(�) = max{Inc(�′), Inc} = Inc

- So FI-UR correctly returns Inc(�) and ends.

– Case �′ is inconsistent: Inc(�′) = α > 0.

- By induction hypothesis �′ = �>Inc , and so α > Inc.

- The next �′ , denoted �′′ , and FI-UR, denoted Inc’, are �′′ = �′
>α and Inc’=α.

We check in (i) and (ii) below that the hypothesis holds:

(i) By induction hypothesis: �′ = �>Inc

– Since α > Inc then trivially �′
>α = �>α

– Hence �′′ = �′
>α = �>α = �>Inc’ .

(ii) By Lemma 5.12, Inc(�′) ≥ α

– Since �′ = �>Inc and α > Inc then Inc(�) ≥ α

– Hence Inc(�) = max{Inc(�>α), α} = max{Inc(�′′), Inc’}
Altogether, the hypothesis holds until FI-UR finds �′ consistent and then correctly returns Inc(�). Hence the lemma’s

statement holds. �

Proposition 7.3. If � ∈ H� , then UR� with input � performs at most m × k inferences, m and k being the number of connective
occurrences and different weights in �, respect.

Proof. On the one hand, each rule of UR� adds a formula 〈ϕ : α〉, where ϕ is a sub-formula of a propositional formula
	 of 〈	 : β〉 ∈ �. Hence, the current base always contains only sub-formulas from �. On the other hand, the weight α of
383

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
added formulas 〈ϕ : α〉 is the minimum of two weights in the current base. Hence, the weights of formulas in the current
base always come from �. Thus, the maximum number of deduced formulas is m × k. �

Proposition 7.4. If � ∈H� , then FI-UR(�,0) performs at most n ×k recursive calls to UR� , n and k being the number of propositions
and different weights in �, respect.

Proof. FI-UR stops when it detects that the current base is consistent. If it is inconsistent then 〈(∨) : α〉 is deduced, and
FI-UR cancels the set {〈φ : β〉 | 〈φ : β〉 ∈ �, β ≤ α}. This set trivially contains at least two unit clauses 〈P : β〉 and 〈¬P : β ′〉
with α = min{β, β ′} as 〈(∨) : α〉, was derived. On the other hand, each recursive call to FI-UR, the weight Inc increases and
since UR� requires unit-clauses, then Proposition 7.4 holds. �

Lemma 5.20. If � ∈H� , then computing Inc(�) takes polynomial time.

Proof. It follows from Propositions 7.3 and 7.4 and the fact that it is not hard to find a data structure so that each inference
in UR� can be polynomially performed. �

Remark. A tight determination of the polynomial degree of the worst-case complexity of computing a Horn-NC base is
planned for future work (see Section 8).

8. Related and future work

� Polynomial NC Classes: Searching for propositional Horn (clausal) super-classes such as hidden-Horn, generalized
Horn, Q-Horn, extended-Horn, etc. (see [44,52] for short reviews) has been a key issue for several decades. So it is arguable
that, just as the tractable clausal fragment has helped to grow overall clausal efficiency, likewise widening the tractable
NC fragment would grow overall NC efficiency. We will extrapolate such an argument to possibilistic logic and determine
further polynomial Horn-NC super-classes.

� Polynomial Algorithms. As we have seen in Section 7.2, the complexity of determining Inc(�) of Horn-NC bases is in
(around) O (n4). This complexity, though polynomial, is not satisfactory for applications. However, not much care has been
taken in the proofs of Section 7.2 because the goal was proving tractability. Thus, on the one hand, a fine-grained analysis
of complexity is pending, and on the other hand, our research should be resumed towards notably decreasing the degree of
the polynomial complexity.

� Necessity and Possibility. Some ideas presented here can be extended to bases containing possibility and necessity
measures [50,57,22]. Since that implies a need to enlarge the language, probably tractability would be lost. 〈ϕ : 	(ϕ) ≥ α〉
is equivalent to 〈¬ϕ : N(¬ϕ) < 1 − α〉, but then the bases incorporating the latter formulas contain both: (1) constraints
N(α) ≥ α and N(α) < α; and (2) Horn-NC formulas ϕ and formulas ¬ϕ that are dual Horn-NC. The union of Horn-NC and
of dual Horn-NC formulas is still a subset of NC, and thus, it is less hard than NC, yet solving together both formula classes
is unlikely to be polynomial.

� Logic Programming (LP). After the pioneer work in possibilistic LP [28], a number of further approaches e.g. [12,3,4,2]
were published. However, all of them focus on the clausal form, whereas we will handle non-clausal logic programs (see
Example 1.2 and Appendix). Formal arguments showing that the Horn-NC programs are the legitimate generalization of
classical Horn programs are in [53]. See Appendix for the extension of Horn-NC programs from propositional to possibilistic
logic.

� Answer Set Programming (ASP). A succession of works on ASP in possibilistic logic has been carried out, started by
[67] and continued with e.g. [70,71,20,21,8,9]. Although, most of them focus on the clausal form, possibilistic NC (nested)
ASP has been formerly dealt with in [68,69]. The authors extend from classical to possibilistic logic, concepts as originally
defined in [61], and so their aim is distinct from ours. Our first goal will be to study the scope of the class H� in com-
puting reducts of possibilistic answer nested programs and to analyze the efficiency allowed by UR� . Answering queries in
possibilistic ASP is an intractable problem [67]. The applicability of the presented proposal to both ASP with aggregates and
ASP with preferences is discussed in Appendix.

