
Noname manuscript No.
(will be inserted by the editor)

Strategic Negotiations for Extensive-Form Games

Dave de Jonge · Dongmo Zhang

the date of receipt and acceptance should be inserted later

Abstract When studying extensive-form games it is commonly assumed that play-
ers make their decisions individually. One usually does not allow the possibility for
the players to negotiate their respective strategies and formally commit themselves
to future moves. As a consequence, many non-zero-sum games have been shown
to have equilibrium outcomes that are suboptimal and arguably counter-intuitive.

For this reason we feel there is a need to explore a new line of research in
which game-playing agents are allowed to negotiate binding agreements before
they make their moves. We analyze what happens under such assumptions and
define a new equilibrium solution concept to capture this. We show that this new
solution concept indeed yields solutions that are more efficient and, in a sense,
closer to what one would expect in the real world.

Furthermore, we demonstrate that our ideas are not only theoretical in na-
ture, but can also be implemented on bounded rational agents, with a number of
experiments conducted with a new algorithm that combines techniques from Au-
tomated Negotiations, (Algorithmic) Game Theory, and General Game Playing.
Our algorithm, which we call Monte Carlo Negotiation Search, is an adaptation of
Monte Carlo Tree Search that equips the agent with the ability to negotiate. It is
completely domain-independent in the sense that it is not tailored to any specific
game. It can be applied to any non-zero-sum game, provided that its rules are
described in Game Description Language. We show with several experiments that
it strongly outperforms non-negotiating players, and that it closely approximates
the theoretically optimal outcomes, as defined by our new solution concept.

Dave de Jonge
Western Sydney University, School of Computing, Engineering and Mathematics
Locked Bag 1797, Penrith, NSW 2751, Australia
E-mail: d.dejonge@westernsydney.edu.au

Dongmo Zhang
Western Sydney University, School of Computing, Engineering and Mathematics
Locked Bag 1797, Penrith, NSW 2751, Australia
E-mail: d.zhang@westernsydney.edu.au

2 Dave de Jonge, Dongmo Zhang

Keywords Automated Negotiations · Non-zero-sum Games · Extensive-form
Games · General Game Playing · Monte Carlo Tree Search

1 Introduction

Games have always been an important research topic in Artificial Intelligence
because they provide a controlled environment with clear-cut rules. They can be
seen as simplified metaphors for real-world problems. In a sense, any multiagent
system in which each agent has its own private goals that may be conflicting with
the other agents’ goals can be seen as a game. However, research on game-playing
algorithms has mostly focused on zero-sum-games, such as Chess, Poker, and Go.
This is striking, because many problems encountered in our daily lives are better
modeled as non-zero-sum games. For example, the concept of a market economy
is essentially a non-zero-sum game; each participant in the economy has its own
personal goals and by exchanging goods and services with one another, participants
mutually benefit.

Although traditional game-playing algorithms such as Minimax and Monte
Carlo Tree Search can be adapted easily to non-zero-sum games, they do not take
into account the ability of the agent to negotiate its actions with its opponent(s).
These algorithms may therefore yield inefficient outcomes. Typical examples of
games where individual play is inefficient are the (Iterated) Prisoner’s Dilemma
[1], the Centipede Game [35], and the Dollar Auction [39]. If in these games the
players were allowed to negotiate and make binding agreements then they could
achieve much better results, as we will show.

Non-zero-sum games have been studied extensively from a formal point of view,
but when studying their equilibrium properties, such as the Nash Equilibrium or
the Subgame Perfect Equilibrium, it is commonly assumed that players decide
their actions individually. Again, one does not take into account that agents may
be able to negotiate and formally commit themselves to future actions. We argue
that for this reason such equilibrium concepts sometimes predict outcomes that
are different from those outcomes one would expect in real-life situations. After all,
in the real world people do communicate and coordinate their actions. For exam-
ple, when two people find themselves in a situation comparable to the Prisoner’s
Dilemma, the natural thing to do would be to discuss the situation and agree to
cooperate. Even if they have no reason to trust each other they can still cooperate,
by signing a formal contract which legally binds them to obey their agreements.

We should remark that extensive-form games and Subgame Perfect Equilibria
have been used as tools to study negotiations, for example in [31], but in those
cases the negotiations themselves were modeled as extensive-form games. This is
not what this paper is about. In this paper, we study the use of Automated
Negotiations as an additional tool to manipulate the outcome of any extensive-
form game that, by itself, does not have anything to do with negotiations.

The field of Automated Negotiations, on the other hand, has largely ignored the
high complexity of extensive-form games. Most work on Automated Negotiations
assumes the utility of any deal is known almost instantaneously, and the process
of evaluating the proposal is almost completely abstracted away. This is in sharp
contrast to games such as Chess or Go, which are so complex that in most cases
it is unfeasible to determine the exact value of any action taken.

Strategic Negotiations for Extensive-Form Games 3

Therefore, in this paper we aim to bridge the gap between Automated Nego-
tiations and the theory of extensive-form games. We aim to answer the following
question: “Given some extensive-form game, we know that without negotiations two

perfectly rational players would play the Subgame Perfect Equilibrium, but what would

happen if we did allow those players to negotiate their actions and sign binding agree-

ments?” In order to answer this question we define a new solution concept for
extensive-form games, which takes into account the possibility that players ne-
gotiate binding agreements about their future moves. We calculate the expected
utility outcomes under this new equilibrium concept for three traditional games,
and show that they dominate the outcomes prescribed by the traditional Subgame
Perfect Equilibrium.

The main idea is that we define a new concept which we call an Extensive-
Form Game with Negotiations. Specifically, given an extensive-form game G we
define the associated Extensive-Form Game with Negotiations NG, which is an
adaptation of G that allows the players to negotiate their future actions before
every round of the game. Although these negotiations can be modeled as extensive-
form games themselves, it is easier to analyze them if we model them as normal-
form games. This then allows us to describe the optimal behavior of a perfectly
rational agent not only in terms of its moves, but also in terms of the agreements
it makes with its opponent.

Furthermore, we present a new solution concept to predict the outcome of a
bilateral negotiation, which is an alternative to the Nash Bargaining Solution [30].
The difference is that our solution works for discrete agreement spaces, whereas
Nash’s solution assumes convex agreement spaces.

In order to show that our concepts are not merely theoretical in nature, but can
also be efficiently approximated in a setting with limited computational resources
we present the results of a number of experiments we have performed using a
new algorithm that combines techniques from General Game Playing (GGP) with
techniques from Automated Negotiations. It is an adaptation of the commonly
used Monte Carlo Tree Search (MCTS), and equips the agent with the ability
to negotiate. We therefore call our algorithm Monte Carlo Negotiation Search
(MCNS). We have tested our algorithm on three traditional games and show that is
indeed able to play and negotiate in such a way that it approximates our proposed
equilibrium concept. This work is a continuation of the earlier work presented in
[21] and [22].

The rest of this paper is organized as follows. In Section 2 we give an overview
of existing work on Automated Negotiations and GGP. In Section 3 we state the
assumptions we make. In Section 4 we introduce a number of formal definitions
related to extensive-form games and illustrate these definitions using the Centipede

Game, which we use as a running example throughout the paper. In Section 5 we
formally define the notion of a Negotiation Domain and introduce our solution
concept for negotiations over discrete agreement spaces. Section 6 forms the core
of this paper. In this Section we define our new equilibrium solution concept for
Extensive Form Games with Negotiations. Then, in Section 7 we briefly describe
how we have adapted the MCTS algorithm for games with negotiations and we
present the results of our experiments. In Section 8 we discuss a number of assump-
tions we made in this paper and their motivations, and in Section 9 we discuss
future work. Finally, in Appendix A and Appendix B we provide the proofs of a
number of theorems presented in the main section of the paper, and in Appendix

4 Dave de Jonge, Dongmo Zhang

C we give a complete formalization of our notion of an Extensive-Form Game with
Negotiations

2 Related Work

The earliest work on Automated Negotiations has mainly focused on proving for-
mal properties of idealized scenarios. A seminal paper of this type is by Nash [30]
in which it was shown that under certain axioms the rational outcome of a bilat-
eral negotiation is the solution that maximizes the product of the players’ utilities.
Many papers have been written afterwards that generalize or adapt some of these
axioms. A non-linear generalization has been made for example in [9]. A general
overview of such theoretical studies is made in [38].

In later work focus shifted more towards heuristic approaches for domains
where one cannot expect to find any formal equilibrium results, or where such
equilibria cannot be determined in any reasonable amount of time. It is usually
not possible to give hard guarantees about the success of such algorithms, but they
are more suitable to real-world settings. Important examples are [7] and [8], which
propose a strategy that amounts to determining for each time t which utility value
should be demanded from the opponent (the Aspiration Level). However, they do
not take into account that it may be hard to find a contract that yields that aspired
utility value. They simply assume that such a contract always exists, and that the
negotiator can find it without effort.

In general, these heuristic approaches still often make many simplifying as-
sumptions. They may for example assume there is only a small set of possible
agreements, or that the utility functions are linear additive functions which are
explicitly given or which can be calculated without much computational cost. Such
assumptions were made, for example, in the first four editions of the annual Au-
tomated Negotiating Agent Competition (ANAC 2010-2013) [2].

Recently, more attention has been given to more realistic settings in which the
number of possible deals is so large that one needs to apply search algorithms to
find good deals to propose, and where utility functions are non-linear [14,28,29].
Although in these works the utility functions are indeed non-linear over the vector
space that represents the set of possible contracts, the value of any given contract
can still be calculated quickly by solving a linear equation. Theoretically speaking,
one can argue that any non-linear function can indeed be modeled in such a way.
However, in practice the utility functions are not always given in this way (e.g.
there is no known closed-form expression for the utility function over the set of
all possible configurations of a Chess game). In order to apply their method one
would first need to transform the given expression of the utility function into the
expression required by their model, which may easily turn out unfeasible.

Therefore, the idea of complex utility functions was taken a step further in [18],
which studied domains for which the utility functions are not only non-linear, but
also computationally hard to calculate.

An even more complex negotiation scenario is the game of Diplomacy [6]. This
is an extensive-form game that involves negotiations before each round. These
negotiations are very complex, because the players’ utility functions are not di-
rectly defined in terms of the agreements they make, but more indirectly through
the moves they make in the game. The players negotiate with one another about

Strategic Negotiations for Extensive-Form Games 5

which moves each will make, which in turn influences the outcome of the game.
Determining the effect of an agreement on the player’s final utility is a hard prob-
lem that involves Game Theory and Constraint Satisfaction. Pioneering work on
negotiations in Diplomacy was presented in [25,36]. New interest in Diplomacy
as a test-bed for negotiations has sparked with the introduction of the DipGame
platform [6] and its extension BANDANA [20], making the development of Diplo-
macy agents for scientific research easier. Several negotiating agents have been
developed on these platforms [5,10,16]. Also, the 2017 and 2018 editions of ANAC
hosted a special Diplomacy League [17]. Unfortunately, the agents developed for
Diplomacy highly depend on details specific for this game and are therefore hard
to generalize to other settings.

Search algorithms such as Genetic Algorithms (GA)[19,33] and Simulated An-
nealing [14,28] have been used to search for good proposals in complex negotiation
domains. Unfortunately, GAs cannot be applied straightforwardly to games, be-
cause the search space is not closed under the two major operators of GA (‘muta-
tion’ and ‘crossover’). When applying these operators to a legal sequence of joint
actions, the result will generally contain illegal moves. A similar problem occurs
with Simulated Annealing.

The field of General Game Playing (GGP) studies algorithms for game playing
agents, under the restriction that the rules of those games are only known at
run-time. Therefore, when developing a GGP agent, one cannot use any game-
specific heuristics. GGP is a relatively new topic. Although earlier work has been
done, it only started to draw widespread attention in the AI community after the
introduction of Game Description Language (GDL) [27] and the first edition of
the annual AAAI GGP competition in 2005 [13]. GDL is a formal language to
write down the rules of a game in the form of a machine-readable logic program.
Common techniques applied by GGP players are minimax [42], alpha-beta pruning
[23] and Monte Carlo Tree Search (MCTS) [24]. Many of the winners of the AAAI
GGP competition applied variants of MCTS, such as FluxPlayer [37], Cadia Player
[11], Sancho,1 and Galvanise.2 MCTS is also the basic algorithm applied by the
AlphaGo program that recently defeated the world champion in Go [40].

One of the main contributions of this paper is the definition of an Extensive-

Form Game with Negotiations. We have already defined a similar concept earlier
in [16] and [20], which we called a Negotiation Game, and which was essentially a
one-shot game preceded by a negotiation stage. In [21] we extended this definition
to also include games over multiple rounds, but where only the first round was
preceded by a negotiation stage. In this paper, we extend it even further, by
allowing negotiations before every round of the game. Note, however, that here we
do not use the term ‘Negotiation Game’ because this name might be confusing in
combination with a number of other definitions in this paper.

Finally, we remark that in this paper we define some concepts in a slightly
different way than in our earlier paper [22], but they are essentially the same.

1 http://sanchoggp.blogspot.co.uk/2014/05/what-is-sancho.html
2 https://bitbucket.org/rxe/galvanise_v2

6 Dave de Jonge, Dongmo Zhang

3 Assumptions

We consider a setting in which two agents play a non-zero-sum game that takes
place over multiple rounds. In each round each player chooses an action from
a finite set of legal actions, with the goal of ending the game in a final state
that maximizes that player’s utility. Unlike in traditional studies of extensive-form
games we assume that in each round, before selecting their actions, the players
have the opportunity to negotiate binding agreements about which strategies they
will follow throughout the rest of the game.

The goal of our work is to implement an algorithm for one of these two agents
that aims to maximize that agent’s utility by strategically selecting the right moves
to make, and by negotiating the right deals with its opponent.

In summary, we are making the following assumptions, which we discuss in
more detail in Section 8.

1. Agents are self-interested. Each agent is only interested in maximizing its
own utility, and is not interested in maximizing any form of ‘social utility’.
Therefore, a rational player is only willing to accept a proposal if it expects
that doing so will not decrease its own utility.

2. The opponent is unknown. When implementing our algorithm we cannot
make any assumptions about the other agent it will be negotiating with. The
other agent may be running the same algorithm, or a completely different
algorithm, or may even be human.

