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Abstract
This paper tackles the open problem of value alignment in multi-agent systems. In particular, we propose an approach to

build an ethical environment that guarantees that agents in the system learn a joint ethically-aligned behaviour while

pursuing their respective individual objectives. Our contributions are founded in the framework of Multi-Objective Multi-

Agent Reinforcement Learning. Firstly, we characterise a family of Multi-Objective Markov Games (MOMGs), the so-

called ethical MOMGs, for which we can formally guarantee the learning of ethical behaviours. Secondly, based on our

characterisation we specify the process for building single-objective ethical environments that simplify the learning in the

multi-agent system. We illustrate our process with an ethical variation of the Gathering Game, where agents manage to

compensate social inequalities by learning to behave in alignment with the moral value of beneficence.

Keywords Value alignment � Multi-agent reinforcement learning � Multi-objective reinforcement learning �
Ethics

1 Introduction

The challenge of guaranteeing that autonomous agents act

value-aligned (in alignment with human values) [59, 66] is

becoming critical as agents increasingly populate our

society. Hence, it is of great concern to design ethically-

aligned trustworthy AI [15] capable of respecting human

values [18, 35] in a wide range of emerging application

domains (e.g. social assistive robotics [12], self-driving

cars [29], conversational agents [13]). Indeed, there has

recently been a rising interest in both the Machine Ethics

[58, 79] and AI Safety [5, 41] communities in applying

Reinforcement Learning (RL) [70] to tackle the critical

problem of value alignment. A common approach in these

two communities to deal with the value alignment problem

is to design an environment with incentives to behave

ethically. Thus, we often find in the literature that a single

agent receives incentives through an exogenous reward

function (e.g. [2, 9, 51, 54, 55, 78]). Firstly, this reward

function is specified from some ethical knowledge. After-

wards, rewards are incorporated into an agent’s learning

environment through an ethical embedding process.

Besides focusing on a single agent, with the exception of

[55], providing guarantees that an agent learns to behave

ethically in an environment is typically disregarded.

Therefore, to the best of our knowledge, guaranteeing that

all agents in a multi-agent system learn to behave ethically

remains an open problem.

Against this background, the objective of this work is to

automate the design of ethical environments for multi-

agent systems wherein agents learn to behave ethically. For

that, we propose a novel ethical embedding process for

multi-agent systems that guarantees the learning of ethical

behaviours. In more detail, our embedding process guar-

antees that agents learn to prioritise the ethical social

objective over their individual objectives, and thus agents
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learn to exhibit joint ethically-aligned behaviours. Partic-

ularly, here we focus on guaranteeing ethically-aligned

behaviours on environments where it is enough that some

of the agents (not necessarily all of them) intervene to

completely fulfil a shared ethical social objective. Such

environments are founded in the Ethics literature. For

instance, not all people walking near a pond must act to

rescue someone drowning in it [65]. Another well-known

example, from the AI literature, is a sequential social

dilemma called the Cleanup Game [34], in which a handful

of agents stop collecting apples from time to time to repair

the aquifer supplying water.

Figure 1 outlines the Multi-Agent Ethical Embedding

(MAEE) process that we propose in this paper, which is

founded on two main contributions.

First, we formalise the MAEE Problem within the

framework of Multi-Objective Markov Games (MOMG)

[60, 61] to handle both the social ethical objective and

individual objectives. This formalisation allows us to

characterise the so-called Ethical MOMGs, the family of

MOMGs for which we can solve the problem. As Fig. 1

shows, solving the problem amounts to transforming an

ethical MOMG into an ethical Markov Game (MG), where

agents can learn with Single-Objective RL [39, 44] instead

of Multi-Objective RL [56, 57]. Hence, we propose to

create a (simpler) single-objective ethical environment that

embeds both ethical and individual objectives to relieve

agents from handling several objectives. For that purpose,

we follow the prevailing approach (e.g. [9, 78]), of

applying a linear scalarisation function that weighs indi-

vidual and ethical rewards.

Importantly, our formalisation involves the characteri-

sation of ethical joint behaviour through the definitions of

ethical policies and ethical equilibria. An ethical policy

defines the behaviour of an agent prioritising the shared

ethical objective over its individual objective. An ethical

equilibrium is a joint policy composed of ethical policies

that characterises the target equilibrium in the ethical

environment, namely the joint ethically-aligned

behaviours.

Secondly, we propose a novel process to solve the

MAEE problem that generalises the single-agent ethical

embedding process in [55]. Our process involves two

consecutive decompositions of the multi-agent problem

into n single-agent problems: the first one (Fig. 1 left)

allows the computation of the ethical equilibrium (i.e. the

target joint policy); whereas the second one (right) com-

putes the weight vector that solves our multi-agent

embedding problem. As a result of these two steps, our

MAEE process transforms an input multi-objective envi-

ronment into a single-objective ethical environment, as

shown by Fig. 1. Interestingly, each agent within an ethical

environment can independently learn its policy in the

ethical equilibrium.

Finally, as a further contribution, we showcase our

MAEE process by applying it to a variation of the widely

known apple gathering game [34, 36, 40], a Markov game

where several agents collect apples to survive. In our eth-

ical gathering game, agents have unequal capabilities,

similarly to [67, 68]. As a mechanism for reducing

inequality, we include in the game a donation box to which

agents can either donate or take apples from. After

applying our embedding process, we empirically show that

agents can compensate for social inequalities and ensure

their survival by learning how to employ the donation box

(when to donate or take) in alignment with the moral value

of beneficence. Each agent learns its ethical policy with an

independent Q-learner.

In what follows, Sect. 2 presents the necessary back-

ground on Multi-Objective Reinforcement Learning. Next,

Sect. 3 presents our formalisation of the MAEE problem

and Sect. 4 characterises the multi-agent environments to

which we can apply a MAEE process. Then, Sect. 5 details

our process to build ethical environments. Subsequently,

Sect. 6 illustrates our approach to an apple gathering game.

Finally, Sect. 7 analyses related work and Sect. 8 con-

cludes the paper and sets paths to future work.

2 Background

This section is devoted to present the necessary back-

ground for our approach of designing ethical environments

in a multi-agent system with reinforcement learning. Thus,

Sect. 2.1 introduces single-objective reinforcement learn-

ing, and Sect. 2.2 presents the basics of multi-objective

reinforcement learning, in both cases from a multi-agent

perspective. Thereafter, in Sect. 2.3 we briefly describe the

algorithm for designing ethical environments for a single

agent introduced in [55]. We do so because such algorithm

is an important building block for the approach to build

multi-agent ethical environments that we present in this

paper.

2.1 Single-objective multi-agent reinforcement
learning

In single-objective multi-agent reinforcement learning

(MARL), the learning environment is characterised as a

Markov game (MG) [39, 44, 50]. A Markov game char-

acterises an environment in which several agents are cap-

able of repeatedly acting upon it to modify it, and as a

consequence, each agent receives a reward signal after

each action. Formally:
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Definition 1 (Markov game) A (finite single-objective)1

Markov game (MG) of n agents is defined as a tuple

hS;Ai¼1;...;n;Ri¼1;...;n; Ti where S is a (finite) set of states,

AiðsÞ is the set of actions available at state s for agent i.

Actions upon the environment change the state according

to the transition function T : S �A1 � � � � �An�
S ! ½0; 1�. After every transition, each agent i receives a

reward based on function Ri : S �A1 � � � � �
An � S ! R.

In a Markov game, each agent i decides which action to

perform according to its policy pi : S �Ai ! ½0; 1� and we

call joint policy p ¼ ðp1; . . .; pnÞ to the union of all agents’

policies. We also use the notation p�i to refer to the joint

policy of all agents except agent i.

A Markov game with a single agent (i.e. n ¼ 1) is called

a Markov decision process (MDP) [11, 37, 70]. Moreover,

if we enforce that all the agents but i follow a fixed joint

policy p�i, then the learning problem for agent i becomes

equivalent to learning its policy in an MDP.

During learning, agents are expected to learn policies

that accumulate as many rewards as possible. The classical

method to evaluate an agent’s policy is to compute the

(expected) discounted sum of rewards that an agent obtains

by following it. This operation is formalised by means of

the so-called value function Vi, defined as:

Vi
hpi;p�iiðsÞ¼

:
E

X1

k¼0
ckritþkþ1 j St ¼ s; hpi; p�ii

" #

for every state s 2 S;

ð1Þ

where c 2 ½0; 1Þ is referred to as the discount factor, t is any
time step of the Markov game, pi is the policy of agent i

and p�i is the joint policy of the rest of the agents. Notice

that we cannot evaluate the policy of an agent without

taking into consideration how the rest of the agents behave.

The individual objective of each agent is to learn a

policy that maximises its corresponding value function

p�¼: argmax piV
i. Typically, there does not exist a joint

policy p for a Markov game for which every agent max-

imises its policy. Instead, the literature considers solution

concepts imported from game theory [50].

Firstly, consider the simple case in which an agent i tries

to maximise its Vi with respect to all the policies p�i of the
other agents (assuming that the rest of agents have fixed

policies). Then, such policy pi� receives the name of a best-

response2 against p�i [50]. When all agents reach a situa-

tion such that all have a best-response policy, we say that

Fig. 1 Multi-Agent Ethical Embedding process for environment

design. Rectangles stand for objects whereas rounded rectangles

correspond to processes. Process steps: Computation of the ethical

equilibrium from the input multi-objective environment; and compu-

tation of the solution ethical weight that creates an output ethical

(single-objective) environment

1 Thorough the paper we refer to a finite single-objective Markov

game simply as a Markov game.

2 Notice that in the particular case in which there is a single agent

(i.e. an MDP), we instead say that the policy is optimal [70].
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we have a Nash equilibrium (NE). NEs are stable points

where no agent would benefit from deviating from its

current policy. Formally:

Definition 2 (Nash equilibrium) Given a Markov game,

we define a Nash equilibrium (NE) [33] as a joint policy p�
such that for every agent i,

Vi
hpi�;p�i� iðsÞ ¼ max

pi
Vi
hpi;p�i� iðsÞ

for every state s.

One of the main difficulties of Nash equilibria is the fact

that each agent needs to take into account the policies of

the others in order to converge to an equilibrium. However,

there is a subset of Nash equilibria for which each agent

can reach an equilibrium independently: dominant equi-

libria [45]. For that reason, we propose a concept of

dominant equilibrium for Markov games based on the

game theory literature. First, we generalise the concept of

dominant strategies [45] to define dominant policies in a

Markov game as follows: we say that a policy pi of agent i
is dominant if it yields the best outcome for agent i no

matter the policies that the other agents follow. Then, we

say that the dominant policy pi dominates over all possible
policies:

Definition 3 (Dominant policy) Given a Markov game M,

a policy pi of agent i is a dominant policy if and only if for

every joint policy hqi; q�ii and every state s in which

qiðsÞ6¼ piðsÞ it holds that:
Vi
hpi;q�iiðsÞ�Vi

hqi;q�iiðsÞ: ð2Þ

A policy is strictly dominant if we change � to [.

Finally, if the policy pi of each agent of an MG is a

dominant policy, we say that the joint policy p ¼
ðp1; . . .; pnÞ is a dominant equilibrium.

As a practical note about the equilibrium concepts of

Multi-Agent RL defined, we briefly refer to how to com-

pute them. There exist several kinds of algorithms to find

an equilibrium in a Markov game depending on whether

agents cooperate (i.e. they share the same reward function)

or not [39]. For the most general case (if no prior infor-

mation is assumed) a simple option is to apply a single-

agent reinforcement learning algorithm to each agent

independently, such as Q-learning [77].

2.2 Multi-objective multi-agent reinforcement
learning

Multi-objective multi-agent reinforcement learning

(MOMARL) formalises problems in which agents have to

ponder between several objectives, each represented as an

independent reward function [57]. Hence, in MOMARL,

the environment is characterised as a Multi-Objective

Markov game (MOMG), an MG composed of vectorial

reward functions. Formally:

Definition 4 A (finite) m-objective Markov game

(MOMG) of n agents is defined as a tuple

hS;Ai¼1;...;n;R~
i¼1;...;n

; Ti where: S is a (finite) set of states;

AiðsÞ is the set of actions available at state s for agent i;

R~
i ¼ ðRi

1; . . .;R
i
mÞ is a vectorial reward function with each

Ri
j being the associated scalar reward function of agent i for

objective j 2 f1; . . .;mg; and T is a transition function that,

taking into account the current state s and the joint action

of all the agents, returns a new state.