� NC Resolution. Computing arbitrary NC bases is a natural continuation of the presented work, and the latter also eases
deduction based on resolution and DPLL. The formalization of the existing NC resolution [64] (see also [5]), which dates
back to the 1980s, has some weaknesses due to its functional-like definition, such as not precisely identifying the available
resolvents or requiring complex formal proofs [49]. On the other hand, resolution for possibility-necessity formulas is well-
known [29,32,33], but its extension to general NC bases is an open question. We believe that our definition is fairly well
oriented to define (full) NC Resolution and to generalize it to some uncertainty logics.

� NC DPLL. Possibilistic DPLL was already studied [29,57] but possibilistic NC DPLL has received no attention. Our pro-
posal is a step forward to specify it because NC DPLL relies on: (1) a suitable heuristic to choice the literal � on which
384

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
performing branching; and (2) applying unit-propagation to � ∧ � and � ∧ ¬�. Since NC unit-propagation relies on NC
unit-resolution, that is, on UR� , only addressing heuristic issues is pending.

� Generalized Possibilistic Logic (GPL). In standard possibilistic logic only conjunctions are weighted, while in GPL [35,
36,34] disjunctions and negations are weighted too. For instance, GPL includes (∨ 〈ϕ : α〉 〈ψ : β〉) and also the next formula:

[∧ 〈(∨ P Q) : N 1〉 〈¬Q : N .75〉 ¬〈(∨ ¬P R) : N 1〉 (∨ 〈¬R : 	 .75〉 〈ϕ : 	 .25〉)]
GPL connectives can be internal or external (GPL is a two-tired logic) with their different semantics, and also, GPL

formulas can be expressed in NC, e.g. the previous formula is NC. In [36] it is proven that satisfiability of GPL formulas
is NP-complete. Standard possibilistic Horn formulas are encapsulated in GPL and so can be Horn-NC formulas. We think
that sub-classes of external Horn formulas can also be defined, as well as sub-classes that are both internally and externally
Horn-like. Thus GPL embeds a variety of classes of Horn-like formulas which potentially could be lifted to NC.

� Models/Inconsistent Subsets. In some frameworks, e.g., when the knowledge base is in an experimentation phase, the
only data of Inc(�) may be of not much help. For example, if one expects the knowledge base to be consistent and the
checker finds it is inconsistent, knowing the knowledge subset causing contradiction, called “witness”, is required. Thus,
we will envisage deductive calculi oriented to providing witnesses as a return data. A more complicated problem is the
determination of whether a knowledge base has exactly one model, or one inconsistent subset (see [75], Chap. 17).

9. Conclusions

Deduction in classical logic and non-clausal form emerged within the pioneer fields of artificial intelligence. Nowadays,
non-clausal deduction is present in many reasoning areas both in classical and non-classical logic, and is especially mean-
ingful in answer set programming, which possesses a prominent problem-solving methodology.

In this paper, we have extrapolated the above non-clausal computing interest to possibilistic logic, the most extended
approach to deal with knowledge impregnated with uncertainty and presenting partial inconsistencies.

Our first contribution has been lifting the possibilistic Horn class to the non-clausal level obtaining a new possibilistic
class, which has been called Horn Non-Clausal, denoted by H� and shown to be non-clausal, analogous to the standard
Horn class. Indeed, we have proven that H� subsumes syntactically the Horn class and that both classes are semantically
equivalent. We have also proven that all possibilistic non-clausal bases whose clausal form is Horn belong to H� .

Towards obtaining the inconsistency degree of Horn-NC bases, we have established the calculus “Possibilistic Non-Clausal
Unit-Resolution”, denoted UR� . We formally proved that UR� correctly computes the inconsistency degree of any Horn-NC
base. UR� was nonexistent in the literature and extends the propositional logic calculus in [52].

After having specified H� and UR� , we have studied the computational problem of calculating the inconsistency degree
of Horn-NC bases through two methods: (a) dichotomic search and calls to a propositional solver; and (b) interleaving calls
to logical calculi UR� with adequate α-cuts. Both methods have allowed us to determine that H� is polynomial. Altogether,
H� is the first found class to be possibilistic, non-clausal and polynomial.

Our formulation of UR� is unambiguously clausal-like since, when applied to clausal formulas, UR� indeed coincides
with clausal unit-resolution. This aspect is relevant in the sense that it lays the foundations towards redefining NC resolution
in a clausal-like manner which could avoid the barriers caused by the existing functional-like definition (see related work).
We believe that this clausal-like definition of NC resolution will allow it to be generalized to some other uncertainty logics.

Besides the application of the presented approach to polynomially determining the inconsistency degree of a meaningful
sub-class of non-clausal possibilistic bases, we have informally discussed, via illustrative examples, that the Horn-NC formu-
las are the cornerstone of definite nested logic programing. To put it in another way, the Horn-NC programs are the rightful
generalization of the Horn programs [53]. Furthermore and within this area, we have also outlined how Horn-NC programs
can be helpful to handle aggregates and preferences in answer set nested logic programming.

Finally, we also attempted to show that effective NC reasoning for possibilistic logic is an open research field and, in
view of our outcomes, rather promising. A symptom of such consideration is the potentiality of our method to be extended
to different possibilistic logic contexts giving rise to a number of future research directions, which were briefly discussed
and which include: computing possibilistic arbitrary NC bases; discovering additional tractable NC subclasses; extending
generalist possibilistic logic to NC; combining necessity and possibility measures; considering partially ordered possibility
measures; developing possibilistic NC answer set programming; defining possibilistic NC resolution; defining possibilistic NC
DPLL; finding “witnesses”, etc.

Some of the above listed future objectives can also be searched in the context of other non-classical logics such as
Łukasiewicz logics, Gödel logic, product logic, etc.

