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Abstract

Conditionals play a key role in different areas of logic
and probabilistic reasoning, and they have been stud-
ied and formalised from different angles. In this paper
we focus on the de Finetti’s notion of conditional as a
three-valued object, with betting-based semantics, and
its related approach as random quantity as mainly de-
veloped by two of the authors. Compound conditionals
have been studied in the literature, but not in full gen-
erality. In this paper we provide a natural procedure
to explicitly attach conditional random quantities to
arbitrary compound conditionals that also allows us to
compute their previsions. By studying the properties
of these random quantities, we show that, in fact, the
set of compound conditionals can be endowed with a
Boolean algebraic structure. In doing so, we pave the
way to build a bridge between the long standing tra-
dition of three-valued conditionals and a more recent
proposal of looking at conditionals as elements from
suitable Boolean algebras.

1 Introduction
Conditional expressions are pivotal in representing
knowledge and reasoning abilities of intelligent agents.
Conditional reasoning features in a wide range of ar-
eas spanning non-monotonic reasoning (Adams 1975;
Dubois and Prade 1994; Benferhat, Dubois, and Prade
1997; Kern-Isberner 2001; Gilio 2002; Gilio and San-
filippo 2013b; Beierle et al. 2018), causal inference
(Halpern 2016; van Rooij and Schulz 2019), and more
generally reasoning under uncertainty (Halpern 2003;
Coletti and Scozzafava 2002; Pfeifer and Sanfilippo
2017; Sanfilippo et al. 2018) or conditional preferences
(Ghirardato 2002; Vantaggi 2010; Coletti, Petturiti,
and Vantaggi 2019). Bruno de Finetti was one of the
first who put forward an analysis of conditionals beyond
the realm of conditional probability theory arguing that
they cannot be described within the bounds of classical
logic (de Finetti 1936; 1937). He expressed this by re-
ferring to them as trievents: a conditional, denoted as
pa|bq, is a basic object to be read “a given b” that turns
out to be true if both a and b are true, false if a is false
and b is true, and void if b is false.

The vast literature on conditionals also includes
the study of compound conditionals, that is to say,

those expressions obtained by combining basic condi-
tionals like pa|bq by usual logical operations of “and”,
“or”, “negation” and so forth, see, e.g., (Schay 1968;
Calabrese 1987; McGee 1989; Goodman, Nguyen, and
Walker 1991; Jeffrey 1991; Edgington 1995; Milne 1997;
Nguyen and Walker 1994; Stalnaker and Jeffrey 1994;
Kaufmann 2009; Ciucci and Dubois 2013).

In this line, and based on de Finetti’s original con-
ception, (Gilio and Sanfilippo 2013a; 2014; 2019; 2020;
2021a; 2021b) propose and develop an approach to in-
terpret both basic and compound conditionals as ran-
dom quantities. This approach has been proved to al-
low for a suitable numerical representation of condition-
als and some families of compound conditional expres-
sions. Indeed, as we will recall in Section 2, starting
from trivents pa|bq regarded as random quantities tak-
ing values in a three-element set t0, 1, xu, where x is
a real value in r0, 1s representing a conditional proba-
bility, one can extend such representation also to cover
more complex conditional formulas.

An alternative, more logically-oriented approach to
conditionals has been put forward in e.g. (van Fraassen
1976) or (Goodman and Nguyen 1994)’s Conditional
Event algebras, and more recently in (Flaminio, Godo,
and Hosni 2020) in a finitary context. These papers for-
malise conditional expressions in an algebraic setting,
and therefore provide a symbolic representation of them.
In this approach, as it is common in logico-algebraic
representations, neither basic expressions pa|bq nor com-
pound conditional formulas necessarily have a numeri-
cal counterpart, as their interpretation remains at the
symbolic level. However, this does not forbid, as shown
in (Flaminio, Godo, and Hosni 2020), to consider e.g. a
fully compatible probabilistic layer on top of it.

In the present paper we will put forward an analysis
that takes inspiration from both of the above settings
and proposes a numerical representation of condition-
als that, in addition, also allows for a logico-symbolic
representation. In particular, we will:

• present a natural and uniform procedure to interpret
compound conditionals as random quantities;

• investigate the numerical and logical properties of
such a representation for compound conditionals via



their associated random quantities; and

• prove that, at the logical level, the present approach,
leads to the same results of (Flaminio, Godo, and
Hosni 2020), where the authors showed that com-
pound symbolic conditionals can be endowed with a
Boolean algebra structure.

Let us further remark that the apparent contradiction
between the perspective that looks at three-valued con-
ditionals as numerical random quantities as done, e.g.,
in (Gilio and Sanfilippo 2014; 2021a), and the Boolean
algebraic perspective on conditionals used in (Flaminio,
Godo, and Hosni 2020) to reason about them, actu-
ally dissolves once we precisely set at which level the
numerical and the symbolic representation intervene.
Proofs of main results can be found in the Arxiv ver-
sion (Flaminio et al. 2022).

The present paper is organized as follows. In the
next Section 2 we will recall in some more details the
original approach of (de Finetti 1936) (Subsection 2.1)
and the one that followed of (Gilio and Sanfilippo 2014)
(Subsection 2.2). The interpretation of compound con-
ditionals in terms of conditional random quantities will
be the subject of Section 3. There we will also provide
examples in order for our basic construction to be clear.
In Section 4 we will then prove numerical and also log-
ical properties of the random quantities that represent
compound conditionals, and in Section 5 we will ex-
amine some probabilistic aspects. The comparison be-
tween the algebras arising from the random quantities
studied here and the Boolean algebras of conditionals
of (Flaminio, Godo, and Hosni 2020) will be the topic
of Section 6, where we prove that they are indeed iso-
morphic. In the last Section 7 we will gather some con-
clusions and remarks about future work on this subject.

2 Some preliminary comments on
conjoined conditionals

In this section, in order to better understand the for-
malism and results of this paper, we recall some notions
given in the approach by Gilio-Sanfilippo, and their re-
lation with the notions and results given here.

We will denote here events by capital letters, such as
A,B,H,K, . . .. Moreover, we denote random quantities
by capital letters, such as X,Y, Z . . .. In particular, XA

will denote the indicator function of an event A.

2.1 The conditional prevision in the
approach of de Finetti

Given a random quantity Z and an event H ‰ K, in
the approach of de Finetti (1935) the conditional previ-
sion PpZ|Hq can be assessed by applying the following
conditional bet:

1) you are asked to assess the value z “ PpZ|Hq, by
knowing that if H is true then the bet is in effect;

2) if the bet has effect, then you pay z and you receive
the random amount Z; otherwise, if H is false, the
bet is null;

3) the checking of coherence for the assessment z “
PpZ|Hq is made by only considering the cases where
the bet has effect.

We observe that for the random quantity Z¨XH`zXĎH ,
by linearity of the prevision, it holds that

PpZ¨XH ` zXĎH |Hq “ PpZ¨XH |Hq ` zP p sH|Hq “
“ PpZ|Hq ` z ¨ 0 “ PpZ|Hq.