Each agent i of an MOMG has its associated multi-

dimensional state value function V~
i ¼ ðVi

1; . . .;V
i
mÞ, where

each Vi
j is the expected sum of rewards for objective j of

agent i.

A multi-objective Markov game with a single agent (i.e.

m ¼ 1) is called a multi-objective Markov decision process

(MOMDP) [56, 57]. Moreover, given an MOMG M, if we

enforce that all the agents but i follow a fixed joint policy

p�i, we obtain an MOMDP Mi for agent i.

In multi-objective reinforcement learning, in order to

evaluate the different policies of the agents, a classical

option is to assume the existence of a scalarisation function

f capable of reducing the number of objectives of the

environment into a single one (e.g. [14, 49, 51]). Such

scalarisation function transforms the vectorial value func-

tion V~
i
of each agent i into a scalar value function f iðV~iÞ.

With f i, each agent’s goal becomes to learn a policy that

maximises f iðV~iÞ, a single-objective problem encapsulating

the previous multiple objectives.

It is specially notable the particular case in which f i is

linear, because in such case the scalarised problem can be

solved with single-objective reinforcement learning algo-

rithms3. Any linear scalarisation function f i is a weighted

combination of rewards, and henceforth we will refer to

such function by the weight vector w~ 2 Rn that it employs.

Moreover, any policy p such that its value V~
p
maximises a

linear scalarisation function is said to belong to the convex

hull of the MOMDP [56]4.

3 Since the linear scalarisation function f i for V~
i
also induces a

scalarisation function for R~
i
, then it follows that w~�

V~
i ¼ w~ � E

P1
k¼0 c

kr~itþkþ1
� �

¼ E
P1

k¼0 c
kw~ � r~itþkþ1

� �
, which is usually

not true in the non-linear case.
4 Formally, given an MOMDP M (or a MOMG wherein all policies

have been fixed except one), its convex hull CH is the subset of

policies p� and their associated value vectors V~
p�
that are maximal for

some weight vector w~.
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Several reasons explain the appeal of linear scalarisation

functions. Firstly, from a theoretical perspective, a linear

scalarisation function transforms a Multi-Objective MDP

into an MDP in which all existing proofs of convergence

for single-objective RL apply [31]. Secondly, from a

practical perspective, if the desired solution of an MOMDP

belongs to its convex hull, transforming it first into an MDP

simplifies the learning of the agent. In addition, it gives the

access to all the single-objective reinforcement learning

algorithms.

Nevertheless, it is necessary to remark on the limitations

of linear scalarisation functions. By definition, they restrict

the possible solutions to only those in the convex hull. Such

a restriction is enough when the learning objective of the

agent is to maximise a weighted sum of the objectives.

However, in many cases, the desired behaviour cannot be

expressed as the one that maximises a linear scalarisation

function. For example, consider the problem of finding all

the Pareto-optimal policies of an MOMDP, then select the

one that better satisfies our needs. The convex hull is only a

subset of the Pareto front (in many cases, a closed subset),

so a linear function will not be able to find some potential

solutions. We refer to [73, 75] for more detailed examples

of simple MOMDPs wherein the convex hull cannot cap-

ture the whole Pareto front.

The following Sect. 2.3 provides the intuition on why

these limitations of linear scalarisation functions do not

apply in the particular case of our ethical embedding

process.

2.3 Designing ethical environments
for the single-agent case

As previously stated in the introduction, we aim to design a

process that guarantees that all agents in a multi-agent

system learn to behave in alignment with a given moral

value. To do so, we build upon a formal process for

designing an ethical environment for a single-agent: the

Single-Agent Ethical Embedding Process (SAEEP)5 [55].

Being single agent, the SAEEP transforms an initial envi-

ronment encoded as a multi-objective Markov decision

process (MOMDP) into an ethical (single objective) envi-

ronment in which it is easier for the agent to learn to

behave ethically-aligned.

Briefly, the SAEEP takes as input a so-called ethical

MOMDP, a two-objective MOMDP characterised by an

individual objective and an ethical objective. In turn, this

ethical objective is defined in terms of: (1) a normative

component, that punishes the violation of normative

requirements; and (2) an evaluative component rewarding

morally praiseworthy actions. Although further details are

provided in Sect. 3, here we just highlight that we consider

these two components to be equally important so that we

can define an ethical policy for the MOMDP as that being

optimal for both ethical components. Furthermore, since

we expect the agent to fulfil its individual objective as

much as possible, we define ethical-optimal policies as the

ethical policies with the maximum accumulation of indi-

vidual rewards. Then, we guarantee in [55] that if at least

one ethical policy exists for the input MOMDP M, then the

SAEEP will always find a weight vector w~ to scalarise M in

such a way that all optimal policies in the resulting sca-

larised ethical MDP turn out to also be ethical-optimal

policies. This ensures the aforementioned transformation of

the input ethical MOMDP into a simpler-to-learn ethical

MDP.

Without entering into details, we can always compute

such a weight vector because of our definition of ethical

policy. Any ethical policy maximises completely the ethi-

cal objective by definition. Hence, they maximise the linear

scalarisation function with the individual weight set to

w0 ¼ 0 and the ethical weight set to we ¼ 1.6 Thus, all

ethical policies belong to the convex hull. Since ethical-

optimal policies are a subset of ethical policies, they also

belong to the convex hull. Thus, we can find within the

convex hull a specific weight vector for which ethical-op-

timal policies are optimal. For that reason, a linear

scalarisation function for which ethical-optimal policies are

optimal is guaranteed to exist in finite MOMDPs.

3 Formalisation of the multi-agent ethical
embedding problem

In Ethics, a moral value (or ethical principle) expresses a

moral objective worth striving for [53]. Following [55],

current approaches to align agents with a moral value

propose: (1) the specification of rewards to actions aligned

with a moral value, and (2) an embedding that ensures that

an agent learns to behave ethically (in alignment with the

moral value). In this work we generalise the single-agent

embedding process presented in [55] for the multi-agent

case.

In more detail, in this work we assume that the speci-

fication of an ethical reward function is already provided to

us. Furthermore, we assume that such an ethical reward

5 Introduced in Rodriguez-Soto et al. [55] simply refer to SAEEP as

ethical embedding process, here we make the single agent explicit to

differentiate it from its multi-agent counterpart.

6 We emphasise that ethical policies can also maximise different

weight vectors.
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function already encodes all the necessary ethical knowl-

edge of the environment. Hence, it is not the work of the

environment designer to select the specific ethical rewards

for each action. For that reason, here we focus on the

second step of value alignment, the ethical embedding.

Furthermore, we remark that the reward specification only

deals with adding rewards to the Markov Game. Hence, the

reward specification process does not modify the state set

or the action set of the environment at any point. Likewise,

the ethical embedding process only modifies the reward

functions of the environment.7

Thus, in this work, we assume that individual and ethical

rewards are specified as a Multi-Objective Markov Game

(MOMG) [61]. More precisely, we propose the concept of

ethical MOMG as a type of MOMG that incorporates

rewards considering a given moral value. We define an

ethical MOMG as a two-objective learning environment

where rewards represent both the individual objective of

each agent and the social8 ethical objective (i.e. the moral

value). Then, the purpose of the multi-agent ethical

embedding (MAEE) problem, which we formalise below,

is that of transforming an ethical MOMG M (the input

environment) into a single-objective MG M� (the target

environment) wherein it is ensured that all agents learn to

fulfil a social ethical objective while pursuing their indi-

vidual objectives.

In this work we aim at solving an MAEE problem via

designing single-objective environments in which each

agent learns that its best strategy is to behave ethically,

independently of what the other agents may do. In game

theory, such strategy is called dominant, and when all

agents have one, then we say that a dominant equilibrium

exists. Dominant equilibria have several attractive proper-

ties. First of all, every dominant equilibrium is a Nash

equilibrium [45]. Secondly, if an agent has a dominant

policy, it can learn such policy without considering the

other agents’ policies [76]. For those reasons, here we

characterise an ethical embedding process that leads to a

dominant equilibrium wherein agents behave ethically.

To begin with, we define an ethical MOMG as a two-

objective Markov game encoding the reward specification

of both the agents’ individual objectives and the social

ethical objective (i.e. the moral value).

Following the Ethics literature [16, 23] and recent work

in single-agent ethical embeddings [55], we define an

ethical objective through two dimensions: (1) a normative

dimension, which punishes the violation of moral require-

ments (e.g. taking donations when being wealthy); and (2)

an evaluative dimension, which rewards morally praise-

worthy actions (e.g. rescuing someone that is drowning).

Formally:

Definition 5 (Ethical MOMG) We define an Ethical

MOMG as any n-agent MOMG

M ¼ hS;Ai¼1;...;n; ðR0;RN þ REÞi¼1;...;n; Ti; ð3Þ

such that for each agent i:

– Ri
N : S �Ai ! R� penalises violating moral

requirements.

– Ri
E : S �Ai ! Rþ positively rewards performing

praiseworthy actions.

We define Ri
0, R

i
N , and Ri

E as the individual, normative, and

evaluative reward functions of agent i, respectively. We

refer to Ri
e ¼ Ri

N þ Ri
E as the ethical reward function.

Furthermore, we define the ethical reward function as so-

cial if and only if it satisfies the following equal treatment

condition, in which we impose agents to be equally treated

when assigning the (social) ethical rewards:

– The same normative and evaluative rewards are given

to each agent for performing the same actions.

Finally, we also assume coherence in the ethical rewards

and impose a no-contradiction condition:

– For each agent, an action cannot be ethically rewarded

and punished simultaneously: Ri
Eðs; aiÞ � Ri

N ðs; aiÞ ¼ 0

for every i; s; ai.

Although actions cannot be rewarded and punished

simultaneously, having a twofold ethical reward prevents

agents from learning to disregard some of its normative

requirements while learning to perform as many praise-

worthy actions as possible. Moreover, the equal treatment

condition makes uniform what is considered as praise-

worthy or blameworthy along all agents. Thus, it ensures

that the ethical objective is indeed social. Finally, also

notice that a single-agent Ethical MOMG corresponds to an

Ethical MOMDP as previously defined in the Background

Section.

Within ethical MOMGs, we define the ethical policy pi

for an agent i as that maximising the ethical objective

subject to the behaviour of the other agents (i.e. their joint

policy p�i). This maximisation is performed over the

normative and evaluative components of agent i’s value

function:

7 This is not a strange assumption. For example, in [41], the authors

define the paradigmatic reinforcement learning examples of value

alignment problems in terms of safety. In all example environments,

the agents always have the option of behaving value-aligned (i.e.

there is no need to modify the action set of the environment).
8 Social in the sense that it is shared by all agents in the system. We

take this social stance because moral values are widely assumed to

stem from the society as they are defined as ‘‘ideals shared by

members of a culture about what is good or bad’’ [28].
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Definition 6 (Ethical policy) LetM be an ethical MOMG.

A policy pi of agent i is said to be ethical in M with

respect to p�i if and only if the value vector of agent i for

the joint policy hpi; p�ii is optimal for its social ethical

objective (i.e. its normative Vi
N and evaluative Vi

E

components):

Vi
N hpi ;p�ii

¼ max
qi

Vi
N hqi ;p�ii

;

Vi
Ehpi ;p�ii

¼ max
qi

Vi
Ehqi ;p�ii

:

Ethical policies pave the way to characterise our target

policies, the ones that we aim agents to learn in the ethical

environment: best-ethical policies. These maximise pur-

suing the individual objective while ensuring (prioritising)

the fulfilment of the ethical objective. Thus, from the set of

ethical policies, we define as best those maximising the

individual value function Vi
0 (i.e. the accumulation of

rewards Ri
0):

Definition 7 (Best-ethical policy) Let M be an Ethical

MOMG. We say that a policy pi of agent i is best-ethical
with respect to p�i if and only if it is both an ethical policy

and also a best-response in the individual objective among

the set Peðp�iÞ of ethical policies with respect to p�i:

Vi
0hpi ;p�ii

¼ max
qi2Peðp�iÞ

Vi
0hqi ;p�ii

:

Notice that best-ethical policies impose a lexicographic

ordering between the two objectives: the ethical objective

is preferred to the individual objective.