10. Appendix

The content of this appendix is the following: (1) it gives specific examples of the equivalence between propositional def-
inite programs (based on Horn clauses) and their equivalent definite non-clausal programs (based on Horn nested formulas)
385

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
(see [53] for details and formal aspects); (2) it shows that the possibilistic Horn-NC formulas underpinning possibilistic def-
inite non-clausal programs are more general than those employed in this article; and (3) it discusses briefly the connections
of possibilistic Horn-NC bases with two sub-areas of ASP (which were not commented in related work).

� Logic programming (LP). We surveyed some works in possibilistic LP in Related Work and now provide programs that
illustrate the equivalence between traditional definite programs and definite non-clausal programs. A definite LP rule has a
conjunction of propositions as body and a single literal as head, whereas a definite non-clausal rule has the syntax H ← B ,
where B is a propositional NC formula and H is Horn-NC. As expected, the examples indicate that Horn-NC programs, being
more compact than Horn programs, need to evaluate substantially less literals and connectives. This allows for minimizing
redundancies and so for important improvements in efficiency with respect to the interpreters, developed up to now, which
run on their counterpart classical programs.

Example 10.1. The six definite rules below can be compacted into the definite non-clausal rule, where only one (negative)
literal and just once is repeated. One can check that the head and the whole nested rule are both Horn-NC formulas:

b ← c, f , e b ← c,d, e a ← c, f a ← c,d h ← c, e h ← c,b

[∧ (∨ h [∧ ¬e ¬b]) (∨ [∧ (∨ b ¬e) a] [∧ ¬ f ¬d]) ←− c

Example 10.2. The nine classical definite rules below can be merged into the Horn-NC rule in the second line. It can be
verified that the non-clausal head and the whole rule are Horn-NC formulas. Furthermore, this example serves to show that
the saving of literals (and connectives) can be exponential because from 33 literals in LP, one requires only 3 + 3 literals in
the non-clausal rule:

c ← b c ← d c ← e a ← b a ← d a ← e f ← b f ← d f ← e

r = (∨2 [∧ ¬b ¬d ¬e] [∧ c a f]) ← � �
However the situation becomes relatively more elaborated within possibilistic logic and to show it, we take a very simple

base with only two rules α : h ← f , a and β : h ← f , b. In order to faithfully codify such rules in a possibilistic Horn-NC
rule, one should resort to the rule:

(∨ h [∧ 〈¬a : α〉 〈¬b : β〉]) ← f

This simple example exemplifies the fact that the head of possibilistic definite non-clausal rules contains formulas whose
literal occurrences � is associated with an individual weight, the one attached to the rule in which � occurs. Hence, the head
of a possibilistic definite non-clausal rule is a more general formula than those studied in this article, as we consider a set
of formulas 〈ϕ : α〉, where ϕ does not include inner weights. These more general possibilistic Horn-NC formulas will be
coped with in future work.

� Answer set programs (ASPs) with Aggregates. ASPs having aggregates as atoms, give rise to a powerful language that
nowadays receives a vast attention, e.g. [41,16]. ASPs with aggregates are equivalent to nested ASPs [42,41]. Horn-NC rules
have the form H ← B , where B is a positive NC and H is Horn-NC (the whole rule is also Horn-NC). So, Horn-NC programs
cover the ASPs with aggregates whose reducts 	X are Horn-NC programs. The example below is taken from [41]. In this
case, the aggregate

r ← sum〈{p = 1,q = 1}〉 �= 1 p ← r q ← r p ← q q ← p

and thus the whole rule are “almost” Horn-NC (the difficulty with aggregates is that their equivalent formula is sometimes
hard to determine). Importantly, programs with aggregates can be decomposed into Horn-NC programs, just as classical
disjunctive programs can be into Horn programs. For instance, if one had to cope with rule H ∨ϕ ← sum〈{p = 1, q = 1}〉 �= 1,
where H is Horn-NC, one could decompose it into: ϕ ← sum〈{p = 1, q = 1}〉 �= 1 and H ← sum〈{p = 1, q = 1}〉 �= 1. If ϕ was
not Horn-NC, then the decomposition would be recursively applied to the former rule until only Horn-NC rules are derived.
As with clausal rules, the number of derived Horn-NC rules is exponentially bounded.

� ASP with Preferences. Preferences in ASP [13] are envisaged by allowing a new connective × in the rule heads:
a × b ← B means “if B holds, option a is preferred to b”. This approach was lifted to non-clausal ASP [19] whose disjunc-
tive options can be nested or NC formulas ϕ . Horn-NC programs cannot represent any subclass of nested programs with
preferences as the latter are intrinsically disjunctive, whereas the former are definite or deterministic. Yet, Horn-NC pro-
grams can be helpful as follows: nested programs with preferences can be decomposed into a set of Horn-NC programs (as
aggregate programs above). For instance, the rule ϕ × ϕ′ ← B can be split into ϕ ← B and ϕ′ ← B , and each of them can
be recursively decomposed until only Horn-NC programs remain. Obviously, the Horn-NC programs inheriting ϕ′ ← B must
inherit a penalty higher than that inherited by those programs inheriting ϕ ← B . After the decomposition, one can employ
mechanisms based on NC unit-resolution to find the answer sets. An appropriate management of penalties by the Horn-NC
decomposition process needs to be studied.
386

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
Declaration of competing interest

The author declares that he has no known competing financial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

The author would like to express his gratitude to the anonymous reviewers for their help to significantly improve on
previous versions of the paper. This work was supported by the Spanish project ISINC (PID2019-111544GB-C21) funded by
MCIN/AEI/10.13039/501100011033.

