
On Binary Max-Sum and Tractable HOPs

Marc Pujol-Gonzalez, Jesus Cerquides, Gonzalo Escalada-Imaz, Pedro
Meseguer, Juan A. Rodriguez-Aguilar

Artificial Intelligence Research Institute, IIIA
Spanish National Research Council, CSIC

08193 Bellaterra, Spain
{mpujol,cerquide,gonzalo,pedro,jar}@iiia.csic.es

Abstract. The Max-Sum message-passing algorithm has been used to
approximately solve several unconstrained optimization problems, spe-
cially in the distributed context. In general, the complexity of computing
messages is exponential. However, if the problem is modeled using the
so called Tractable HOPs (THOPs), binary MaxSum’s messages can be
computed in polynomial time. In this paper we review existing THOPs,
and present new ones, aiming at providing an updated view of efficient
message computation.

1 Introduction

The Max-Sum algorithm has been successfully employed to solve several multi-
agent coordination problems modeled using the Distributed Constraint Opti-
mization paradigm [8, 5, 7]. In most cases, these coordination problems are highly
dynamic (e.g. a disaster response scenario). In those cases, exact solving is un-
feasible because of the uncertainty of the agents’ knowledge and the real-time
pressure to act quickly. Therefore, in these scenarios we have to rely on approx-
imate solving.

Technically, the Max-Sum algorithm [1] solves unconstrained optimization
problems, either exactly or approximately depending on the problem’s topology
(optimally when it is a tree, approximately when it is a more complex graph).
It comes from the Max-Product algorithm used for belief propagation in prob-
abilistic graphical models, which performs products of probabilities. Since such
products may result in quite small numbers, which may be affected by rounding
procedures and produce errors in the long term, it is computationally preferred
to work on the logarithmic space, were the product becomes a sum.

Max-Sum is a message-passing algorithm. The complexity of computing Max-
Sum messages is exponential in the number of variables involved in the same
factor, and this is a major issue for its practical applicability when this number
increases. Then, it is of utmost importance to develop Max-Sum versions able to
compute messages in polynomial time (preferred with low exponent). In the last
years, linear or linearithmic complexities have been achieved for computing spe-
cial types of factors called Tractable HOPs (THOPs) [4, 9, 7]. As a consequence,

Max-Sum is even more suited to handle multiagent coordination problems where
a fast response is desirable when those can be modeled using THOPs.

This paper aims at providing a comprehensive view of these approaches,
currently scattered in different publications. With this aim, we present the Max-
Sum algorithm and describe those factors (or potentials) for which an efficient
Max-Sum message computation has been developed. In addition, we describe a
new potential types, not made explicit in the specialized literature.

The structure of the paper is as follows. We summarize the Max-Sum algo-
rithm (n-ary and binary versions) and the formalization of affinity propagation
[3] in terms of binary Max-Sum and THOPs in Section 2. We present existing
THOPs in Section 3. New THOPs are enumerated in Section 4, providing the
complexity of message computation. Finally, the paper concludes in Section 5.

2 Background

In this section we present the Max-Sum algorithm, along with its Binarized
version with Tractable Higher Order Potentials and where the efficiency results
come from.

2.1 Max-Sum

Let us consider a probabilistic graphical model defined by,

– a set X = {x1, ..., xn} of random variables; each variable xi may take a
finite number of values; variable xi with a value assigned is written xi; the
sequence of variables with value is written x;

– a set of potentials (or factors) {f1, ..., fr}; a potential fj is a function from
the possible values of the subset of variables involved in the potential fj into
the set of real numbers R.

As mentioned above, Max-Sum is an algorithm coming from the Max-Product
algorithm. This is an inference algorithm used to solve the MAP (Maximum A
Posteriori) problem (finding the assignment with highest global probability to
the problem variables) in probabilistic graphical models. Typically, this amounts
at computing arg maxx

∏
j fj(x). Working in the logarithmic space to avoid

underflow problems the problem becomes arg maxx

∑
j log(fj(x)). Since the log

function is monotonically increasing, the argument that maximizes the addition
of logarithms is the same that the one that maximizes the addition without the
log function, so finally Max-Sum computes arg maxx

∑
j fj(x).