3. Agreements are always obeyed. It is very important to understand that we
assume the agents always obey the agreements they make, even if it would be
rational for one or both of the agents to unilaterally deviate from it.
We can make this assumption, because we assume there is some external mech-
anism in place that enforces these agreements to be obeyed. This is similar to
the real-world case where you sign a legally binding contract, which is enforced
by the judicial system.
We should stress, however, that this enforcement mechanism does not make
any decisions. It merely enforces the agreements made by the players, but the
players themselves have full autonomy to decide which agreements they make.
The fact that agents must obey their agreements is exactly what makes the
analysis of our games-with-negotiations different from classical extensive-form
games. For example, if the players of an (iterated) Prisoner’s Dilemma were
allowed to make binding agreements prior to choosing their actions, they could
agree to play ‘cooperate’, and hence reach a better outcome than in the classical
Prisoner’s Dilemma. This only works, however, if such agreements are truly
binding.
In Section 8.3 we discuss our arguments to support this assumption in more
detail.

4. Bounded rationality. Throughout most of this paper we focus on the the-
oretical aspects of our setting, and therefore ignore the problem of bounded
rationality. However, in Section 7, we present an anytime algorithm that is able
to approach the theoretically optimal solution with limited resources.

5. General games. The agents only receive the rules of the game at run-time, so
our algorithm cannot make use of any pre-defined game-specific heuristics.

Strategic Negotiations for Extensive-Form Games 7

6. The agents play games of full information. We only consider games of full
information and with no random events. More precisely, this means that agents
have a complete description of each others’ utility functions. We should note,
however, that these descriptions may be very complex, so it will often still be
too hard to calculate the utility values exactly. Also, we should note that ‘full
information’ only refers to the rules of the game, but it does not mean that
the agents know each others’ implementations or strategies.

Note that points 1, 2, 4 and 6 are pretty much standard assumptions in (algo-
rithmic) Game Theory, and in addition, point 5 is standard in the field of General
Game Playing. Point 3, on the other hand is not common in Game Theory, but is
a standard assumption in the field of Automated Negotiations (although not often
mentioned explicitly).

4 Extensive Form Games

In this section we formalize the notion of an extensive-form game (without nego-
tiations), and several related concepts. These definitions are by no means novel,
but we need to state them in order to establish notation, and to take away any
ambiguity in these definitions that may exist in the literature.

We start by defining the notion of a first-order protocol and then define an
extensive form game as a first-order protocol together with a pair of utility func-
tions (in Appendix C we will also define higher-order protocols, which are essentially
protocols that are built up from smaller protocols). Although our definitions can
be extended easily to multiple agents we will for simplicity restrict ourselves to
protocols for only two agents.

Throughout this paper, for any quantity q, we use the notation ~q as a shorthand
for a pair (q0, q1).

4.1 Protocols and Games

Definition 1 A protocol of order 1 or first-order protocol is a tuple Pr =
〈~α, ~A,W,w0, T, ~L, u,O, out〉 where:

– ~α = (α0, α1) a pair of agents.
– ~A = (A0,A1) in which each Ai is a set of actions or moves of agent αi.
– W is a finite set of states.
– wo ∈W is the initial state

– T ⊂W is the set of terminal states.
– ~L = (L0, L1), where each Li is the legality function of αi, which assigns to

each non-terminal state a nonempty set of actions Li : (W \ T)→ 2Ai .
– u : (W \T)×A0×A1 →W is the update function that maps each non-terminal

state and action-pair to a new state.
– O is a finite set of outcomes.
– out : T → O is the outcome function that labels every terminal state with an

outcome.

8 Dave de Jonge, Dongmo Zhang

We say an action a is legal in w for agent αi iff a ∈ Li(w). In general, agents have
multiple legal moves in each state, because they can choose which move to make,
so the co-domain of Li is the power set of Ai, which we denote by 2Ai .

A pair of actions ~a = (a0, a1) ∈ A0 ×A1, one for each player, is called a joint

move. A joint move (a0, a1) is legal in w if a0 is legal for α0 in w and a1 is legal
for α1 in w.

The update function u defines how the protocol transitions from one state to
the next as a consequence of the actions chosen by the agents.3

Definition 2 An extensive-form game G is tuple 〈Pr, ~U〉 consisting of a first-
order protocol Pr and a pair of utility functions ~U = (U0, U1) that map each
outcome of Pr to a real number Ui : O → R.

In this definition each terminal state is labeled with an object we call the out-

come and each outcome is in turn mapped to a pair of utility values. For example,
in Chess, the set of outcomes could be O = {white wins, black wins, draw}, while
the utility functions would assign a number of points to each of these outcomes. At
this point the notion of an ‘outcome’ may seem a bit redundant, and it is indeed
more common in the literature to map terminal states directly to utility values,
but we will see later that it allows us to elegantly model negotiations as a spe-
cial kind of extensive form game, and it will make it easier to define higher-order
protocols.

If t is a terminal state then we will sometimes simply use the notation Ui(t) as
a shorthand for Ui(out(t)).

Example 1 The Prisoner’s Dilemma can be modeled as an extensive-form game4

as follows:

– A0 = A1 = {cooperate, defect}
– W = {w0, tcc, tcd, tdc, tdd}
– T = {tcc, tcd, tdc, tdd}
– L1(w0) = L2(w0) = {cooperate, defect}
– u(w0, cooperate, cooperate) = tcc, u(w0, cooperate, defect) = tcd,
u(w0, defect , cooperate) = tdc, u(w0, defect , defect) = tdd

– O = T

– out = Id

– U0(tcc) = 3 U1(tcc) = 3
U0(tcd) = 0 U1(tcd) = 5
U0(tdc) = 5 U1(tdc) = 0
U0(tdd) = 1 U1(tdd) = 1

Here, w0 is the initial state, tcc is the terminal state that is reached when both
players play cooperate, tcd is the terminal state that is reached when α0 plays
cooperate and α1 plays defect , etcetera. The outcome space is simply identified
with the set of terminal states and the map out between T and O is the identity
function.

3 The update function does not always need to be defined completely, because it is only
relevant on those triples (w, a0, a1) for which a0 and a1 are legal in w anyway.

4 It is easier and more custom to define the Prisoner’s Dilemma as a normal-form game, but
the point is that we want to give a simple example of an extensive-form game.

Strategic Negotiations for Extensive-Form Games 9

Note that a first-order protocol can be seen as a directed graph with W its set
of vertices, and for which there is an edge from w to w′ iff there are legal actions
a0 ∈ L0(w) and a1 ∈ L1(w) such that u(w, a0, a1) = w′. In this paper we always
assume for any protocol or game that this underlying graph is acyclic. This implies
that each game has a maximum number of rounds, because the number of states
is assumed finite.

Informally, a turn-taking game is a game in which in every turn only one player
(the active player of that turn) makes a move. In our definitions above, however, we
have followed the standard convention of GGP that players always make moves
simultaneously. This is not a restriction, because any turn-taking game can be
modeled equivalently as a game with simultaneous moves. One can achieve this
by adding a dummy move to the game and requiring that the non-active player
makes that dummy move instead of making no move at all. This dummy move
is usually referred to as noop. Therefore, we formally define turn-taking games as
follows.

Definition 3 A first-order protocol is called a turn-taking protocol if one can
define a function active, that maps each non-terminal state to one of the two
agents: active : W \ T → {α0, α1}, such that for every non-terminal state w we
have:

If active(w) 6= αi then Li(w) = {noop}

If αi = active(w) we say that αi is the active player of w, while the other player
is called the non-active player of w. A turn-taking game is a game for which its
protocol is a turn-taking protocol.

This definition says that in every non-terminal state either α0 or α1 is the active
player, and that the non-active player always has exactly one legal move, called
noop. In the rest of this paper we will always assume every game is a turn-taking
game, unless specified otherwise. We will use the notation u(w, a) as a shorthand
for u(w, a, noop) or u(w, noop, a) where a is an action of the active player of w.

4.2 Client-Server Model

We will now explain the semantics of the above definitions by modeling the agents
as clients in a client-server architecture. This architecture is largely the same as
the one commonly used in General Game Playing [13]. We note, however, that any
other type of architecture could be used just as well.

In order to play a game, the two agents need to connect to a server. The server
then sends a message to each player containing the description of some game,
written in GDL, which directly encodes the components of Def. 1 and 2. The
agents are given some initial time to parse the game description and initialize their
algorithms. Next, the game starts when the server sends a message to each player
indicating the initial state w0. In general, whenever the server sends a message with
some non-terminal state wr each player αi must reply with a message containing
a legal move ai ∈ Li(wr). The server will then send a new message with the new
state wr+1, which is determined by the game’s update function and the actions
chosen by the players: wr+1 = u(wr, a0, a1). This process repeats until the state
sent by the server is a terminal state t ∈ T . Each player αi then obtains the utility

10 Dave de Jonge, Dongmo Zhang

value Ui(t) corresponding to that terminal state. If a player does not respond to
the server within a specified deadline, or responds with an illegal action, the server
will instead pick a random legal action for that player.

Whenever we say that the game is in round r or that the game is in state wr,
we mean that the last message from the server contained the state wr.

4.3 The Centipede Game

We now present an existing game called the Centipede Game [35], which we will
use as a running example throughout this paper.

The Centipede Game is a typical non-zero-sum game often discussed in Game
Theory text books. The details of its definition may vary per text book, so here
we follow the definition according to its GDL description implemented by Sam
Schreiber, which we downloaded from the GDL database.5 This is mainly so that
the results of our experiments are in line with the definitions here.

The Centipede Game is a turn-taking game for two players, with a maximum
of 19 rounds. In each round the active player of that round can choose between
two possible moves: finish or continue, except in the 19th round, in which case the
only possible move is finish. In any round, if the active player chooses finish the
game stops. Otherwise, the game continues to the next round. The utilities of the
players are purely defined by the round in which the game is stopped, as indicated
in Figure 1.

Formally, we can define its set of terminal states as: T = {t1, t2 . . . t19} and its
complete set of states as: W = {w0, w1 . . . w18}∪T . In each round the active player
can play continue or finish, while the non-active player can only play noop:

A0 = A1 = {noop, continue,finish}

Li(wk) =


{noop} if i 6= k (mod 2)

{continue,finish} if i = k (mod 2) and k 6= 18

{finish} if i = k (mod 2) and k = 18

After playing continue the next state will be another non-terminal state:

u(wk, continue) = wk+1

After playing finish the next state will be a terminal state:

u(wk,finish) = tk+1

Like in our example of the Prisoner’s Dilemma, we simply identify the outcome
set with the set of terminal states.

O = T out = Id

The utility values for a terminal state tk are given as follows:

~U(tk) =

{
(5k , 5k − 5) if k is odd

(5k − 10 , 5k + 5) if k is even

5 http://games.ggp.org

Strategic Negotiations for Extensive-Form Games 11

Specifically, this means that for k = 17, 18, 19 we have:

~U(t17) = (85, 80)

~U(t18) = (80, 95)

~U(t19) = (95, 90)

At first sight, one might think that the best strategy is to always play continue.
After all, the higher the value of k, the higher the scores for both players. However,
there is a catch. For any k, the active player of wk always prefers tk+1 over tk+2.
In other words: she prefers to finish directly rather than to let the opponent finish
the game in the next round. Therefore, if the game is in state w17 then player
α1 prefers to finish immediately, yielding terminal state t18 and hence 95 utility
points, rather than to continue and let the game finish in state t19 which only
yields 90 utility points. However, suppose the game is in state w16. Active player
α0 will now reason that if the game continues to w17 then α1 will play finish and
the game will end in t18. This means that α0 would prefer to finish the game
immediately, yielding state t17 which is more profitable to α0 than t18. Continuing
this reasoning we come to the counter-intuitive conclusion that if α0 is perfectly
rational she would finish the game immediately, at state t1.

This is formalized in the following, well-known, lemma from [35], which we will
need later on.

Lemma 1 In the Subgame Perfect Equilibrium of the Centipede Game, for any non-

terminal state wk the active player always plays ‘finish’.

This can be proved easily using the technique of backward induction (see for
example [31]). However, since it is a well-known result we omit the proof.

5 Negotiations

In this section we will give a short review of the topic of Automated Negotiations
and show how it fits within the framework of our earlier definitions.

5.1 Informal Introduction

In a typical, classical domain for Automated Negotiations two agents α0 and α1

are bargaining to agree on some contract. The agents have a fixed amount of time
to make proposals to one another according to some negotiation protocol, such as
the Alternating Offers protocol [34]. That is, an agent may propose a contract x
from some predefined set of possible agreements Agr (known as the contract space

or agreement space) to the other agent and then the other agent may either accept
the proposal, or make a counter proposal y ∈ Agr. The agents continue making
proposals to one another until either a given deadline tdead has passed, or one of
the agents accepts a proposal made by the other.

Each agent αi has a utility function Ui which assigns to each contract x ∈
Agr a utility value Ui(x) ∈ R. If a proposed contract x is accepted, then both
agents receive their respective utility values, U0(x) and U1(x), corresponding to this
contract. However, if no proposal is accepted before the deadline, then each agent

12 Dave de Jonge, Dongmo Zhang

Fig. 1 State space of the Centipede Game. Next to each terminal state tk, on the right-hand
side, we have indicated its utility vector. Next to each non-terminal state wk, on the left-hand
side, we have indicated its Negotiation Values nvw,~τ,i and Reservation Values rvw,~τ,i (Sec.
6.3), assuming no deal has been made in any earlier round.

αi will receive a pre-defined amount of utility which is known as its Reservation

Value rvi. Clearly, a perfectly rational agent would never accept any proposal that
yields an amount of utility less then its Reservation Value.6

The vector ~U(x) = (U0(x), U1(x)) is referred to as the utility vector of x and
the set of all utility vectors is called the utility space. The negotiation protocol, the
agreement space, the utility functions, and the reservation values taken together
are referred to as a Negotiation Domain.

A typical example of a negotiation domain would be the case of a car salesman
and a client negotiating over the price of the car. In that case the contract space
would be the set of all possible prices the customer could possibly pay. However,
more complex negotiation scenarios are possible in which the agreement space is

6 In the case the negotiator is bounded rational we should say that it would never accept
any proposal it expects to yield utility less than its reservation value.

