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Abstract. The development of industrial case-based reasoning systems
that have to operate within a continually evolving environment, is a chal-
lenging problem. Industrial applications require of robust and competent
systems. When the problem domain is evolving, the solutions provided
by the system can easily become wrong. In this paper we present an
algorithm for dealing with real-world domains where case solutions are
evolving along the time. Specifically, the algorithm deals with what we
call the innovation problem: the continuous improvements on the com-
ponents that are part of case solutions. We will show how the use of the
proposed algorithm improves significantly the quality of solutions in a
deployed engineering design system.

1 Introduction

The development of industrial case-based reasoning systems that have to operate
within a continually evolving environment, is a challenging problem. Industrial
applications require of robust and competent systems. When the problem domain
is evolving, the solutions provided by the system can easily become wrong.

In this context, sustained case-based reasoning systems [2] are strongly
needed. The goal of sustained case-based reasoning systems is to learn continu-
ously from the experience of solving problems. As is argued in [1], a sustained
case-based reasoning system requires of an underlying deep knowledge model of
the domain, as well as a problem solving mechanism that has to make use of it.

Two main evolving directions can be identified in problem domains. The
first one is the change on the type of problems: new types of problems may
become important and previously important problems may become irrelevant.
The second one is the change on the type of solutions: the same type of problems
that were previously solved using a specific domain solution may require a new
domain solution to be solved.

Examples of case-based reasoning tasks that have to deal with evolving so-
lutions are design and configuration tasks. Real-world design systems have to
incorporate functionalities for dealing with the use of new design components or
the improvement of previously existing components. We call this design problem
the innovation problem.
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A strategy for solving the innovation problem is to incorporate maintenance
processes into the case-based reasoning applications [11, 8, 10]. The most usual
techniques used for catching up the changes in the domain environment are
case maintenance techniques for reorganizing the case base. Deletion polices are
examples of strategies used for dealing with cases with obsolete solutions.

The success of any CBR system is not only motivated by the case base qual-
ity. The success of any CBR system depends also on all its knowledge containers
[9] and, specially, on the similarity or retrieval knowledge and on the adaptation
knowledge. A used policy in design or configuration problems is the improvement
of the adaptation knowledge by incorporating rules for component substitution:
when a new component is introduced in the solution designs substituting a previ-
ous existing component, a new rule is incorporated in the adaptation knowledge.

Nevertheless, not all solution changes can be reduced to the incorporation of
new components. One type of the changes is the improvement of a pre-existing
component. The main problem with these improvements is that the improve-
ments are usually based on problem specific requirements. That is, there are
only experimental evidences of the improvement and not a general theory. Then,
a system that has to deal with this incomplete model, could use a case-based
reasoning approach. This is the motivation of our proposal, dealing with problem-
based improvements for improving the quality of other problem solutions.

In this paper we will present a proposal for dealing with problem domains
with evolving solutions concentrating the efforts on the retrieval and the reuse
steps. Our goal is to develop an innovative aware CBR algorithm, i.e. a CBR
algorithm where the retrieval and reuse phases are not degraded by the periodi-
cal incorporation of innovations in the problem solutions. We will show how the
analysis of solution changes in customary problems – problems that are period-
ically solved by the system – can be used for improving the quality of solutions
in occasional problems – problems that are rarely solved by the system.

We have tested the proposed algorithm in T-Air, a deployed engineering
design system. T-Air is a case-based reasoning application developed for aiding
engineers in the design of gas treatment plants [4]. The main problem in designing
gas treatment plants is that the diversity of possible problems is as high as the
diversity of industrial processes but there are only experimental models for few
of them. The knowledge acquired by engineers with their practical experience
is essential for solving new problems. The innovation problem in T-Air is due
to the continuous improvements on the equipment used in the design of gas
treatment plants. In this paper we will report the significant improvement of
solution quality when using our proposed algorithm.

This paper is organized as follows: In section 2 we present the innovation
problem and propose the innovation aware CBR algorithm. In section 3 we
exemplify the incorporation of the proposed algorithm in a deployed application
an report the results of the experiments performed. The paper ends with a
description of the current status of the work and the planned future work.
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Fig. 1. An Extension of the classical problem and solution CBR spaces for dealing with
time factor.

2 The Innovation Aware Problem

The goal of a sustained CBR system is to not degrade the quality of the solutions
generated taking into account that the domain environment may evolve. A first
naive strategy for solving this problem can be to only use recently solved cases
(for instance, including the case date into the similarity measure). Nevertheless,
as we will see below this naif approach is not enough.

In a given case base, we can classify the cases into two categories: customary
problems and occasional problems. Customary problems are problems that are
periodically solved by the system. Occasional problems are problems that are
rarely solved by the system. In customary problems, the strategy of only focusing
on recent solutions can be appropriate. The main problem rises with occasional
problems: when a new occasional target problem has to be solved, usually only
old solutions can be found in the case base. Then, a CBR inference system that
is just reusing these old solutions may generate solutions with a low quality, i.e.
solutions that may cause the distrust in the system.

Let us illustrate the evolving environment problem using the scheme of the
Figure 1. There is a customary problem P1 that was solved at times T0, T1, T2.
Each time the problem was solved, a small innovation was applied to the solution.
Whenever a new P1 target problem has to be solved, it is clear that we can take,
as a basis for the reuse, the most recent solution stored in the case-base.