We can see the potentials fj as utilities among the variables involved in
each potential. Under this view, the problem becomes a constraint optimization
problem (COP) and the assignment arg maxx

∑
j fj(x) is the assignment that

reaches the maximum global utility, so it is an optimal solution for this problem.
Under this view the sum of potentials

∑
j fj(x) can be seen as the objective

function to be optimized. Any existing constraint on this optimization problem

has to be included in the objective function as a new factor (so technically the
problem is formulated as unconstraned optimization).

For example, let us consider a simple problem with two variables x1 and x2,
where the global utility to be maximized is the addition of individual utilities
u(x1) + u(x2), under the constraint that x1 and x2 must take different values.
This constraint can be expressed as the following factor,

diff(x1, x2) =
{

0 if x1 6= x2

−∞ otherwise

which enters in the objective function, that is,

u(x1) + u(x2) + diff(x1, x2)

Now this objective function is unconstrained, and Max-Sum can work on it,
looking for the optimum. Obviously, the maximum of this function occurs when
the last term is evaluated to 0 (that is, when x1 6= x2 so the original constraint
is satisfied).

Max-Sum operates over the factor graph of the problem, defined as follows:

– There are two types of nodes, variable nodes and factor nodes (graphically
represented as circles and squares, respectively).

– Each problem variable is represented by a variable node, each potential is
represented by a factor node.

– Each variable node is connected to each factor node in whose potential it is
involved (the factor graph is bipartite: variable-factors).

Max-Sum is a message-passing algorithm on the factor graph. In the dis-
tributed context, Max-Sum can be seen as an iterative algorithm. An iteration
ends when each node has sent one message to each neighbor. At iteration p,
a variable node x computes a message for each neighbor factor. For factor f ,
this message is computed adding all messages that x received at the previous
iteration p− 1, except the message that arrived from f ,

µx→f =
∑

g∈N(x)|g 6=f

µg→x

where N(x) is the set of neighbors of variable node x in the factor graph. Sim-
ilarly, at iteration p a factor f computes a message for each neighbor variable.
The message for variable x is computed in two steps:

1. Adding the potential (or factor) f plus all messages that f received at the
previous iteration p− 1, except the message that arrived from x.

2. Taking the maximum among all variables that are not x.

µf→x = maxy∈N(f)|y 6=x(f +
∑

y∈N(f)|y 6=x

µy→f)

It is well known that Max-Sum is exact if the factor graph has a tree struc-
ture. Otherwise, Max-Sum is an approximate algorithm, for which there is no
guarantee of convergence. Nevertheless, after a number of iterations, a decoding
process1 is performed at the variable nodes, obtaining a value to be assigned
to each variable. These assignments have been found useful for a number of
applications.

In the case of distributed optimization (when problem parts are distributed
among agents, DCOPs), it is relatively direct to implement Max-Sum into a dis-
tributed context (because of that, Max-Sum has been widely used for distributed
applications [8]).

2.2 Binary Max-Sum

From standard Max-Sum we can develop binary Max-Sum as follows. A standard
variable with d possible values becomes d boolean variables, all connected by a
new factor that assures that only one of them will be active. 2 A factor involving
k standard variables has (in the worst case) dk entries. With boolean variables its
factor increases up to 2d×k entries. 3 Therefore, the binary version of Max-Sum
implies a multiplicative increment in the number of variables, a linear increment
in new factors and an exponential increment in the size of existing factors. Then,
moving into the binary version implies a significant increment in the size of
the problem representation. However, working on the binary version could be
beneficial if this implies substantial simplifications in the message computations,
as we will see in the next sections.

Having factors involving a low number of variables is obviously beneficial,
because the exponential blow-up is limited. However, in some cases the number
of variables in a factor is high. Then, the use of tractable high order potentials
(THOPs) it is of special interest. THOPs are factors involving several variables
for which Max-Sum messages can be computed in polynomial time (in fact,
between linear and quadratic). Observe that in the general case, computing the
message from a factor to a variable implies an exponential number of steps.

A common simplification in the binary case is as follows: instead of sending
two values in each message (the value for 1 and 0, the two possible states of a
boolean variable), you send a single scalar that is the difference between them,
that is,

νp→q = µp→q(1)− µp→q(0)

where p/q are either variable/factor or factor/variable. This is equivalent to
consider that, upon reception, the value of µp→q(0) is always 0, and the sent
scalar is the value corresponding to µp→q(1). Additionally, sending the differ-
ence performs a normalization role that prevents message values from growing
indefinitely when the factor graphs contains loops.
1 A popular decoding procedure consists of, at each variable node, adding the last

received messages from factors and taking the value with highest probability.
2 This is the OneAndOnlyOne factor defined in Section 3.1.
3 Observe that 2d×k = 2dk

. Since d << 2d, we conclude that dk << 2d×k.