On the other hand,

PpZ¨XH ` zXĎHq “ PpZ¨XHq ` zP p sHq “
“ PpZ|HqP pHq ` zP p sHq “ zP pHq ` zP p sHq “ z.

In other words, if PpZ|Hq “ z, we have the following
equalities:

PpZ¨XH ` zXĎHq “ PpZ¨XH ` zXĎH |Hq “ PpZ|Hq “ z.
(1)

Now, consider the random quantity Z¨XH`yXĎH , under
the assumptions that:

(i) y “ PpZ¨XH ` yXĎHq;

(ii) in order to check the coherence of the assessment y,
we discard the cases where you receive back the paid
amount y (whatever y be), that is we discard the case
where H is false (bet called off).

Of course, y “ z satisfies both piq and piiq.

Question: is it coherent to assess y ‰ z?

We show below that the answer is NO.
Indeed, if we make a bet on the random quantity

pZ¨XH ` zXĎHq ´ pZ¨XH ` yXĎHq “ pz ´ yqXĎH ,

we should agree to pay z ´ y by receiving pz ´ yqX
ĎH P

t0, z ´ yu. As when H is false we receive back the paid
amount z ´ y (whatever z ´ y be), this case must be
discarded for checking the coherence of the assessment
z ´ y. Then, we should pay z ´ y by knowing that
(when the bet is not called off) we receive 0. Therefore,
by coherence, z ´ y “ 0, that is y “ z “ PpZ|Hq.

In other words, to assess the conditional prevision
PpZ|Hq is equivalent to assess the prevision PpZ¨XH `

zX
ĎHq. Thus, the conditional random quantity Z|H can

be defined as

Z|H “ ZXH ` zXĎH , where z “ PpZXH ` zXĎHq. (2)

In this way we can look at z both as the conditional
prevision PpZ|Hq à la de Finetti, and as the prevision
of the conditional random quantity Z|H “ ZXH`zXĎH .
In particular, given two events A and H ‰ H, if x “
PpXAH ` xXĎHq, then x “ P pA|Hq and hence

XA|H “ XAH ` P pA|HqXĎH . (3)

2.2 The conjunction in the approach by
Gilio & Sanfilippo

We recall that in the approach by Gilio and Sanfilippo
the compound conditionals, like conjunctions and dis-
junctions, are defined as conditional random quanti-
ties, in the setting of coherence, see e.g. (Gilio and



Sanfilippo 2014; 2019; 2021b). In this section, in or-
der to make explicit the numerical aspects, we recall
these notions by using the notations of the current pa-
per. Then, the indicator of an event A, or a conditional
event A|H is denoted (not by the same symbol, but) by
XA, or XpA|Hq, respectively. Likewise, the conjunction
pA|Hq^ pB|Kq is denoted by XpA|Hq^pB|Kq, and so on.

In the setting of coherence, given a probability as-
sessment P pA|Hq “ x, P pB|Kq “ y, the conjunction of
A|H and B|K is defined as

XpA|Hq^pB|Kq “

$

’

’

’

&

’

’

’

%

1, if AHBK is true,
0, if sAH_ sBK is true,
x, if sHBK is true,
y, if AH sK is true,
z, if sH sK is true,

(4)

where z is the prevision of XpA|Hq^pB|Kq, which (in
the framework of the betting scheme) is the amount
to be paid in order to receive the random amount
XpA|Hq^pB|Kq. We observe that

XpA|Hq^pB|Kq “ XAHBK`xXĎHBK`yXAHĎK`zXĎHĎK ,
(5)

where z “ PpXAHBK ` xX
ĎHBK ` yXAHĎK ` zX

ĎHĎKq.
Then, by applying (2), where H is replaced by H_K
and Z is replaced by XAHBK ` xXĎHBK ` yXAHĎK , we
have
Z ¨XH_K “ pXAHBK ` xXĎHBK ` yXAHĎKqXH_K “

“ XAHBK ` xXĎHBK ` yXAHĎK ,

and it follows that
XAHBK ` xXĎHBK ` yXAHĎK ` zXĎHĎK “

“ pXAHBK ` xXĎHBK ` yXAHĎKq|pH_Kq.

Hence, from (5) we obtain

XpA|Hq^pB|Kq “ pXAHBK`xXĎHBK`yXAHĎKq|pH_Kq,

with
z “ PpXAHBK ` xXĎHBK ` yXAHĎKq|H_Kq “
“ P pAHBK|H_Kq ` xP p sHBK|H_Kq `
` yP pAH sK|H_Kq.

(6)

We observe that, if P pH _Kq ą 0,

z “
P pAHBKq ` xP p sHBKq ` yP pAH sKq

P pH _Kq
,

which is the well known formula given in (Kaufmann
2009) and in (McGee 1989).
In addition, by observing that

XpAHBK|H_Kq “ XAHBK ` P pAHBK|H_KqXĎHĎK ,
xXpĎHBK|H_Kq “ xX

ĎHBK ` xP p sHBK|H_KqX
ĎHĎK ,

yXpAHĎK|H_Kq “ yXAHĎK ` yP pAH sK|H_KqX
ĎHĎK ,

from (6) we obtain

XpAHBK|H_Kq ` xXpĎHBK|H_Kq ` yXpAHĎK|H_Kq

“ XAHBK ` xXĎHBK ` yXAHĎK ` zXĎHĎK .

Finally, XpA|Hq^pB|Kq coincides with the random quan-
tity XpAHBK|H_Kq ` xXpĎHBK|H_Kq ` yXpAHĎK|H_Kq .

In the next example we illustrate an application re-
lated to compound conditionals obtained when we con-
sider a double-bet in soccer betting.

Example 2.1. Consider two soccer matches: (1)
Barcelona–Real Madrid; (2) Juventus–Napoli. For each
(uncancelled) match the possible outcomes are: Home
win, Draw, and Away win. Let us consider two sin-
gle bets on the events “Barcelona wins” and “Juven-
tus draws”. In a single bet, if a match is cancelled
your stake will be refunded (the bet is called off).
Then, actually, we have to consider two conditional
bets: “Barcelona wins, given that match 1 is not can-
celled” and “Juventus draws, given that match 2 is not
cancelled”. Define the events A ““Barcelona wins”,
B ““Juventus draws”, H “ “the match 1 is not can-
celled”, and K “ “the match 2 is not cancelled”. In
the bet on A|H, with P pA|Hq “ x, you pay r and
you receive rQ1XAH ` rX

ĎH , where Q1 “
1
x . Simi-

larly, in the bet on B|K, with P pB|Kq “ y, you pay
r and you receive rQ2XBK ` rX

ĎK , where Q2 “
1
y . A

double-bet on “Barcelona wins and Juventus draws” is
a linked series of the two single bets, where the return
from one bet is automatically staked on the other bet.
More precisely, you pay r by receiving the return on
one bet, for instance rpQ1XAH ` X