Strategic Negotiations for Extensive-Form Games 13

multi-dimensional, meaning that they do not only negotiate the price, but also
other aspects of the deal, such as the type of car, or any additional features.

5.2 Formal Definition a Negotiation Domain

In this section we formalize the notion of a Negotiation Domain as a special kind
of extensive-form game for which the underlying protocol is a negotiation proto-
col. We should caution the reader, however, that later on we will mostly model
negotiations as a normal form game instead. Also, we should note that in the rest
of the paper we are mainly concerned with negotiation domains N for which the
agreement space is the set of strategies of some other extensive-form game G.

Many different protocols have been defined in the automated negotiations lit-
erature, and it is not hard to see that most of them can indeed be modeled as
a special case of a first-order protocol in the sense of Definition 1. The set of
actions of each negotiating agent would typically be something like A0 = A1 =
{propose(x), accept(x), noop | x ∈ Agr}, where Agr is the set of possible contracts
the negotiators may agree upon, which can be any kind of set, depending on the
domain. The ‘actions’ of a negotiator in a negotiation domain consist of accept-
ing or proposing contracts. Furthermore, the outcome of a negotiation protocol is
either a contract x ∈ Agr which the agents agree upon, or no agreement at all,
which we call the conflict outcome and which we denote by η.

We will not attempt to give a very precise definition of a negotiation protocol,
but instead just stick with the following, rather broad, definition, which is sufficient
for our purposes.

Definition 4 A first-order protocol is called a negotiation protocol, if its out-
come set O can be decomposed as O = Agr∪{η} for some set Agr that we call the
agreement space, and some element η that we refer to as the conflict outcome,
and such that for every x ∈ Agr and every i ∈ {0, 1} we have propose(x) ∈ Ai and
accept(x) ∈ Ai.

This definition just says there must be some propose action as well as an accept

action for every possible contract. It does not say when it is or when it is not legal
to make such proposals or acceptances, because this would be different for every
negotiation protocol.

Definition 5 A negotiation domain is a negotiation protocol together with a
pair of utility functions ~U that map each outcome in Agr ∪ {η} to a real number.
In other words, it is an extensive form game for which the underlying protocol is
a negotiation protocol.

Definition 6 For a negotiation domain N , we define the Reservation Values

rvi(N) as rvi(N) := Ui(η), where η is the conflict outcome.

We will just use the notation rvi instead of rvi(N) whenever N is clear from
context.

Definition 7 For any negotiation domain N an agreement x ∈ Agr is said to be
rational if for all i ∈ {0, 1} we have Ui(x) ≥ rvi and for at least one i ∈ {0, 1} we
have Ui(x) > rvi.

14 Dave de Jonge, Dongmo Zhang

5.3 Negotiations as a Normal Form Game

In this section we will present our first main result. Namely, an alternative to the
Nash Bargaining Solution for discrete agreement spaces. This solution will play an
important role in our analysis of extensive-from games with negotiations later on
in the paper. The definitions in this section have already be published before, in
[22], but we present them here again, to keep this paper self-contained.

Analyzing a negotiation domain can be difficult because its negotiation protocol
may consist of many states. However, we can simplify the analysis by ignoring the
details of the concession strategies applied by the negotiators, and instead looking
only at the minimum amount of utility the negotiators are willing to accept at the
end of the negotiations.

In a typical time-based concession strategy a negotiator would slowly decrease
its demanded utility over time, until a minimally acceptable value is reached near
the deadline. The question is then, is how low this minimally acceptable value
should be. One could simply choose it to be equal to the Reservation Value rvi,
but that would be a weak strategy, because any opponent could easily exploit it by
not accepting anything until the deadline. On the other hand, choosing this value
to be very high is also risky, because if the opponent does the same, it is likely that
the agents will never concede enough to come to any agreement at all. A strong
negotiator therefore needs to strike a balance. One should determine which utility
value one can realistically expect to obtain and concede no further than that.

If the utility space is convex, then the solution to this problem is already given
by Nash [30]. According to the Nash Bargaining Solution both negotiators should
concede towards the contract x that maximizes the product U0(x)·U1(x). However,
in this paper we deal with discrete, and therefore non-convex, agreement spaces.
This could be solved by allowing the agents to also negotiate ‘lotteries’ of contracts.
That is: the agents could agree to flip a (biased) coin, and if the outcome is ‘heads’
they will obey contract x, while if the outcome is ‘tails’ they will obey contract
y. If we allow the coin to be biased with any probability P , then the utility space
becomes convex. Unfortunately, the problem with this solution is that one needs
to trust that the coin is indeed exactly biased with the agreed probability P . One
would need some external source of randomness that is trusted by both agents.
Such a source is not always available.

Therefore, we propose another solution, in which the agents only make de-
terministic agreements. Each player itself will still flip a coin in order to choose
whether it will insist on some agreement x with high utility, or concede to an
alternative agreement y with lower utility, but the important difference is that the
agent only uses a coin internally, so there is no problem with trust.

Let us explain this with an example. Suppose that the agents have to choose
between two Pareto-optimal contracts x and y with corresponding utility vectors
~U(x) = (60, 40) and ~U(y) = (40, 60). We see that player α0 has the choice to either
persist and demand at least 60 utility points (meaning that he is only willing to
accept contract x), or to yield and accept to receive only 40 utility points (meaning
he is willing to accept either contract x or contract y). The opponent α1 has exactly
the same two options, but with the roles of x and y reversed.

The choice which strategy to follow, to persist or to yield, may itself also be
seen as a game, which we refer to as the concession game. If both players persist, the
negotiations fail, and the players obtain their respective reservation values. If one

Strategic Negotiations for Extensive-Form Games 15

player persists and the other yields, then the persisting player receives 60 points,
while the other receives 40 points. If both players yield, the outcome depends
on how fast the players concede. The player who concedes fastest will receive 40
points, while the other will receive 60 points. Here we will simply assume that in
that case there is a 50% chance that they will agree on contract x, and 50% chance
it will be y, so the expected utility for both players is 50.

In general, if we have contracts x and y with utility vectors ~U(x) = (A,B) and
~U(y) = (C,D) and the Reservation Values for the players are rv0 and rv1, then
the concession game can be modeled as a normal-form game with the following
payoff matrix:

Persist Y ield

Persist rv0, rv1 A,B

Y ield C,D 1
2 (A+ C), 12 (B +D)

One can easily calculate (see e.g. [32]) that the Mixed Strategy Nash Equilibrium
of this game is given by:

P0 =
D −B

B +D − 2 · rv1
P1 =

A− C
A+ C − 2 · rv0

(1)

where Pi represents the probability that player αi will play persist. Agent α0 can
now determine its minimum acceptable utility by flipping a coin and setting it
equal to A with probability P0 and to C with probability 1− P0.

Furthermore, we can now also calculate the expectation values of the utility
both agents will receive from the negotiations. If we apply this to our example,
then we find that P0 = P1 = 1

5 , and for their expected utilities we find:

E(U0) =
1

5
· 1

5
· 0 +

1

5
· 4

5
· 60 +

4

5
· 1

5
· 40 +

4

5
· 4

5
· 50 = 48

E(U1) =
1

5
· 1

5
· 0 +

1

5
· 4

5
· 40 +

4

5
· 1

5
· 60 +

4

5
· 4

5
· 50 = 48

We see that both players can expect to receive 48 utility points. Interestingly,
this is lower than the expected outcome in the traditional approach where the
players negotiate lotteries. In that case, following Nash, both players would expect
to receive 50 utility points. The reason for this difference is that the Nash solution
calculates the expected outcome under the assumption that the negotiations will
succeed. However, in our case, the non-convexity means that rational players must
sometimes persist, which will result in failure if they both do that at the same
time. Of course, this means that if the players do have access to a trusted coin,
then it is preferable for them to negotiate lotteries.

In the following, we say that αi prefers x over y if Ui(x) > Ui(y). If x and y are
Pareto-optimal then if α0 prefers x over y this implies that α1 prefers y over x.

Definition 8 Let N be a negotiation domain. Then the Concession Game C(N)
is a normal form game in which for each player its set of actions is exactly the
set of Pareto-optimal and rational contracts of Agr. Furthermore, for any pair of
actions x0, x1, for which α0 prefers x0 over x1, the payoff vector ~U is defined as:

Ui(x0, x1) = rvi

Ui(x0, x0) = Ui(x0)

Ui(x1, x1) = Ui(x1)

Ui(x1, x0) =
1

2
· (Ui(x0) + Ui(x1))

16 Dave de Jonge, Dongmo Zhang

Here, the Ui represent the utility functions of N , while the Ui represent the
utility functions of the concession game C(N). Note that when a player chooses a
contract x as the action to play, it means that he is willing to accept any contract
that is at least as good as x.

The first line in this definition represents the case that both agents persist, so
each is only willing to accept its own preferred contract. Therefore, they cannot
come to an agreement, and they receive their respective reservation values. In the
second and third lines the negotiators agree on the contracts x0 and x1 respectively.
The last line represents the case that each negotiator is willing to concede to its
less preferred contract, so they may agree on either of the two.

For a negotiation domain N and a negotiator αi we define the negotiation

value nvi(N) as the expected utility of αi in the concession game C(N). In order
to calculate this expected utility we need to make some assumptions about the
strategies played by the two agents. For example, we could assume the agents play
a Nash Equilibrium. However, in general, C(N) can have multiple Nash Equilibria
(see Appendix B). For the rest of this paper we will ignore the question how the
agents choose their concession strategy, and simply assume there is some solution
concept that the agents adhere to. For the proofs of the various theorems in this
paper it does not matter, because in all cases the negotiation domains will have
only 0 or 1 rational agreements.

In the case that N does not have any rational agreements C(N) is not defined,
and we define the negotiation values to be equal to the reservation values of N . If
there is only 1 rational agreement x, then obviously, the expected utility for αi is
exactly Ui(x).

Definition 9 For a negotiation domain N the Negotiation Values nvi(N) are
defined as:

nvi(N) =


rvi(N) if N has no rational agreements

Ui(x) if N has exactly 1 rational agreement x

E(Ui) otherwise

(2)

where E(Ui) is the expectation value of Ui under some game theoretical solution
concept applied to C(N).

We propose the Negotiation Value as an alternative to the Nash Bargaining solu-
tion for negotiation domains with discrete agreement spaces.

Lemma 2 For any negotiation domain N we have: nvi(N) ≥ rvi(N).

Proof Note that, by definition, the game C(N) only involves agreements that are
rational, which means that for each agreement x of N , we have Ui(x) ≥ rvi(N).
Therefore, from Def. 8 it follows that for every pair of pure strategies (x, y) we
have Ui(x, y) ≥ rvi(N). This in turn, means that the same holds for any pair of
mixed strategies. ut

Of course, this result is not surprising, because it simply says that each negotiator
can expect to achieve a utility that is at least as high as its reservation value,
which should be obvious from the informal definitions. However, it will be useful
to us later on to have this lemma.

Strategic Negotiations for Extensive-Form Games 17

6 Extensive-Form Games with Negotiations

In this section we define the main domain of interest of this paper, which we
call an Extensive-Form Game with Negotiations. This consists of two agents that
are playing some extensive-form game G, but before each round they are able to
negotiate binding agreements about the strategies they will follow during the rest
of the game.

Note that in Section 5.2 a negotiation domain itself was modeled as an extensive-
form game. Here, however, we take some existing extensive-form game G without
negotiations, and turn it into a game-with-negotiations NG by allowing the agents
to negotiate.

In Section 6.1 we first go through a number of necessary definitions, and then
in Section 6.2 we can finally present the definition of this new concept.

6.1 Strategies

Definition 10 Given a game G, a strategy σi for player αi is a map that maps
every non-terminal state of G to a nonempty set of legal moves for that player.
Thus, σi is a map:

σi : W \ T → 2Ai such that ∀w ∈W \ T : ∅ 6= σi(w) ⊆ Li(w).

We say a player αi follows a strategy σi if it always chooses its actions from σi(w),
for any non-terminal state w. The trivial strategy τi for player αi is the strategy
given by τi(w) = Li(w) for all w ∈W \ T .

A strategy σ is essentially a commitment of an agent to choose its actions only
from a certain subset σ(w) ⊆ Li(w) of all its legal actions. In that sense, the trivial
strategy represents the case that the agent is not committed to anything at all,
because it allows the agent in any state to choose any legal action a ∈ τ(w) = Li(w).

Note that what we here call a strategy, is actually an indeterministic strategy,
because it only partially fixes the agent’s choice for each state. In the special case
that for each w ∈W \ T we have |σ(w)| = 1 we could call it a deterministic strategy

which is perhaps more close to what one intuitively would call a strategy.

Definition 11 A pair ~σ = (σ0, σ1) consisting of one strategy for each player is
called a joint strategy. We use ~τ to denote the trivial joint strategy, which is
the pair (τ0, τ1). The set of all joint strategies of an extensive form game G is
denoted SG.

If w is a non-terminal state then we define next(w,~σ) as the set of all states
that could be the next state if the players follow the joint strategy ~σ:

next(w,~σ) = {w′ ∈W | ∃a ∈ σj(w) : w′ = u(w, a)} (3)

with αj being the active player of w.

18 Dave de Jonge, Dongmo Zhang

Definition 12 For any state w, joint strategy ~σ and any player αi in a turn-taking
game we recursively define the Subgame Perfect Equilibrium Value spew,~σ,i as
follows:

spew,~σ,i =

{
spew∗∗,~σ,i if w ∈W \ T
Ui(w) if w ∈ T

where

w∗∗ = arg max
w′∈next(w,~σ)

spew′,~σ,j (4)

and where αj is the active player of w.

This is the utility a perfectly rational player can expect to obtain against an-
other perfectly rational player when the game is in state w, and both players are
restricted to follow the joint strategy ~σ.

Note that this definition is slightly different from the tradition definition of SPE
(e.g. [31]) because we take into account that the agents may be committed to some
joint strategy ~σ. The traditional SPE value of any state w would correspond to the
special case spew,~τ,i. If the game is a zero-sum game then the value spew,~τ,i is also
known as the MiniMax value. We will use the notation SPE i as a shorthand for
the special case spew0,~τ,i (i.e. the traditional SPE value for the game as a whole).