In the MARL literature, if the policy pi of each agent i is

a best-response (i.e. optimal with respect to p�iÞ, then the

joint policy p ¼ ðp1; . . .; pnÞ that they form is called a Nash

equilibrium [44].

The definitions above focus on the ethical policy of a

single agent. In order to define ethical joint policies, here

we propose two equilibrium concepts for ethical MOMGs.

First, an ethical equilibrium p ¼ ðp1; . . .; pnÞ occurs when
all agents follow an ethical policy, and hence behave eth-

ically. Second, a best-ethical equilibrium is more

demanding than an ethical equilibrium, because it occurs

when each agent follows the ethical policy that is best for

achieving its individual objective.

Our approach consists in transforming an Ethical Multi-

Objective MG into an Ethical (single-objective) MG. This

way, the agents can learn within the single-objective MG

by applying single-objective reinforcement learning algo-

rithms [61]. We perform this transformation by means of

what we call a multi-agent embedding function. In the

multi-objective literature, an embedding function receives

the name of scalarisation function [61]. Therefore, our

goal is to find an embedding function fe that guarantees that

agents are incentivised to learn ethical policies in the eth-

ical environment (the single-objective Markov Game cre-

ated after applying fe).

Formally, we want to ensure that such fe guarantees that

best-ethical equilibria in the Ethical MOMG correspond

with Nash equilibria in the single-objective MG created

from fe (see second row in Table 1, which summarises the

correspondences between equilibria in an Ethical (Single-

Objective) MG and an Ethical MOMG). For that reason,

we refer to the MOMG scalarised by fe as the Ethical MG.

In its simplest form, this embedding function fe will be a

linear combination of individual and ethical objectives for

each agent i:

f ieðV~
iÞ ¼ w~i � V~i ¼ wi

0V
i
0 þ wi

eðVi
N þ Vi

EÞ; ð4Þ

where w~i¼: ðwi
0;w

i
eÞ is a weight vector with all weights

wi
0;w

i
e [ 0 to guarantee that each agent i takes into account

all rewards (i.e. both objectives). Without loss of general-

ity, hereafter we fix the individual weight of all agents to

wi
0 ¼ 1 and set the same ethical weight for each agent9:

we¼
:
w1
e ¼ . . . ¼ wn

e . Furthermore, we shall refer to any

linear fe by its ethical weight we.

Moreover, as previously mentioned, here we also con-

sider an ethical embedding function that not only

Table 1 Different kinds of policies that exist within either a Single-

Objective Markov game (SOMG, obtained by employing a scalari-

sation function fe ¼ ð1;weÞ) or an Ethical Multi-Objective Markov

Game (MOMG)

Ethical SOMG (fe) Ethical MOMG

Best-response policy Ethical policy

Best-ethical policy

Nash equilibrium Ethical equilibrium

Best-ethical equilibrium

Dominant policy Ethically-dominant policy

Best-ethically-dominant policy

Dominant equilibrium Ethically-dominant equilibrium

Best-ethically-dominant equilibrium

Related policies are paired together. Notice that for each kind of

policy in an SOMG we have two kinds of policies in an Ethical

MOMG

9 Although we could set different weights for each agent, we assume

that the ethical objective is social and, thus, shared among agents.

Moreover, from a mechanism design point of view, we considered

unfair that some agents could receive more ethical incentives for

behaving ethically than others. Nevertheless, even if unfair, our

MAEEP would reach the same results with different ethical weights

among agents.
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guarantees that there are ethical Nash equilibria, but also

that there are ethical dominant equilibria. As previously

mentioned in the Background Section, we say that a policy

pi of agent i is dominant in a Markov game context if it

yields the best outcome for agent i no matter the policies

that the other agents follow. We will also say that the

policy pi dominates over all possible policies [45].

Finally, we can formalise our multi-agent ethical

embedding problem as that of computing a weight vector

w~¼: ð1;weÞ that incentivises all agents to behave ethically

while still pursuing their respective individual objectives.

Formally:

Problem 1 (MAEE: Multi-Agent Ethical Embedding) Let

M ¼ hS;Ai; ðRi
0;R

i
N þ Ri

EÞ; Ti be an ethical MOMG. The

multi-agent ethical embedding problem is that of comput-

ing the vector w~ ¼ ð1;weÞ of positive weights such that

there is at least one dominant equilibrium in the Markov

Game M� ¼ hS;A;R0 þ weðRN þ REÞ; Ti that is a best-

ethical equilibrium in M.

Any weight vector w~ with positive weights that guar-

antees that at least one dominant equilibrium (with respect

to w~) in the original environment M is also a best-ethical

equilibrium in the scalarised environment M� is then a

solution to Problem 1.

3.1 The benefits of an environment-designer
approach

Before addressing the solvability of Problem 1 and deter-

mining the theoretical conditions for designing an ethical

environment where best-ethical equilibria are dominant, it

is important to consider why we should design such an

environment in the first place. Why not let the agents learn

using a multi-objective reinforcement learning algorithm

directly? We will refer to the former approach as the en-

vironment-designer approach and the latter as the agent-

centric approach.

There are two primary reasons why we advocate for the

environment-designer approach. Firstly, transforming the

multi-objective environment into a single-objective one

simplifies the learning problem for the agents. Secondly,

we focus on ensuring that agents are incentivised to act

ethically. The agent-centric approach introduces complex-

ity to the agents’ learning process, assuming they will

inherently consider ethical rewards, which may not always

be the case. Moreover, we assume that each agent auton-

omously selects its reinforcement learning algorithm. In

this paper, we follow the mechanism design literature [20],

where it is assumed that we cannot alter agents’ prefer-

ences. Although agents could directly learn a best-ethical

equilibrium using a lexicographic reinforcement learning

algorithm (such as TLO [74]), there is no guarantee that

they will choose such an algorithm during training.

These reasons justify the need for an environment-de-

signer approach, which involves designing an ethical sin-

gle-objective environment that incentivises agents’ ethical

behaviour. This approach allows us to be resilient against

agents equipped with their own learning algorithms and

preferences beyond our control.

4 Solvability of the MAEE problem

We devote this section to describing the minimal condi-

tions under which there always exists a solution to Prob-

lem 1 for a given ethical MOMG, and also to proving that

such solution actually exists. This solution (a weight vec-

tor) will allow us to apply the ethical embedding process to

the ethical MOMG M at hand to produce an ethical

environment (a single-objective MG M�) wherein agents

learn to behave ethically while pursuing their individual

objectives (i.e. to reach a best-ethical equilibrium). In what

follows, Sect. 4.1 characterises a family of ethical MOMGs

for which Problem 1 can be solved, and Sect. 4.2 proves

that the solution indeed exists for such family.

4.1 Characterising solvable ethical MOMGs

We introduce below a new equilibrium concept for ethical

MOMGs that is founded on the notion of dominance in

game theory, the so-called best-ethically-dominant equi-

librium. We find such equilibrium in environments where

the best behaviour for each agent is to follow an ethical

policy, provided that the ethical weight is properly set. The

existence of such equilibria is important to characterise the

ethical MOMGs for which we can solve the MAEE prob-

lem (Problem 1). Thus, as shown below in Sect. 4.2, we

can solve Problem 1 for Ethical MOMGs with a best-eth-

ically-dominant equilibrium.

Now we adapt the concept of dominance in game theory

for Ethical MOMGs. We start by defining policies that are

dominant with respect to the ethical objective. We call

these policies ethically-dominant policies. Formally:

Definition 8 (Ethically-dominant policy) Let M be an

ethical MOMG. We say that a policy pi of agent i is an

ethically-dominant policy in M if and only if the policy is

dominant for its ethical objective (i.e. both its normative

Vi
N and evaluative Vi

E components) for every joint policy

hqi;q�ii and every state s in which qiðsÞ 6¼ piðsÞ:
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Vi
N hpi ;q�ii

ðsÞ�Vi
N hqi ;q�ii

ðsÞ;

Vi
Ehpi ;q�ii

ðsÞ�Vi
Ehqi ;q�ii

ðsÞ:

Following Definition 6, every ethically-dominant policy

pi is an ethical policy with respect to any p�i.
We also adapt the concept of dominance from game

theory for defining best-ethically-dominant policies. Given

an ethical MOMG, we say that a best-ethically-dominant

policy is: (1) dominant with respect to the ethical objective

among all policies; and (2) dominant with respect to the

individual objective (Vi
0) among ethical policies. Formally:

Definition 9 (Best-ethically-dominant policy) Let M be

an Ethical MOMG. A policy pi of agent i is a best-ethi-

cally-dominant policy if and only if it is ethically-dominant

and

Vi
0hpi ;q�ii

ðsÞ�Vi
0hqi ;q�ii

ðsÞ;

for every joint policy hqi; q�ii in which qi is an ethical

policy with respect to q�i, and every state s in which

qiðsÞ 6¼ piðsÞ.

Next, we define the generalisation of previous domi-

nance definitions considering the policies of all agents.

This will lead to a new equilibrium concept. If the policy pi
of each agent of an Ethical MOMG is best-ethically-

dominant, then the joint policy p is a best-ethically-domi-

nant (BED) equilibrium. Observe that every best-ethically-

dominant equilibrium is a best-ethical equilibrium. Finally,

we say that a joint policy p ¼ ðp1; . . .; pnÞ is a strictly best-
ethically-dominant equilibrium if and only if every pi is
strictly dominant with respect to the individual objective

among ethical policies (i.e. by changing � with [ in

Def. 9).

In the following subsection, we prove that we can solve

the multi-agent ethical embedding problem (Problem 1) for

Ethical MOMGs with a best-ethically-dominant

equilibrium.

4.2 On the existence of solutions

Next we prove that we can find a multi-agent ethical

embedding function for ethical MOMGs with best-ethi-

cally-dominant (BED) equilibria. Henceforth, we shall

refer to such ethical MOMGs as solvable ethical MOMGs,

and if the BED equilibrium is strict, we will refer to such

Ethical MOMGs as strictly-solvable.

Below, we present Theorem 1 as our main result. The

theorem states that given a solvable ethical MOMG (Multi

Objective Markov Game), it is always possible to find an

embedding function that transforms it into a (single-

objective) MG where agents are guaranteed to learn to

behave ethically. More in detail, the following Theorem 1

guarantees that —given the appropriate ethical weight in

our embedding function— there exists a dominant equi-

librium in the resulting MG (i.e. the agents’ learning

environment) that is also a best-ethical equilibrium in the

input ethical MOMG. In other words, such embedding

function is the solution to Problem 1 we aim at finding.

The proof of Theorem 1 requires the introduction of

some propositions as intermediary results. The first

proposition establishes the relationship between dominant

and ethically-dominant policies.

Proposition 1 Given an ethical MOMG M ¼
hS;Ai; ðR0;RN þ REÞi; Ti for which there exists ethically-

dominant equilibria, there exists a weight vector w~ ¼
ð1;weÞ with we [ 0 for which every dominant policy for an

agent i in the MG M� ¼ hS;Ai;Ri
0 þ weðRi

N þ Ri
EÞ;Ti is

also an ethically-dominant policy for agent i in M.

Proof Without loss of generality, we only consider

deterministic policies, by the Indifference Principle [45].

Consider a weight vector w~ ¼ ð1;weÞ with we� 0.

Suppose that for that weight vector, the only deterministic

w~-dominant policies (i.e. policies that are dominant in the

MOMG scalarised by w~) are ethically-dominant. Then we

have finished.