ĎHq, which then is
staked on the other bet, by receiving the global return
rpQ1XAH ` X

ĎHqpQ2XBK ` X
ĎKq “ rQ1Q2XAHBK `

rQ2XĎHBK`rQ1XAHĎK`rXĎHĎK . Notice that, if a match
is cancelled, the bet will revert to a single bet on the
remaining match, and if both matches are cancelled the
double-bet is void and your stake will be refunded. In
the particular case where r “ 1

Q1Q2
“ xy, it holds that

rQ1Q2 “ 1, rQ2 “ x, and rQ1 “ y; then, the random
amount you receive becomes

XAHBK ` xXĎHBK ` yXAHĎK ` xyXĎHĎK ,

which, from (5), coincides with XpA|Hq^pB|Kq, where
z “ xy. Then, the double-bet is a bet on the conjoined
conditional pA|Hq ^ pB|Kq “ “(Barcelona wins, given
that match 1 is not cancelled) and (Juventus draws,
given that match 2 is not cancelled)”, where the previ-
sion of the conjunction coincides with P pA|HqP pB|Kq.

Notice that, under logical independence of the events
A,H,B,K, the assessment P pA|Hq “ x, P pB|Kq “ y
and PrXpA|Hq^pB|Kqs “ xy is coherent. Indeed, xy P
rz1, z2s, where z1 “ maxtx`y´1, 0u and z2 “ mintx, yu
are the tightest lower and upper bounds for the coher-
ent extensions z “ PrXpA|Hq^pB|Kqs of the assessment
px, yq (Gilio and Sanfilippo 2014, Theorem 7). Likewise
double-bets, multiple-bets can be formalized by exploit-
ing the notion of conjunction of n conditional events.

2.3 Relation with the present approach

For notational convenience, in the rest of the paper we
will use lower case letters for events involved in (com-
pound) conditionals; hence, for instance, we will de-
note by pa|bq a conditional event and by pa|bq ^ pc|dq
the conjunction of pa|bq and pc|dq. Moreover, in order
to distinguish the logical aspects from the numerical
ones, with each compound conditional t we will asso-
ciate a suitable random quantity Xt, whose numerical



values are the conditional previsions of some interme-
diate objects, called reducts. In particular, with the
conjunction pa|bq ^ pc|dq we will associate a random
quantity Xpa|bq^pc|dq, whose numerical values are con-
ditional previsions associated with the reducts deter-
mined by the following partition which corresponds to
the one in (4): tabcd , sab _ scd , sbcd , absd , scsdu . As
we will see more in general later, the reducts associ-
ated with the elements of the partition above are de-
noted by 1 , 0 , pa|bq , pc|dq , pa|bq ^ pc|dq , respectively.
From them we obtain the respective numerical values
1, 0, x, y, z of Xpa|bq^pc|dq, which are interpreted by the
following conditional previsions:

1 “ Pp1|Ωq , 0 “ Pp0|Ωq , x “ PpXpa|bq|bq ,
y “ PpXpc|dq|dq, z “ PrXpa|bq^pc|dq|pc_ dqs .

We observe that, based on (2), it could be verified that

x “ PpXpa|bq|bq “ P pa|bq , y “ PpXpc|dq|dq “ P pc|dq,
z “ PrXpa|bq^pc|dq|pc_ dqs “ PrXpa|bq^pc|dqs.

Thus, Xpa|bq^pc|dq is nothing else than the conjunction
between the conditional events pa|bq and pc|dq defined in
(4). We remark that, by this approach, each compound
conditional t is not explicitly defined, but we operate
on it by means of the associated random quantity Xt.
Notice that, given a probability assessment px1, . . . , xnq
on a family tpa1|b1q, . . . , pan|bnqu, where xi “

P pai|biq, the possible values of the random vec-
tor pXpa1|b1q, . . . , Xpan|bnqq coincide with the so-called
points Qh’s. By these points a geometrical approach
for checking coherence and for propagation can be de-
veloped (Gilio and Sanfilippo 2020; 2021b).

3 General compound conditionals as
conditional random quantities

From now on we will be considering a fix finite Boolean
algebra of ordinary events A “ pA,^,_, ,K,Jq. For
the sake of a lighter notation, we will also use ab for
the conjunction a^ b of events a and b, ā for  a of the
event a, while we will keep denoting the disjunction of
a and b by a_ b.

In this setting, the set of the atoms atpAq of the
algebra of events A, can be identified with the set Ω
of interpretations for A, i.e. the set of Boolean algebra
homomorphisms w : A Ñ t0, 1u. Indeed, we will say
that an event a P A is true (resp. false) under an
interpretation (or possible world) w P Ω when wpaq “ 1
(resp. wpaq “ 0), also denoted as w |ù a (resp. w * a).

As we anticipated in the previous section, condi-
tional events of the form “if a then b”, or “a given
b”, where a and b are events from A with b different
from K, will be denoted by pairs pa|bq. We will also
let A|A1 “ tpa|bq : a P A, b P A1u, where A1 “ AztKu,
be the set of all conditionals that can be built from
A, that will be also called basic conditionals. Com-
pound conditionals, then, are combinations of basic ones
by operations of negation, conjunction and disjunction,
that we will keep denoting them as  ,^ and _ without

danger of confusion. Denote by TpAq the term alge-
bra of type p^,_, ,K,Jq over the set A|A1, so that
its support TpAq is the set of arbitrary terms gener-
ated from A|A1 (taken as variables) over the signa-
ture p ,^,_,K,Jq. For instance, if a, c, e P A and
b, d, f P A1, then pa|bq^ pc|dq or pa|bq_ ppc|dq^ pe|fqq
are examples of compound conditionals from TpAq. One
of our ultimate aims will be to present a Boolean alge-
bra obtained from TpAq that extends A.

In the rest of the section we will further extend the
random quantity-based approach to conditionals and
propose an unambiguous procedure to interpret any
compound conditional as a suitable random quantity.

For every t P TpAq, let us denote by Condptq “
tpa1|b1q, . . . , pan|bnqu the set of basic conditionals ap-
pearing in t, and by bptq “ b1_ . . ._ bn the disjunction
of the antecedents in Condptq.

Definition 3.1. Let w P Ω be a classical interpreta-
tion and let t P TpAq be a term. The w-reduct of t,
denoted tw, is the term in TpAq, called the w-reduct of
t, obtained from t by the following procedure:

(1) replace each pai|biq P Condptq by 1 if w |ù aibi, and
by 0 if w |ù āibi,

(2) apply the following reduction rules to subterms of t
until no further reduction is possible:

 1 :“ 0,  0 :“ 1,
r^1 “ 1^r :“ r, r^0 “ 0^r :“ 0,
r_1 “ 1_r :“ 1, r_0 “ 0_r :“ r,

where the

r denotes a subterm of t.

