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Abstract. We propose a computational self-adapting mechanism that
facilitates agents to distributedly evolve their social behavior to reach
the best social conventions. Our approach borrows from the social con-
tagion phenomenon: social conventions are akin to infectious diseases
that spread themselves through members of the society. Furthermore,
we experimentally show that our mechanism helps a MAS to regulate
itself by searching and establishing (better) social conventions on a wide
range of interaction topologies and dynamic environments.

1 Introduction

Distributed mechanisms that regulate the behavior of autonomous agents in
multi-agent systems (MAS) have become necessary because centralized approaches
relying on global knowledge are not viable in open MAS. Furthermore, it is diffi-
cult for centralized approaches to cope with dynamic environments. We observe
that in actual-world societies, social behavior is self-regulated through social
conventions. These conventions emerge in a decentralized manner to balance
personal interests with respect to the society’s, so that each member can pursue
its individual goals without preventing other members to pursue theirs.

From a sociological point of view, conventions result when members of a
population adhere to some behavior, which is neither dictated nor enforced by
a central authority. They can be regarded as rules followed by most members of
the society, which are created and self-perpetuated by such members. Thus, the
emergence of social conventions can be regarded as a self-organizing process.

One of the trends of thought in social studies is that conventions emerge by
propagation or contagion, where social facilitation and imitation are key factors
[4, 3]. From the MAS point of view, the studies in [13, 12] show that convention
emergence is possible. However, these works limit to analyze propagation, leaving
out innovation (the discovery of rules), which is a very important factor for the
evolution of societies. When the aim is to help a MAS reach conventions in
dynamic environments, propagation may not be enough since this assumes that
at least some agent in the society knows the appropriate behavior, and this is
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not always the case. Additionally, the problem can become even more difficult
when the aim is to also reach the best conventions.

In this work we attempt at going beyond finding conventions. We propose an
evolutionary computational mechanism that facilitates agents in a MAS to self-
organize and self-adapt in such a manner that the best conventions dynamically
emerge for a wide range of interaction topologies.

Notice that further evolutionary approaches appear in the literature. Indeed,
convention emergence has been described as an evolutionary process [2], and so
evolutionary algorithms (EA) have been employed to find conventions in agent
societies. Nevertheless, they are usually applied either: (i) as a centralized pro-
cess [6]; or (ii) as an individual self-contained process for each agent [7]. Both
approaches can be potentially slow and tend to be off-line processes. This makes
them unsuitable for dynamically adapting conventions, which is our purpose.

2 An Evolutionary Infection-Based Mechanism

We propose a computational mechanism that helps agents in a MAS reach con-
ventions that maximize the social welfare. At this aim, we assume that we can
accomplish our goal by maximizing agents’ individual welfares. Thus, we stay in
page with the distributed nature of the problem.

Social contagion [3] is a phenomenon that relates the spreading of behaviors
between individuals, in a society, to an infectious disease. Hence, we chose to
model the social contagion phenomenon into a MAS framework. However, we
target beneficial conventions that if possible tend to maximize the social welfare.
Considering the social welfare as a composition of individual welfares, it makes
sense to let the individual behaviors that impact positively on it, here named good
behaviors, be more infectious. Nevertheless, positive infection at most achieves a
total replication of the best-known behavior among agents. Therefore, behavior
innovation is also required.

By this means we expect that a MAS can reach conventions that are dominant
in the society so that no better ones can be found and no worst ones can upstage
them. However, if some unaccounted factor(s) alter(s) the MAS in such a manner
that the current conventions become obsolete, the infectious process will re-
configure the conventions toward a better social welfare.

In our infection-based mechanism, each agent has a set of genes that encodes
its behavior. Agents can infect other agents with their genes following the survival
of the fittest concept: the fittest the agent (the highest its individual welfare), the
more infectious. Furthermore, our algorithm realizes innovation (exploration) by
letting agents mutate their genes. Importantly, this process runs distributedly:
each agent decides whether to infect or mutate based on local knowledge.

Thus, each agent is endowed with: i) an evaluation function to assess its
individual welfare; ii) a selection process to select an infecting peer, out of its
local neighborhood, based on its fitness; iii) an infection operator to inject
some of its genes into the selected agent ; and iv) an innovation operator to
create new behaviors. See [10] for a detailed description.
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3 Case Study: Coordination Game

Agents in the coordination game interact with each other by engaging in iterative
games. Each game has multiple rounds. During a round each agent randomly
selects a neighbor agent to play with. A play consists in both agents doing an
action, either A or B. The actions are constrained in each agent by its current
social rules. Plays are rewarded with a payoff, which is accumulated after each
game round. The payoff for a round can be: -1,1 or α based on the agent’s current
action and the action of the playing neighbor (different, both B and both A
respectively). This payoff captures pure coordination games [13][12] (α = 1) and
coordination games with equilibrium differing in social efficiency [9] (α > 1).