2.3 Affinity Propagation

Affinity Propagation [3] is an algorithm to find exemplars or representatives
from a set of instances (or examples) such that the sum of squared errors is
minimized between exemplars and instances. This problem is also known as
exemplar-based clustering. It has been shown that Affinity Propagation can be
seen as an application of the binary Max-Sum algorithm on a specific factor
graph that represent the objective function to be optimized [4]. In the following,
we present the main points of this view.

Given a number of instances {ins1, ins2, ..., insN}, the goal is to find a num-
ber of exemplars that act as representatives of the instances, such that the sum
of squared errors is minimized. This problem has been attacked by k-medians
clustering [2], which provided an approximated solution with some distance with
the optimal solution computed by linear programming (with a substantial com-
putation time).

In binary Max-Sum, we consider the binary variables cij with the meaning,

cij =
{

1 if instance i has as exemplar instance j
0 otherwise

There is a similarity measure between instances i and j given by s(i, j) (as
default, you can take minus the sum of squared distances between i and j). For
s(k, k) you can take the preference for instance k to be exemplar.

The objective function is,

N∑
ij

Sij(cij) +
N∑
i=1

Ii(ci1, ..., ciN) +
N∑
j=1

Ej(c1j , ..., cNj)

where Sij(cij) = s(i, j)cij (so the first term is the sum of similarities between
instances and chosen exemplars). Functions Ii and Ej are respectively,

Ii(ci1..., ciN) =
{
−∞ if

∑
j cij 6= 1

0 otherwise

Ej(ci1..., ciN) =
{
−∞ if cjj = 0 and there is some i 6= j s.t. cij = 1
0 otherwise

The second term indicates that every instance must be assigned to one and only
one exemplar, 4 while the third term establishes that if j is exemplar for instance
i, it must also be for itself. These two terms are constraints that cost −∞ if
they are violated (that is, they are hard constraints). The objective function is
maximized when these two terms are evaluated to 0 (that is, when the constraints
they represent are satisfied).

The factor graph for this formalization is depicted in Figure 1 (using the
standard approach of representing variables as circles and factors as squares).
Messages exchanged between variables and factors are also depicted. After some
simple calculations (see [4] for details), the expressions for each message are,
4 In fact, Ii is the OneAndOnlyOne potential, as defined in Section 3.1.

!""# !"$# !"%#

!&"# !&$# !&%#

!%"# !%$# !%%#

'"# '$# '%#

("#

(&#

(%#

)""#

)&"#

)%"#

)"$#

)&$#

)%$#

)"%#

)&%#

)%%#

##*#*# *#*#*#*#

!"#$

%#$

&"$

'"#$
s(i,j)

!"#$

""#$

#"#$ $"#$

Fig. 1. Left: Factor graph of affinity propagation. Right: Messages exchanged

βij = s(i, j) + αij ρij = s(i, j) + ηij ηij = −maxk 6=jβik

αij =

{∑
k 6=jmax(ρkj , 0) i = j

min
(

0, ρjj +
∑
k 6∈{i,j}max(ρkj , 0)

)
i 6= j

Computationally it is extremely easy to compute these messages: βij and ρij are
computed in constant time, while ηij and αij require linear time.

To the best of our knowledge, [4] is the first paper explaining clearly the ben-
efits of efficient message computation in binary Max-Sum. Although potentials
are neither treated in isolation nor analyzed abstractly, this work represents a
significant step forward in understanding the role of THOPs and how the sim-
plest cases can be analyzed.

3 Tractable HOPs

The idea of THOPs, linked to Binary Max-Sum, has been presented in several
papers before. In particular, we mention the work of Tarlow et al. [9], which
clearly describe the proposed approach. In the following, we describe the different
potentials that are known to be adequate for efficient binary Max-Sum operation.