This symbolic reduction procedure has some inter-
esting properties. First of all, w |ù  bptq, then no
reduction is possible and hence tw “ t. Second, the
reduction commutes with the operation symbols, in the
following sense:

Lemma 3.2. For every terms t P TpAq and for every
w P Ω, the following hold: piq p tqw “  tw;
piiq pt^sqw “ tw^sw; piiiq pt_sqw “ tw_sw.

We will denote by Redptq “ ttw|w P Ω the set of w-
reducts of t, and by Red0ptq “ Redptqzttu, the set of its
proper w-reducts.

Example 3.3. Let t “ pa|bq^ppc|dq_ pe|fqq and let
w such that wpaq “ 1, wpbq “ 0, wpcq “ 0, wpdq “
0, wpeq “ 1, wpfq “ 1, i.e. w |ù ab̄c̄d̄ef . Then

tw “ pa|bq^ppc|dq_ 1q “ pa|bq^ppc|dq_0q “ pa|bq^pc|dq.

Let w1 such that w1 |ù abcd̄ef . Then

tw
1

“ 1^ppc|dq_ 1q “ pc|dq_0 “ pc|dq.

Further, if w2 is such that w2 |ù abcdef , then

tw
2

“ 1 ^ p1 _  1q “ 1 ^ p1 _ 0q “ 1. In
fact, one can check that Red0ptq “ t1, 0, pa|bq,
pc|dq, pe|fq, pa|bq^pc|dq, pa|bq^ pe|fq, pc|dq_ pe|fqu.

Now, we recall the notion of conditional prevision of
a random quantity.



Definition 3.4. Let X : Ω Ñ r0, 1s be a random quan-
tity, and let b P A be an event. Then, given a condi-
tional probability P : A ˆ A1 Ñ r0, 1s, the conditional
prevision of X given b is defined as:

PpX|bq “
ÿ

wPΩ

Xpwq ¨ P pw|bq “
ÿ

wPΩ:w|ùb

Xpwq ¨ P pw|bq.

The next definition presents a suitable way to asso-
ciate a random quantity to every compound conditional
t P TpAq.
Definition 3.5. Let A be a finite Boolean algebra and
P : AˆA1 Ñ r0, 1s a conditional probability on A. For
every term t in TpAq, we define the random quantity
Xt : Ω Ñ r0, 1s as follows: for every w P Ω,

Xtpwq :“ PpXtw |bpt
wqq.

If tw “ 1 or tw “ 0, we take bptwq “ J, and hence
X1 “ 1 or X0 “ 0 respectively. Thus, X1pwq “ 1 or
X0pwq “ 0.

Regarding this definition, some observations are in
order here:
piq As we have observed before, if w |ù sbptq then
tw “ t, and thus Xtpwq “ PpXt|bptqq, and hence
PpXt|sbptqq “ PpXt|bptqq.
piiq The above definition of Xt strongly depends on the
assumed conditional probability P of A ˆ A1. Actu-
ally, once we fix the initial conditional probability P on
AˆA1, all random quantities Xt are fully determined.
Indeed, the above Definition 3.5 is in fact a recursive
definition, since

PpXtw |bpt
wqq “

ÿ

w1

Xtwpw
1q ¨ P pw1|bptwqq,

and in turn, Xtwpw
1q “ PpXptwqw1 |bpptwqw

1

qq, and so

on, until reaching basic conditionals.
piiiq As a consequence, in general different conditional
probabilities P and P 1 on A will define different ran-
dom quantities Xt for the same term t.
pivq In the case t is of the form t “ pa|Jq, the associ-
ated random quantity Xt coincides with the indicator
function of a, that is, Xtpwq “ 1 whenever w |ù a, and
Xtpwq “ 0 otherwise. This shows that pa|Jq can indeed
be indentified with the plain event a. In this case, for
the sake of a lighter notation, we will write Xa instead
of Xpa|Jq.

Notation 1. From now on, for simplicity, for any t P
TpAq, we will write PcpXtq for PpXt|bptqq.

Displayed in another way, the random quantity Xt

can be specified as follows: let Red0ptq “ ttw|w P Ωu “
tt1, t2, ..., tku and let tE1, E2, ..., Eku be the correspond-
ing subsets of interpretations leading to a same element
of Red0ptq, then

Xtpwq “ PpXtw |bpt
wqq “

“

$

’

’

&

’

’

%

PcpXt1q, if w |ù E1

. . . , . . .
PcpXtkq, if w |ù Ek

PcpXtq, if w |ù  pE1 _ . . ._ Ekq

where the dashed line separates those cases where the
interpretation w belongs to bptq from those which do
not.

In this setting, it is clear that Xt is in fact the fol-
lowing linear combination of the indicator functions of
the events defining an associated partition:

Xt “ PcpXt1qXE1 ` . . .` PcpXtkqXEk
` PcpXtqXEk`1

where Ek`1 “ sE1 ^ . . .^ sEk “ bptq, and hence

PcpXtq “ PcpXt1q ¨ P pE1|bptqq ` . . .` PcpXtkq ¨ P pEk|bptqq.

We remark that, from (i) above and from (1), it holds
that

PpXtq “ PpXt ¨Xbptqq ` PpXt ¨Xsbptqq “

“ PpXt|bptqqP pbptqq ` PpXt|sbptqqP psbptqq “
“ PcpXtqP pbptqq ` PcpXtqP psbptqq “ PcpXtq.

(7)

In other words, formula (7) shows that the prevision of
Xt coincides with the conditional prevision PcpXtq.

We end this section by exemplifying the above defi-
nition of Xt for selected known cases of compound con-
ditionals t that will be helpful in next sections.

Example 3.6. Let t “ pa|bq. Then, by applying the
above definition, we get

tw “

$

&

%

1, if w |ù ab
0, if w |ù āb
pa|bq, if w |ù b̄

bptwq “

$

&

%

J, if w |ù ab
J, if w |ù āb
b, if w |ù b̄

and thus we have:

Xpa|bqpwq “ PpXtw |bpt
wqq “

“

$

&

%

PpX1|Jq “ 1, if w |ù ab
PpX0|Jq “ 0, if w |ù āb
PpXpa|bq|bq, if w |ù b̄

.

Now, since P pw|bq “ 0 whenever w |ù b̄, we have

PpXpa|bq|bq “
“ 1 ¨ P pab|bq ` 0 ¨ P pāb|bq ` PpXpa|bq|bq ¨ 0 “
“ P pab|bq “ P pa|bq.

Therefore we get the following well-known three-valued
representation of a conditional pa|bq:

Xpa|bqpwq “

$

&

%

1, if w |ù ab
0, if w |ù āb
P pa|bq, if w |ù b̄

.

Equivalently, in agreement with (3), Xpa|bq can be ex-
pressed as the following linear combination of the indi-
cator functions of the events ab and sb:

Xpa|bq “ 1Xab ` 0X
sab ` P pa|bqXsb “ Xab ` P pa|bqXsb.