6.2 Games with Negotiations

We will now explain how we combine extensive-form games with negotiations over
the strategies of such games. The idea is that we define a new kind of structure,
which we call an Extensive-form Game with Negotiations, which is neither a game,
nor a negotiation domain, but rather a hybrid of the two. Specifically, for any
extensive-form game G we can define a corresponding Extensive-Form Game with
Negotiations NG. However, since the formal definition of NG is rather complex,
we only provide a complete formal definition in Appendix C. In this Section we
only provide formal definitions of the most essential components, which should be
sufficient to understand the rest of this paper.

In terms of the client-sever model the idea is that after the server has sent the
current state wr to the players and before the players reply with their next actions,
we allow the two players to exchange messages between each other according to
some negotiation protocol. These negotiation messages are of the type propose(~σ)
or accept(~σ) in which ~σ can be any joint strategy. If one player proposes a joint
strategy ~σ = (σ0, σ1) and the other accepts it, then both players must obey it. This
means that for each wk with k ≥ r each player αi must play a move a ∈ σi(wk).
However, even if the players have already agreed to play some joint strategy ~σ, the
players may continue to negotiate and agree on a new joint strategy ~σ′. In that
case the first agreement is discarded, and instead the players are only required to
obey the newly agreed ~σ′. The details of the negotiation protocol are irrelevant for
this paper. It could be the Alternating Offers protocol, but we may just as well
assume any other bilateral negotiation protocol.

More formally, for any state w of G and any joint strategy ~σ we define a
Negotiation Domain Nw,~σ for which the agreement space is the set of all joint
strategies of G. This negotiation domain represents the situation that the game has

Strategic Negotiations for Extensive-Form Games 19

reached state w, while the agents have previously agreed to obey the joint strategy
~σ, and they are currently negotiating whether they can agree on some better joint
strategy ~σ′. Since ~σ is the standing agreement, it means that if negotiations in
Nw,~σ fail, the players remain committed to ~σ. In other words, the conflict outcome
of Nw,~σ is ~σ.

Furthermore, note that if no agreement has been made yet, this is equivalent
to saying that the players are “committed” to the trivial joint strategy ~τ (which is
just another way of saying they are not committed to anything at all). Therefore,
at the start, when the game is still in the state w0 the players are negotiating over
the negotiation domain Nw0,~τ .

Informally, for any given extensive-form game G the corresponding Extensive-
Form Game with Negotiations NG consists of G together with a negotiation do-
main Nw,~σ for every state w of G and every joint strategy ~σ of G.

6.3 Reservation Values and Negotiation Values

As explained above, in each round of the game, before choosing their respective
moves, the players negotiate their strategies, which is formalized as a negotiation
domain Nw,~σ. In this section we discuss how to define the utility functions Uw,~σ,i
of these negotiation domains. That is, we need to assign a value Uw,~σ,i(~σ

′) to every
possible joint strategy ~σ′.

Suppose the agents agree on some joint strategy ~σ′, and let us for a moment
assume that they will not make any new agreements afterwards. In that case the
agents will be obliged to follow ~σ′ throughout the rest of the game and, if the
agents are perfectly rational, this means that the agents will at the end receive
a utility value equal to spew,~σ′,i. However, we cannot simply set Uw,~σ,i(~σ

′) equal
to spew,~σ′,i, because the agents do have the option to continue negotiating, which
means they could come to a better agreement in a later round. Therefore, spew,~σ′,i
is only a lower bound for the true utility Uw,~σ,i(~σ

′).
Now, suppose that after agreeing on ~σ′ the best possible action for the ac-

tive player leads the game to transition to a non-terminal state w′. Then, in the
next round, the agents will be negotiating over the negotiation domain Nw′,~σ′ .
This means that the value of the agreement ~σ′ in Nw,~σ should be equal to the
expected utility for the negotiations in Nw′,~σ′ , which, as explained in Section 5.3,
is nvi(Nw′,~σ′). On the other hand, if the best possible action for the active player
leads to a terminal state t ∈ T then the value of ~σ′ for αi should be equal to the
value Ui(t) of that terminal state. Here, when we say ‘the best possible action’ we
mean the action that leads to the state w∗ with the highest expected value for the
active player. This means we define the utility functions for Nw,~σ as follows:

Uw,~σ,i(~σ
′) := nvw∗,~σ′,i (5)

with

nvw,~σ,i :=

{
nvi(Nw,~σ) if w ∈W \ T
Ui(w) if w ∈ T

(6)

and with

w∗ := arg max
w′∈next(w,~σ′)

nvw′,~σ′,j (7)

20 Dave de Jonge, Dongmo Zhang

where j is the index of the active player. Note that Ui is a utility function of the
game G, while Uw,~σ,i is a utility function of the negotiation domain Nw,~σ.

We see that in order to calculate the utility values Uw,~σ,i(~σ
′) we need to cal-

culate the values nvw′,~σ′,j for all w′ in next(w,~σ′), but in order to calculate these
values, we need to calculate the negotiation values nvi(Nw′,~σ′) for each such state,
which in turn requires (see Sec. 5.3, Def. 9) the utility functions Uw′,~σ′,i of Nw′,~σ′ .
In other words, the utility functions are recursively defined and this recursion ends
with the terminal states of G (recall that the underlying graph of G was assumed
to be finite and acyclic, so the recursion indeed terminates).

In practice, it will often be infeasible to calculate these values exactly, because
the number of states of G may be too large for exhaustive exploration. In Section
7, however, we show it is possible to implement an anytime algorithm that can
approximate these values without exhaustive exploration.

Now that we have defined the utility functions of Nw,~σ, we may ask what
the reservation values of Nw,~σ are, which we will denote by rvw,~σ,i. Since the
reservation values are, by definition, the players’ utility values for the conflict
outcome, we have: rvw,~σ,i = Uw,~σ,i(η). Furthermore, if the negotiations in Nw,~σ fail,
then ~σ remains the standing agreement, which means it is equivalent to agreeing
on joint strategy ~σ. Therefore, we have that Uw,~σ,i(η) = Uw,~σ,i(~σ). Combining this
we have:

rvw,~σ,i = Uw,~σ,i(~σ) (8)

and if we then combine this with Equation (5) we obtain:

rvw,~σ,i = nvw∗,~σ,i (9)

For the following, recall that for any state w we have defined a state w∗ (Eq. 7)
and a state w∗∗ (Eq. 4). Informally, w∗ is the state that the active player would
choose assuming it has the possibility to negotiate further agreements, while w∗∗

is the state that the active player would choose if it does not have the option to
make new agreements.

Theorem 1 Let G be an extensive form game. Then for any state w ∈ W , any joint

strategy ~σ, and any player αi we have:

rvw,~σ,i ≥ spew,~σ,i

Proof Let kw denote the length of the longest path from w to any terminal state
of G (recall from Sec. 4.1 that G can be interpreted as a graph). The proof then
goes by induction on kw. Note that if kw = 1 it means that for all w′ in next(w,~σ)
we have w′ ∈ T . This in turn means that nvw′,~σ,j = Uj(w

′), but also spew′,~σ,j =
Uj(w

′), and thus that nvw′,~σ,j = spew′,~σ,j . It follows that w∗ = w∗∗ ∈ T . Therefore,
for kw = 1 we have:

rvw,~σ,i = nvw∗,~σ,i = Ui(w
∗)

spew,~σ,i = spew∗∗,~σ,i = Ui(w
∗∗)

where the first line follows from Eq. (6), Eq. (9), and the fact that w∗ ∈ T , while the
second line follows from Def. 12, the definition of w∗∗ and the fact that w∗∗ ∈ T .
So indeed, since w∗ = w∗∗ the theorem holds for the base case.

Strategic Negotiations for Extensive-Form Games 21

Now suppose that for some integer k we know that the inequality holds for all
states w′ with kw′ < k. Then, for any state w with kw = k:

rvw,~σ,i = nvw∗,~σ,i

≥ nvw∗∗,~σ,i

≥ rvw∗∗,~σ,i

≥ spew∗∗,~σ,i

= spew,~σ,i

The first line is simply Eq. (9), the second line follows from the definition of w∗

and the fact that w∗∗ ∈ next(w,~σ), the third line is a special case of Lemma 2, the
fourth line is the induction hypothesis (note that w∗∗ is a child of w and therefore
kw∗∗ < kw), and the last line holds by Definition 12. ut

Intuitively, this result should be clear. If the players previously agreed on some
joint strategy ~σ and the game is currently in state w, then spew,~σ,i is the mini-
mum value each player can guarantee himself for the rest of the game by playing
the equilibrium strategy, without further negotiations. Indeed, this means that an
agreement would only be rational if it yields higher utility for both players, and
therefore the reservation values must be at least as high as the equilibrium values.

In some cases it may happen that rvw,~σ,i is strictly larger than spew,~σ,i. The
reason for this is that even if negotiations fail in the current round, the players
may still come to an agreement in the following rounds, so they may still achieve
higher utilities than spew,~σ,i. Later on we will see some examples of this.

We will now define a new solution concept which is an adaptation of the Sub-
game Perfect Equilibrium, for games with negotiations. It represents the utility
values the agents can expect to achieve in some game G if they are allowed to
negotiate binding agreements regarding to their strategies.

Definition 13 Given an extensive-form turn-taking game G and a player αi we
define its Negotiation Value as

NV i(G) := nvw0,~τ,i

Note that in Def. 9 we defined the Negotiation Values of a negotiation domain N ,
while here we have defined the Negotiation Values of an extensive-form game G.
The two concepts are related, because the Negotiation Values of G are defined as
the Negotiation Values nvw0,~τ,i of the negotiation domain Nw0,~τ corresponding to
the negotiations at the start of the game.

Intuitively, it should be clear that allowing players to negotiate binding agree-
ments allows them to achieve higher utilities than they would obtain without
negotiations. We formalize this with the following theorem.

Theorem 2 For any extensive-form game G we have NV i(G) ≥ SPE i(G)

Proof We know by Lemma 2 that nvw0,~τ,i ≥ rvw0,~τ,i and we know from Theorem
1 that rvw0,~τ,i ≥ spew0,~τ,i. ut

22 Dave de Jonge, Dongmo Zhang

For some games, the inequality in this theorem is a strict inequality. For ex-
ample, as we will show in the next section, for the Centipede Game we have:

(NV 0(G),NV 1(G)) = (95, 90)

(SPE0(G),SPE1(G)) = (5, 0)

and in Appendix A we show that for the Iterated Prisoner’s Dilemma [1] we have:7

(NV 0(G),NV 1(G)) = (60, 60)

(SPE0(G),SPE1(G)) = (20, 20)

6.4 The Centipede Game with Negotiations

In this section we will illustrate the definitions of the previous subsections with the
Centipede Game. We will calculate the players’ Negotiation Values and Reserva-
tion Values of the negotiation domains Nwk,~τ for all non-terminal states wk, from
which we then conclude that (NV0, NV1) = (95, 90). While reading this Section
the reader may find it helpful to simultaneously keep an eye of Figure 1.

In the following, we sometimes say the agents agree on a “deal t” or an “agree-
ment t”, for some terminal state t of the Centipede Game. In that case we techni-
cally speaking mean that they agree to play a joint strategy ~σt such that, if both
agents follow it, the game will end in state t.

First, let us note that:

∀k ∈ [0, 17] : next(wk, ~τ) = {wk+1, tk+1} and next(w18, ~τ) = {t19}

Recall from Eq. (6) that for terminal states tk we have:

nvtk,~τ,i = Ui(tk) (10)

Also note that in this game, in any state, the only Pareto-optimal deals are t18
and t19. We will proceed by calculating nvwk,~τ,i, for every non-terminal state wk,
starting with k = 18 and then working our way back to k = 0.

Let us look at w18. Since there is only one next state for w18, we have w∗ = t19,
and thus using Eq. (9) and (10) we get rvw18,~τ,i = Ui(t19). Since any joint strategy
played from w18 will lead to t19, there is no ~σ that could dominate ~τ so there is
no rational contract in Nw18,~τ . Therefore, by Def. 9 we have:

∀i ∈ {0, 1} : nvw18,~τ,i = rvw18,~τ,i = Ui(t19)

Now, let us look at w17. The active player is α1, and we have two possible
next states: w18 and t18. We already know that nvw18,~τ,1 = U1(t19) = 90 and
nvt18,~τ,1 = U1(t18) = 95. Therefore, w∗ = t18. Then, from Eq. (9) and (10) we
have rvw17,~τ,i = nvt18,~τ,i = Ui(t18). This means that in state w17 the deal t18
is not rational, but also t19 is not rational, because U1(t19) = 90 < rvw17,~τ,1 =
U1(t18) = 95. There are no rational deals, so we have:

∀i ∈ {0, 1} : nvw17,~τ,i = rvw17,~τ,i = Ui(t18)

7 Strictly speaking SPE i and NV i are not defined for the Iterated Prisoner’s Dilemma,
because it is not a turn-taking game, but we show in Appendix A how this is can be resolved
with a minor adaptation.

Strategic Negotiations for Extensive-Form Games 23

Now, let us look at state w16. The active player is α0. For the two next states
we have: nvw17,0 = U0(t18) = 80 and nvt17,~τ,0 = U0(t17) = 85, so w∗ = t17, so:

∀i ∈ {0, 1} : rvw16,~τ,i = nvt17,~τ,i = Ui(t17)

The deal t18 is not rational, because U0(t18) = 80 < 85 = U0(t17) = rvw16,~τ,0, the
deal t19 however, is rational. Therefore, the only rational agreement of Nw16,~τ is
t19 and hence, by Def. 9, we have:

∀i ∈ {0, 1} : nvw16,~τ,i = Ui(t19)

Now, let us look at state w15. For the two next states we have: nvw16,~τ,1 =
U1(t19) = 90 and nvt16,~τ,1 = U1(t16) = 85, so w∗ = w16, and therefore rvw15,~τ,i =
nvw16,~τ,i = Ui(t19). This means that neither t18 nor t19 are rational deals, and
therefore:

∀i ∈ {0, 1} : nvw15,~τ,i = rvw15,~τ,i = Ui(t19)

For states with k < 15 the analysis goes analogously, so:

∀k < 15 ∀i ∈ {0, 1} : nvwk,~τ,i = rvwk,~τ,i = Ui(t19)

The values of NVi now follow by setting k = 0 in this equation and observing that
~U(t19) = (95, 90)

Theorem 3 There exist extensive-form games G for which we have:

∀i ∈ {0, 1} : NV i(G) > SPE i(G).