Suppose now that it is not the case, and there is some w~-

dominant policy qi for some agent i that is not dominant

ethically. This implies that for some state s0 and for some

joint policy q�i we have that:

Vi
N hqi ;q�ii

ðs0Þ þ Vi
Ehqi ;q�ii

ðs0Þ\Vi
N hpi ;q�ii

ðs0Þ þ Vi
Ehpi ;q�ii

ðs0Þ;

for any ethically-dominant policy pi for agent i.
For an �[ 0 large enough and for the weight vector

w~0 ¼ ð1;we þ �Þ, any ethically-dominant policy pi will

have a better value vector at that state s0 than qi against q�i:

w~0 � V~i

hqi;q�iiðs0Þ\w~0 � V~i

hpi;q�iiðs0Þ:

Therefore, qi will not be a w~0-dominant policy. Notice that

q will remain without being dominant even if we increase

again the value of we by defining w~00 ¼ ð1;we þ �þ dÞ
with d[ 0 as large as we wish.

Now consider the policy qi not ethically-dominant that

requires the maximum ��[ 0 in order to stop being w~-

dominant. We can guarantee that this policy exists because

there is a finite number of deterministic policies in a finite

MOMG. Therefore, by selecting the weight vector

w~� ¼ ð1;we þ ��Þ, then only ethically-dominant policies

can be w~�-dominant for this ethical weight we þ ��. In other
words, every w~�-dominant policy is also ethically-domi-

nant for this new weight vector. h
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The former proposition helps us establish a formal

relationship between dominant equilibria and ethically-

dominant equilibria through the following proposition.

Proposition 2 Given an ethical MOMG M ¼ hS;Ai;

ðR0;RN þ REÞi; Ti for which there exists a best-ethically-

dominant equilibria, there exists a weight vector w~ ¼
ð1;weÞ with we [ 0 for which every dominant policy for an

agent i in the Markov Game M� ¼ hS;Ai;Ri
0 þ weðRi

N þ
Ri
EÞ; Ti is also a best-ethically-dominant policy for agent i

in M.

Proof By Proposition 1, there is an ethical weight for

which every dominant policy in M� is ethically-dominant

in M.

Best-ethically-dominant policies dominate all ethically-

dominant policies, and thus every dominant policy in M�
is in fact a best-ethically-dominant policy in M.

Combining these two facts, we conclude that at least one

best-ethically-dominant policy is dominant for this ethical

weight.

h

Thanks to Proposition 2 we are ready to formulate and

prove Theorem 1 as follows.

Theorem 1 (Multi-agent solution existence (dominance))

Given an ethical MOMG M ¼ hS;Ai; ðR0;RN þ REÞi; Ti
for which there exists at least one best-ethically-dominant

equilibrium p� , then there exists a weight vector w~ ¼
ð1;weÞ with we [ 0 for which p� is a dominant equilibrium

in the scalarised MOMG M� by w~.

Proof By Proposition 2, there exists a weight vector w~ ¼
ð1;weÞ for which all best-ethically-dominant policies of

agent i are dominant policies in the scalarised MOMG M�.
Thus, for every ethically-dominant equilibrium p� in

M, there is an ethical weight we for which every policy pi�
of p� is also a dominant policy in M� and, hence, by

definition, p� is also a dominant equilibrium in M�. h

Theorem 1 guarantees that we can solve Problem 1 for

any Ethical MOMG with at least one best-ethically-domi-

nant equilibrium. Indeed, for that reason we refer to such

family of Ethical MOMGs as solvable. In particular, we

aim at finding solutions w~ that guarantee the learning of an

ethical policy with the minimal ethical weight we. The

reason for it is to avoid that an excessive ethical weight

makes the agents completely disregard their individual

objective, jeopardising their learning.

To finish this Section, Table 1 summarises the connec-

tion that Theorem 1 establishes between the solution con-

cepts (equilibria) and ethical policies of an Ethical MOMG

M and the equilibria and policies of the scalarised MOMG

M�. Given a solvable Ethical MOMG, there exists a

weight vector for which the policy concepts in the left will

become equivalent to their counterparts at the right, for at

least one dominant equilibrium.

5 Solving the multi-agent ethical
embedding problem

Solving the Multi-Agent Ethical Embedding (MAEE)

problem amounts to computing a solution weight vector w~

so that we can combine individual and ethical rewards into

a single reward to yield a new, ethical environment, as

defined by Problem 1. Next, Sect. 5.1 details our approach

to solving the MAEE problem, the so-called MAEE Pro-

cess, which is graphically outlined in Fig. 1. Thereafter, in

Sect. 5.2, we formally analyse the soundness of our MAEE

Process.

5.1 The multi-agent ethical embedding process

Figure 1 illustrates our approach to solving a MAEE

problem, which follows two main steps: (1) computation of

a best-ethical equilibrium (the target joint policy), namely

the joint policy that we expect the agents to converge to

when learning in our target ethical environment; and (2)

computation of a solution weight vector w~ based on the

target joint policy. Interestingly, we base both computa-

tions on decomposing the ethical MOMG (the input to the

problem) into n ethical MOMDPs10 (one per agent), solv-

ing one local problem (MOMDP) per agent, and aggre-

gating the resulting solutions.

In what follows we provide the theoretical grounds for

computing a target joint policy and a solution weight

vector. For the remainder of this Section we assume that

there exists a strictly best-ethically-dominant equilibrium

in the Ethical MOMG, that is, that the Ethical MOMG is

strictly-solvable.

5.1.1 Computing the ethical equilibrium

As previously mentioned, we start by computing the best-

ethical equilibrium p� to which we want agents to converge
to (the one they will learn in our ethical target environ-

ment). Figure 1 (bottom-left) illustrates the three steps

required to compute such joint policy. In short, to obtain

the joint policy p�, we can resort to decomposing the

ethical MOMG M, encoding the input multi-objective

environment, into n ethical MOMDPs Mi¼1;...;n, one per

agent. For each ethical MOMDP Mi, we compute the

individual policy of agent i in the ethical equilibrium pi� by

10 Ethical MOMDPs correspond to single-agent ethical MOMGs and

were originally defined in [55].
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applying a single-agent multi-objective reinforcement

learning method.

More in detail, we must first notice that building the

ethical equilibrium p� via decomposition is possible

whenever the ethical MOMG M is strictly-solvable, hence

satisfying the conditions of Theorem 1. This means that the

best-ethical equilibrium p� is also strictly dominant. Thus,

each agent has one (and only one) strictly best-ethically-

dominant policy (pi�), which by Def. 9 is the unique best-

ethical policy against any other joint policy.

Second, we know that each policy pi� of the ethical

equilibrium is the only best-ethical policy against any other

joint policy q�i. From this observation, we can select a

random joint policy q, and for each agent i fix q�i (i.e. the
policies of all agents except i) to create an Ethical MOMDP

Mi. This gives us the decomposition of the ethical MOMG

M.

After creating all Ethical MOMDPs Mi¼1;...;n, we

compute the policy pi� of each agent i as its best-ethical

policy in the ethical MOMDP Mi. We can do this by using

multi-objective single-agent RL. In particular, we apply the

Value Iteration (VI) algorithm with a lexicographic

ordering [74] (prioritising ethical rewards), since it has the

same computational cost as VI.

Finally, we join all best-ethical policies pi� to yield the

joint policy p�.

5.1.2 Computing the solution weight vector

Once computed the target ethical equilibrium p�, we can

proceed to compute the corresponding ethical weight we

that guarantees that p� is the only Nash equilibrium in the

ethical environment (the scalarised MOMG) produced by

our embedding. Figure 1 (bottom-right) illustrates the steps

required to compute it.

Similarly to Sect. 5.1.1, we compute we by decomposing

the input environment (the ethical MOMG M) into several

MOMDPs, one per agent: Mi¼1;...;n
� . Thereafter, we com-

pute a single-agent ethical embedding process for each

ethical MOMDP. Finally, we aggregate the individual

ethical weights to obtain the ethical weight we.

More in detail, we first exploit the target ethical equi-

librium p� to decompose the input environment. Thus, we

create an Ethical MOMDP Mi
� per agent i by fixing the

best-ethical equilibrium p�i� for all agents but i. Then,

computing the ethical weight for each ethical MOMDP

amounts to solving a Single-Agent Ethical Embedding

(SAEE) problem as introduced in [55]. For that, we benefit

from the algorithm already introduced in that work

(see 2.3). Afterwards, we obtain an individual ethical

weight wi
e for each MOMDP that ensures that each agent i

would learn to behave ethically (following pi�) in the eth-

ical MOMDP Mi
�.

Finally, we select the value of the ethical weight for

which all agents are incentivised to behave ethically. This

value is necessarily the greatest ethical weight we ¼
maxi w

i
e among all agents, and thus such we compounds the

weight vector ð1;we) that solves our Multi-Agent Ethical

Embedding problem.

The above-described procedure to produce an ethical

environment (based on decomposing, individually solving

single-agent embedding problems, and aggregating their

results) does guarantee that behaving ethically will be a

dominant strategy for agents.

Notice that the cost of computing the solution weight

vector mainly resides in applying n times the SAEE algo-

rithm in [55], once per agent. Following [55], the cost of

such algorithm is largely dominated by the computational

cost of the Convex Hull Value Iteration algorithm [10].

5.2 Analysing the multi-agent ethical
embedding process

Our approach in Sect. 5.1 above requires that the Ethical

MOMG fulfils the following condition: although the ethical

objective is social, it is enough that a fraction of the agents

(not all of them) intervene to completely fulfil it. To give

an example inspired on the Ethics literature, consider a

situation where several agents are moving towards their

respective destination through a shallow pond and at some

point a child that cannot swim falls into the water (simi-

larly to the Drowning Child Scenario from [65]). To save

the child, it is enough that one agent takes a dive to rescue

them.

In terms of the ethical weights, this assumption implies

that we will require the greatest ethical weight we to

incentivise an agent i to behave ethically (formally, to

follow an ethically-dominant policy) when the rest of

agents are already behaving ethically by following an

ethical equilibrium hpii�; p�i� i.
Such ethical weight we is the maximum weight needed

for agent i against any possible joint policy p�i. In other

words, for the weight we it will be a dominant policy for

agent i to follow an ethically-dominant policy.

In summary, the ethical weight required to guarantee

that pi� is dominant is the same as the ethical weight

required to guarantee that pi� is a best-response against p
�i
� .

This is formally captured by the next condition:

Condition 1 Let M be an ethical MOMG M ¼
hS;Ai; ðR0;RN þ REÞi; Ti for which there exists at least

one best-ethically-dominant equilibrium p�. Consider the

weight vector w~ ¼ ð1;weÞ and the scalarised MOMG
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M� ¼ hS;Ai;R0 þ we � ðRN þ REÞiÞ; Ti. We require that

the best-ethically-dominant equilibrium p� is a Nash

equilibrium in M� if and only if p� is also a dominant

equilibrium in M�.

We would like to remark that Condition 1 is only

required so that our Multi-Agent Ethical Embedding Pro-

cess finds the solution weight vector to create an ethical

environment. However, Theorem 1 guarantees that such

weight exists irregardless of whether Condition 1 holds or

not. Thus, it is always guaranteed that for any ethical

weight large enough a best-ethically-dominant equilibrium

is dominant.

Now we can proceed with proving the soundness of our

method for computing a solution weight vector. First, we

recall that our objective is to find the solution weight vector

ð1;weÞ with the minimal ethical weight we necessary for p�
to be a dominant equilibrium. In other words, our solution

ethical weight is the minimum necessary for each pi� to be a
dominant policy. Condition 1 tells us that such ethical

weight has to be the minimum one that guarantees that

each pi� is a best-response policy. Formally:

Observation 1 Given any joint policy p, the minimum

ethical weight we for which every policy pi is a best-re-

sponse against p�i is also the minimum ethical weight we

for which p is a Nash equilibrium.

Second, the following Theorem tells us the minimal we

necessary for p� is also a dominant equilibrium. Such we is

any ethical weight that guarantees that p is a Nash

equilibrium:

Theorem 2 Given an ethical MOMG M ¼
hS;Ai; ðR0;RN þ REÞi; Ti for which there exists at least

one best-ethically-dominant equilibrium p� and for which

Condition 1 holds, if for a weight vector w~ ¼ ð1;weÞ with
we [ 0 we have that p� is a Nash equilibrium, then it is

also a dominant equilibrium for the same weight vector w~.