Example 3.7. Now let t “  pa|bq, the negation of
pa|bq. Then, by applying the above definition, we get:

tw “

$

&

%

 1 :“ 0, if w |ù ab
 0 :“ 1, if w |ù āb
 pa|bq, if w |ù b̄

,



bptwq “

$

&

%

J, if w |ù ab
J, if w |ù āb
b, if w |ù b̄

,

and thus we have: X pa|bqpwq “

“ PpXtw |bpt
wqq “

$

&

%

0, if w |ù ab
1, if w |ù āb
PpX pa|bq|bq, if w |ù b̄

.

Now, since P pw|bq “ 0 whenever w |ù  b, we have

PpX pa|bq|bq “
“ 0 ¨ P pab|bq ` 1 ¨ P pāb|bq ` PpX pa|bq|bq ¨ 0
“ P pāb|bq “ P pā|bq “ 1´ P pa|bq.

Therefore the final expression for X pa|bq is

X pa|bqpwq “

$

&

%

0, if w |ù ab
1, if w |ù āb
1´ P pa|bq, if w |ù b̄

.

That is to say, X pa|bq “ 1´Xpa|bq “ Xpsa|bq.

Example 3.8. Let us examine again the case of a con-
junction of two conditionals t “ pa|bq^pc|dq from the
current perspective. Here we have bptq “ b_ d, and

Xtpwq “

$

’

’

’

’

’

&

’

’

’

’

’

%

1, if w |ù abcd
0, if w |ù pābq _ pc̄dq
Pcpa|bq, if w |ù b̄cd
Pcpc|dq, if w |ù abd̄

Pcppa|bq^pc|dqq, if w |ù b̄d̄

Now, we know that Pcpa|bq “ P pa|bq and Pcpc|dq “
P pc|dq. Then, using the above definition we get:

Pcppa|bq^pc|dqq “ PpXpa|bq^pc|dq|b_ dq
“ P pabcd|b_ dq ` P pa|bq ¨ P pb̄cd|b_ dq`
` P pc|dq ¨ P pabd̄|b_ dq,

that coincides, when P pb _ dq ą 0, with the formula
given in (McGee 1989; Kaufmann 2009).

Let us now consider two particular cases:

• First, consider the case a ď b “ c ď d. Then t “
pa|bq^pb|dq, bptq “ b_ d “ d, and moreover:
- abcd “ abd “ ad “ a
- pābq _ pc̄dq “ pābq _ pb̄dq “ pābdq _ pāb̄dq “ ād
- b̄cd “ b̄b “ K
- abd̄ “ ad̄ “ K
Hence, the above general definition reduces to:

Xpa|bq^pb|dqpwq “

$

&

%

1, if w |ù a
0, if w |ù ād
Pcppa|bq ^ pb|dqq, if w |ù d̄

where Pcppa|bq ^ pb|dqq “ 1 ¨ P pa|dq “ P pa|dq “
Pcppa|dqq and thus Xpa|bq^pb|dqpwq “ Xpa|dqpwq for all
w. Thus, from the numerical point of view, the com-
pound conditional pa|bq^pb|dq behaves as the basic
conditional pa|dq. See also (Gilio and Sanfilippo 2020,
formulas (55) and (56)) where it is also observed that
P pa|dq “ P pa|bqP pb|dq (compound probability theo-
rem).

• Consider now the case b “ d. Then t “ pa|bq ^
pc|bq and bptq “ b. In this case the above general
expression reduces to the following one:

Xtpwq “

$

&

%

1, if w |ù abc
0, if w |ù pā_ c̄qb “ acb
Pcppa|bq^pc|bqq, if w |ù b̄,

where Pcppa|bq^pc|bqq “ 1 ¨ P pabc|bq “ P pac|bq “
Pcppac|bqq, and therefore it is clear that
Xpa|bq^pc|bqpwq “ Xpa^c|bqpwq for all w. Thus,
in this case, we see that the compound condi-
tional pa|bq ^ pc|bq actually behaves like the basic
conditional pa^ c|bq.

Example 3.9. Finally, let us consider a more com-
plex compound conditional t “ pa|bq^ppc|dq_ pe|fqq.
Again, by the above definition, we get its associated
random quantity:

Xtpwq “

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

1, if w |ù abpcd_ ēbq
0, if w |ù āb_ c̄def
Pcppa|bqq, if w |ù b̄pcd_ ēfq
Pcppa|bq^pc|dqq, if w |ù b̄d̄ef
Pcppa|bq^ pe|fqq, if w |ù b̄c̄df̄
Pcppc|dqq, if w |ù abd̄ef
Pcp pe|fqq, if w |ù abc̄d
Pcppc|dq_ pe|fqq, if w |ù abd̄f̄

y, if w |ù b̄d̄f̄

where y “ Pcppa|bq^ppc|dq_ pe|fqqq, and for simplicity,
we have written Pcpsq for PcpXsq, i.e. for PpXs|bpsqq.

We end this section with the following remark on a
betting interpretation for compound conditionals t P
TpAq. A bet between a gambler and a bookmaker on
Xt is specified as follows:

• The gambler pays to the bookmaker: PcpXtq

• In a situation w P Ω, the gambler receives from the
bookmaker: Xtpwq “ PcpXtwq

Note that if w |ù  b then tw “ t, and thus PcpXtwq “

PcpXtq, i.e. what the gambler receives is what he has
payed, i.e. it represents the situation in which the bet
is called off. We observe that coherence requires that
the prevision of the random gain must be equal to zero.
Indeed, given t, Xt is specified as:

Xtpwq “

$

’

’

&

’

’

%

PcpXE1
q, if w |ù E1

. . . . . .
PcpXEk

q, if w |ù Ek

PcpXtq, if w |ù  pE1 _ . . ._ Ekq

.

In this setting, the balance of the betting for the book-
maker in a given situation w such that w |ù Ei is what
he receives, PpXtq, minus what he pays to the gambler,
Xt, that is:

Gpwq “ PpXtq ´Xtpwq “ PcpXtq ´ PcpXEiq.

Moreover, when w |ù sbptq, it holds that Gpwq “
PcpXtq´PcpXtq “ 0. Then, the prevision of the random



quantity G of the balance will be:

PpGq “
ř

wPΩGpwqP pw|bptqq “
řk
i“1pPcpXtq ´

PcpXEi
qqP pEi|bptqq “ PcpXtq ´ PcpXtq “ 0.

Remark 3.10. Example 2.1 can be generalized to com-
pound conditionals. For instance, we can construct a
bet on the disjunction t “ pa|bq _ pc|dq, or on the com-
pound t “ pa|bq _ pc|dq ^ pe|fq, and so on.

4 Properties of compound conditionals
In this section we show some key properties of the ran-
dom quantities associated to certain forms of compound
quantities that will allow us to show they can be en-
dowed somehow with a Boolean algebraic structure

We start by showing that if two compound condi-
tional terms t and t1 are such that bptq ” bpt1q, to check
whether they have the same associated random quan-
tity, it is enough to check whether the random quan-
tities take the same value over those worlds satisfying
the disjunction bptq. A related result is given in (Gilio
and Sanfilippo 2014, Theorem 4).