Proof The Centipede Game is an example of such a game. We see from Lemma 1
and from the utility functions as defined in Section 4.3 that for this game we have
(SPE0, SPE1) = (5, 0). Furthermore, we have just shown that for this game we
have (NV 0,NV 1) = (95, 90). ut

We see that the Centipede Game with negotiations has a number of interest-
ing properties. Clearly, the possibility of making binding agreements removes the
players’ incentives to break the game off at an early stage. However, what may be
more surprising, is that such agreements do not have to be made immediately. In
fact, it is perfectly rational for the players to play continue without making any
agreements at all, until they reach the state w16. It is the mere fact that they know
they can make agreements later on, which makes it rational to continue playing.
This is reflected by the fact that for each state before w16 we have that the reser-
vation values are equal to the negotiation values (see Fig. 1). Only once w16 is
reached it becomes necessary to sign a binding agreement, because only at that
point any threat to finish the game early becomes credible.

A second surprising property, is the fact that although the game has two ter-
minal states that are Pareto-optimal, t18 and t19, which both dominate the SPE,
the only reasonable outcome for the players is to agree on t19. The reason for this
lies in the way the game is structured.

Proposition 1 If the players are allowed to negotiate in the Centipede Game, then it

is never rational for player α0 to agree with t18.

24 Dave de Jonge, Dongmo Zhang

Proof We see from the calculations above (also displayed in Fig. 1) that for all
k ≤ 16 we have U0(t18) < rvwk,~τ,0. So indeed, in any of those states the proposition
holds. In state w16, if the players do not come to any agreement, then α0 will play
finish because U0(t17) = 85 > 80 = nvw17,~τ,0. If they do come to an agreement, then
that agreement would be t19, because for α0 that is the only rational deal (because
U0(t18) < rvw16,~τ,0). This means that either the game never reaches state w17, or
the players agree on t19, and therefore, for k = 17 and k = 18 the proposition
only needs to be proved under the assumption that the players have agreed on t19.
Indeed, once t19 is accepted, it is also not rational for α0 to accept t18, because
U0(t19) = 95 > 80 = U0(t18). ut

Intuitively, the idea is that once w16 is reached, player α0 would prefer to abort
the game than to agree on t18, so t19 is the only outcome α0 could agree with.
So, although t18 seems rational at the beginning of the game (with respect to the
traditional SPE), it is no longer rational once w16 is reached. Furthermore, α1

cannot threaten to abort the game before reaching w16, because that would only
yield less utility than to agree with t19.

7 Implementation with Bounded Rationality

In the previous sections we have presented a purely theoretical framework. From
this section onward we will look at things from a more practical point of view,
taking into account bounded rationality. We will present a working algorithm that
allows an agent to play an extensive form game whilst negotiating a joint strategy
with the opponent.

Our algorithm runs on one of the two agents and aims to maximize the utility
of that agent both by selecting the best moves to make and by trying to negotiate
the best possible deals for that agent. Its opponent may be running the same
algorithm, but may just as well be running any other algorithm, or may even be
human.

7.1 Monte Carlo Negotiation Search

Our algorithm is based on a commonly used algorithm called Monte Carlo Tree
Search (MCTS). MCTS is an anytime algorithm for extensive-form games. It is an
anytime algorithm that returns an estimation of the best move to make, whenever
time runs out. This is especially useful for games in which the state space is too
large to be explored exhaustively. Given a turn-taking game G, MCTS iteratively
generates a tree in which every node represents a state w of the game. For every
such node it randomly samples a number of possible sequences of joint actions
that could be played starting from w until a terminal state is reached. The results
of this sampling procedure are used to estimate the players’ utility values for the
state w. A key feature of MCTS is the fact that if the algorithm is run long enough,
the moves it selects correspond with the Subgame Perfect Equilibrium. For more
details about MCTS we refer to [24].

MCTS is an algorithm for traditional games without negotiations, but we have
implemented a new variant of this algorithm, which not only selects the best

Strategic Negotiations for Extensive-Form Games 25

actions for the player it represents, but also determines which joint strategies to
propose to its opponent, and which proposals to accept from the opponent. We
have further refined it with a Branch and Bound technique, similar to the one
described in [3]. We call this algorithm Monte Carlo Negotiation Search (MCNS).

Just like regular MCTS our algorithm generates a tree in which every node
represents a possible future state. However, we now not only estimate a pair of
expected utility values for each node, but also a pair of Reservation Values and and
a pair of Negotiation Values. Thanks to the random sampling procedure we are
able to make estimations of these values without having to exhaustively explore
the entire search space.

Every sequence of joint moves generated by the sampling procedure is stored as
a potential agreement to propose. Although currently our algorithm only proposes
such linear sequences of moves, our algorithm could in principle also work for more
complex types of joint strategies. Our current implementation does not allow that,
because for that we would first need to establish a communication language that
allows the agent to express more complex proposals. We leave this as future work.

7.2 Experiments

We now present the experiments we have performed with our algorithm.8 We have
tested it on the following games [1,35,39]

– Iterated Prisoner’s Dilemma (IPD)
– The Centipede Game (CG)
– Dollar Auction (DA)

These are classic games that are often discussed in Game Theoretical text
books. Of course, they were originally not intended to be used with negotiations
and they are usually analyzed under the assumption that the players do not com-
municate or make binding agreements. Therefore, one could argue that by allowing
negotiations we have actually changed the rules of these games so we are in fact
playing different games. Nevertheless, we still refer to our games-with-negotiations
by their original names.

We have chosen these 3 games, because these are the only games we could find
that satisfy the following criteria:

1. The game has an existing GDL description which can be found in the standard
GDL repository at http://games.ggp.org/.

2. The game is non-zero-sum, and its SPE is far away from the Pareto-Frontier,
so that there is enough room for negotiation.

We feel it is very important to stress here that writing a negotiating agent
specifically for any of these games would be an easy task. However, the point of
our algorithm is that it is entirely generic. We are using exactly the same algorithm
for every game, without even changing a single parameter, and it could just as well
be used for any other non-zero-sum game, as long as it is described in GDL.

Our agent does not have any knowledge about these games, other than their
GDL descriptions. In particular, this means there is no straightforward, generic,

8 These experiments have already been published previously in [22].

26 Dave de Jonge, Dongmo Zhang

way for our agent to determine their Pareto Frontiers or their equilibrium values.
Furthermore, even if an agent does know which utility vectors are Pareto-optimal,
this is still not enough to negotiate successfully, because it still needs to find out
which strategies the agent and its opponent need to play in order to obtain such
a Pareto-optimal outcome.

For each of these games, we have let two instances of our algorithm play 100
matches against each other with negotiations and 100 matches without negotia-
tions. When the agents play without negotiating they just apply a plain MCTS.
For each game we have given the players a deadline to negotiate of 5 seconds per
round. Our algorithm is implemented in Java and the experiments were performed
on a HP Z1 G2 workstation with Intel Xeon E3 4x3.3GHz CPU and 8 GB RAM.
We have downloaded the GDL descriptions of the above games from the standard
GDL repository.

The results are displayed in Table 1. Each row represents one of the games. The
first column shows the classical Subgame Perfect Equilbrium values for each game,
and the fourth column shows the Negotiation Values for each game. The two center
columns show the average utilities obtained by the two players over 100 matches,
with and without negotiations respectively. We see that without negotiations, the
outcome of every match in every game is exactly the Subgame Perfect Equilibrium,
as one would expect from theory. When the players do negotiate they obtain much
higher scores. In the case of the CG and the DA, the players obtain exactly their
Negotiation Values in every match, again exactly as predicted by theory. That
is, in the CG without negotiations in every game the active player immediately
played ’finish’, while with negotiations they agreed to play until t19, exactly as
explained in Section 6.4.

In the version of the DA we used, both players start with $80 in the pocket
and they are bidding for a prize of $25. Each turn the active player can choose to
increase his bid by $5, or to stop the game, in which case the other player receives
the prize, and both players lose the amount of money they bid. In the Appendix we
show that without negotiations, in the SPE the player α0 immediately terminates
the game without making any bid (in which case no one wins the prize), so both
players keep the money they originally had, i.e. both players end with $80. On the
other hand, with negotiations, the only rational deal they can make is for player
α1 to allow α0 to make a bid and after which α1 will terminate the game. This
means that α0 will win the prize after only 1 bid of only $5 and α1 will not loose
any money at all, so they will end with $100 and $80 respectively.

In the case of the IPD the players score an average of 55 and 56 points re-
spectively, with standard errors of 0.3 and 0.4 respectively, which is close to the
theoretical values. This means that in almost every round both players played ’co-
operate’. The reason that the algorithm does not achieve the theoretical optimum
in the IPD is simply because the IPD has a very large search space, so it does not
always find the optimal contract. Each player has 2 legal actions in each round
and the game lasts for 20 rounds, so there are 420 possible joint-move sequences
from the initial state to any terminal state.

Overall, we conclude that our algorithm enables the players to significantly
increase their scores by means of negotiation, and obtain results that are very
close to optimal.

To explore a bit further how our algorithm behaves with increasing complexity
of the game it is playing we have repeated the experiment with the IPD several

Strategic Negotiations for Extensive-Form Games 27

SPE Without Negotiations With Negotiations NV
IPD (20, 20) (20, 20) (56 ± 0.3, 55 ± 0.4) (60, 60)
CG (5, 0) (5, 0) (95, 90) (95, 90)
DA (80, 80) (80, 80) (100, 80) (100, 80)

Table 1 Without negotiations the results are exactly the Subgame Perfect Equilibrium values.
With negotiations the results clearly dominate the results without negotiations and are close
to optimal.

0 2 4 6 8 10 12 14 16 18 20 22
0

20

40

60

Number of Rounds per Match

A
v
er

a
g
e

U
ti

li
ty

Theoretical Optimum

Experimental Results

Fig. 2 The Iterated Prisoner’s Dilemma, with varying number of rounds per match. The value
on the vertical axis is the utility averaged over 50 matches and over the two agents.

times with an increasing number of rounds per match. The results are displayed
in Figure 2. Interestingly, we see that, although the size of the agreement space
increases exponentially, the results do not get much worse as the number of rounds
increase. One reason for this is that many of the contracts in the agreement space
are non-pareto-optimal, and many of the contracts that are Pareto-optimal have
identical utility vectors, which means that many of those agreements can be ig-
nored by the algorithm. The set of Pareto-optimal utility vectors actually only in-
creases linearly. It just becomes harder to find the few (near-)optimal agreements.
Another reason that the results only get slightly worse, is that as the number of
rounds increases, the number of negotiation sessions also increases (because there
is one negotiation session before each round), and therefore the total time the
agents have to find good deals also increases.

Unfortunately, we cannot easily extend this experiment beyond 20 rounds per
match, because in that case the maximum possible score for a player would be more
than 100 points, while in GGP it is assumed that 100 is always the maximum score,
so all our code is based on that assumption.

The GDL repositories do contain a number of other (more complex) non-
zero-sum games, such as Free-For-All, Skirmish, Chinese Checkers, and Chinook.
Unfortunately, it turns out that these games are not suitable for negotiations,
because even without negotiating our pure MCTS algorithm already achieves near-
optimal scores. That is, their Subgame Perfect Equilibria are already near Pareto-
optimal, so there is not much benefit to be obtained from negotiations.

28 Dave de Jonge, Dongmo Zhang

8 Discussion

In this section we further discuss some of the assumptions made in this paper.

8.1 Self-interested Agents

In this paper we have always assumed that agents are purely self-interested. That
is, each has its own utility function, and only acts with the intention of maximizing
its own utility. Therefore, there is no form of ‘social utility’, and agents are not
implemented with the goal of maximizing any form of social welfare. Nevertheless,
agents still had the incentive to make agreements and cooperate, because it was
mutually beneficial.

The reason that agents still have the incentive to negotiate, is that the games
we have considered are non-zero-sum games. In fact, we need a slightly stronger
criterion, namely that we have games in which the Subgame Perfect Equilibrium is
not Pareto-optimal. Indeed, if the SPE were Pareto-optimal, then each agent could
simply play its equilibrium strategy and there would be no possible alternative
outcome that improves the utility of both players with respect to the equilibrium
outcome. Note that in a zero-sum game every outcome is Pareto-optimal, so the
requirement that the SPE is not Pareto-optimal is indeed strictly stronger than
the requirement that the game be non-zero-sum.

On the other hand, this restriction may in practice be overly strict, because
even if the game is zero-sum, the players may not be aware of this because they
are only bounded rational. This means that if two agents are playing a zero-sum
game, they could still make an agreement if they both believe that this is beneficial,
even though at least one of them must be wrong.

8.2 Social Welfare Criteria

Even though our agents do not aim to maximize social welfare, one might still
wonder to what extent our algorithm does achieve a form of optimal social welfare.
For example, one might ask whether certain criteria such as fairness and envy-

freeness [4,15] are met. However, we argue that nothing in general can be said about
this, because these criteria mainly depend on the specific game that is played. We
can easily show this with an example we call the ‘dictatorial split-the-pie game’.
In this game α0 gets to decide how to split a pie between himself and its opponent,
while the opponent gets nothing to say. Clearly, if α0 is purely self-interested and
perfectly rational, then α0 will take the entire pie for himself and give nothing to
α1, regardless of whether they negotiate or not. This is obviously neither fair nor
envy-free. If α0 did give some portion of the pie to its opponent it would mean
that either it is not purely self-interested (contradicting our assumptions) or that
it is just running a really bad algorithm (for not maximizing its utility).

On the other hand, it is not hard to imagine that we could, in a similar fashion,
construct a game with exactly the opposite characteristics, meaning that envy-
freeness and fairness are always guaranteed.

Strategic Negotiations for Extensive-Form Games 29

8.3 Binding Agreements

One critical assumption we have made is that the agents are able to make bind-
ing agreements, which will always be obeyed, even if a breach of contract would
increase a player’s utility. We can make this assumption because we assume there
is some external mechanism in place that enforces the agents to obey their agree-
ments.

We do not think that this assumption is unrealistic, or overly restrictive, be-
cause in the real world it is very common to make binding agreements. This may
be achieved by signing a contract, but in many jurisdictions even a mere verbal
agreement counts as legally binding (this is known as an oral contract). Further-
more, when making an online purchase on the Internet, a formal contract can be
agreed upon by nothing more than a few mouse clicks.