References

[1] G. Aguilera, I. de Guzman, M. Ojeda, A reduction-based theorem prover for 3-valued logic, Mathw. Soft Comput. 4 (2) (1997) 99–127.
[2] T. Alsinet, C.I. Chesñevar, L. Godo, G.R. Simari, A logic programming framework for possibilistic argumentation: formalization and logical properties,

Fuzzy Sets Syst. 159 (10) (2008) 1208–1228.
[3] T. Alsinet, L. Godo, A complete calculus for possibilistic logic programming with fuzzy propositional variables, in: UAI ’00: Proceedings of the 16th

Conference in Uncertainty in Artificial Intelligence, Stanford University, Stanford, California, USA, June 30 - July 3, 2000, 2000, pp. 1–10.
[4] T. Alsinet, L. Godo, S.A. Sandri, Two formalisms of extended possibilistic logic programming with context-dependent fuzzy unification: a comparative

description, Electron. Notes Theor. Comput. Sci. 66 (5) (2002) 1–21.
[5] L. Bachmair, H. Ganzinger, Resolution theorem proving, in: Handbook of Automated Reasoning, 2001, pp. 19–99 (in 2 volumes).
[6] C. Baral, Knowledge Representation, Reasoning and Declarative Solving, Cambridge University Press, 2003.
[7] C.W. Barrett, J. Donham, Combining SAT methods with non-clausal decision heuristics, Electron. Notes Theor. Comput. Sci. 125 (3) (2005) 3–12.
[8] K. Bauters, S. Schockaert, M.D. Cock, D. Vermeir, Possible and necessary answer sets of possibilistic answer set programs, in: IEEE 24th International

Conference on Tools with Artificial Intelligence, ICTAI 2012, Athens, Greece, November 7–9, 2012, 2012, pp. 836–843.
[9] K. Bauters, S. Schockaert, M.D. Cock, D. Vermeir, Semantics for possibilistic answer set programs: uncertain rules versus rules with uncertain conclu-

sions, Int. J. Approx. Reason. 55 (2) (2014) 739–761.
[10] B. Beckert, R. Hähnle, G. Escalada-Imaz, Simplification of many-valued logic formulas using anti-links, J. Log. Comput. 8 (4) (1998) 569–587.
[11] M. Ben-Ari, Mathematical Logic for Computer Science, 3rd edition, Springer, 2012.
[12] S. Benferhat, D. Dubois, H. Prade, Possibilistic logic: from nonmonotonicity to logic programming, in: Symbolic and Quantitative Approaches to Rea-

soning and Uncertainty, European Conference, Proceedings, ECSQARU’93, Granada, Spain, November 8–10, 1993, 1993, pp. 17–24.
[13] G. Brewka, I. Niemelä, T. Syrjänen, Logic programs with ordered disjunction, Comput. Intell. 20 (2) (2004) 335–357.
[14] F. Bry, N. Eisinger, T. Eiter, T. Furche, G. Gottlob, C. Ley, B. Linse, R. Pichler, F. Wei, Foundations of rule-based query answering, in: Reasoning Web,

Tutorial Lectures, Third International Summer School 2007, Dresden, Germany, September 3-7, 2007, 2007, pp. 1–153.
[15] U. Bubeck, H. Kleine Büning, Nested boolean functions as models for quantified boolean formulas, in: Theory and Applications of Satisfiability Testing

- SAT 2013 - 16th International Conference, Proceedings, Helsinki, Finland, July 8–12, 2013, 2013, pp. 267–275.
[16] P. Cabalar, J. Fandinno, T. Schaub, S. Schellhorn, Gelfond-Zhang aggregates as propositional formulas, Artif. Intell. 274 (2019) 26–43.
[17] M. Cadoli, M. Schaerf, On the complexity of entailment in propositional multivalued logics, Ann. Math. Artif. Intell. 18 (1) (1996) 29–50.
[18] K. Claessen, N. Een, M. Sheeran, N. Sörenson, A. Voronov, K. Akesson, SAT-solving in practice, with a tutorial example from supervisory control, Discrete

Event Dyn. Syst. 19 (2009) 495–524.
[19] R. Confalonieri, J.C. Nieves, Nested preferences in answer set programming, Fundam. Inform. 113 (1) (2011) 19–39.
[20] R. Confalonieri, J.C. Nieves, M. Osorio, J. Vázquez-Salceda, Dealing with explicit preferences and uncertainty in answer set programming, Ann. Math.

Artif. Intell. 65 (2–3) (2012) 159–198.
[21] R. Confalonieri, H. Prade, Using possibilistic logic for modeling qualitative decision: answer set programming algorithms, Int. J. Approx. Reason. 55 (2)

(2014) 711–738.
[22] O. Couchariere, M. Lesot, B. Bouchon-Meunier, Consistency checking for extended description logics, in: Proceedings of the 21st International Workshop

on Description Logics (DL2008), Dresden, Germany, May 13–16, 2008, 2008, pp. 13–16.
[23] A. Darwiche, Decomposable negation normal form, J. ACM 48 (4) (2001) 608–647.
[24] P. Doherty, J. Kachniarz, A. Szalas, Meta-queries on deductive databases, Fundam. Inform. 40 (1) (1999) 7–30.
[25] W. Dowling, J. Gallier, Linear-time algorithms for testing the satisfiability of propositional Horn formulae, J. Log. Program. 3 (1984) 267–284.
[26] R. Drechsler, T. Junttila, I. Niemelä, Non-clausal SAT and ATPG, in: A. Biere, M. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of Satisfiability: Chapter

21, IOS Press, 2009, pp. 655–693.
[27] V. D’Silva, D. Kroening, G. Weissenbacher, A survey of automated techniques for formal software verification, IEEE Trans. Comput.-Aided Des. Integr.