Lemma 4.1. Let t, t1 P TpAq such that bptq ” bpt1q and
Xtpwq “ Xt1pwq for each w P Ω such that w |ù bptq.
Then Xt “ Xt1 .

Proof. It is enough to show that Xtpwq “ Xt1pwq when
w |ù  bptq. Due to the fact that if w |ù  bptq then
Xtpwq “ PpXt|bptqq, this is equivalent to show that
PpXt|bptqq “ PpXt1 |bptqq. But these previsions only
depend on the values of Xt and Xt1 on w’s such that
w |ù bptq, and by hypothesis they coincide.

Clearly, if bptq ” bpt1q and tw “ t1w then Xtpwq “
PpXtw |bptqq “ PpXt1w |bptqq “ Xt1pwq. Hence we have
the following corollary.

Corollary 4.2. If bptq “ bpt1q and tw “ t1w for each
w P Ω such that w |ù bptq, then Xt “ Xt1 .

Proposition 4.3. Let t P TpAq and let s be a subterm
of t. Further let s1 P TpAq such that bpsq “ bps1q and
Xsw “ Xs1w for all w |ù bpsq, and let t1 be the term
obtained by uniformly replacing s by s1 in t. Then Xt “

Xt1 .

Proof. It follows from the recursive definition of Xt and
that, for any w P Ω, tw can be computed from the w-
reducts of its subterms (Lemma 3.2).

Next we show that the random quantities for com-
pound conditionals satisfy properties very familiar from
a Boolean algebraic perspective.

Proposition 4.4. For every t, s, r P TpAq the following
conditions hold:

1. Xt “ Xt^t; 2. Xt^s “ Xs^t;
3. Xt^ps^rq “ Xpt^sq^r; 4.Xt^ t “ 0;
5. X pt^sq “ X t_ s; 6. Xt^ps_rq “ Xpt^sq_pt^rq;
7. Xt_s “ Xt `Xs ´Xt^s;
8. X t “ 1´Xt and hence X  t “ Xt;
9. If a ď b, then Xpa|bq^pa|b_cq “ Xa|b_c

The proof of Proposition 4.4 is not included due
to lack of space, but we notice that items (1)-(8) are
proved in a similar way by induction on the complex-
ity of the terms involved, and where the base cases are
those only involving basic conditionals. Many of these
base cases are proved in previous examples.

Now we show that compound conditionals actually
form a Boolean algebra. In order to do it we first prop-
erly arrange the compound conditionals in equivalence
classes each of which contains terms from TpAq that
provides the same random quantity under any given
conditional probability.

More precisely, recalling observation (ii) after Def.
3.5, let us define the binary relation ” on TpAq as fol-
lows: for all t, s P TpAq, t ” s iff Xt “ Xs under any
conditional probability P on AˆA1.

It is immediate to check that ” is an equivalence
relation. Thus, let TpAq to be the quotient TpAq{”. If
we denote by rts the equivalence class of a generic term
t P TpAq under ”, define operations on TpAq as follows:
for all rts, rss P TpAq, rts^˚rss “ rs^ts, rts_˚rss “
rs_ts,  ˚rts “ r ts, 0 “ rpK|Jqs, 1 “ rpJ|Jqs.

By Proposition 4.3, the above operations are well de-
fined. Moreover, the following holds:

Theorem 4.5. For every finite Boolean algebra A,
the structure T pAq “ pTpAq{”,^˚,_˚, ˚, 0, 1q is a
Boolean algebra.

Proof. By Proposition 4.4, the operations ^˚,_˚, ˚

and constants 0, 1 satisfy all the required equations for
T pAq being a Boolean algebra.

Remark 4.6. Notice that, given rts and rss in T pAq,
rts ď rss in the lattice order of T pAq iff rts ^˚ rss “ rts
iff rt^ ss “ rts iff Xt^s “ Xt.

Next proposition shows that well-known properties
of conditionals also hold in the setting of the present
paper.

Proposition 4.7. The following properties hold in
T pAq:

piq rpa|aqs “ 1, piiq rpa|bq ^ pc|bqs “ rpa^ c|bqs,
piiiq r pa|bqs “ rpā|bqs, pivq rpa^ b|bqs “ rpa|bqs,
pvq rpa|bq ^ pb|cqs “ rpa|cqs, if a ď b ď c,
pviq if a ď b, then rpa|b_ cqs ď rpa|bqs for all c.

Proof. For each one of the equalities above, of the form
rts “ rss, we proved in previous examples, that Xt “

Xs. As for the last claim, apply Proposition 4.4 (9).
Then the claim follows by the definition of T pAq.

5 Probability of compound conditionals
Since T pAq is a Boolean algebra, we are allowed to
define probabilities on it. In this section we will show
that the previsions PpXtq’s of the random quantities
Xt’s determine in fact a probability on T pAq.
Definition 5.1. Given a conditional probability P :
A ˆ A1 Ñ r0, 1s, we define the mapping P˚ : TpAq Ñ



r0, 1s as follows: for every t P TpAq, P˚ptq “def PpXtq.
In other words, based on (7)

P˚ptq “ PpXtq “ PcpXtq “ PpXt|bptqq “
“

ř

wXtpwq ¨ P pw|bptqq “
ř

w PcpXtwq ¨ P pw|bptqq.

From the above definition, it is cleat that if t and t1

are terms such t ” t1, then P˚ptq “ P˚pt1q.

Proposition 5.2. Any given conditional probability P :
AˆA1 Ñ r0, 1s fully determines the probabilities P˚ptq
for all compound conditional t P TpAq.

Proof. Let t P TpAq such that Condptq “

tpa1|b1q, . . . , pan|bnqu. We have seen that P˚ppai|biqq “
P pai|biq. Suppose that for every s P Red0ptq, there is
a family of conditionals Cs Ď A ˆ A1 such that P˚psq
is of the form P˚psq “ fsptP pci|diq : pci|diq P Csuq for
some function fs. Then, by definition, we have

P˚ptq “ PpXtq “
ř

wPW PcpXtwq ¨ P pw|bptqq “
“

ř

wPW P˚ptwq ¨ P pw|bptqq “
“

ř

wPW ftwptP pc|dq : pc|dq P Ctwuq ¨ P pw|bptqq,

the latter expression clearly only depending on P .

Moreover, the following is a direct consequence of
Proposition 4.4.

Corollary 5.3. For every t, s, r P TpAq the following
conditions hold:

1. P˚ptq “ P˚pt^tq 2. P˚pt^sq “ P˚ps^tq
3. P˚pt^ps^rqq “ P˚ppt^sq^rq 4. P˚pt^ tq “ 0
5. P˚p pt^sqq “ P˚p t_ sq 6. P˚p tq “ 1´ P˚ptq
7. P˚ptq “ 1 if Xt “ 1 8. P˚ptq “ 0 if Xt “ 0
9. P˚pt_sq “ P˚ptq ` P˚psq ´ P˚pt^sq
10. P˚pt^ps_rqq “ P˚ppt^sq_pt^rqq.