Proof Direct from Condition 1. Given a best-ethically-

dominant equilibrium p�, if for a weight vector w~ ¼ ð1;weÞ
we have that p� is a Nash equilibrium, then by Condition 1,

the joint policy p� is also dominant for w~. h

Thus, when Condition 1 holds, our approach to compute

the ethical weight is guaranteed to help build an ethical

environment by Theorem 2. In other words, the weight

vector ð1;weÞ will solve the MAEE problem.

5.3 Linear properties of the multi-agent ethical
embedding process

With the Multi-Agent Ethical Embedding Process already

explained, we now explain an important property of it. This

process receives as input an MOMG where the ethical

reward functions are already defined. We know by Theo-

rem 2 that our MAEE process guarantees that, in the

designed environment, ethical equilibria are incentivised.

In this section, we study the implications of this Theorem:

that regardless of the differences in the scales of the reward

functions (either between agents or between objectives), in

the designed environment ethical policies are incentivised.

Formally, we prove that modifying the scale of each

component of the ethical reward function of each agent

does not modify the best-ethically-dominant equilibrium

that the agents will be incentivised to learn. Our MAEE

process conveniently adjusts the ethical weight to guaran-

tee that ethical equilibria are incentivised.

In order to prove that our Multi-Agent Ethical Embed-

ding Process is unaffected by the scales of the different

reward components, we first prove an intermediate result.

We prove that if a joint policy is an ethical equilibrium, it

is also an ethical equilibrium even if we modify the scales

of the ethical reward components. Formally:

Proposition 3 Consider an Ethical MOMG M with an

ethical reward function Ri
N þ Ri

E for each agent i , and

another Ethical MOMG M0 with an ethical reward func-

tion ðaiRi
N þ ciÞ þ ðbiRi

E þ di) per agent i with ai; bi [ 0

and ci; di 2 R . Then:

– A policy is ethical in M if and only if it is ethical in

M0.
– A policy is ethically-dominant in M if and only if it is

ethically-dominant in M0.
– A policy is best-ethical in M if and only if it is best-

ethical in M0.
– A policy is best-ethically-dominant in M if and only if

it is best-ethically-dominant in M0.

Proof Given any ethical policy p� of M and any ethical

policy p0� of M
0:

Vi
N hp0i� ;p

�ii
¼ max

qi
½aiVi

N hqi ;p�ii
þ Kci �

¼ ai max
qi

Vi
N hqi ;p�ii

þ Kci ¼ aiVi
N hpi� ;p

�ii
þ Kci ;

Vi
Ehp0i� ;p�ii

¼ max
qi
½aiVi

Ehqi ;p�ii
þ Kdi �

¼ bi max
qi

Vi
Ehqi ;p�ii

þ Kdi ¼ biVi
Ehpi� ;p

�ii
þ Kdi ;

with Kci and Kdi being constants depending on ci and di;
respectively. Thus, any ethical policy of M is ethical in

M0, because it also maximises the accumulation of eval-

uative and normative rewards in M0. Hence, ethical poli-

cies of M0 are also ethical in M. The proof for ethically-

dominant policies is analogous.
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Consequently, the same applies for best-ethical policies

and best-ethically-dominant policies, since the individual

reward function is the same in M and M0. h

Now we are ready to state the main result: modifying the

scale of each component of the ethical reward function of

each agent does not modify the best-ethically-dominant

equilibrium that the agents will be incentivised to learn.

Formally:

Theorem 3 Consider an Ethical MOMG M with an eth-

ical reward function per agent Ri
N þ Ri

E , and another

Ethical MOMG M0 with an ethical reward function per

agent ðaiRi
N þ ciÞ þ ðbiRi

E þ diÞ with ai; bi [ 0. Assume

that Condition 1 holds in both Ethical MOMGs. We define

the resulting single-objective Markov Game of applying the

MAEEP to M as M�. Similarly, we define the resulting

single-objective Markov Game of applying the MAEEP to

M0 as M0
�. Then:

– A best-ethically-dominant equilibrium p� in M is

dominant in M� if and only if p� is best-ethically-

dominant in M0 and dominant in M0
�.

Proof Notice first that these two Markov Games (M� and

M0
�) may have different reward functions, so a priori we

do not know if they share the same Nash equilibria.

In more detail, by Theorem 2 we know that applying the

MAEEP guarantees that any best-ethically-dominant equi-

librium p� in M is dominant in M�. By the previous

proposition, both Ethical MOMGs M and M0 share the

same best-ethically-dominant equilibria. Therefore, the

joint policy p� is also best-ethically-dominant in M0.
Again by Theorem 2, the joint policy p� is also

dominant in M0
�. Thus, the Ethical Markov Games M�

and M0
� also share all the dominant policies that are best-

ethically-dominant (their value vectors will probably be

different between the two Markov Games though). h

6 Experimental analysis: the ethical
gathering game

The Gathering Game [40] is a renewable resource alloca-

tion setting where, if agents pursue their individual

objectives and gather too many apples, these resources

become depleted. Here, we follow [67] in considering that

agents have uneven gathering capabilities and propose the

Ethical Gathering Game as an alternative scenario to focus

on agent survival rather than on resource depletion as they

do in [67]. This way, we transform the Gathering Game

into an environment where we expect agents to behave in

alignment the moral value of beneficence11 by including a

donation box to the environment. Thus, our ethical

embedding process takes the modified Ethical Gathering

Game as an input. We expect that agents trained in the

resulting environment of our ethical embedding process

learn to behave in alignment with this value. This means

that they are expected to learn to use the donation box in an

ethical manner, that is, by donating and taking apples when

appropriate. We do so with the aim of ensuring the survival

of the whole population (i.e. having enough apples despite

their gathering deficiencies). Finally, we would like to

remark that our Ethical Gathering game constitutes an

example of a multi-agent moral gridworld [26].12

Although our paper is eminently theoretical, this section

is devoted to illustrate the application of our Multi-Agent

Ethical Embedding (MAEE) process to this Ethical

Gathering Game. Additionally, we analyse the resulting

best-ethical policies (and best-ethical equilibria) that agents

learn. In particular, we observe that the agents’ learnt

policies employ the donation box to behave in alignment

with the moral value of beneficence and, as a result,

achieve survival (i.e. they learn a best-ethical equilibrium).

Figure 2 depicts two possible states of our environment,

where two agents (represented as red cells) gather apples in

a 4 � 3 grid (black area). Apples grow and regenerate in

the three fixed cells depicted in green in Fig. 2 a). Each

agent gathers apples by moving into these green cells. Both

agents need k apples to survive, but they have different

gathering capabilities, so that when two agents step into the

same green cell, the most efficient one will actually get it.

Moreover, the donation box can store up to c apples.

Numbers on top show the data of the current state: the

number of apples for each agent and the donation box. The

green rectangle on the left of the grey area signals Agent 1

has enough apples to survive, whereas the green square on

the right indicates Agent 2 has less than k apples.

In what follows, Sect. 6.1 characterises the agents in the

Ethical Gathering Game. Then, Sect. 6.2 provides the full

description of the Multi-Objective Markov Game of the

Ethical Gathering Game, which defines the input environ-

ment to which we apply our ethical embedding. Subse-

quently, Sect. 6.3 shows how we applied our MAEE

process to the Ethical Gathering Game. Finally, Sect. 6.4

provides an in-detail evaluation of the ethical equilibria

obtained after applying our MAEE process to the Ethical

Gathering game.

11 See beneficence definition in Applied Ethics at https://plato.

stanford.edu/entries/principle-beneficence/. Notice also that benefi-

cence should not be confused with non-maleficence, which prescribes

not to inflict harm on others.
12 A moral gridworld is a 2-d environment in which the agents have

to deal with moral objectives apart from their own individual ones.

They were originally introduced in [26].
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6.1 The agents of the ethical gathering game

As previously mentioned, both agents need the same

amount of k apples to survive. However, they have dif-

ferent gathering capabilities, which causes some agents to

have more difficulties to survive. The different gathering

capabilities of agents are formalised as the efficiency efi of

each agent i. We represent efficiency with a positive

number, and each agent has a different efficiency (i.e.

efi 6¼ efjÞ. Despite differences in efficiencies, both agents

have the possibility of surviving if the donation box is

properly used. Notice that the donation box stores apples

from donations that are made available to all agents. A

proper usage of the box would mean that once an agent has

an apple surplus, it should transfer exceeding apples to the

donation box, and in turn an agent in need should take

apples from the box to guarantee its survival. Neither the

concept of the donation box nor efficiency are present in

the original Gathering Game.

6.2 The input MOMG of the ethical gathering
game

The Ethical Gathering Game, as an ethical MOMG,

is defined as a tuple M ¼ hS;Ai¼1;...;n;

ðR0;RN þ REÞi¼1;...;n;Ti, where S is the set of states, Ai is

the action sets of agent i (actions are further explained in

Sect. 6.2.2), T is the transition function of the game (see

Sect. 6.2.3), and Ri ¼ ðR0;RN þ REÞi is the reward func-

tion of agent i (see Sect. 6.2.4).

Section 6.2.1 details the states S in our input MOMG

representing the Ethical Gathering Game. They include the

number of apples that both agents and the donation box

have. However, this may lead to an arbitrarily large number

of states. Therefore, we apply some abstractions in order to

drastically reduce the number of states of the input

MOMG. Section 6.2.5 presents our approximate version of

our Ethical Gathering Game (which we use for both the

input of the MAEE process and the ethical environment

where the agents learn).

6.2.1 States

We define the states of the environment as tuples s ¼
hp1; p2; ap1; ap2; cp; gi where:

– pi ¼ ðxi; yiÞ is the position of agent i 2 f1; 2g in the

environment (see red squares in Fig. 2), with

xi 2 f1; 2; 3g; yi 2 f1; 2; 3; 4g. Agents can share posi-

tions like in the original code of the Gathering Game

from Leibo et al. [40] (i.e. p1 can be equal to p2).

– api is the number of apples owned by agent i.

– cp represents the current number of apples in the

donation box, being c its maximum capacity (i.e.

0� cp� c).

Fig. 2 a Example of a possible initial state of the Ethical Commons

Game, as shown in our graphical interface. The environment is a

gridworld wherein agents learn by means of tabular reinforcement

learning. In this initial state, p1 ¼ ð1; 1Þ and p2 ¼ ð3; 3Þ. Since it is an
initial state, the three apple cells are green, showing they currently

contain an apple. b) Example of another state several steps ahead. In

this state, p1 ¼ ð1; 2Þ and p2 ¼ ð3; 1Þ. Agent 1 has ap1 ¼ 10 apples,

which are enough to survive (represented with a green rectangle in the

left of the grey area), whereas agent 2 only has ap2 ¼ 4 apples, which

are not enough to survive (visualised as a green square in the right

hand side of the grey area)
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– Finally, there are three apple gathering cells at positions

pg1 ¼ ð1; 2Þ, pg2 ¼ ð1; 3Þ and pg3 ¼ ð2; 2Þ (see the three
green cells in Fig. 2 a). The state of the apple gathering

cells is represented by g ¼ ðg1; g2; g3Þ, where each gj 2
½True;False� represents if the apple cell at position pgj
currently contains an apple or not.

Henceforth we will use the ‘‘.’’ notation to refer to the

elements in a state s. Thus, for instance, s:p1 denotes the

position of agent 1 in state s. Moreover, we define initial

states as those where both agents and the donation box

have 0 apples each, and there are apples in the three apple

cells.

Observe that in the gathering game from [40] there was

no donation box nor a count of the number of apples that

each agent gathers. Thus, each state was only defined by

the agents’ positions together with the number of available

apples on the ground.

6.2.2 Actions

Each agent has seven possible actions. Five are related to

their movement (move_up, move_down, move_left,

move_right and stay) to move on each of the four

possible directions or stand still, respectively. Besides that,

they have two additional actions related to the donation

box: donate and take_donation.

6.2.3 Transitions

The Ethical Gathering Game is almost a deterministic

Markov game. Stochasticity exclusively appears from two

factors in states. The first one is independent of the agents’

actions and occurs in the transitions involving gathering

cells. If for some state s there is an empty apple cell (that is,

s:gj ¼ False for some j 2 f1; 2; 3g), there is a probability

p ¼ 0:05 that in the following state s0:gj ¼ True, indepen-

dently of the agents’ actions if there is no agent on

top at that state. Formally, Pðs0:gj ¼ True j s:gj ¼
False; pi 6¼ pgj for all iÞ ¼ 0:05. The original Gathering

Game [40] also shares this stochasticity with the apple cells

except for an important difference: apples only continue

spawning in apple gathering cells as long as there is at least

one apple cell remaining (i.e. s:gj ¼ True for some j).