Circuits Syst. 27 (7) (2008).
[28] D. Dubois, J. Lang, H. Prade, Towards possibilistic logic programming, in: Logic Programming, Proceedings of the Eigth International Conference, Paris,

France, June 24–28, 1991, 1991, pp. 581–595.
[29] D. Dubois, J. Lang, H. Prade, Possibilistic logic, in: Handbook of Logic in Artificial Intelligence and Logic Programming, Oxford University Press, New

York, 1994, pp. 419–513.
[30] D. Dubois, H. Prade, Necessity measures and the resolution principle, IEEE Trans. Syst. Man Cybern. 17 (3) (1987) 474–478.
[31] D. Dubois, H. Prade, Resolution principles in possibilistic logic, Int. J. Approx. Reason. 4 (1) (1990) 1–21.
[32] D. Dubois, H. Prade, Possibilistic logic: a retrospective and prospective view, Fuzzy Sets Syst. 144 (1) (2004) 3–23.
[33] D. Dubois, H. Prade, Possibilistic logic - an overview, in: J. Woods, D.M. Gabbay, J.H. Siekmann (Eds.), Handbook of the History of Logic. Vol 9, Compu-

tational Logic, North-Holland, 2014, pp. 283–342.
[34] D. Dubois, H. Prade, A crash course on generalized possibilistic logic, in: Scalable Uncertainty Management - 12th International Conference, Proceedings,

SUM 2018, Milan, Italy, October 3–5, 2018, 2018, pp. 3–17.
[35] D. Dubois, H. Prade, S. Schockaert, Stable models in generalized possibilistic logic, in: Principles of Knowledge Representation and Reasoning: Proceed-

ings of the Thirteenth International Conference, KR 2012, Rome, Italy, June 10–14, 2012, 2012.
387

http://refhub.elsevier.com/S0888-613X(22)00187-6/bib2F300577B1D0228FBFB2CCB929524A1Bs1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibFDDE44ACD5B7B6D3E078F586197D815Bs1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibFDDE44ACD5B7B6D3E078F586197D815Bs1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibC948718153644242B40C6427E3491893s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibC948718153644242B40C6427E3491893s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib3E9CC241C7F844FA73119B783315896Ds1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib3E9CC241C7F844FA73119B783315896Ds1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib1E16E114625F6099DC34ACF58759C3B9s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibCFB9CF911BE2F5D64516D939E7857C75s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib4E072C1277B168775B73D7ACD3416632s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibFDD3D404205AF8C021160715E36E5E27s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibFDD3D404205AF8C021160715E36E5E27s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibF58F29A51E7918D7727FDA68516EEAD5s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibF58F29A51E7918D7727FDA68516EEAD5s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibB387981B6A4F9CD9C5D960211166165As1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib9CECB543AE3D2C11C3A587D616276E5Fs1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibAF9E2AA0274985027A70EC340C447C18s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibAF9E2AA0274985027A70EC340C447C18s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib32E8525C5D8A58E96B7E7AD2E035E76Cs1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib7D90881EF54A391E62C4912D827A0C69s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib7D90881EF54A391E62C4912D827A0C69s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib1C9DDE0538153FACF888595CFC7C2DD0s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib1C9DDE0538153FACF888595CFC7C2DD0s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibF1FC7254A233144AD03454BE8D024439s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibD8711AE32780055E761A34862430DADCs1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib11F4287B4F5E6B465FF42F6530F21F33s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib11F4287B4F5E6B465FF42F6530F21F33s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib1A49D211DA51CF0285FBB2C01F6C4CCCs1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibB7B72F2A5638A4DF0DC9375F9D2B2FC0s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibB7B72F2A5638A4DF0DC9375F9D2B2FC0s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib41D0581B8F86989E7EF8D5A5AE4456B9s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib41D0581B8F86989E7EF8D5A5AE4456B9s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib2CAFD6D39ADC094BB53A0E9E56A0939As1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib2CAFD6D39ADC094BB53A0E9E56A0939As1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib1CF0E4D4AAA8A6EDEEC984F9F29DAF76s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib84B1F43BE1E115398ED1955F7DA0B065s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib986B989B1AE5CE5C5BF5FCB3CF395FE9s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibA7FBA0081C877B7B7F89030380D7FC05s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibA7FBA0081C877B7B7F89030380D7FC05s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib71228466A16D14678F078D62E3EACA9Es1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib71228466A16D14678F078D62E3EACA9Es1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibC3B39425AA3D02585CB78296646F3443s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibC3B39425AA3D02585CB78296646F3443s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib80F56D9B5FB044952051FE2B97EF4685s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib80F56D9B5FB044952051FE2B97EF4685s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib6E1563F24686C4D765567EF72A011A50s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib578E6C8B2940ABA8F08A635CCF0DC189s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibFF33B6B2C9E4391D6D52CC737D1639A6s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib3457DA22B4B1C8FACF389D6CC6BAF48Es1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib3457DA22B4B1C8FACF389D6CC6BAF48Es1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibDEE2EF37C2E82252B49910272170474Cs1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibDEE2EF37C2E82252B49910272170474Cs1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibB803454E555AFAB5131F4ACA5B3792C5s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibB803454E555AFAB5131F4ACA5B3792C5s1

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
[36] D. Dubois, H. Prade, S. Schockaert, Generalized possibilistic logic: foundations and applications to qualitative reasoning about uncertainty, Artif. Intell.
252 (2017) 139–174.