Notice that the items 6,7,8, and 9 of the above corol-
lary together with the above remarked fact that t ” t1

implies P˚ptq “ P˚pt1q, show that P˚ naturally induces
a probability on the algebra T pAq that we will still de-
note by the same symbol.

Corollary 5.4. For every conditional probability P on
AˆA1 the map P˚ is a probability measure on T pAq.

Furthermore, as we have checked in Example 3.6,
for every basic conditional pa|bq we have P˚ppa|bqq “
P pa|bq, thus complying with the Equation (Edgington
1995), or Stalnaker’s hypothesis, see, e.g., (Douven and
Dietz 2011; Sanfilippo et al. 2020). The next example
shows how to compute the probability P˚ of a (more
complex) compound conditional.

Example 5.5. Continuing the above Example 3.9 for
t “ pa|bq^ppc|dq_ pe|fqq, we have bptq “ b _ d _ f
and using the above Definition 5.1 we get:

P˚ptq “ PpXtq “ PpXt|bptqq “ P pabcd_ ēfq|b_ d_ fq`
`P pa|bqP pb̄pcd_ ēfq|b_ d_ fq`
`P˚ppa|bq^pc|dqqP pb̄d̄ef |b_ d_ fq`
`P˚ppa|bq^ pe|fqqP pb̄c̄df̄ |b_ d_ fq`
`P pc|dqP pabd̄ef |b_ d_ fq`
` p1´ P pe|fqqP pabc̄d|b_ d_ fq`
`P˚ppc|dq_ pe|fqqP pabd̄f̄ |b_ d_ fq.

6 Boolean algebras of random variables
and Boolean algebras of conditionals

The above Theorem 4.5, tells us that the random quan-
tities that represent conditionals form a Boolean alge-
bra. Actually, in (Flaminio, Godo, and Hosni 2020), the
authors presented a way to construct Boolean algebras
of conditionals that also represent conditional state-
ments, although following a different line of thoughts.

For the sake of clarity, let us briefly recall how a
Boolean algebras of conditional CpAq is defined for ev-
ery Boolean algebra A. Consider the free Boolean al-
gebra FreepA|Aq generated by the set A|A of all pairs
pa, bq P A ˆ A such that b ‰ K, in the language
^,_, ,J˚. Every pair pa, bq P A|A will be henceforth
denoted by pa|bq. Then, one considers the following set
of basic requirements the algebra CpAq should satisfy:

(R1) For all b P A1, the conditional pb|bq will be the top
element of CpAq and p b|bq will be the bottom;

(R2) Given b P A1, the set of conditionals A|b “ tpa|bq :
a P Au will be the domain of a Boolean subalgebra of
CpAq, and in particular when b “ J, this subalgebra
will be isomorphic to A;

(R3) In a conditional pa|bq we can replace the conse-
quent a by a ^ b, that is, the conditionals pa|bq and
pa^ b|bq represent the same element of CpAq;
(R4) For all a P A and all b, c P A1, if a ď b ď c, then
the result of conjunctively combining the conditionals
pa|bq and pb|cq must yield the conditional pa|cq.

Notice that (R4) encodes a sort of restricted chaining of
conditionals and it is inspired by the chain rule of con-
ditional probabilities: P pa|bq¨P pb|cq “ P pa|cq whenever
a ď b ď c.

One then proceeds by considering the smallest con-
gruence relation ”C on FreepA|Aq satisfying:

(C1) pb|bq ”C J
˚, for all b P A1;

(C2) pa1|bq ^ pa2|bq ”C pa1 ^ a2|bq,
for all a1, a2 P A, b P A1;

(C3)  pa|bq ”C psa|bq, for all a P A, b P A1;

(C4) pa^ b|bq ”C pa|bq, for all a P A, b P A1;

(C5) pa|bq ^ pb|cq ”C pa|cq,
for all a P A, b, c P A1 such that a ď b ď c.

Note that (C1)-(C5) faithfully account for the require-
ments R1-R4 where, in particular, (C2) and (C3) ac-
count for R2. Finally, the algebra CpAq is formally
defined as follows.

Definition 6.1. For every Boolean algebra A, the
Boolean algebra of conditionals of A is the quotient
structure CpAq “ FreepA|Aq{”C

.

By definition, the algebra CpAq is finite whenever
so is A. In particular, if A is atomic with atoms
α1, . . . , αn, in (Flaminio, Godo, and Hosni 2020) it is
shown that the atoms of CpAq are all in the following
form: let xβ1, . . . , βn´1y be a sequence of pairwise dif-
ferent atoms of A. Then, pβ1|Jq^pβ2|β1q^pβn´1|β1^



. . . ^ βn´2q is an atom of CpAq and indeed all atoms
of CpAq have that form for some sequence of atoms of
A of length n ´ 1. For any such sequence xαy, we will
write ωxαy to denote its associated atom of CpAq.

For every sequence xαy, ωxαy clearly belongs to TpAq.
Thus it makes sense to look at these terms inside T pAq.
Theorem 6.2. For every finite Boolean algebra A with
atoms α1, . . . , αn, the set atpT pAqq of atoms of T pAq
coincides with the set trωxαys P T pAq : ωxαy is an atom
of CpAqu.

Proof. Direct inspection on the proofs of Proposition
4.3 and Theorem 4.4 from (Flaminio, Godo, and Hosni
2020) where the authors proved that atpCpAqq is the
set of atoms of CpAq, shows that the unique properties
of CpAq needed in their proofs are the basic properties
of Boolean algebras (in particular commutativity and
associativity of^ and distributivity), plus the following:

• If a ď b, then for all c, rpa|b_ cqs ď rpa|bqs (see part
(ii) in the proof of (Flaminio, Godo, and Hosni 2020,
Theorem 4.4));

• for all a ‰ K, rpa|aqs “ 1 and rpK|aqs “ 0 (see part
(b) in the proof of (Flaminio, Godo, and Hosni 2020,
Proposition 4.3));

• rpa|bqs “
Ž

αPatpAq:αďarpα|bqs; (see (a) in the proof of

(Flaminio, Godo, and Hosni 2020, Proposition 4.3)).

All these properties hold in T pAq, whence the same
proofs apply to this case.

Corollary 6.3. For every finite Boolean algebra A,
T pAq is isomorphic to CpAq.

Proof. Two Boolean algebras with the same cardinality
are isomorphic.

In (Flaminio, Godo, and Hosni 2020) it is proved that
any (unconditional) positive probability P on A canon-
ically extends to a positive probability µP on CpAq
such that for every basic conditional pa|bq, µP pa|bq “
P pa^ bq{P pbq.