Otherwise, in the original Gathering game, when s:gj ¼
False for every j, the game ends. This difference is the

main reason why there is a depletion problem in the orig-

inal game, as previously mentioned.

The second factor for stochasticity depends on the actions

of both agents and occurs only when the two of them apply

the action take_donation when the donation box has

exactly one apple c ¼ 1. In such case, only one of the two

agents receives the apple (and the corresponding reward for

receiving it). The agent getting it is decided randomly, with

each agent having the same probability. Formally,

Pðs0:ap1 ¼ s:ap1 þ 1; s0:ap2 ¼ s:ap2; s0:cp ¼ 0 j s:cp ¼
1; a ¼ htake donation; take donationiÞ ¼ Pðs0:ap1 ¼
s:ap1; s0:ap2 ¼ s:ap2 þ 1; s0:cp ¼ 0 j s:cp ¼ 1; a ¼
htake donation; take donationiÞ ¼ 0:5. This second

factor of stochasticity is novel to our ethical GatheringGame

since in the original Gathering Game [40] there was no

donation box.

All other transitions are deterministic, that is, Pðs0 j
s; ha1; a2iÞ are direct consequences of the agents’ actions

ha1; a2i in a given state s. In this manner, each agent’s

position pi is altered by any action ai related to movement.

Moreover, if the agent moves to an apple cell that currently

has an apple (gj ¼ True, where pgj ¼ pi2f1;2gÞ, then the

apple cell loses temporarily its apple (gj  False) and the

agent receives it (api  api þ 1). Notice that there is no

action for explicitly gathering apples from the ground. We

inherit this simplification from the Gathering Game in [40].

In the same vein, if agent i has apples (api [ 0) and

performs the action donate, then the agent loses one

apple (api  api � 1) and the donation box receives it

(cp cpþ 1) until the donation box reaches its maximum

capacity. However, if the donation box is full, then the

agent is not allowed to donate its apple and its number of

apples remains unchanged. Analogously, if the agent per-

forms the action take_donation and the donation box

has apples (cp[ 0), then the agent receives the apple

(api  api þ 1) and the donation box loses it

(c cp� 1).

There is only one exception to the previous game

mechanics, which occurs when the two agents move

simultaneously to the same apple cell (i.e.

s0:p1 ¼ s0:p2 ¼ pgj) with an apple (i.e. gj ¼ T). In such

case, only one of the two agents receives the apple (and the

corresponding reward for receiving it): the one with the

greatest efficiency efi.

6.2.4 Rewards

Rewards in our ethical gathering game are always deter-

mined by the current state s and the current agents’ actions

ha1; a2i. They encode both the individual and ethical

objectives, which correspond to self-survival and benefi-

cence, respectively.

We assume that the reward specification of ethical

rewards has been already provided to us. Thus, we assume

that maximising the following normative and evaluative

reward functions fulfils the moral value of beneficence.

Indeed, defining the appropriate ethical reward structure is

a difficult problem, but in this work we have focusing on

the second step of value alignment, the ethical embedding
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of ethical rewards. Thus, the following ethical reward

function should be seen as an illustrative example.

– Individual reward: agent i receives a negative reward of

-1 in the current state if it does not have enough apples

to survive (i.e. s:api\k).

Conversely, agent i receives a positive reward of ?1

for gathering apples (moving to a position with an

apple). The reward is only given if the agent actually

obtains an apple (i.e. s:api\s0:api).
Furthermore, agent i receives an extra negative

reward of -1 for donating an apple. The reward is only

given if the agent actually gives away an apple (i.e.

s:api [ s0:api).
– Normative reward: agent i receives a negative reward

of -1 for performing the ethically unacceptable action

take_donation when it already has enough apples

to survive (i.e. s:api� k). Since the action itself is

morally blameworthy in such context, the negative

reward is received even if the agent does not obtain an

extra apple.

– Evaluative reward: agent i receives a positive reward of

?0.7 for performing the praiseworthy action donate

when it has more than enough apples to survive (i.e.

s:api [ k) and the donation box is not full (i.e. s:cp\c,

where we recall that c is a constant representing the

maximum apple capacity of the donation box).

Notice that, thanks to Theorem 3, we do not need to worry

about the specific scale of the evaluative and normative

rewards. If the evaluative reward for donating an apple

were any other positive value (2.34, for example) instead of

0.7, our MAEEP would produce an ethical environment

that incentivises exactly the same ethical equilibria.

6.2.5 The abstract model

In order to reduce the number of states agents have to deal

with while learning, each agent uses an abstraction (a

common technique in Reinforcement Learning, see for

instance [8, 32, 42]) to represent each state of the envi-

ronment in a simplified manner

zi ¼ hp1; p2; absapðapiÞ; abscpðcpÞ; gi, where:

– the abstract number of apples of each agent absapðapiÞ
can take 4 possible values: 0 if the agent has no apples,

1 if the agent has not enough apples to survive, 2 if it

has exactly enough apples to survive, and 3 if it has

surplus of apples. Formally:

absapðapiÞ ¼

0, if api ¼ 0

1, if api\k

2, if api ¼ k

3, if api [ k

8
>>><

>>>:

– the abstract number of apples in the donation box

abscpðcpÞ can take 4 possible values: 0 if the donation

box is empty, 1 if it has 1 apple, 2 if it has more than 1

apple but is not full, and, finally, 3 if the box is full.

abscpðcpÞ ¼

0, if cp ¼ 0

1, if cp ¼ 1

2, if 1\cp\c

3, if cp ¼ c

8
>>><

>>>:

With this abstraction, there is a total of jSj ¼ 122 � 4 � 4 �
23 ¼ 18; 432 possible states, where 12 is the number of

possible positions for each agent, 4 is the number of pos-

sible values for the donation box, 4 is the number of pos-

sible values for the agent’s inner count of apples and there

are also 3 cells where apples can appear. Moreover, the

total number of state-action pairs is

jSj � jAj ¼ 18; 432 � 7 ¼ 129; 024. Notice that, if for exam-

ple, we assume that our simulation will last for enough

time to spawn m apples, and the donation box can store up

to c apples, the number of states with no abstraction would

grow to13:

jSj ¼ 122 �
Xc

j¼0

Xm�j

l¼0

lþ 1

1

� �
� 23

¼ 96 � ðcþ 1Þ � ½6 � ðm2 þ 3mþ 2Þ þ c � ð2c� 6m� 8Þ�
¼ Oðc � m2Þ

So if we set m ¼ 40 and c ¼ 5 (which are the kind of

scenarios that we consider in the experiments below), then

|S| grows to more than 5 million states, whereas with our

abstraction it always states at 18,432. Thus, although

abstraction necessarily involves information loss, it

becomes very handy on limiting the total number of states

of the learning environment.

6.3 Applying the multi-agent ethical embedding
process

For all our experiments, we set the input ethical MOMG

with the following setting:

– Efficiency: we set Agent 2 with a higher efficiency than

Agent 1 (i.e. ef2 [ ef1).

13 Recall that the number of times that a number n can be expressed

as a sum of k natural numbers is
nþ k � 1

k � 1

� �
.

Neural Computing and Applications

123



– Discount factor: for all agents we select as the discount

factor of their respective value functions V~
i
a value of

c ¼ 0:8. The value of the discount factor is large

enough so that the agents can be farsighted. We select

this value for c because the process of obtaining enough

apples to survive is long, potentially taking hundreds of

time-steps for agents.

– Survival threshold: We fixed the amount of necessary

apples to survive for each agent as k ¼ 10.

Furthermore, we consider different capacities for the

donation box. In particular, we apply our MAEE process to

three input environments. These three MOMGs Mc (all

three with the structure defined in Sect. 6.2) have,

respectively, a donation box capacity c 2 f1; 5; 15g. We

refer to these environments as low, medium and high

beneficence, respectively, since the larger the capacity of

the donation box, the more room for donations the envi-

ronment provides.

We recall that the MAEE process consists in two steps:

the ethical equilibrium computation and the solution

weight vector computation, as illustrated in Fig. 1.

We applied the Multi-Agent Ethical Embedding Process

for each environment with different capacities of the

donation box. For simplicity, here we explain the process

for the environment with medium beneficence (i.e. M5).

Moreover, when referring to the MOMDP of each agent i

decomposed from M5, we use the notation Mh5;ii.

6.3.1 Solvability of the ethical gathering game

Prior to applying our Multi-Agent Ethical Embedding

Process, it is worth mentioning why our theoretical results

guarantee its success. For the sake of understanding, we

avoid to go through a normal proof, and instead we

informally discuss the existence of a best-ethically-domi-

nant policy for each agent. If each agent has such best-

ethically-dominant policy, Theorem 1 holds true, and thus,

the Ethical Gathering Game is a solvable Ethical MOMG.

The reason why each agent has a best-ethically-domi-

nant policy is the same for the two: no matter what the

other agent is doing, the best-ethical policy is to always:

1. Gather as many apples as possible either from the

ground or from the donation box if the agent does not

have enough for survival. This is mandatory to

maximise the accumulation of individual rewards of

the agents R0.

2. Gather as many apples as possible only from the

ground if the agent has enough for survival and the

donation box is full. Not taking them from the donation

box ensures that the accumulation of negative

normative rewards RN is null. This strategy maximises

the accumulation of individual rewards by the agent.

3. Donate immediately any apple surplus while the

donation box is not full. This strategy maximises the

accumulation of positive ethical rewards RE.

Thus, since both agents have a best-ethically-dominant

policy, a best-ethically dominant equilibrium exists.

Therefore, by definition the Gathering Game is solvable.

We refer to such best-ethically-dominant equilibrium as p�.
Secondly, we must also prove that Condition 1 holds in

the Ethical Gathering Game. That is, we need to prove that

if the equilibrium p� is a Nash equilibrium in the scalarised

MOMG by some ethical weight we, then p� is a dominant

equilibrium as well. That is, we assume that we already

have an ethical weight we large enough to guarantee that p�
is a Nash equilibrium. To better illustrate that the p�
equilibrium is indeed dominant, Table 2 shows the payoff

matrix of a particular state of a scalarised Ethical Gathering

Game. Notice how, for instance, if Agent 1 decides to

choose the action take_donation (second row), then

its reward is always �we in the whole row, irregardless of

the other agent’s action. The same occurs for Agent 2: if,

for instance, we fix its action to be Donate (first column),

then its reward is always 0:7we � 1 in the whole column.

We can conclude that the rewards that each agent receives

are unaffected by the other agent’s actions in this state.

Now we have the intuition to show that Condition 1 is

fulfilled in the Gathering Game. Notice that agent 1’s best-

response in the above-identified equilibrium p� ¼ ðp1�; p2�Þ
is to donate its apple surplus and to refuse to take apples

from the donation box when having enough. This is

because in this way agent 1 maximises its (ethical and

individual) rewards independently of what agent 2 does.

Therefore, the policy p1� is indeed dominant for agent 1.

Following the same reasoning, we conclude that policy p2�
is dominant for agent 2 as well. Therefore, p� is indeed a

dominant equilibrium in the scalarised MOMG, and hence

Condition 1 holds.

Thus, both Theorem 1 and Condition 1 hold, and in

conclusion so does Theorem 1. Theorem 1 guarantees that

our Multi-Agent Ethical Embedding process succeeds.

Therefore, following a best-ethical policy is a dominant

strategy for both agents in the ethical environment resulting

from the ethical embedding. Finally, we deem important to

remark that these conclusions hold true irregardless of the

map size of the Ethical Gathering Game or how many

apple gathering spots there are.

6.3.2 Ethical equilibrium computation

Following the steps in Fig. 1, first we selected a random

joint policy. For simplicity, we chose the joint policy p ¼
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ðp1; p2Þ where both agents always select the action stay.