[37] O. Dubois, P. André, Y. Boufkhad, Y. Carlie, Chap. SAT vs. UNSAT, in: Second DIMACS Implementation Challenge: Cliques, Coloring and Unsatisfiability,
in: DIMACS Series in Discrete Mathematics and Theoretical Computer Sciences, vol. 26, American Mathematical Society, 1996, pp. 415–436.

[38] U. Egly, M. Seidl, S. Woltran, A solver for QBFs in nonprenex form, in: ECAI 2006, 17th European Conference on Artificial Intelligence, Including
Prestigious Applications of Intelligent Systems (PAIS 2006), Proceedings, August 29 - September 1, 2006, Riva del Garda, Italy, 2006, pp. 477–481.

[39] U. Egly, M. Seidl, S. Woltran, A solver for QBFs in negation normal form, Constraints Int. J. 14 (1) (2009) 38–79.
[40] M. Färber, C. Kaliszyk, Certification of nonclausal connection tableaux proofs, in: Automated Reasoning with Analytic Tableaux and Related Methods -

28th International Conference, Proceedings, TABLEAUX 2019, London, UK, September 3–5, 2019, 2019, pp. 21–38.
[41] P. Ferraris, Logic programs with propositional connectives and aggregates, ACM Trans. Comput. Log. 12 (4) (2011) 25.
[42] P. Ferraris, V. Lifschitz, Weight constraints as nested expressions, Theory Pract. Log. Program. 5 (1–2) (2005) 45–74.
[43] G. Fiorino, A non-clausal tableau calculus for minsat, Inf. Process. Lett. 173 (2022) 106167.
[44] J. Franco, J. Martin, A history of satisfiability, in: A. Biere, M. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of Satisfiability: Chapter 1, IOS Press,

2009, pp. 3–55.
[45] C.D. Giusto, M. Gabbrielli, M.C. Meo, On the expressive power of multiple heads in CHR, ACM Trans. Comput. Log. 13 (1) (2012) 6.
[46] G. Gogic, H.A. Kautz, C.H. Papadimitriou, B. Selman, The comparative linguistics of knowledge representation, in: Proceedings of the Fourteenth Inter-

national Joint Conference on Artificial Intelligence, IJCAI 95, Montréal Québec, Canada, August 20–25, 1995, Morgan Kaufmann, 1995, pp. 862–869, 2
volumes.

[47] H. Habiballa, Resolution strategies for fuzzy description logic, in: New Dimensions in Fuzzy Logic and Related Technologies. Proceedings of the 5th
EUSFLAT Conference, Vol. 2, Regular Sessions, Ostrava, Czech Republic, September 11–14, 2007, 2007, pp. 27–36.

[48] H. Habiballa, Fuzzy Logic: Algorithms, Techniques and Implementations, chapter Resolution Principle and Fuzzy Logic, InTec, 2012, pp. 55–74.
[49] R. Hähnle, N.V. Murray, E. Rosenthal, Linearity and regularity with negation normal form, Theor. Comput. Sci. 328 (3) (2004) 325–354.
[50] B. Hollunder, An alternative proof method for possibilistic logic and its application to terminological logics, Int. J. Approx. Reason. 12 (2) (1995) 85–109.
[51] A. Horn, On sentences which are of direct unions of algebras, J. Symb. Log. 16 (1) (1951) 14–21.
[52] G.E. Imaz, The Horn non-clausal class and its polynomiality, CoRR, http://arxiv.org /abs /2108 .13744, 2021, 1–59.
[53] G.E. Imaz, Normal nested answer set programs: syntactics, semantics and logical calculi, November 2022, pp. 1–40, in preparation.
[54] G.E. Imaz, A first polynomial non-clausal class in many-valued logic, Fuzzy Sets Syst. (October 2022) 1–37, https://doi .org /10 .1016 /j .fss .2022 .10 .008, in

press.
[55] A. Itai, J. Makowsky, Unification as a complexity measure for logic programming, J. Log. Program. 4 (1987) 105–177.
[56] A. Komuravelli, N. Bjørner, A. Gurfinkel, K.L. McMillan, Compositional verification of procedural programs using horn clauses over integers and arrays,

in: R. Kaivola, T. Wahl (Eds.), Formal Methods in Computer-Aided Design, FMCAD 2015, Austin, Texas, USA, September 27-30, 2015, IEEE, 2015,
pp. 89–96.

[57] J. Lang, Possibilistic logic: complexity and algorithms, in: D. Gabbay, Ph. Smets (Eds.), Handbook of Defeasible Reasoning and Uncertainty Management
System, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001, pp. 179–220.

[58] S. Lehmke, A resolution-based axiomatization of ‘bold’ propositional fuzzy logic, in: Linz’96: Fuzzy Sets, Logics, and Artificial Intelligence, 1996,
pp. 115–119.

[59] C.M. Li, F. Manyà, J.R. Soler, A tableau calculus for non-clausal maximum satisfiability, in: Automated Reasoning with Analytic Tableaux and Related
Methods - 28th International Conference, Proceedings, TABLEAUX 2019, London, UK, September 3-5, 2019, 2019, pp. 58–73.

[60] V. Lifschitz, Answer Set Programming, Springer, 2019.
[61] V. Lifschitz, L.R. Tang, H. Turner, Nested expressions in logic programs, Ann. Math. Artif. Intell. 25 (3–4) (1999) 369–389.
[62] J. McKinsey, The decision problem for some classes of sentences without quantifiers, J. Symb. Log. 8 (1943) 61–76.
[63] R. Muhammad, P.J. Stuckey, A stochastic non-CNF SAT solver, in: Q. Yang, G.I. Webb (Eds.), PRICAI 2006: Trends in Artificial Intelligence, 9th Pacific

Rim International Conference on Artificial Intelligence, Proceedings, Guilin, China, August 7–11, 2006, in: Lecture Notes in Computer Science, vol. 4099,
Springer, 2006, pp. 120–129.