3.1 OneAndOnlyOne

This potential requires that only one binary variable is active, out of a set of
variables,

OneAndOnlyOne(x) =
{

0 if
∑N
k=1 xk = 1

−∞ otherwise

OneAndOnlyOne has been mentioned in [9]. It is easy to see that Max-Sum
messages with this potential can be computed in linear time, as shown in [7],
where this potential is called selection factor.

3.2 Cardinality Potentials

Cardinality Potentials are factors whose value depends solely on the number of
variables that are active, disregarding which specific ones. Formally, given a set
of (binary) variables X,

CardinalityPotential(X) = f

(∑
xi∈X

xi

)
,

where f can be any function that takes a non-negative integer and returns a
real-valued utility. Tarlow et al. [9] proved that max-sum’s messages from this
factors can be computed efficiently in O(NlogN) time.

These potentials are useful to model a wide range of situations. For instance,
in a task allocation context, a task could require at least k agents to be serviced.
This requirement can be modeled as a CardinalityPotential, where xi ∈ X is the
variable representing “allocate agent i to the task”, and

f(y) =

{
0 if y ≥ k
−∞ otherwise

.

Although, in the general case, computing the messages of cardinality po-
tentials requires O(NlogN) time, there are some particular cases that can be
computed more efficiently. That is, for certain functions f , the messages can be
computed in linear time instead. An example is the OneAndOnlyOne potential
above, and we will present a few additional cases later on.

3.3 Weighting Potentials

Weighting potentials are potentials that specify an independent weight (in-
centive) for each of its constituent variables. That is, given a set of variables
X = {x1, . . . , xk} and a set of real-valued weights W = {w1, . . . , wk}, a Weight-
ing potential is defined as

Weighting(X,W) =
k∑
i=0

xiwi.

This potential is not very interesting in itself, because we could decompose it
in k unary potentials and obtain the same results. However, Pujol-Gonzalez et
al. [7] showed that a Weighting potential can be combined with any other THOP
T , and the resulting potential’s messages can be computed in O(k+O(T)) time.

Weighting potentials are very useful to express preferences between different
possible choices. For instance, in a task allocation setting, Weighting potentials
can be used to represent the fitness of an agent to perform different tasks.

3.4 Convex Set Potentials

Convex set potentials are ordered potentials that enforce all active variables
to form a convex set. In other words, these factors define an order over the
variables they contain. Thereafter, they enforce that only contiguous variables
can be active. That is, given a set of variables X:

ConvexSet(X) =

{
0 if xi−1 = 0 ∨

∑
j<i

xj = 0 ∀xi ∈ X|xi = 1

−∞ otherwise

Based on the notion of maximum weight contiguous sequences, messages from
this factor can be computed in linear O(N) time as explained in [9].

These factors are useful to model temporal or spatial constraints. For in-
stance, in a meeting scheduling problem, a ConvexSet potential could be used
to enforce that meetings should be attended for an arbitrarily long contiguous
period of time.

3.5 Before-After Potentials

Before-After potentials incentivize one (and only one) variable in an ordered set
to be activated before one (and only one) variable in another set gets activated.
Given two sets of variables X and Y , this amounts to

BeforeAfter(X,Y) =


−∞ if

(∑
xi∈X

)
6= 1 ∨

(∑
yi∈Y

)
6= 1

0 if i > j ∀xi ∈ X, yj ∈ Y |xi = yi = 1
−α otherwise

Messages of this factors can ben computed in O(N) time using a similar pro-
cedure to the one used to compute Cardinality Potentials’ one. The complexity
is lower though because incoming messages do not need to be sorted in this case.

BeforeAfter factors are also used to model temporal or spatial constraints.
However, in this case they are used to enforce orderings between events. For
instance, you could incentivize (or even enforce by setting α = ∞) a certain
meeting to take place before another one.

3.6 Composite Potentials

Composite potentials represent the conditioned composition of multiple THOPs.
These are useful to represent the fact that, given the values of a set of condi-
tioning variables C, the other variables in the factor (X) form another THOP.
Formally,

CompositePotential(C,X) = THOPC(X),

where THOPC is a possibly different THOP for each combination of values C.
Notice that any HOP (tractable or not) defined over a set of variables T can

be represented as a CompositePotential where C = T and Y = ∅. Therefore, the

cost of computing these potentials is exponential on the number of variables in
C. However, the interesting part of composite potentials is that their complexity
is polynomial in X (because each THOPC is polynomial). Globally, messages of
composite potentials can be computed in O(2|C| ×

∑
CO(THOPC)) time.