If one prefers a more traditional agent model, then one might argue that a
truly autonomous agent always takes its actions purely based on a utility function,
and cannot be forced by any external mechanism to do anything. In such a model,
whenever an agent signs a binding contract, it only obeys that contract because the
legal consequences of breaking it would impose a negative utility onto that agent.
However, we argue that this model is not fundamentally different from ours. For
example, we could imagine that an agent’s utility function is actually the sum of
a payoff function which is determined by the game it plays, and a penalty function
which has a large negative value whenever the agent breaks any agreement, and
is zero as long as the agent obeys all agreements. Now, if such penalties are high
enough then it is never rational for any agent to break any agreements. In that
case we may just as well ignore the penalty function altogether and simply assume
the agent only cares about maximizing its payoff, but under the hard constraint
that it always obeys its agreements. This is exactly the model that we have been
using.

Another objection one might raise against our assumptions, is that we do not
specify how the external enforcement mechanism would work. However, although
we acknowledge that this is a very important question, we argue that this question
lies beyond the scope of our work. We have simply abstracted it away and just
assume it exists and works perfectly. We justify this abstraction with the following
arguments.

– In traditional Game Theory the enforcer of the rules is usually also abstracted
away. When programming a Chess algorithm, for example, you simply assume
the opponent will only make legal moves, even if it would be rational for the
opponent to make an illegal move (e.g. move a rook diagonally). The question
how these rules are enforced is not relevant to the programmer.

– In real-life situations, we also constantly ‘abstract away the enforcer’. For ex-
ample, when opening a restaurant, you could wonder how to make sure that
your customers will always pay their bills. However, we believe that in general
restaurant owners do not worry about this, and simply assume that most cus-
tomers will. They can do this because there are already several enforcement
mechanisms in place. Firstly, people pay because they have to by law. If they
do not pay they risk being caught and being prosecuted. Secondly, even if the
risk of getting caught is low, customers usually still pay their bills, because
they adhere to social norms. Our point is, however, that the restaurant owner

30 Dave de Jonge, Dongmo Zhang

does not need to worry about how these mechanisms work exactly. Just like
us, the owner simply assumes they are there and that they work.

– Of course, one might argue that real-world enforcement systems do not always
work. For example, sometimes people do walk away from a restaurant without
paying. However, we do not claim that our assumptions are always perfectly
valid. We only claim that our assumptions are reasonable in most real-life
situations. After all, we think it is safe to say that the far majority of customers
in restaurants do pay their bills.

– Furthermore, even though we acknowledge that it is not always realistic to
assume agreements are perfectly enforced, one can just as well turn that ar-
gument around: it is also not always realistic to assume that agents do not
communicate or make binding agreements at all. Nevertheless, this assumption
is commonly made in traditional Game Theory (e.g. the Prisoner’s Dilemma).
If one is not allowed to make such assumptions, then a vast amount of work in
Game Theory would be invalid.

– Similarly, the question how agreements are enforced is rarely answered in the
field of Automated Negotiations.

For our experimental setup the enforcement of agreements is taken care of
by the server (Section 4.2). It checks which agreements the players make, and
enforces them in the same way that the regular GGP game server enforces the
rules of a game. Whenever a player submits a move that does not obey a previously
established agreement, the server will ignore this move, and instead pick a random
move for that player which does obey the agreement.

Finally, we remark that if agreements were not binding then they would be
essentially meaningless. After all, a rational player would then always intend to
play its Subgame Perfect Equilibrium strategy, regardless of any agreements it
made.

8.4 Full Information

Arguably less realistic is the assumption that the agents have full information
about each other’s utility functions. After all, in the real world, a negotiator usually
does not have perfect information about its opponent’s utility. However, we still
argue in favor of this assumption with three arguments.

Firstly, we should note that formally the agent has full information about its
opponent’s utility function, but this utility is not given as a closed form expression
that can be calculated easily. Instead, the opponent’s utility is given in terms of
a GDL game description. Therefore, for any given proposal it may be computa-
tionally very hard to determine its exact utility value. Given any proposed joint
strategy, our agent would first need to determine which terminal states would
likely be reached given that joint strategy. Next, our agent would need to deter-
mine which terminal states would likely be reached if no agreement were made.
Both tasks involve determining the Subgame Perfect Equilibrium of an extensive
form game. This means that in practice the agent’s knowledge of its opponent’s
utility function is far from perfect.

Our second argument, is that we find the opposite assumption that the agent
does not know anything about its opponent’s utility function at all, equally unreal-
istic (this assumption is commonly made in the field of Automated Negotiations).

Strategic Negotiations for Extensive-Form Games 31

For example, when negotiating a car deal you may not know the car salesman’s
reservation value, but you certainly do have some idea of which price range would
be realistic. Moreover, you do know that the car salesman prefers a higher price
over a lower price. In fact, we think that the skill of negotiating well is primarily
based on the ability to correctly estimate what the opponent wants, and which
price he or she is willing to accept. Therefore, we think our assumption is not less
realistic than the assumptions made in other work.

Our third argument, is that in order to adapt our algorithm to deal with
imperfect knowledge one could implement some module that approximates the
opponent’s utility. This module could base its estimations on information given
beforehand (e.g. a domain description in GDL-II instead of GDL) as well as on
information inferred from the behavior of the opponent during the negotiations.
The point is, that the output of this module could be used by our algorithm to
replace the perfect information it currently uses. This would make no difference for
the algorithm itself. In other words: the question whether information is perfect
or not may affect the accuracy of the input and the output of the algorithm, but
it does not affect the implementation of the algorithm itself.

Nevertheless, we still consider it important to take imperfect information into
account, but we will leave this as future work. We should also note that even in
regular GGP, without negotiations, very little research has been done on games
with imperfect information.

9 Future Work

In this paper we have assumed the negotiators have full information about the
game. In particular, this means that for any proposed deal, our agent was able
to perfectly determine the opponent’s utility value of this deal. Although we do
think that in real life a negotiator does have some information about the opponent’s
utility function, it is unrealistic to assume this information is perfect. Therefore, we
plan to generalize our algorithm to games described in GDL-II [41], which allows
hidden information. The games studied in this paper were highly theoretical. It
would be more interesting to see if we can implement some real-world negotiation
scenarios in GDL and apply our algorithm to them.

Furthermore, we would like to implement an agent that can truly negotiate
joint strategies, rather than just linear sequences of joint moves. For this however,
we need a language that allows the agents to communicate such joint strategies in
a concise way. This could be potentially be achieved by making use of a recently
introduced logical language called SGL [43], which indeed allows agents to describe
(joint) strategies.

Finally, we will investigate how our algorithm can be generalized to games for
more than 2 players, such as Diplomacy and to see to what extent it can be applied
to other negotiation domains, such as the Genius framework [26], and the Colored
Trails game [12].

32 Dave de Jonge, Dongmo Zhang

Appendix A

In this section we describe the other two games that we used for our experiments.
Just as with the Centipede Game, their precise definitions may vary per text book,
so we follow the definitions according to their GDL descriptions implemented by
Sam Schreiber, which can be found in the GDL database at http://games.ggp.org.

The Dollar Auction

The Dollar Auction (DA) [39] is another classic game with a somewhat counter-
intuitive outcome. The idea is that an auctioneer will put up a 100-dollar bill for
auction. The players of the game may make increasing bids. The player with the
highest bid will pay his bid, and receive the 100-dollar bill in return. The loser
however, must also pay his bid, but will receive nothing in return.

Again, the counter-intuitive result is that the best strategy is to stop the game
immediately and never bid more than 0 dollars. The problem is, that if α0 bids 98
dollars, and α1 bids 99 dollars, then if α0 gives up he will lose 98 dollars. Therefore,
he prefers to bid 100 dollars. However, this means α1 will lose 99 dollars if he gives
up, so he will bid 101 dollars, but then α0 will lose 100 dollars, so he will bid 102
dollars. Clearly, both players are going to lose money, so they would have been
better off simply bidding 0 dollars and no more.

The implementation of the DA in GDL is a bit different from the description
above, but the idea is the same. In this case both players start with 80 dollars in
their pockets, and they bid for a prize of 25 dollars. The game is a turn-taking
game, and in each round the active player can either choose to ‘lay a claim to the
prize’, which costs him 5 dollars, or to finish the game in which case the other
player will receive the prize (if that other player has laid at least 1 claim).

We can formalize it as follows:

T = {tk | k ∈ {1, 2 . . . 33}}

W = {wk | k ∈ {0, 1 . . . 32}} ∪ T
A0 = A1 = {noop, lay claim,finish}

Li(wk) =


{noop} if i 6= k (mod 2)

{lay claim,finish} if i = k (mod 2) and k 6= 32

{finish} if i = k (mod 2) and k = 32

After playing lay claim the next state will be another non-terminal state:

u(wk, lay claim) = wk+1

After playing finish the next state will be a terminal state:

u(wk,finish) = tk+1

If we let cli,k denote the number of claims that have been made by player αi
when the game ends in tk, then the utility functions are given by.

~U(tk) =


(80, 80) if k = 1

(80− 5 · cl0,k + 25 , 80− 5 · cl1,k) if k is even

(80− 5 · cl0,k , 80− 5 · cl1,k + 25) if k is odd and k > 1

Strategic Negotiations for Extensive-Form Games 33

which is equivalent to:

~U(tk) =


(80, 80) if k = 1

(105− 5 · k2 , 85− 5 · k2) if k is even

(80− 5 · k−1
2 , 105− 5 · k−1

2) if k is odd and k > 1

Specifically:

~U(t1) = (80, 80)

~U(t2) = (100, 80)

~U(t3) = (75, 100)

~U(t4) = (95, 75)

Note that this implementation of the DA is slightly unconventional, because
if the game stops after both players have made the same number of bids then α1

wins the prize, even though both players have bid the same amount of money.
In order to calculate the NVi of the DA we need the following two lemmas

(note that although the DA is a well-known game in the literature, these lemmas
apply strictly to slightly unconventional version of the DA as defined above, so
these lemmas are not taken from literature).

Lemma 3 In the Subgame Perfect Equilibrium of the Dollar Auction, α0 always plays

‘finish’, while α1 always plays ‘lay claim’

Proof This can be seen easily seen using the technique of backward induction (see
also Figure 3). ut

By combining this lemma with the utility functions of the DA as define above
we immediately obtain that (SPE0, SPE1) = (80, 80).

Lemma 4 Let G be the dollar auction then we have:

spewk,~τ,i =

{
Ui(tk+1) if k is even

Ui(tk+2) if k is odd

Proof Suppose the game is in state wk and assume both players follow the subgame
perfect equilibrium. If k is even then α0 is the active player, which according to
Lemma 3 will play finish, and hence the game will end in the terminal state tk+1.
If k is odd then α1 is the active player, which which according to Lemma 3 will
play lay claim, so the game will advance to wk+1. Since k + 1 is even, we know
that the game will end in state tk+2. ut

We are now ready to show that for the Dollar Auction we have (NV0, NV1) =
(100, 80).

We need to calculate nvw0,~τ,i. By Lemma 4 we know that for w1 we have

~spew1,~τ = ~U(t3) = (75, 100). There is no other terminal state for which the utility
vector dominates this result. Therefore, nvw1,~τ,i = rvw1,~τ,i = Ui(t3).

For w0, the active player is α0, so we have:

w∗ = arg max
w′∈{w1,t1}

{nvw1,~τ,0, nvt1,~τ,0}

34 Dave de Jonge, Dongmo Zhang

w0

w1

w2

w3

w30

w31

w32

t1

t2

t3

t31

t32

t33

(80, 80)

(100, 80)

(75, 100)

(5, 30)

(25, 5)

(0, 25)

spe=(0, 25)

spe=(5, 30)

spe=(75, 100)

spe=(0, 25)

spe=(70, 95)

spe=(80, 80)

spe=(75, 100)

α0

α0

α0

α0

α1

α1

Fig. 3 State space of the Dollar Auction. Next to each terminal state tk, on the right-hand
side, we have indicated its utility vector. Next to each non-terminal state wk, on the left-
hand side, we have indicated its Subgame Perfect Equilibrium values spew,~τ,i, assuming no
agreements have been made. Also, on the left-hand side next to the arrows we have indicated
the active player. The thick arrows indicate the optimal moves.

with nvw1,~τ,0 = U0(t3) = 75 and nvt1,~τ,0 = U0(t1) = 80. So we see that w∗ = t1,
and thus rvw0,~τ,i = nvt1,~τ,i = Ui(t1), which means the reservation values are given

by ~U(t1) = (80, 80). The only terminal state for which the utility vector dominates
(80, 80) is t2 which has utility vector (100, 80).

The Iterated Prisoner’s Dilemma

The Iterated Prisoner’s Dilemma (IPD) [1] is simply the Prisoner’s Dilemma re-
peated n times. The number of repetitions n is known to the agents, and the
utility functions of the game is simply defined as the sum of the outcomes of each
individual iteration.

The IPD has a very large search space. Each player has 2 legal actions in each
round, so if the game lasts for n rounds, there are 4n possible sequences from the

Strategic Negotiations for Extensive-Form Games 35

initial state to any terminal state. Here, following the GDL description, we have
n = 20.

We can model each state as a triple (d0, d1,m) where di is the number of points
obtained so far by player αi and m is the total number of rounds that have been
played. We then have the following formalization.

Ai = {cooperate, defect} ∀i ∈ {0, 1}
W = {(d0, d1,m) | d0, d1 ∈ {0, 1, . . . 100},m ∈ {0, 1 . . . 20}}
T = {(d0, d1, 20) | d0, d1 ∈ {0, 1 . . . 100}}
w0 = (0, 0, 0)

Li(w) = {cooperate, defect} ∀i ∈ {0, 1}, ∀w ∈W \ T
O = T

out = Id

Ui(d0, d1, 20) = di ∀i ∈ {0, 1}

u((d0, d1,m), a0, a1) =


(d0 + 3, d1 + 3,m+ 1) if a0 = cooperate, a1 = cooperate

(d0 + 0, d1 + 5,m+ 1) if a0 = cooperate, a1 = defect

(d0 + 5, d1 + 0,m+ 1) if a0 = defect , a1 = cooperate

(d0 + 1, d1 + 1,m+ 1) if a0 = defect , a1 = defect

In order to calculate the SPEi and NVi values of the IPD we need the following
lemmas. Of course, we do not claim that any of these lemmas are novel results.
We only state them because we need them for our calculations.