[64] N. Murray, Completely non-clausal theorem proving, Artif. Intell. 18 (1) (1982) 67–85.
[65] N. Murray, E. Rosenthal, Adapting classical inference techniques to multiple-valued logics using signed formulas, Fundam. Inform. 3 (21) (1994)

237–253.
[66] J. Navarro, A. Voronkov, Generation of hard non-clausal random satisfiability problems, in: The Twentieth National Conference on Artificial Intelligence,

2005, pp. 426–436.
[67] P. Nicolas, L. Garcia, I. Stéphan, C. Lefèvre, Possibilistic uncertainty handling for answer set programming, Ann. Math. Artif. Intell. 47 (1–2) (2006)

139–181.
[68] J.C. Nieves, H. Lindgren, Possibilistic nested logic programs, in: Technical Communications of the 28th International Conference on Logic Programming,

ICLP 2012, September 4–8, 2012, Budapest, Hungary, 2012, pp. 267–276.
[69] J.C. Nieves, H. Lindgren, Possibilistic nested logic programs and strong equivalence, Int. J. Approx. Reason. 59 (2015) 1–19.
[70] J.C. Nieves, M. Osorio, U. Cortés, Semantics for possibilistic disjunctive programs, in: Logic Programming and Nonmonotonic Reasoning, 9th International

Conference, Proceedings, LPNMR 2007, Tempe, AZ, USA, May 15–17, 2007, 2007, pp. 315–320.
[71] J.C. Nieves, M. Osorio, U. Cortés, Semantics for possibilistic disjunctive programs, Theory Pract. Log. Program. 13 (1) (2013) 33–70.
[72] B.E. Oliver, J. Otten, Equality preprocessing in connection calculi, in: Joint Proceedings of the 7th Workshop on Practical Aspects of Automated Reasoning

(PAAR) and the 5th Satisfiability Checking and Symbolic Computation Workshop (SC-Square) Workshop, 2020 Co-Located with the 10th International
Joint Conference on Automated Reasoning (IJCAR 2020), Paris, France, June-July, 2020 (Virtual), 2020, pp. 76–92.

[73] J. Otten, A non-clausal connection calculus, in: Automated Reasoning with Analytic Tableaux and Related Methods - 20th International Conference,
Proceedings, TABLEAUX 2011, Bern, Switzerland, July 4–8, 2011, 2011, pp. 226–241.

[74] J. Otten, Non-clausal connection calculi for non-classical logics, in: Automated Reasoning with Analytic Tableaux and Related Methods - 26th Interna-
tional Conference, Proceedings, TABLEAUX 2017, Brasília, Brazil, September 25–28, 2017, 2017, pp. 209–227.

[75] C.H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.
[76] A. Platzer, Differential dynamic logic for hybrid systems, J. Autom. Reason. 41 (2) (2008) 143–189.
[77] E. Scala, P. Haslum, S. Thiébaux, M. Ramírez, Subgoaling techniques for satisficing and optimal numeric planning, J. Artif. Intell. Res. 68 (2020) 691–752.
[78] M. Seidl, A solver for quantified Boolean formulas in negation normal form, PhD thesis, Universität Wien, 2007.
[79] Z. Stachniak, Exploiting polarity in multiple-valued inference systems, in: 31st IEEE Int. Symp. on Multiple-Valued Logic, 2001, pp. 149–156.
[80] N. Tamura, A. Taga, S. Kitagawa, M. Banbara, Compiling finite linear CSP into SAT, Constraints Int. J. 14 (2) (2009) 254–272.
[81] C. Thiffault, F. Bacchus, T. Walsh, Solving non-clausal formulas with DPLL search, in: Tenth International Conference on Principles and Practice of

Constraint Programming, 2004, pp. 663–678.
[82] H. Unno, T. Terauchi, Inferring simple solutions to recursion-free horn clauses via sampling, in: C. Baier, C. Tinelli (Eds.), Tools and Algorithms for

the Construction and Analysis of Systems - 21st International Conference, TACAS 2015, Held as Part of the European Joint Conferences on Theory
and Practice of Software, Proceedings, ETAPS 2015, London, UK, April 11-18, 2015, in: Lecture Notes in Computer Science, vol. 9035, Springer, 2015,
pp. 149–163.
388