These potentials are useful when a large number of variables depend on the
value of a few ones. For instance, the column potentials Ej in Affinity Propaga-
tion (see Section 2.3) can be understood as a composite potential with a single
conditioning variable cjj and a set of conditioned variables X = {cij |i 6= j}.

3.7 Equality Potential

Initially defined in [6] on a pair of variables, xi and xj , this potential requires
that both variables take the same value,

Equality(xi, xj) =
{

0 if xi = xj
−∞ otherwise

Messages leaving this binary factor can be computed in constant time. This
potential can be easily generalized to involve any number of variables. In this
case, messages for this potential can be computed in linear time.

4 New Tractable HOPs

Now that we have reviewed different THOPs that have been presented in the
literature, we move on by introducing a few new useful HOPs and showing how
their messages can be computed efficiently.

4.1 AllOne and AllZero

In some cases, a potential requires that all variables are active. This potential is
AllOne, defined as,

AllOne(x) =
{

0 if
∑N
k=1 xk = N

−∞ otherwise

The message from this potential f to a generic variable xi is as follows. Consid-
ering xi = 0, it is direct to see that all terms are −∞ because xi takes value 0.
Therefore,

µf→xi(0) = −∞

Considering xi = 1, the only term that is greater than −∞ is the one with all
x’s taking value 1, for which f takes value 0. Then,

µf→xi
(1) =

N∑
j=1,j 6=i

µxj→f (xj = 1)

and the message to be sent to xi is,

µf→xi
(1)− µf→xi

(0) =
N∑

j=1,j 6=i

µxj→f (xj = 1)− (−∞) =∞

A similar situation happens for the dual potential requiring that all variables
are inactive, AllZero,

AllZero(x) =
{

0 if
∑N
k=1 xk = 0

−∞ otherwise

The message from this potential f to a generic variable xi is as follows. For
xi = 0, the only term higher than −∞ is the one with all variables taking value
0. Then,

µf→xi
(0) =

N∑
j=1,j 6=i

µxj→f (xj = 0) = 0

but for xi = 1 all terms are −∞. Therefore, the message to be sent to xi is,

µf→xi
(1)− µf→xi

(0) = −∞− 0 = −∞

In both cases, messages from these potentials can be computed in constant time.
Taking in isolation, these two potentials are clearly redundant because vari-

ables can be replaced by their corresponding values (all 1’s, or all 0’s). However,
these potentials can be useful as forming part of other, more complex, Composite
Potentials.

4.2 AllEqual

This potential requires that all variables are equal, either 1 or 0,

AllEqual(x) =
{

0 if xj = xj+1 1 ≤ j < N
−∞ otherwise

The message from this potential f to a generic variable xi is as follows. Consid-
ering xi = 0, it is direct to see that the only term greater than −∞ is the one
when all variables take value 0. Therefore,

µf→xi(0) =
N∑

j=1,j 6=i

µxj→f (xj = 0)

Considering xi = 1, the same happens with the term when all variables take
value 1. Then,

µf→xi
(1) =

N∑
j=1,j 6=i

µxj→f (xj = 1)

Then, the message to be sent to variable xi is,

µf→xi(1)−µf→xi(0) =
N∑

j=1,j 6=i

µxj→f (xj = 1)−
N∑

j=1,j 6=i

µxj→f (xj = 0) =
N∑

j=1,j 6=i

νxj→f

which happens to be the sum of messages received by factor f from all variables
but xi. Hence, factor f can compute all its outgoing messages in linear time.
That is, it first computes the full sum, and then it sends the message to each
neighbor by subtracting that neighbor’s message from the full sum.