We can finally apply the latter result and the above
Theorem 6.2 to show our final outcome, for which we
still need a previous lemma on the factorization of the
probability P˚ on the atoms of T pAq, that is in fact a
particular case of (Gilio and Sanfilippo 2020, Thm 18).

Lemma 6.4. Let A be a finite Boolean algebra with
atpAq “ tα1, . . . , αnu and let P be a conditional proba-
bility on AˆA1. Then,

P˚ppα1|Jq^pα2|Ďα1q^ . . .^pαn´1|αn´1 _ αnqq “
“ P pα1q ¨ P pα2|Ďα1q ¨ . . . ¨ P pαn´1|αn´1 _ αnq.

We observe that, if P is a positive probability on
A, for each basic conditional pa|bq, P˚pa|bq “ P pa ^
bq{P pbq “ µP pa|bq. Our last result shows that P˚ and
µP coincide on every compound conditional as well.

Theorem 6.5. Given a positive probability P on A
and any t P TpAq, P˚ptq “ µP ptq, once we identify the
elements of T pAq with those of CpAq.

Proof. By Lemma 6.4, P˚ coincides with µP on the
atoms of T pAq, and hence on the whole algebra.

7 Conclusions

In the present paper we have put forward an investiga-
tion on compound conditionals that, starting from the
original setting proposed by de Finetti, aims at repre-
senting them in terms of conditional random quantities.
Technically speaking, we start by a finite Boolean alge-
bra A of events and a (coherent) conditional probability
P on A ˆ A1, where A1 “ AztKu. Then, to each term
t written in the language having as variables basic con-
ditionals of the form pa|bq (for a P A and b P A1), we
first consider, for each interpretation w P Ω the reduct
tw of t, and then we associate to t a conditional ran-
dom quantity Xt : Ω Ñ r0, 1s, that assigns to each
w P Ω the value Xtpwq given by the conditional previ-
sion PpXtw |bpt

wqq.
By doing this, we have presented a natural and uni-

form procedure to interpret compound conditionals as
random quantities and we have investigated the nu-
merical and logical properties of such representation
for compound conditionals via their associated random
quantities. Our main contribution concerns the pos-
sibility of defining operations among conditionals by
an iterative procedure. Furthermore, we have proved
that these operations allow us to regard the set of those
numerical representations as a Boolean algebra T pAq.
This latter result provides in turn a numerical counter-
part of the construction explored in (Flaminio, Godo,
and Hosni 2020), where the authors showed that com-
pound symbolic conditionals, satisfying certain identi-
ties, can be endowed with a suitable Boolean algebra
structure CpAq. In particular, we have shown that the
two algebraic structures that arise from these numerical
and the symbolic representations of conditionals turn
out to be isomorphic. Moreover, any conditional prob-
ability P on A ˆ A1 extends in the same way to both
algebras T pAq and CpAq.

As for future work we plan to generalize Theorem 6.5
to the case in which P is a conditional probability on
A ˆ A1. Moreover, we aim at studying the extension
of the random quantity-based approach to compound
conditionals developed in this paper to deal with gen-
eral forms of iterated conditionals, see e.g. (Sanfilippo
et al. 2020; Gilio and Sanfilippo 2021c). Finally, we
plan to study possible applications of compound con-
ditionals to non-monotonic reasoning from conditional
bases and to conditional logics more in general, in the
line of possible interrelationships with different areas
as discussed in (Aucher et al. 2019). Another interest-
ing area of application of compound conditionals to be
further explored is the area of psychology of uncertain
reasoning (Elqayam et al. 2020).
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J., and Wilson, N., eds., Symbolic and Quantitative
Approaches to Reasoning with Uncertainty, ECSQARU
2021, volume 12897 of LNCS. Springer International
Publishing. 629–643.

Gilio, A. 2002. Probabilistic reasoning under coherence
in System P. Annals of Mathematics and Artificial In-
telligence 34:5–34.

Goodman, I. R., and Nguyen, H. T. 1994. A theory
of conditional information for probabilistic inference in
intelligent systems: II. product space approach. Inf.
Sci. 76(1-2):13–42.

Goodman, I. R.; Nguyen, H. T.; and Walker, E. A.
1991. Conditional Inference and Logic for Intelli-
gent Systems: A Theory of Measure-Free Conditioning.
North-Holland.

Halpern, J. Y. 2003. Reasoning about Uncertainty.
Cambridge, MA, USA: MIT Press.

Halpern, J. Y. 2016. Actual Causality. The MIT Press.

Jeffrey, R. 1991. Matter-of-Fact Conditionals. Proceed-
ings of the Aristotelian Society, Supplementary Volume
65:161–183.

Kaufmann, S. 2009. Conditionals right and left: Prob-
abilities for the whole family. Journal of Philosophical
Logic 38:1–53.



Kern-Isberner, G. 2001. Conditionals in Nonmonotonic
Reasoning and Belief Revision – Considering Condi-
tionals as Agents. Lecture Notes in Artificial Intelli-
gence, Springer.

McGee, V. 1989. Conditional probabilities and com-
pounds of conditionals. Philosophical Review 98(4):485–
541.

Milne, P. 1997. Bruno de Finetti and the Logic of
Conditional Events. British Journal for the Philosophy
of Science 48(2):195–232.

Nguyen, H. T., and Walker, E. A. 1994. A history
and introduction to the algebra of conditional events
and probability logic. IEEE Transactions on Systems,
Man, and Cybernetics 24(12):1671–1675.

Pfeifer, N., and Sanfilippo, G. 2017. Probabilis-
tic squares and hexagons of opposition under coher-
ence. International Journal of Approximate Reasoning
88:282–294.

Sanfilippo, G.; Pfeifer, N.; Over, D.; and Gilio, A. 2018.
Probabilistic inferences from conjoined to iterated con-
ditionals. International Journal of Approximate Rea-
soning 93(Supplement C):103 – 118.

Sanfilippo, G.; Gilio, A.; Over, D.; and Pfeifer, N.
2020. Probabilities of conditionals and previsions of
iterated conditionals. International Journal of Approx-
imate Reasoning 121:150 – 173.

Schay, G. 1968. An algebra of conditional events. Jour-
nal of Mathematical Analysis and Applications 24:334–
344.

Stalnaker, R., and Jeffrey, R. 1994. Conditionals as ran-
dom variables. In Eells, E., and Skyrms, B., eds., Prob-
ability and Conditionals: Belief Revision and Rational
Decision. New York, NY, USA: Cambridge University
Press. 31–46.

van Fraassen, B. 1976. Probabilities of condition-
als. Foundations of Probability Theory, Statistical In-
ference, and Statistical Theories of Science 1:261–308.
cited By 89.

van Rooij, R., and Schulz, K. 2019. Conditionals,
causality and conditional probability. Journal of Logic,
Language and Information 28(1):55–71.

Vantaggi, B. 2010. Incomplete preferences on condi-
tional random quantities: Representability by condi-
tional previsions. Math. Soc. Sci. 60(2):104–112.