Lemma 5 In the Subgame Perfect Equilibrium of the Iterated Prisoner’s Dilemma,

every player always plays ‘defect’.

Proof This follows directly from backward induction. ut

By combining this lemma with the update function of the IPD as defined above
we obtain that the terminal state reached by two perfectly rational players is
the state (20, 20, 20) (starting from w0 = (0, 0, 0) apply the update function with
a0 = defect , a1 = defect twenty times). Therefore, we conclude that we have
(SPE0, SPE1) = (20, 20).

The rest of this section is dedicated to showing that (NV0, NV1) = (60, 60).

Lemma 6 Let s = (~a0 . . .~a19), be a legal sequence of joint moves of the IPD starting

at the initial state, for which there is at least one ~aj in which α0 plays defect, and

at least one ~am in which α1 plays defect. Then the resulting terminal state is not

Pareto-optimal.

Proof We will just prove this for the case that: ~aj = (defect , cooperate) and ~am =
(cooperate, defect). Let ts denote the resulting terminal state of s. Furthermore,
let s′ denote the sequence that is identical to s except that both ~aj and ~am are
replaced with (cooperate, cooperate), and let ts′ denote the resulting state of s′. A
simple calculation yields:

U0(ts′) = U0(ts) + 1 U1(ts′) = U1(ts) + 1

We see that ts′ dominates ts. We leave the other cases for the reader to verify. ut

36 Dave de Jonge, Dongmo Zhang

Let ti,k denote the terminal state that results after a game in which αi has
played ‘defect’ k times, and its opponent has always has played ‘cooperate’. Then
one can easily verify from the above definition of the IPD that the players’ payoffs
are given by:

Ui(ti,k) = k · 5 + (20− k) · 3 = 60 + 2k (11)

U−i(ti,k) = (20− k) · 3 = 60− 3k (12)

where U−i is the utility function of the opponent of αi.

Lemma 7 The set of Pareto-optimal terminal states of the IPD consists of exactly

those terminal states that result from a legal action sequence in which at least one of

the two players always plays ‘cooperate’.

Proof We already know from Lemma 6 that if a sequence of joint moves s results
in a Pareto-optimal terminal state t, then at least one of the two players only plays
‘cooperate’ in s. So we just need to prove the converse: any terminal state resulting
from such a sequence is Pareto-optimal. We use the same notation as above and
denote such a terminal state by ti,k. Without loss of generality we can assume
that i = 0, because the proof for i = 1 goes analogously. If t0,k is not Pareto-
optimal then it must be dominated by some Pareto-optimal solution. Therefore,
from Lemma 6 we know that t0,k must be dominated either by a state of the form
t0,l, or by a state of the form t1,l. First we prove that t0,k cannot be dominated
by t0,l. This follows because if l < k then:

U0(t0,l) = 60 + 2l < 60 + 2k = U0(t0,k),

while if k < l we have:

U1(t0,l) = 60− 3l < 60− 3k = U1(t0,k).

Next, we prove that t0,k cannot be dominated by t1,l. This follows because for all
k, l:

U0(t1,l) = 60− 3l < 60 + 2k = U0(t0,k).

ut

Lemma 8 Suppose the game is in a state (d, d, k), then the only terminal state that

is reachable from (d, d, k) which is Pareto-optimal and for which both players obtain a

score higher than d+ 58− 3k is the state that results from both players always playing

cooperate.

Proof If the game is in state (d, d, k) then there are 20 − k rounds to go. If both
players continue by only playing cooperate in every remaining round, then each
player will gain 3 points in each round, so each will obtain a final of d+3·(20−k) =
d+ 60− 3k. Indeed, this is greater than d+ 58− 3k.

Now, suppose αi always plays cooperate, and αj plays defect n times, with
1 ≤ n ≤ 20 − k. It is easy to calculate that αi will end with d + 3 · ((20 − k) − n)
points, and since n ≥ 1 we have:

d+ 3 · ((20− k)− n) = d+ 60− 3k − 3n < d+ 58− 3k.

Finally, if both players play defect at least once, then we can use similar rea-
soning as in Lemma 6 to show that this is not Pareto-optimal. ut

Strategic Negotiations for Extensive-Form Games 37

We will now calculate the values of NVi. However, before doing this we should
remark that strictly speaking the quantities NV i and SPE i are not defined for the
IPD, because the IPD is not a turn-taking game. However, with a small adaptation
specific to the IPD we can make these concepts make sense.

If G is the IPD, and Nw,~σ the negotiation domain for any state w and any
standing agreement ~σ. Then, we define the utility value Uw,~σ,i(~σ

′) of any agree-
ment ~σ′ by assuming both players will always play defect, except when it is in
contradiction with the agreement ~σ′. Note that this definition make sense, be-
cause indeed, we can assume that without any agreements a rational player would
always play defect. From this, it follows that we have rvw,~τ,i = nvw∗,~τ,i, where
w∗ := u(w, defect , defect).

Let wd,k denote the state (d, d, k). We will show that for all i ∈ {0, 1} and all
integers d we have:

nvwd,k,~τ,i = d+ 60− 3k

We will prove this by ‘reversed induction’. That is, we first prove it for k = 19,
and then we prove that if it holds for some k, then it must also hold for k − 1.
Note that we have w∗d,k = (d+ 1, d+ 1, k + 1).

First, let k be 19, so w∗d,19 = (d + 1, d + 1, 20) ∈ T . Then, because this is a
terminal state, for any integer d we have

rvwd,19,~τ,i = nvw∗d,19,~τ,i = Ui(w
∗
d,19) = Ui(d+ 1, d+ 1, 20) = d+ 1. (13)

Now, if the game is in state wd,19 there is only one more round to go, so it is
easy to verify that the only terminal state with a utility vector that dominates
this one would be the state resulting from both players playing cooperate. Thus,
the agreement to do that is the only rational agreement, and its utility vector is
(d+ 3, d+ 3), so we have

nvwd,19,~τ,i = d+ 3

which is indeed equal to d+ 60− 3k, with k = 19. This proves the base case.

Now suppose we have proved the theorem for k + 1. We now want to prove
that it also holds for k. We have:

rvwd,k,~τ,i = nvw∗d,k,~τ,i = nvwd+1,k+1,~τ,i = (d+ 1) + 60− 3 · (k + 1)

which can be rewritten as:

rvwd,k,~τ,i = d+ 58− 3k

Now, using Lemma 8 we see that the only possible agreement that is rational and
Pareto-optimal, is the deal in which both players agree to always play cooperate.
In this case both players will receive d+ 3 · (20− k) points, from which it follows
that:

nvwd,k,~τ,i = d+ 3 · (20− k) = d+ 60− 3k

If we now set d = k = 0 then we obtain our result that (NV0, NV1) = (60, 60)

38 Dave de Jonge, Dongmo Zhang

Appendix B

In this section we prove that concession games in general have multiple Nash
Equilibria.

A normal-form game for two players is called a concession game if both players
have the same set of actions, this set is an ordered set A = {a0, a1, . . . an}, and
whenever k < m the payoff functions satisfy the following (in)equalities:

0 < U0(am, am) < U0(ak, ak) (14)

0 < U1(ak, ak) < U1(am, am) (15)

∀i ∈ {0, 1} Ui(ak, am) = 0 (16)

∀i ∈ {0, 1} Ui(am, ak) =
1

2
(Ui(ak, ak) + Ui(am, am)) > 0 (17)

We now aim to characterize the Nash Equilibria for such a game.

Lemma 9 If k < l ≤ m then we have U1(am, ak) < U1(am, al).

Proof By (15) we have:
U1(ak, ak) < U1(al, al)

from this it follows that:

1

2
(Ui(ak, ak) + Ui(am, am)) <

1

2
(Ui(al, al) + Ui(am, am))

then, by (17) we have that the left-hand side is equal to U1(am, ak) while the
right-and side is equal to U1(am, al) so we have:

U1(am, ak) < U1(am, al)

ut

Theorem 4 Let S be some subset of A and let ak be any action that is not in S, i.e.

ak ∈ A \ S. If one player plays a mixed strategy with support S, then playing ak is not

a best response for the other player.

Proof Suppose agent α0 is playing a mixed strategy in which each action ai has a
probability Pi of being played. If its support is S this means that Pi = 0 iff ai 6∈ S.
The expected utility of α1, when playing ak is then given by:

E(U1(ak)) =
n∑
i=0

Pi · U1(ai, ak) (18)

We need to prove that there is some other action al for which E(U1(al)) >

E(U1(ak)). In order to prove this we need to consider two different cases, namely
the case that i < k for all ai ∈ S, and the case that there is at least one integer i
such that k < i and ai ∈ S.

Case 1 Suppose that for all ai ∈ S we have i < k. Note that if i < k then
by (16) we have U1(ai, ak) = 0, while if i ≥ k we have Pi = 0 because ai 6∈ S.
Therefore, every term in the summation in Eq. (18) equals 0, so we have:

E(U1(ak)) = 0

Strategic Negotiations for Extensive-Form Games 39

Now let l be largest integer such that al ∈ S. Then we have:

E(U1(al)) =
n∑
i=0

Pi · U1(ai, al) = Pl · U1(al, al) > 0

Here, the second equality holds because for all i < l we have U1(ai, al) = 0, and
for all i > l we have Pi = 0, so the only term that does not vanish is the term
with i = l. We have now shown that E(U1(al)) > E(U1(ak)) so we have proven the
proposition for this case.

Case 2 Now suppose there is at least one integer j such that aj ∈ S and k < j.
Let l be the smallest such integer. Since U1(ai, ak) = 0 for all i < k, and Pi = 0 for
all i with k ≤ i < l we can rewrite Equation (18) as:

E(U1(ak)) =
n∑
i=l

Pi · U1(ai, ak)

Note that for each term in this summation we have that k < l ≤ i, so we can apply
Lemma 9 and conclude that

E(U1(ak)) =
n∑
i=l

Pi · U1(ai, ak) <
n∑
i=l

Pi · U1(ai, al) = E(U1(al))

We have proven that the proposition also holds for this case, so it holds in general.
ut

Corollary 1 In any Mixed Strategy Nash Equilibrium of a Concession Game, α0 and

α1 must choose exactly the same support.

Proof Let S0 denote the support of α0 and S1 the support of α1. In a mixed strategy
Nash Equilibrium, every action in the support of α0 must be a best response to
α1, and vice versa. Therefore, if a ∈ S1 then it must be a best response to α0 and
by Theorem 4 we then must have that a ∈ S0. Similarly, if a ∈ S0 then it must be
a best response to α1 and therefore it must be in S1. ut

We now know that if the players play a Nash Equilibrium with supports S0 and
S1 respectively, then S0 = S1. However, that does not mean that any subset S ⊆ A
can be the support of some Nash Equilibrium. The following three propositions
show that at least if 0 < |S| ≤ 3 then there is a Nash Equilibrium with support S.

Proposition 2 For any integer i with 0 ≤ i ≤ n the pure strategy profile defined by

both players choosing action ai is a pure Nash Equilibrium.

Proof This follows directly from Theorem 4 by setting S = {ai}.

Proposition 3 For any subset S ⊆ A of size 2 there exists a Mixed Strategy Nash

Equilibrium with supports S0 = S1 = S.

Proof Assume α0 plays a strategy with support S = {ai, aj}. Let P1 denote the
probability of playing ai and P2 the probability of playing aj . Furthermore, let us

40 Dave de Jonge, Dongmo Zhang

define A = U1(ai, ai), and B = U1(aj , aj), with 0 < A < B The question now is
whether there exists a solution that makes the following two expressions equal:

E(U1(ai)) = P1 ·A+ P2 ·
1

2
(A+B)

E(U1(aj)) = P1 · 0 + P2 ·B

with P1 > 0, P2 > 0, and P1+P2 = 1. It is easy to verify that the following solution
solves the equation:

P1 =
B −A
A+B

P2 =
2A

A+B

We should still prove that every action in S is also a best response to α1 playing
a strategy with support S, but this goes analogously. ut

Proposition 4 For any subset S ⊆ A of size 3 there exists a Mixed Strategy Nash

Equilibrium with supports S0 = S1 = S.

Proof Assume α0 plays a strategy with support S = {ai, aj , ak}. Let P1, P2 and
P3 denote their respective probabilities. Furthermore, let us define A = U1(ai, ai),
B = U1(aj , aj) and C = U1(ak, ak), with 0 < A < B < C. We need to equate these
three expressions:

E(U1(ai)) = P1 ·A+ P2 ·
1

2
(A+B) + P3 ·

1

2
(A+ C)

E(U1(aj)) = P1 · 0 + P2 ·B + P3 ·
1

2
(B + C)

E(U1(ak)) = P1 · 0 + P2 · 0 + P3 · C

with all Pi positive and P1 + P2 + P3 = 1. One can verify that the following is a
solution:

P1 =
CB +B2 −AC −AB
AB +AC +B2 +BC

P2 =
2AC − 2AB

AB +AC +B2 +BC

P3 =
4AB

AB +AC +B2 +BC

Again, the case that α1 plays with support S goes analogously. ut

We suspect that the Propositions 2, 3 and 4 can be generalized to subsets of
any size, but we leave this as an open conjecture.

Conjecture 1 Let S be any subset of A. Then there exists a Mixed Strategy Nash

Equilibrium with supports S0 = S1 = S.

Strategic Negotiations for Extensive-Form Games 41

Appendix C

In this Appendix we give a complete formalization of the concept of an Extensive-
Form Game with Negotiations.

Definition 14 Let ~A = (A0,A1) be some pair of sets of actions. A simple proto-

col for ~A, denoted Pr
~A, is a first-order protocol Pr = 〈~α, ~A,W,w0, T, ~L, u,O, out〉

such that:

– W = {w0} ∪ T
– T = {ta0,a1 | (a0, a1) ∈ A0 ×A1}
– Li(w0) = Ai for all i ∈ {0, 1}
– u(w0, a0, a1) = ta0,a1 for all (a0, a1) ∈ A0 ×A1.
– O = A0 ×A1

– out(ta0,a1) = (a0, a1) for all (a0, a1) ∈ A0 ×A1.