4.3 AtMostOne

This potential requires that at most one binary variable is active, out of a set of
variables,

AtMostOne(x) =
{

0 if
∑N
k=1 xk ≤ 1

−∞ otherwise

The message from this potential f to a generic variable xi is as follows (first we
consider value 0, then value 1):

µf→xi(0) = maxX|xi=0[f(x1, ..., xi−1, xi = 0, xi+1, ..., xN) +
∑N
j=1,j 6=i µxj→f (xj)]

Since f with more than one active variable is −∞, these terms can be removed
from computing max, keeping the terms with at most one active variable,

µf→xi(0) = max[f(0, ..., xi = 0, ..., 0) +
∑N
j=1,j 6=i µxj→f (xj = 0),

f(1, ..., xi = 0, ..., 0) + µx1→f (x1 = 1) +
∑N
j=2,j 6=i µxj→f (xj = 0),

...

f(0, ..., xi = 0, ..., 1) + µxN→f (xN = 1) +
∑N−1
j=1,j 6=i µxj→f (xj = 0)]

We can now write this expression in terms of νj = µxj→f (1) − µxj→f (0)
(abusing the notation a bit, we write νj instead of νj→f). Remember that send-
ing the difference between µxj→f (1) and µxj→f (0) we assume at reception that
µxj→f (xj = 0) = 0, we obtain

µf→xi
(0) = max[0 + 0, 0 + ν1 + 0, ..., 0 + νN + 0] = max[0, ν1, ..., νi−1, νi+1, ..., νN]

Analogously, for value 1,

µf→xi
(1) = maxX|xi=1[f(x1, ..., xi−1, xi = 1, xi+1, ..., xN) +

∑N
j=1,j 6=i µxj→f (xj)]

but this expression has a single term that is different from −∞, the term where
all variables but xi take value 0. Then,

µf→xi
(1) = f(0, ..., 0, xi = 1, 0, ..., 0) + 0 = 0

so the message to be sent to xi is,

νf→xi = µf→xi(1)− µf→xi(0) = 0−max[0, ν1, ..., νi−1, νi+1, ..., νN]
= −max[0, ν1, ..., νi−1, νi+1, ..., νN]

which can be easily computed in linear time.
Moreover, notice that we only need to know the maximum νj value (j 6= i)

to compute νf→xi
. Hence, we can compute all outgoing messages in O(N) time

by precomputing the two largest incoming messages ν∗ and ν∗∗. Thereafter, the
single-valued message sent to each neighbor is simply

νf→xi
=

{
max(0, ν∗) if νi 6= ν∗

max(0, ν∗∗) otherwise
.

4.4 AtLeastOne

This potential requires that at least one binary variable is active, out of a set of
variables,

AtLeastOne(x) =
{

0 if
∑N
k=1 xk ≥ 1

−∞ otherwise

The message from this potential f to a generic variable xi is as follows (first we
consider value 0, then value 1):

µf→xi
(0) = maxX|xi=0[f(x1, ..., xi−1, xi = 0, xi+1, ..., xN) +

∑N
j=1,j 6=i µxj→f (xj)]

Since f when all variables are 0 is −∞, this term can be removed from computing
max, keeping the terms with at least one active variable,

µf→xi
(0) = max[f(1, ..., xi = 0, ..., 0) + µx1→f (x1 = 1) +

∑N
j=2,j 6=i µxj→f (xj = 0),

f(0, ..., xi = 0, ..., 1) + µxN→f (xN = 1) +
∑N−1
j=1,j 6=i µxj→f (xj = 0),

...

f(1, ..., xi = 0, ..., 1) +
∑N
j=1,j 6=i µxj→f (xj = 1)]

Writing this expression in terms of νj = µxj→f (1)−µxj→f (0), and remembering
that sending the difference between µxj→f (1) and µxj→f (0) we assume that
upon reception µxj→f (xj = 0) = 0, we obtain

µf→xi(0) = max[0 + ν1 + 0, ..., 0 + νN + 0, ..., 0 +
∑N
k=1,k 6=i νk]

= max[ν1, ..., νN , ν1 + ν2, ..., νN−1 + νN , ...,
∑N
k=1,k 6=i νk]

Now we consider two cases: when some νj > 0 and when all νj ≤ 0. When some
νj > 0 the maximum is the term that is the addition of all positive ν. When all
νj ≤ 0, the maximum is max[ν1, ..., νi−1, νi+1, ..., νN]. Then,

µf→xi(0) =
{∑

νj>0 νj if some νj > 0
max[ν1, ..., νi−1, νi+1, ..., νN] otherwise

Analogously, for value 1,

µf→xi(1) = maxX|xi=1[f(x1, ..., xi−1, xi = 1, xi+1, ..., xN) +
∑N
j=1,j 6=i µxj→f (xj)]