Each agent has two parameterized rules: one to help it decide what action
to take based on the last opponent’s past action; and another one to decide the
action to take when no past action is known. Thus, our mechanism has the task
of finding for each agent the appropriated actions for these rules.

We know beforehand that four cooperative-only conventions exist (conven-
tions that always try to cooperate), and also that they are the strongest attrac-
tors. Two of them always make agents do A (A-conventions) and the other two
always do B (B-conventions). A-conventions give higher payoffs when α > 1.

It is well known that the behavior of infections its affected by the type of
topology on which a population interacts [14, 8]. Therefore, in order to empiri-
cally analyze such effects in our mechanism we chose the following interaction
topologies: small-world, W 10,0.1

1000 ; scale-free, S10,−3
1000 ; and random graphs, R10

1000.

4 Empirical Results

Our experiments where designed to show that our infection-based mechanism
can: i) self-organize the agents in the MAS to reach the best social convention(s)
for a wide range of initial social rule configurations and under the most common
interaction topologies; and (ii) realize self-adaptation in the presence of dynamic
(changing) conditions.

At this aim, each experiment is defined by a combination of: i) an interaction
topology model; ii) a payoff: α ∈ {1, 1.5, 2}; and iii) an initial rule distribution,
drawn from: a) random (rules are randomly set); b) attractor-free (rules set
from the non-cooperative-only convention); c) low sub-optimal (25% of the
agents with B-Conventions rules); d) high sub-optimal (75% of agents in a
B-Convention); and e) fully sub-optimal (all agents with B-Convention rules).

We run 50 simulations of each experiment. In a simulation agents interact
and infect each other, as described above, during 20000 ticks. We coutend at
each tick the agents with the same rules, and the agents doing A or B. These
counts where then aggregated per experiment using the inter-quartile mean.

4.1 Self-Organization Empirical Results

In the pure coordination game (α = 1) the MAS establishes one of the best con-
ventions regardless of the initial rule distribution and independently of the inter-
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Fig. 1. Results of experiments with full sub-optimal initialization. On the left the
agents per convention; on the right the agents per action.

action topology. Whereas for different social efficiencies case (α > 1) the results
depend mainly on the initial rule distribution. When using random,attractor-
free or low sub-optimal initial distribution, a MAS readily establishes in an
A-convention for α > 1.0 independently of the interaction topology.

Departing from a high sub-optimal distribution, a MAS establishes in a
B-convention when α = 1.5 for all interaction topologies. However, by setting
α to 2.0, the small-world networks manage to establish an A-convention. Thus,
we conclude that agents will not consider a new convention if its benefit is not
significant enough. And that for the scale-free case a greater benefit is needed.

The fully sub-optimal distribution represents the worst case scenario. In
this case, innovation becomes a key factor. When the innovation probability is
low, (experiments above), the MAS is unable to converge to the best convention,
because innovating agents are not able to overcome the high peer pressure. Even
more, infected scale-free networks are hard to overcome [5, 8].

At this aim, we increased the innovation rate. In this manner scale-free (
α = 2.0) and small-world (α > 1) converge to an A-Convention. This happens
because a small group of agents playing tit-for-tat kind of rules starts to appear
(see figure 1). Agents with this strategy can coexist with B-Convention agents
with a small or non-negative effect to their accumulated payoffs (left-hand plots
of figure 1. Therefore, when agents with an A-convention rules appear, they have
a higher chance of having neighbors that will cooperate with them. However, a
high mutation presents the disadvantage that a small part of the population will
be constantly trying to innovate. In our case this translate in around 80% of
action A convergence (Figure 1).

Overall from the experiments we conclude that highly-clustered agent com-
munities (e.g. small-world) are more open to positive infections, where as the
low-clustered ones (e.g. scale-free) are harder to infect if a stable infection is
already in place. This is similar to some results shown by the scenarios stud-
ied in [9]. However, our mechanism can overcome the difficulty of re-infecting
low-clustered networks by using a high innovation through mutation rate. Nev-
ertheless, there is an associated cost to this high innovation: a small subgroup
of agents unable to settle on a convention.

Finally, we can claim that i) a convention is always reached, and ii) under cer-
tain conditions this convention is the best one for all topologies. Moreover, when
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Fig. 2. Results of the dynamic payoff matrix experiments.

these conditions are not met, e.g. a suboptimal convention is fully established,
our mechanism can still reach the best convention through innovation.