A simple protocol is indeed in a certain sense the simplest possible protocol, since
it only consists of each player picking one action, each terminal state directly
corresponds to the chosen pair of actions, and is also labeled with that same pair
of actions.

We will now define the concept of a ‘higher order protocol’, which is essentially
a nested protocol in which each state corresponds to a lower-order protocol.

Definition 15 Let n be an integer with n > 1. A protocol of order n is a tuple
Pr = 〈W,w0, T,P, O, u, out〉, where:

– W is a finite set of states.
– w0 ∈W is the initial state.
– T ⊂W is the set of terminal states.
– P is the protocol map that assigns to each non-terminal state w ∈ W \ T a

protocol P(w) of order n− 1.
– u is the update function that maps each pair (w, o) consisting of a non-

terminal state w and an outcome o of the corresponding protocol P(w) to a
new state w′ = u(w, o) ∈W .

– O is the outcome set.
– out is the outcome function out : T → O that maps each terminal state to an

outcome.

Informally, this definition means that if we have a protocol of order 2, then in each
state w the agents need to choose a sequence of joint actions according to some
first-order protocol P(w). The outcome of this first-order protocol will determine
the next state of the second-order protocol.

In the following, the notation WG, and uG represent the set of states and the
update function of the game G respectively, and similarly for TG, OG, outG and
~UG.

Definition 16 Let G be an extensive-form game. Then we define a Extensive-

Form Game With Negotiations NG over G as a protocol of order 2 together
with a pair of utility functions, with the following properties:

1. The set of non-terminal states of NG is partitioned into a set of negotiation

states, and a set of action states: W \T = Wnego∪Waction, s.t. Wnego∩Waction =
∅. For each pair (w,~σ) there is one action state, denoted actw,~σ, and one nego-
tiation state, denoted negw,~σ:

42 Dave de Jonge, Dongmo Zhang

– Wnego = {negw,~σ | w ∈WG \ TG, ~σ ∈ SG}
– Waction = {actw,~σ | w ∈WG \ TG, ~σ ∈ SG}

2. The initial state of NG is the negotiation state negw0,~τ where w0 is the initial
state of G and ~τ is the trivial joint strategy of G.

3. T = TG.
4. P assigns to each negotiation state negw,~σ a negotiation protocol:

P(negw,~σ) = Nw,~σ

for which Agr = SG.
5. P assigns to each action state actw,~σ the simple protocol (Def. 14) defined by

the actions Ai = σi(w):

P(actw,~σ) = Pr~σ(w)

6. The update function is defined as follows:
(a) u(negw,~σ, ~σ

′) = actw,~σ′

(b) u(negw,~σ, η) = actw,~σ.

(c) u(actw,~σ, a0, a1) = negw′,~σ, where w′ = uG(w, a0, a1), if w′ 6∈ T
(d) u(actw,~σ, a0, a1) = w′ where w′ = uG(w, a0, a1), if w′ ∈ T .

7. O = OG

8. out = outG

9. ~U = ~UG

For each action state actw,~σ or negotiation state negw,~σ we call ~σ the standing

agreement. Let us now discuss a number of properties of NG:

– This second-order protocol has three types of states: actions states, negotiation
states and terminal states (Line 1).

– Every negotiation state is followed by an action state (Lines 6a and 6b).
– Every action state is followed by either a negotiation state or a terminal state

(Lines 6c and 6d).
– In each action state actw,~σ each agent selects an action from the state w of the

game G (Line 5).
– In each action stage actw,~σ the agents must obey the standing agreement, that

is: each αi must choose its actions from σi(w) (Line 5).
– In each negotiation state negw,~σ the agents negotiate a joint strategy for G

(Line 4).
– When the negotiators agree on some joint strategy σ′ then that will become

the new standing agreement (Line 6a).
– When the negotiators do not come to an agreement then the currently standing

agreement remains the standing agreement (Line 6b).

Intuitively, this means that NG alternates between action states and negotiation
states, where in each action state actw,~σ the players choose some action from the
original game G, but under the restriction that they have to obey the earlier
agreement ~σ, and where in each negotiation stage negw,~σ the players have the
change to re-negotiate a new agreement.

The initial state of NG is negw0,~τ , which means that initially, before any agree-
ment has been made, the trivial joint strategy ~τ is considered the standing agree-
ment. This is not a restriction, because the trivial joint strategy, by definition,
does not pose any restrictions on the agents’ actions at all. In other words, it is
equivalent to saying that there is no standing agreement.

Strategic Negotiations for Extensive-Form Games 43

References

1. R Axelrod and WD Hamilton. The evolution of cooperation. Science, 211(4489):1390–
1396, 1981.

2. Tim Baarslag, Koen Hindriks, Catholijn M. Jonker, Sarit Kraus, and Raz Lin. The first
automated negotiating agents competition (ANAC 2010). In Takayuki Ito, Minjie Zhang,
Valentin Robu, Shaheen Fatima, and Tokuro Matsuo, editors, New Trends in Agent-
based Complex Automated Negotiations, Series of Studies in Computational Intelligence.
Springer-Verlag, 2010.

3. Tristan Cazenave and Abdallah Saffidine. Score bounded monte-carlo tree search. In
H. Jaap van den Herik, Hiroyuki Iida, and Aske Plaat, editors, Computers and Games
- 7th International Conference, CG 2010, Kanazawa, Japan, September 24-26, 2010,
Revised Selected Papers, volume 6515 of Lecture Notes in Computer Science, pages 93–
104. Springer, 2010.

4. Yann Chevaleyre, Paul E. Dunne, Ulle Endriss, Jérôme Lang, Michel Lemâıtre, Nicolas
Maudet, Julian A. Padget, Steve Phelps, Juan A. Rodŕıguez-Aguilar, and Paulo Sousa.
Issues in multiagent resource allocation. Informatica (Slovenia), 30(1):3–31, 2006.

5. Angela Fabregues. Facing the Challenge of Automated Negotiations with Humans. PhD
thesis, Universitat Autònoma de Barcelona, 2012.

6. Angela Fabregues and Carles Sierra. Dipgame: a challenging negotiation testbed. Engi-
neering Applications of Artificial Intelligence, 2011.

7. Peyman Faratin, Carles Sierra, and Nicholas R. Jennings. Negotiation decision functions
for autonomous agents. Robotics and Autonomous Systems, 24(3-4):159 – 182, 1998.
Multi-Agent Rationality.

8. Peyman Faratin, Carles Sierra, and Nicholas R. Jennings. Using similarity criteria to make
negotiation trade-offs. In International Conference on Multi-Agent Systems, ICMAS’00,
pages 119–126, 2000.

9. Shaheen Fatima, Michael Wooldridge, and Nicholas R. Jennings. An analysis of feasible
solutions for multi-issue negotiation involving nonlinear utility functions. In Proceedings
of The 8th International Conference on Autonomous Agents and Multiagent Systems -
Volume 2, AAMAS ’09, pages 1041–1048, Richland, SC, 2009. International Foundation
for Autonomous Agents and Multiagent Systems.

10. André Ferreira, Henrique Lopes Cardoso, and Lúıs Paulo Reis. Dipblue: A diplomacy
agent with strategic and trust reasoning. In 7th International Conference on Agents and
Artificial Intelligence (ICAART 2015), pages 398–405, 2015.

11. Hilmar Finnsson. Simulation-Based General Game Playing. PhD thesis, School of Com-
puter Science, Reykjavik University, 2012.

12. Y. Gal, B. Grosz, S. Kraus, A. Pfeffer, and S. Shieber. Agent decision-making in open-
mixed networks. Artificial Intelligence, 2010.

13. M. Genesereth, N. Love, and B. Pell. General game playing: Overview of the AAAI
competition. AI Magazine, 26(2):62–72, 2005.

14. Takayuki Ito, Mark Klein, and Hiromitsu Hattori. A multi-issue negotiation protocol
among agents with nonlinear utility functions. Multiagent Grid Syst., 4:67–83, January
2008.

15. Karthik Iyer and Michael N. Huhns. Negotiation criteria for multiagent resource allocation.
The Knowledge Engineering Review, 24(2):111–135, 2009.

16. Dave de Jonge. Negotiations over Large Agreement Spaces. PhD thesis, Universitat
Autònoma de Barcelona, 2015.

17. Dave de Jonge, Tim Baarslag, Reyhan Aydoğan, Catholijn Jonker, Katsuhide Fujita, and
Takayuki Ito. The challenge of negotiation in the game of diplomacy. In Marin Lujak, ed-
itor, Agreement Technologies 2018, Revised Selected Papers, pages 100–114, Cham, 2019.
Springer International Publishing.

18. Dave de Jonge and Carles Sierra. NB3: a multilateral negotiation algorithm for large, non-
linear agreement spaces with limited time. Autonomous Agents and Multi-Agent Systems,
29(5):896–942, 2015.

19. Dave de Jonge and Carles Sierra. GANGSTER: an automated negotiator applying genetic
algorithms. In Naoki Fukuta, Takayuki Ito, Minjie Zhang, Katsuhide Fujita, and Valentin
Robu, editors, Recent Advances in Agent-based Complex Automated Negotiation, Studies
in Computational Intelligence, pages 225–234. Springer International Publishing, 2016.

20. Dave de Jonge and Carles Sierra. D-brane: a diplomacy playing agent for automated
negotiations research. Applied Intelligence, pages 1–20, 2017.

44 Dave de Jonge, Dongmo Zhang

21. Dave de Jonge and Dongmo Zhang. Using GDL to represent domain knowledge for au-
tomated negotiations. In Nardine Osman and Carles Sierra, editors, Autonomous Agents
and Multiagent Systems: AAMAS 2016 Workshops, Visionary Papers, Singapore, Sin-
gapore, May 9-10, 2016, Revised Selected Papers, pages 134–153, Cham, 2016. Springer
International Publishing.

22. Dave de Jonge and Dongmo Zhang. Automated negotiations for general game playing. In
Kate Larson, Michael Winikoff, Sanmay Das, and Edmund Durfee, editors, Proceedings
of the 16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2017,
São Paulo, Brazil, May 8-12, 2017, pages 371–379. ACM, 2017.

23. Donald E. Knuth and Ronald W. Moore. An analysis of alpha-beta pruning. Artificial
Intelligence, 6(4):293 – 326, 1975.

24. Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In Proceedings
of the 17th European Conference on Machine Learning, ECML’06, pages 282–293, Berlin,
Heidelberg, 2006. Springer-Verlag.

25. Sarit Kraus and Daniel Lehmann. Designing and building a negotiating automated agent.
Computational Intelligence, 11:132–171, 1995.

26. Raz Lin, Sarit Kraus, Tim Baarslag, Dmytro Tykhonov, Koen Hindriks, and Catholijn M.
Jonker. Genius: An integrated environment for supporting the design of generic automated
negotiators. Computational Intelligence, 30(1):48–70, 2014.

27. Nathaniel Love, Michael Genesereth, and Timothy Hinrichs. General game playing: Game
description language specification. Technical Report LG-2006-01, Stanford University,
Stanford, CA, 2006. http://logic.stanford.edu/reports/LG-2006-01.pdf.

28. Ivan Marsa-Maestre, Miguel A. Lopez-Carmona, Juan R. Velasco, and Enrique de la Hoz.
Effective bidding and deal identification for negotiations in highly nonlinear scenarios. In
Proceedings of The 8th International Conference on Autonomous Agents and Multiagent
Systems - Volume 2, AAMAS ’09, pages 1057–1064, Richland, SC, 2009. International
Foundation for Autonomous Agents and Multiagent Systems.

29. Ivan Marsa-Maestre, Miguel A. Lopez-Carmona, Juan R. Velasco, Takayuki Ito, Mark
Klein, and Katsuhide Fujita. Balancing utility and deal probability for auction-based
negotiations in highly nonlinear utility spaces. In Proceedings of the 21st International
Jont Conference on Artifical Intelligence, IJCAI’09, pages 214–219, San Francisco, CA,
USA, 2009. Morgan Kaufmann Publishers Inc.

30. J.F. Nash. The bargaining problem. ”Econometrica”, ”18”:155–162, 1950.
31. Martin J. Osborne and Ariel Rubinstein. Bargaining and Markets. Academic Press, 1990.
32. M.J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.
33. Li Pan, Xudong Luo, Xiangxu Meng, Chunyan Miao, Minghua He, and Xingchen Guo. A

two-stage win-win multiattribute negotiation model: Optimization and then concession.
Computational Intelligence, 29(4):577–626, 2013.

34. J. S. Rosenschein and G. Zlotkin. Rules of Encounter. The MIT Press, Cambridge, USA,
1994.

35. Robert W Rosenthal. Games of perfect information, predatory pricing and the chain-store
paradox. Journal of Economic Theory, 25(1):92 – 100, 1981.

36. E. Ephrati S. Kraus, D. Lehman. An automated diplomacy player. In D. Levy and D. Beal,
editors, Heuristic Programming in Artificial Intelligence: The 1st Computer Olympia,
pages 134–153. Ellis Horwood Limited, 1989.

37. Stephan Schiffel and Michael Thielscher. M.: Fluxplayer: A successful general game player.
In In: Proceedings of the AAAI National Conference on Artificial Intelligence, pages 1191–
1196. AAAI Press, 2007.

38. Roberto Serrano. bargaining. In Steven N. Durlauf and Lawrence E. Blume, editors, The
New Palgrave Dictionary of Economics. Palgrave Macmillan, Basingstoke, 2008.

39. Martin Shubik. The dollar auction game: A paradox in noncooperative behavior and
escalation. The Journal of Conflict Resolution, 15(1):109–111, 1971.

40. David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc
Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever,
Timothy P. Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis
Hassabis. Mastering the game of go with deep neural networks and tree search. Nature,
529(7587):484–489, 2016.

41. Michael Thielscher. A general game description language for incomplete information
games. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010, 2010.

Strategic Negotiations for Extensive-Form Games 45

42. John von Neumann. On the theory of games of strategy. In A.W. Tucker and R.D. Luce,
editors, Contributions to the Theory of Games, pages 13–42. Princeton University Press,
1959.

43. Dongmo Zhang and Michael Thielscher. A logic for reasoning about game strategies. In
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI-15),
pages 1671–1677, 2015.