Then, we proceeded with the following sequence of steps:

1. Decompose: To create the Ethical MOMDP Mh5;1i for

Agent 1 from p, we fixed policy p2 in the input

environment (the ethical MOMG M5). Analogously,

we fixed p1 to create the MOMDP Mh5;2i for Agent 2.

2. Solve: To find the best-ethical policy p1� of Agent 1 in

its ethical MOMDP Mh5;1i, we applied value iteration

with lexicographic ordering [74] (the applied lexico-

graphic ordering prioritises the ethical rewards Ri
e to

the individual ones Ri
0). We analogously proceeded for

Agent 2 to obtain its best-ethical policy p2� from

Mh5;2i.

3. Join: We joined the two best-ethical policy p1� and p2�
to create the ethical equilibrium p�.

We analysed the obtained ethical equilibrium to charac-

terise the behaviour of each agent (details are further dis-

cussed in Sect. 6.4.2). In the ethical equilibrium, both

agents survive because the efficient agent 2 donates all its

surplus to the donation box until it is full. The less efficient

agent 1 takes the donated apples from the box as soon as

possible until it gets enough apples to survive itself. Thus,

when agents follow an ethical equilibrium, the donation

box properly channels donations. After the box is full,

Agent 2 keeps gathering most of the apples until the sim-

ulation ends.

6.3.3 Solution weight vector computation

With the target ethical equilibrium p� computed, the fol-

lowing step was to apply it as a target policy to obtain the

desired solution weight vector, as shown by Fig. 1. In more

detail, we proceeded with the following sequence of steps:

1. Decompose: To create the second Ethical MOMDP

Mh5;1i
� for Agent 1 from p�, we fixed policy p2� in the

input environment (the ethical MOMG M5). Analo-

gously, we fixed p1� to create the MOMDP Mh5;2i
� for

Agent 2.

2. Solve: We applied the publicly-available algorithm to

compute the Single-Agent Ethical Embedding intro-

duced in [55] to each Ethical MOMDP ( Mh5;1i
� and

Mh5;2i
� ). This computation amounts to finding the

ethical weight that incentivises each agent to behave

ethically. To obtain each ethical weight, we needed to

compute the partial convex hull of each MOMDP. We

applied Optimistic Linear Support [56] to compute

them, since it is an outer-loop algorithm, meaning that

it can be used on top of any single-objective RL

algorithm (Value Iteration in our case) without mod-

ifying it.

We found that an ethical weight wh5;1ie ¼ 2:6 incen-

tivises Agent 1 to follow its best-ethical policy in the

ethical MOMDP Mh5;1i
� and an ethical weight wh5;2ie ¼

1:6 incentivises Agent 2 in the ethical MOMDPMh5;2i
� .

As expected, the found ethical weight is greater for

Agent 1 since it is the less efficient agent.

3. Join: In order for both agents to behave ethically in the

ethical environment we selected an ethical weight of

w5
e ¼ maxðwh5;1ie ;wh5;2ie Þ ¼ 2:6.

We performed the Multi-Agent Ethical Embedding Process

for the other two input environments (M1 and M15). We

obtained the following ethical weights for each case: w1
e ¼

2:2 for M1 and w15
e ¼ 1:9 for M15. Finally, from the three

computed ethical weights, we obtained the three corre-

sponding ethical (single-objective) environments: M1
�,M

5
�

and M15
� .

6.4 Evaluating the multi-agent ethical
embedding process

6.4.1 Training

After applying our Multi-Agent Ethical Embedding Pro-

cess for the three MOMGs (with low beneficence M1
�,

medium beneficence M5
�, and large beneficence M15

� ,

respectively) we obtain three ethical environments. For

each of them, agents simultaneously learnt the ethical Nash

Table 2 Payoff matrix for the Gathering Game of the immediate scalarised rewards that both agents obtain in a single state in which both agents

have surplus apples, the donation box is neither full nor empty, and there are currently no apples near any agent

Agent 1 Agent 2

Donate Take donation Other

Donate ð0:7we � 1; 0:7we � 1Þ ð0:7we � 1;�weÞ ð0:7we � 1; 0Þ
Take donation ð�we; 0:7we � 1Þ ð�we;�weÞ ð�we; 0Þ
Other ð0; 0:7we � 1Þ ð0;�weÞ (0, 0)

For each element (x, y) of the table, x is the payoff of Agent 1 and y stands for the payoff of Agent 2
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equilibrium by applying independent Q-learners [39]. The

necessary amount of apples to survive per agent is always

k ¼ 10. We recall that the only difference among envi-

ronments consists of the capacity c 2 f1; 5; 15g of the

donation box. Moreover, for comparison, agents also learnt

in an unethical environment, an MGM0 where agents only

receive rewards from their individual reward functions Ri
0.

During training, agents applied an �-greedy policy and a

decaying learning rate a 2 ½0:9; 0:05� per state. Agents

trained during 60,000 episodes with 1500 time-steps per

episode. After training, we made them use their learnt

policies in 50 simulations per environment. Each simula-

tion lasted 400 time-steps. The reason why we chose 400

time-steps is because in such time-length, the amount of

apples that are generated in the Ethical Gathering Game is

at least enough for both agents to survive (20 apples).

Specifically, this computation comes from the fact that for

each apple cell there is a 5% probability of spawning an

apple when it does not have one and no agent is currently

on top of it. There are three apple cells, which means that at

best in 400 time-steps there will grow 3 � 0:05 � 400 ¼ 60

apples in the environment. However, at worst, if both

agents stay each in an apple cell thorough the simulation,

only ð3� 2Þ � 0:05 � 400 ¼ 20 apples will grow. Thus, on

average the expected amount of apples that will grow is 40.

6.4.2 Results analysis

Once the agents have learnt their policies in these ethical

environments, we observe that learning in the unethical

environment (M0) leads to a situation where Agent 1 does

not survive as it fails to accumulate enough apples (Fig. 3a

shows its blue line below the k ¼ 10 threshold) whilst the

efficient Agent 2 accumulates most apples. Thus, it

becomes apparent the need to craft ethical environments

that compensate such clear social inequalities. Indeed, as

expected, when agents learn in the ethical environments,

they manage to learn ethical-optimal policies that lead to

an ethical equilibrium where all agents in the population

survive. Figure 3b–d illustrates this for the low, medium,

and high beneficence (M1
�, M5

�, M15
� ) environments,

where both agents end up having more than enough apples

to survive. This is so because the learnt policies are aligned

with the moral value of beneficence, that generally refers to

actions aimed at benefiting others and in our specific sce-

nario prescribes a proper usage of the donation box to

accumulate and distribute resources when needed. Thus,

agents learn to donate and take apples from the donation

box so that they reach an ethical equilibrium that ensures

the population survival. Briefly, these policies follow the

general trend of donating most surplus until the donation

box reaches full capacity. That is, first of all, the efficient

Agent 2 accumulates enough apples to guarantee its own

survival, and only afterwards it starts donating apples.

Later, once Agent 1 also accumulates enough apples to

survive, it also starts sharing its surplus to the donation

box. This means that, as expected by our definition of the

evaluative reward function, each agent prioritises surviving

to donating apples, and prioritises donating apples to

maximising its amount of apples. However, this prioriti-

sation does not prevent them from pursuing their individual

objective of gathering apples once survival is guaranteed.

Each row in Table 3 provides the end results of every

graph in Fig. 3. Columns 2, 3, and 4 show the average

amount of apples with which Agent 1, Agent 2, and the

donation box end up, respectively.

In the fifth column of Table 3 we also registered the

survival rate in each environment. We measured the sur-

vival rate as the percentage of times that both agents sur-

vived in the 50 simulations per environment. In the

unethical environment, Agent 1 fails to survive 60% of the

simulations, whilst in all three ethical environments all

agents always survive. This difference in the survival rate

is caused by the fact that in the ethical environments agents

perform an ethical use of the donation box and, as a con-

sequence, apples are distributed among agents guarantee-

ing that both survive. This is the main empirical proof that

indeed our MAEE process promotes the value of benefi-

cence in the Ethical Gathering Game. Since agents survive

in all three ethical environments, another interesting con-

clusion is that the size of the donation box does not affect

the survival of either agent.

Finally, in order to study the degree of inequality of each

environment, in the sixth column of Table 3 we registered

its unbiased14 Gini ratio [19]. The lowest possible value for

the Gini ratio is 0.0 (indicating that both agents obtained

the same amount of apples) and the maximum one is 1.0

(indicating that one agent obtained all the apples and the

other one none). As Table 3 shows, inequality decreases as

we increase the size of the donation box (mostly because

the larger it is, the longer it takes for the agents to fill it).

Thus, the donation box reduces inequality within the sys-

tem, with the most extreme case being in the high benefi-

cence environment. In summary, we observe that even

though both agents manage to survive in all three benefi-

cence scenarios, there are still significant differences in

inequality in the three ethical scenarios.

To conclude this section, we illustrate in Fig. 4 the

evolution of apples obtained in a single run in all four

environments. This way we can get a better understanding

of the policies reached in the equilibria, and stress the fact

14 Given g the gini ratio of a population of n agents, its unbiased

estimator [19] is gu ¼ g � n=ðn� 1Þ. Notice that for a population large

enough gu 	 g.
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that agents actually learn to behave differently within such

equilibria. As in Fig. 3, only the efficient Agent 2 survives

in the unethical environment (see Fig. 4a) because agents

only pursue their individual objectives. Conversely, when

learning in any of our ethical environments, this efficient

Agent 2 learns to donate to the donation box as soon as it

has guaranteed its own survival (see triangles pointing up

between time steps 121 and 190 in Fig. 4b, between 96 and

209 in Fig. 4c, and between 140 and 292 in Fig. 4d).

Thus, Agent 2 learns to display beneficence and helps

Agent 1 to survive, as the latter in turn learns to take apples

form the donation box (see triangles pointing down

between time steps 122 and 183 in Fig. 4b, between time

steps 97 and 181 in Fig. 4c, and between 118 and 197 in

Fig. 4d). However, these ‘‘giver-taker’’ roles are not fixed,

(a) Unethical environment M0
(no beneficence).

(b) Ethical environment M1∗
(low beneficence).

(c) Ethical environment M5∗
(medium beneficence).

(d) Ethical environment M15∗
(large beneficence).

Fig. 3 Number of apples (y-
axis) shown as mean ± std,
that both agents and the box

accumulate along time (x-axis)

in environments a M0, b M1
�, c

M5
�, and d M15

� . Horizontal
lines signal the survival

threshold (k ¼ 10) and donation

box capacity (c 2 f1; 5; 15g)

Table 3 All measures are taken

at the end of the simulations
Environment Agent 1 Agent 2 Donation box Survival rate (%) Gini ratio

Unethical M0 8:5
 2:1 34:5
 6:9 0:0
 0:0 40 0.6

Low beneficence M1
� 15:5
 3:6 27:5
 5:4 1:0
 0:0 100 0.28

Medium beneficence M5
� 15:1
 2:4 21:4
 4:3 5:0
 0:0 100 0.18

High beneficence M15
� 12:4
 1:8 14:6
 3:5 14:9
 0:2 100 0.08

For every environment, we include the gathered apples (shown as mean ± std) for both agents and the

donation box. Survival rate indicates the percentage of times both agents obtained enough apples for

survival. Gini ratio measures the inequality between the amount of apples that Agent 1 possesses at the end

in comparison with Agent 2
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as Agent 1 also learns to donate whenever the donation box

is not at its full capacity, and its survival is guaranteed (see

Agent 1 donations at time steps 220 and 267 in Fig. 4d).

6.4.3 An alternative to our ethical embedding

As previously mentioned, our ethical embedding process

consists of aggregating the two reward functions to create

an ethical single-objective environment wherein the agents

learn the best-ethical equilibrium (i.e. to behave ethically

whilst maximising their respective individual objectives).

Alternatively, we could place the learning agents

directly within the Ethical MOMG and expect them to

handle the two objectives themselves. This approach would

require the agents to use a multi-objective reinforcement

learning (MORL) algorithm such as independent lex [74], a

non-linear MORL that introduces a lexicographic ordering

between objectives. Thus, it can be applied to prioritise

fulfilling the ethical objective over the individual one.