All terms of this expression evaluate to finite values. Thus,

µf→xi(1) = max[f(0, ..., xi = 1, ..., 0) +
∑N
j=1,j 6=i µxj→f (xj = 0),

f(1, ..., xi = 1, ..., 0) + µx1→f (x1 = 1) +
∑N
j=2,j 6=i µxj→f (xj = 0),

...

f(0, ..., xi = 1, ..., 1) + µxN→f (xN = 1) +
∑N−1
j=1,j 6=i µxj→f (xj = 0),

...

f(1, ..., xi = 1, ..., 1) +
∑N
j=1 µxj→f (xj = 1)]

Writing this expression in terms of νj , we obtain

µf→xi
(1) = max[0 + 0, ν1 + 0, ..., 0 + νN + 0, ..., 0 +

∑N
k=1,k 6=i νk]

= max[0, ν1, ..., νN , ν1 + ν2, ..., νN−1 + νN , ...,
∑N
k=1,k 6=i νk]

Again we consider two cases: when some νj > 0 and when all νj ≤ 0. When some
νj > 0 the maximum is the term that is the addition of all positive ν. When all
νj ≤ 0, the maximum is 0. Then,

µf→xi
(1) =

{∑
νj>0 νj if some νj > 0

0 otherwise

Therefore, the message νf→xi
is,

µf→xi
(1)− µf→xi

(0) =
{

0 if some νj > 0
−max[ν1, ..., νi−1, νi+1, ..., νN] otherwise

which can be easily computed in linear time.
Furthermore, we can compute all messages in a single linear pass by doing

the same preprocessing we did for the AtLeastOne potential. Basically, given the
two largest incoming values ν∗ and ν∗∗, this potential’s outgoing messages can
be assessed as

νf→xi
=


0 if νi 6= ν∗ and ν∗ > 0
0 if νi = ν∗ and ν∗∗ > 0
−ν∗ if νi 6= ν∗ and ν∗ ≤ 0
−ν∗∗ otherwise

.

5 Conclusions

In this paper we presented the max-sum message passing algorithm, but focusing
on its usage as an approximate Constraint Optimization Problem solver instead
of as a graphical model solver. Although max-sum has been extensively used to
solve COPs, the graphical modeling communities have recently developed results
that are not widely known within the COP community. Hence, we examined
these results, that show how the algorithm’s complexity can be reduced from

exponential to (low-order) polynomial when solving specific types of factors.
Thereafter, we reviewed a number of such factors that have been presented
elsewhere, and provide examples of how they could be used to model typical
situations that arise in COP problems. Finally, we presented a few additional
factors, showing how they can also be processed efficiently. To summarize, this
work brings the COP community closer to these very promising efficiency results,
and provides a few additional tools to extend the range of problems efficiently
solvable using max-sum.

References

1. C. M. Bishop. Pattern recognition and machine learning. Springer, 2006.
2. M. Charikar, S. Guha, E. Tardos, and D. Shmoys. A constant-factor approximation

algorithm or the k-median problem. Journal of Computers and System Sciences,
65:129–149, 2002.

3. B. J. Frey and D. Dueck. Clustering by passing messages between data points.
Science, 315:972–976, 2007.

4. I. E. Givoni and B. J. Frey. A binary variable model for affinity propagation. Neural
Computation, 21(6):1589–1600, 2009.

5. Y. Kim, M. Krainin, and V. Lesser. Application of Max-Sum algorithm to radar
coordination and scheduling. In Workshop on Distributed Constraint Reasoning,
2010.

6. T. Penya-Alba, M. Vinyals, J. Cerquides, and J. A. Rodriguez-Aguilar. A scalable
message-passing algorithm for supply chain formation. In Proc. AAAI-12, pages
1436–1442, 2012.

7. M. Pujol-Gonzalez, J. Cerquides, P. Meseguer, J. A. Rodriguez-Aguilar, and
M. Tambe. Engineering the decentralized coordination of UAVs with limited com-
munication range. In Proc. CAEPIA-13, LNAI 8109,, pages 199–208, 2013.

8. A. Rogers, A. Farinelli, R. Stranders, and N. R. Jennings. Bounded approxi-
mate decentralized coordination via the Max-Sum algorithm. Artificial Intelligence,
175:730–759, 2011.

9. D. Tarlow, I.E. Givoni, and R. S. Zemel. HOP-MAP: Efficient message passing with
high order potentials. In Proc. AISTATS-2010, pages 812–819, 2010.