4.2 Self-Adaptation Empirical Results

In the previous subsection, it was shown that our infection-based mechanism
endows social agents in a MAS with self-organization capabilities. Next, we shall
show through experiments that it also functions as a self-adaptation mechanism
that allows agents to re-organize themselves in the presence of dynamic changes.

The experiment definition is the same as the one used in section 4 with the
addition of a dynamic component. This dynamic component can take the form
of either run-time changes in the payoff matrix, dynamic payoff matrix, or an
ever-changing agent population , dynamic population and neighborhood.
Dynamic payoff matrix. We simulate a dynamic environment by introducing
changes into the payoff matrix at run time. The changes take the form of swap-
ping the efficient action, which means that if A is the most efficient action then
after the swap B will become the most efficient one (i.e the payoff values of co-
operating in A are swapped with the values of cooperating in B) and vice versa.
Notice that agents are not explicitly informed when the payoff matrix changes.
Instead, they realize that the games they play lead to different results.

We performed experiments using: the matrices with different social efficien-
cies (α = 1.5 and α = 2.0); the scale-free (S<10>,−3

1000 ) and small-world (W<10>,0.1
1000 )

topologies;the full sub-optimal social rules initialization (the worst case sce-
nario); and the matrix change occurred every 5000 ticks.

Figure 2 shows the number of agents performing each of the possible actions.
We observe that after each matrix change (at ticks 5000, 10000 and 15000) the
agents quickly re-organize into conventions that result in performing the most
efficient action. We also observe that in the small-world, the reaction time is
faster than the scale-free. By reaction time we mean the time elapsed between
the change and the re-organization. This result was expected since the small-
world is highly clustered. The results from the experiments clearly show that
our infection-based mechanism endows agents with self-adapting capabilities.
Dynamic population and neighborhood. In this environment, the number
of agents in the MAS changes and so their neighborhoods. In practice these
environment changes are achieved by dynamically changing the network topol-
ogy. Specifically we inter-wove the Barabasi-Albert (BA) network generation
algorithm [1], and the MAS simulation. In other words, the MAS and the BA
algorithm are executed at the same time.
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The component combination used for the experiment was: a payoff ma-
trix with α = 2.0; scale-free topology that started at S<10>,−3

400 and ended at
S<10>,−3

2400 ; and a full sub-optimal social rules initialization for both the initial
agents and the new ones. The new agents were added every 50 simulation ticks.

The experiments show that, even in a MAS with a continuous influx of agents
with less than optimal social rules, our mechanism is able not to only reach the
best convention, but also to sway most of the incoming agents into performing
the most efficient action. Therefore, i) our mechanism allows agents to reach the
best convention in dynamic populations; and ii) when the best social convention
has emerged, it empowers incoming agents with pre-established social rules to
adapt its rules to the best social convention.

In summary, we claim that our infection-based mechanism presents self-
adaptation properties, since it allows agents (using only local information) to
dynamically change their rules in response to dynamic changes in the system.

Acknowledgments
The authors thank CONACyT for the scholarship of the first author. This work was funded by IEA (TIN2006-15662-
C02-01), OK (IST-4-027253-STP), eREP(EC-FP6-CIT5-28575) and AT (CONSOLIDER CSD2007-0022, INGENIO
2010).

References

1. R. Albert and A.-L. Barabasi. Statistical mechanics of complex networks. Reviews
of Modern Physics, 74:47, 2002.

2. R. Axelrod. An evolutionary approach to norms. The American Political Science
Review, 80(4):1095–1111, 1986.

3. R. Burt. Social contagion and innovation: Cohesion versus structural equivalence.
American J. of Sociology, 92:1287–1335, 1987.

4. R. Conte and M. Paolucci. Intelligent social learning. Artificial Society and Social
Simulation, 4(1):1–23, 2001.

5. Z. Dezso and A.-L. Barabási. Halting viruses in scale-free networks. Physical
Review E (Statistical, Nonlinear, and Soft Matter Physics), 65(5):055103, 2002.

6. I.-K. Jeong and J.-J. Lee. Evolving multi-agents using a self-organizing genetic
algorithm. Applied Mathematics and Computation, 88:293–303, 1997.

7. D. Moriarty, A. Schultz, and J. Grefenstette. Evolutionary algorithms for rein-
forcement learning. Artificial Intelligence Research, 11(1-1):241–276, 1999.

8. R. Pastor-Satorras and A. Vespignani. Epidemic dynamics and endemic states in
complex networks. Physical Review E, 63:066117, 2001.
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