Specifically, this algorithm extends Q-learning for multi-

objective environments to respect the ordering between the

different objectives.

In order to test this alternative, we have developed two

agents that learn within the Ethical MOMG M of the

Ethical Gathering game. Then, we performed two tests by

running lex for two cases: one where both agents prioritise

the ethical objective, and another one where agents pri-

oritise to the individual objective. As Fig. 5a shows, when

the ethical objective is prioritised, the algorithm converges

to an Ethical equilibrium. Similarly to the equilibrium

learned in the ethical environment (Fig. 3c), results show

how both agents always survive, and the donation box is

filled to its maximum capacity. However, the equilibrium

learnt with lex prioritising the ethical objective underper-

forms with respect to the individual objective (on average,

the efficient Agent 2 obtains 5 apples less than when

applying scalarised Q-learning (Fig. 3c)). Such a result was

expected because, in both cases, we are applying a single-

agent algorithm (lex) to a multi-agent environment,

wherein there are no theoretical guarantees that agents will

learn a Nash equilibrium, which could lead agents to a

(a) Unethical environment M0
(no beneficence).

(b) Ethical environment M1∗
(low beneficence).

(c) Ethical environment M5∗
(medium beneficence).

(d) Ethical environment M15∗
(large beneficence).

Fig. 4 Evolution of the number

of apples held by each agent and

the number of apples in the

donation box in 400-timestep

simulations for the four

different environments. A

triangle with a black edge

pointing upwards represents a

donation to the box whereas

pointing downwards represents

a taking from the box.

Triangles’ colours match

agents’ colours
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suboptimal solution. In any case, agents indeed learn to

behave ethically (but not best-ethically).

Meanwhile, when the learning agents prioritise their

respective individual objectives, Fig. 5b shows that the

algorithm converges to a joint policy where only the effi-

cient Agent 2 survives (like in the unethical environment),

also as expected. This result implies that with this joint

policy, agents do not use the donation box, making it

impossible for the inefficient Agent 1 to survive, as shown

by Fig. 5b.

Recall that there is no guarantee that learning agents in a

multi-objective environment learn to behave ethically

when employing a MORL algorithm such as lex, as

explained in Sect. 3.1. Indeed, when using lex, the learning

agents can either behave ethically (Fig. 5a) or not

(Fig. 5b), depending on whether they prioritise the ethical

objective or not. However, the environment designer has

no guarantees that the latter will occur. This is not the case

with our algorithm. In the resulting single-objective ethical

environment, the environment designer knows that learning

an ethical behaviour is guaranteed because it is a dominant

equilibrium. For those reasons, we advocate for our more

generic approach of designing an ethical environment that

incentivises the agents to behave ethically, independently

of their learning algorithms.

6.4.4 Source code

The source code for our work is available at https://github.

com/Lenmaz/Ethical-Gathering. Our algorithms and our

Ethical Gathering Game have been implemented from

scratch on top of the Gathering Game Python implemen-

tation by Santiago Cuervo in https://github.com/tiago

Cuervo/CommonsGame, which has an MIT License

providing permission for modification, distribution, and

private use.

All our experiments were performed on a machine with

a 12-core 3.70GHz CPU and 64GB RAM. Computing the

solution weight vector on each environment required one

hour of computation time, whilst training with Q-learning

the agents required 24 h per ethical environment.

7 Related work

As mentioned in the introduction, the AI literature on value

alignment is divided between two different communities:

the AI Safety community [5, 41] and the Machine Ethics

community [58, 79].

In AI Safety, the focus is on ensuring that the agent is

not harmful to humans or to itself [5]. The general

approach is to constrain [17, 25] the agent to guarantee that

it performs its intended objective without negative conse-

quences. More in detail, they tackle topics such as reducing

the side effects of the agent [38, 62], minimising its impact

on the environment [41, 74], or directly creating a shield to

protect the agent or others from unsafe behaviours [4, 22].

Alternatively, the objective of Machine Ethics is to

develop agents that are beneficial to humans [59]. This of

course arises the extra question about what is beneficial

from a computational point of view [24, 69]. There is an

effort on deciding and studying the moral values that an

agent should align with [43, 64], or how to incorporate the

moral theories studied by ethicists into the agent decision

making process [48, 71]. Since there is still a lack of

consensus on such topics, an alternative agnostic approach

has emerged that can work under moral uncertainty [21].

Similarly, in our work we do not focus on which are the

moral values that an agent ought to align with. Instead, we

provide a formal definition of the structure of a moral

value, so that we can computationally handle it.

Related with the divide between explicitly defining what

is ethical or not, the different approaches for implementing

ethical behaviour are divided between top-down, bottom-

up and hybrid, as surveyed in [3, 72]. In brief, top-down

approaches focus on formalising ethical knowledge to

(a) Agents that learnt with lex prioritising
the ethical objective.

(b) Agents that learnt with lex prioritising
the individual objective.

Fig. 5 Number of apples (y-
axis) shown as mean ± std,
that both agents and the box

accumulate along time (x-axis)
in the Ethical MOMG after

training with multi-objective lex
algorithm. Horizontal lines

signal the survival threshold

(k ¼ 10) and donation box

capacity (c ¼ 5)
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encode it directly into the agent’s behaviour, whereas

bottom-up approaches resort to the agent learning the

ethical knowledge by itself. Hybrid approaches combine

bottom-up and top-down approaches.

Some top-down proposals on formalising moral values

include the work of Sierra et al. [64], in which values are

formalised as preferences, and also the work of Mercuur

et al. [47], in which values and norms are formalised as two

distinct concepts, where values serve as a static component

in agent behaviour, whereas norms serve as a dynamic

component. There has also been studies about the formal

relationship between norms and values by Hansson et al. in

[30]. In other approaches, such as the work of Liscio et al.

[43], they consider that values are context-specific, simi-

larly to how in our approach an action is either good or bad

depending on the current environment state. Other top-

down proposals aim at formalising moral theories in terms

of Markov Decision Processes. This is the case of Nashed

et al. [48, 71], in which they modify the decision processes

of the agents with an additional constraint that enforces

compliance with an ethical theory. Solving the problem

produces behaviour that is guaranteed to comply with the

constraints of the chosen ethical theory (act utilitarianism,

Kantianism, etc, for a brief explanation of each ethical

theory see [7]). In general, the contributions to formalising

moral values and moral theories is a clear contribution to

the value alignment area, since the top-down approaches

typically guarantee that an agent following them will

behave ethically. However, they are computationally costly

or even intractable in the worst cases. For that reason it is

widely accepted that pure top-down approaches cannot

deal with the whole value alignment problem, as explained

by Arnold et al. in [6].

Regarding bottom-up approaches, they almost exclu-

sively focus on reinforcement learning for teaching moral

values to agents, following the proposed approaches of

Russell, Soares and Fallenstein, among others [59, 66]. In

particular, inverse reinforcement learning (IRL) [1] has

been proposed as a viable approach for solving the value

alignment problem. Inverse reinforcement learning deals

with the opposite problem of reinforcement learning: to

learn a reward function from a policy. Hence, applying

IRL, the agent would be able to infer the values of humans

by observing their behaviour. Examples of the use of IRL

for the value alignment problem include [27, 51, 54].

One of the first criticisms that IRL received about

tackling the value alignment problem was expressed by

Arnold et al. in [6]. The authors claim that IRL cannot infer

that there are certain norms that the agent needs to follow.

Arnold et al. propose instead to combine the strength of RL

and logical representations of norms as a hybrid approach.

Following the proposal of Arnold et al., an agent would

learn to maximise a reward function while satisfying some

norms at the same time. While we consider this approach

related to ours, we differ in that we are capable of also

integrating norms directly into the agent’s ethical reward

function as the normative reward component, thus using an

approach completely integrated in RL.

Another major criticism of the majority of bottom-up

approaches consider the problem of reward specification as

equivalent to the whole value alignment problem. This has

only recently started to be considered as a two-step process

(reward specification and ethical embedding) that must

take into account that the agent will have its own objectives

(for instance, in [9, 51, 78]). This way, the learning envi-

ronment of the agent is modelled as a multi-objective one.

All of these approaches consider a linear combination of

rewards for the ethical embedding similarly to our

approach. However, none of them consider the problem of

how to guarantee that such linear combination actually

incentivises the agent to behave ethically. It is left to the

environment designer to hand-tune rewards.

The literature in AI Safety has recently started to answer

these questions by providing non-linear approaches for

tackling the multi-objective learning environment of the

agent [63, 74]. In both the works of Saisubraminan et al.

and Vamplew et al., they incorporate a lexicographic

ordering between the objectives of the agents with slack.15

A lexicographic ordering guarantees that the agent will

learn to behave ethically (if so demands the ordering), but

the problem of this approach is that it complicates the

learning process of the agent compared with a linear

approach since it is not possible to reduce it to a single-

objective process.

An alternative approach presented by Saisubramanian

et al. in [63] trying to tackle the drawbacks of these non-

linear approaches consist in reconfiguring the agent’s states

so the agent is more capable of avoiding causing negative

side effects. Similarly to our approach, they consider that

the work of the environment designer has a cost, and thus

they aim at finding the minimal required changes to the

environment to guarantee a safe behaviour. Their approach

is promising, but modifying the states of an environment

becomes progressively harder for more complex environ-

ments. Furthermore, as an AI Safety approach, they are

only concerned on guaranteeing that the agent does not

perform harmful (blameworthy) actions. In our approach

we consider such problem and also the problem of guar-

anteeing that it performs beneficial (praiseworthy) actions.

Finally, we should also consider multi-agent approaches

in which the objective is to guarantee cooperation (as a

very broad term) in the multi-agent system, such as

[34, 46, 52]. In all three cases the approach is to give

15 The slack denotes the maximum deviation from an optimal policy

with respect to the agent’s primary objective that is allowed.
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incentives to the agents to solve a social dilemma (such as

the gathering game) by means of altering the agent’s utility

functions so that they also care about the rest of the agents.

This is in contrast to our approach, in which each agent can

learn an ethical behaviour independently of the others.

8 Conclusions and future work

The literature in value alignment has largely focused on

aligning a single agent with a moral value, and with the

exception of [55], disregarding guarantees on an agent’s

ethical learning. Here we have tackled the open problem of

building an ethical environment for multiple agents that

guarantees that all agents in the system learn to behave

ethically while pursuing their individual objectives. Our

novel contributions are founded in the framework of Multi-

Objective Markov Games (MOMGs). First, we characterise

a family of MOMGs, the so-called ethical MOMGs, for

which we formally guarantee the joint learning of ethical

equilibria. For such family of MOMGs, we specify the

process for building an ethical environment with a so-

called multi-agent ethical embedding (MAEE) process.

Such embedding process transforms a multi-objective

learning environment into a scalarised ethical environment.

In the resulting ethical environment, agents are guaranteed

to learn an ethical equilibrium.

Interestingly, our MAEE approach for multiple agents

generalises that for a single agent in [55]. We illustrate our

proposal with the Ethical Gathering Game and solve it

with our MAEE process. We empirically show that in the

designed ethical environment, agents compensate their

social inequalities by learning when to donate to or take

from the donation box, in alignment with the value of

beneficence. Nevertheless, we would like to remark that the

main contributions of our paper are theoretical and not

empirical. We perform an empirical evaluation to illustrate

and corroborate the theoretical guarantees provided.

It is important to remark that the designed ethical

environment by our MAEE process will be ethical only if

the appropriate ethical knowledge has been provided. If a

malicious environment designer provides an incorrect

ethical reward specification, agents will aim at maximising

it as if it actually was morally good knowledge. Thus, if

this process was to be deployed in a real-world application,

an Ethics expert should oversee the design of the ethical

environment. Our theoretical results tell the ethical weight

necessary for behaving ethically as specified by the ethical

reward function. However, the MAEE process has no

saying in if it was a correct specification or not.

As future work, we plan to develop methods for testing

if an MOMG has ethically-dominant equilibria or not to

help assess whether and Ethical MOMG is solvable. This is

a challenging problem since testing the existence of dom-

inant equilibria in Markov Games is still an open problem

[80]. Also, we aim at extending our empirical study of the

MAEE process for environments with more than two

agents.
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