http://refhub.elsevier.com/S0888-613X(22)00187-6/bibD79299E9B8C32350245CA510D89FBE06s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibD79299E9B8C32350245CA510D89FBE06s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib51B4B2E0209E9F4B7E482D93E4353D98s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib51B4B2E0209E9F4B7E482D93E4353D98s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib1B2A29A90DB0109105082C251AB7E63Fs1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib1B2A29A90DB0109105082C251AB7E63Fs1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib676255E7560B2679C4BA1DA9618CF7B1s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib867E4E04DF8CF7EB26D24ECCAB7D4BABs1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib867E4E04DF8CF7EB26D24ECCAB7D4BABs1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib9EC086A2A3A416FE1A4C52F5D2CA2A2Es1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib72580CD44DD3D3691B6301345C65E239s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib4440E045083B01B7C0DCD716063DB748s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibB16DAA770A3AC3AF685FC2F39CF79E8As1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibB16DAA770A3AC3AF685FC2F39CF79E8As1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib642C20C9FB9301A475C80002B613659Fs1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib3FF645D189F8E99B7891713C844B7485s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib3FF645D189F8E99B7891713C844B7485s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib3FF645D189F8E99B7891713C844B7485s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibDED52282DF1C009050B400F5D8183E4Bs1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibDED52282DF1C009050B400F5D8183E4Bs1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibDA362641D3C2D5473AA7D9421E083AC0s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib0BA5683F6F9D545CC70860EEA92803B2s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib236D98B72EE3D746AB074CD1C8E0DEF6s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibB1D6E357437778BA26765514CF4EE32Fs1
http://arxiv.org/abs/2108.13744
https://doi.org/10.1016/j.fss.2022.10.008
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibF403B24CA6C5C4A813A5DCF5822B5B6Es1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib8266D5A792FD09D8CA1124DBA2329C8Cs1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib8266D5A792FD09D8CA1124DBA2329C8Cs1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib8266D5A792FD09D8CA1124DBA2329C8Cs1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib5DB88F97E573EE2D9837731B804F7548s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib5DB88F97E573EE2D9837731B804F7548s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib647F78B510E8D8E1F2BCB7E32594DC6Ds1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib647F78B510E8D8E1F2BCB7E32594DC6Ds1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib5C746C5B6EDB8BE1280F7072D0CC11FDs1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib5C746C5B6EDB8BE1280F7072D0CC11FDs1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibA108EE6DE21D863FF215A06B8A41F2B8s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib7C2B195EE409C81F52ACA1BB94113EA3s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibDEEB82060EC324ED0C8697729440ACECs1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibE067EE386A3FC813B5AB87C4C03AE963s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibE067EE386A3FC813B5AB87C4C03AE963s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibE067EE386A3FC813B5AB87C4C03AE963s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib2D4918D7B2642AC14B53180C013B092As1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib1CB6910D1AAD9F88B4AC07AB06D32844s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib1CB6910D1AAD9F88B4AC07AB06D32844s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibD4258B7F1796D6CE2FB3D85B0B347E3Ds1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibD4258B7F1796D6CE2FB3D85B0B347E3Ds1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib525DFB80D479371A9582F0501317D781s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib525DFB80D479371A9582F0501317D781s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib84DB5B36CFD6219754BF189B3490FEB0s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib84DB5B36CFD6219754BF189B3490FEB0s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib73B678E81C49F4A41F73E72DF055992As1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib960F69CF7BF2512D8B6EDBE27CB33799s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib960F69CF7BF2512D8B6EDBE27CB33799s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibF6596A23CD2657540BC6B0AAC55251E3s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib39CF0ACAC2BB1C378DDF3530FFD169AEs1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib39CF0ACAC2BB1C378DDF3530FFD169AEs1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib39CF0ACAC2BB1C378DDF3530FFD169AEs1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib6E8BA068C5A14E59E6C042B32F6B2588s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib6E8BA068C5A14E59E6C042B32F6B2588s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib3512D177EC7290C593BCE76E475D15A2s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib3512D177EC7290C593BCE76E475D15A2s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib10B12B9EDFC576FA12CAB942E8B8F13Bs1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib2F7DD37F67969156DD718274A49696DBs1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibF92DAA7816B536286A4F0256008079D3s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib193BAD3ACF67F374A4D0DB5A284B8B21s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibDB1A30E964E2AB74A2A67C421D1B2F09s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib8FEA91D43C5F5B9EF9AC374890AC815Es1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib4838C330FD68803812C1E6D22804F3CCs1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib4838C330FD68803812C1E6D22804F3CCs1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib56039275B4016D14362BC56C52065490s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib56039275B4016D14362BC56C52065490s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib56039275B4016D14362BC56C52065490s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bib56039275B4016D14362BC56C52065490s1

G.E. Imaz International Journal of Approximate Reasoning 152 (2023) 357–389
[83] P.F. Williams, A. Biere, E.M. Clarke, A. Gupta, Combining decision diagrams and SAT procedures for efficient symbolic model checking, in: Computer
Aided Verification (CAV), in: LNCS, vol. 1855, 2000, pp. 124–138.

[84] Y. Xu, J. Liu, X. He, X. Zhong, S. Chen, Non-clausal multi-ary α-generalized resolution calculus for a finite lattice-valued logic, Int. J. Comput. Intell.
Syst. 11 (1) (2018) 384–401.
389

http://refhub.elsevier.com/S0888-613X(22)00187-6/bibA8A4244A03FB5191FFD9C3DF06C0C7A3s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibA8A4244A03FB5191FFD9C3DF06C0C7A3s1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibB0F76EE8E55A411023F23051F03EE40Es1
http://refhub.elsevier.com/S0888-613X(22)00187-6/bibB0F76EE8E55A411023F23051F03EE40Es1

	The possibilistic horn non-clausal knowledge bases
	1 Introduction
	2 Propositional non-clausal logic
	3 Necessity-valued possibilistic logic
	3.1 Semantics
	3.2 Syntactics
	3.3 Syntactic deduction
	3.4 Partial inconsistency

	4 The possibilistic horn-NC class: HΣ
	4.1 Informal definition of HΣ
	4.2 Formal definition of HΣ

	5 Possibilistic NC unit-resolution URΣ
	5.1 Quasi-clausal unit-resolution
	5.2 NC unit-resolution rule
	5.3 NC unit-resolution calculus
	5.4 Further inferences rules
	5.5 Finding the inconsistency degree
	5.6 Reasoning by contradiction

	6 Illustrative examples
	7 Formal proofs
	7.1 Proofs of Section 4
	7.2 Proofs of Section 5

	8 Related and future work
	9 Conclusions
	10 Appendix
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