Now let us assume that there is an occasional problem P2 that was solved
at T0 (see Figure 1), when a new P2 target problem arises at T2, we have two
alternative cases to consider: S2 solved at T0 or S1 solved at T2. Using as a
criterion the problem similarity, S2 is the solution designed for the closest prob-
lem. Nevertheless, because problems P1 and P2 are very similar and P2 has been
solved recently, it can be more feasible to consider S1 as a candidate for reuse
(i.e using the case date when assessing similarity). Taking the last alternative,
we are imposing a more powerful adaptation mechanism.



Improving the Quality of Solutions in Domain Evolving Environments 467

Finally, in the figure, we have another occasional problem P3 that was solved
at T0. P3 is a problem far from the other problems P1 and P2 but that has a
solution S3 close to the other solutions. When a new P3 target problem comes
to the system, P1 and P2 will not be retrieved. Thus, the closest solution is S3.
Nevertheless, taking into account that S3 was designed at T0, the solution we
can reuse from S3 will possibly not include recent innovations. Then, taking into
account similar solutions more recently i.e. solved (solution S1 that has been
solved at T2) we can improve the quality of the solution by tuning the solution
taking into account the innovations introduced in S1.

From these simple examples, it is clear that the innovation problem has to
be dealt in the CBR inference procedure. Below we will present a variant of the
classical CBR inference cycle [3] that incorporates an additional retrieval and
reuse steps on the space of solutions.

An alternative approach to deal with the innovation problem could be by
implementing a learning module able to incorporate new knowledge into the
adaptation model. This approach has the difficulty of managing with the usual
incomplete model of the domain and has not been addressed in this paper.

Moreover, it is important to remark that whether we apply deletion policies
in the case base, the performance for occasional problems could be affected
because we can loose the knowledge about innovation changes. For instance, in
our previous example from Figure 1, if we only keep the solution S1 at time
T2 – deleting the solutions at times T0 and T1 – the relationship between the
solutions S3 and S1 could be not established.

Before describing our innovation aware algorithm for dealing with evolving
solutions, we will introduce some basic notation: a case ci is defined as a tripled
ci = (pi, si, t) where pi is the problem description, si is the solution, and t is
the date when ci was solved. Moreover, we assume that there exists a similarity
measure Simp(pi, pj) between problem descriptions for retrieving and ranking
the cases more similar to a new target problem. We say that two cases ci, cj are
innovation variants when their problems pi, pj are equivalent (Simp(pi, pj) = 1)
and their solutions si, sj are different. Finally, we also assume that exists a
similarity measure Sims(si, sj) between case solutions.

2.1 The Innovation Aware Algorithm

We propose to incorporate an additional retrieval and adaptation step into the
usual CBR inference cycle: after retrieving and reusing the most similar cases
for generating the solution of a new target problem – when the reused cases are
not recent – we propose to refine the solution generated by looking for recentness
paths on the solution space. Our CBR inference algorithm (see Figure 2) is then
divided into four phases:

1. Retrieving similar cases using Simp: given a new problem p, the first phase
uses the Simp similarity measure on problem descriptions for retrieving and
ranking similar cases (noted C). This phase models the usual retrieval step.
Because we are not taking into account the solution date, all the cases with
an equivalent problem description will be grouped with the same similarity.
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Procedure IN-AW( p , t )
(1) C = P-Retrieval(p)
(2) 〈 s , t’ 〉 = Reuse( p , C)

if (t - t’ < δ) then
return s

else
(3) S = S-Retrieval(s, t’)
(4) s’ = Inn-Reuse(s, S)

return s’
end if

Fig. 2. The innovation aware algorithm. A first a retrieval step on the problem space;
then a reuse step on solutions; next a retrieval step on the solution space; and finally
a reuse step on the innovation path.

2. First solution proposal: a first solution s for problem p is constructed by
reusing solutions of previously retrieved cases C. We say that s is a solution
for time context t’, where t’ is calculated from the dates of cases C. When
the most similar cases are recent (we use a fixed δ parameter), the solution
S is proposed as final solution and next phases are skipped. Otherwise,

3. Retrieving similar solutions using Sims: the goal of the third phase is to
retrieve the customary problems S’ with a similar solution to s (using Sims)
solved near t’ (using a fixed threshold γ). Only problems with additional
solutions more recent than t’ are considered–i.e. cases that gather solutions
with innovation variants.

4. Applying innovation variants: the goal of the last phase is to apply innovation
variants to s. This phase requires domain specific policies for identifying the
relevant solution changes.

The threshold parameters δ and γ have to be determined for each domain
problem. In the current implementation of the IN-AW algorithm we have manually
tuned their values for the use in their T-Air application.

3 The Application in an Industrial System

We incorporated the innovation aware CBR algorithm in T-Air, a case-based rea-
soning application developed for aiding engineers in the design of gas treatment
plants[4]. The gas treatment is required in many and diverse industrial processes
such as the control of the atmospheric pollution due to corrosive residual gases
which contain vapours, mists, and dusts of industrial origin. Examples of gas
treatments are the absorption of gases and vapours such as SO2, CLH , or CL2;
the absorption of NOx with recovering of HNO3; the absorption of drops and
fogs such as PO4H3 or ClNH4; dust removal in metallic oxides; and elimination
of odours from organic origin.

The main problem in designing gas treatment plants is that the diversity of
possible problems is as high as the diversity of industrial processes but there are
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Fig. 3. T-Air functional Architecture.

only experimental models for few of them. The knowledge acquired by engineers
with their practical experience is the main tool used for solving new problems.

3.1 General Architecture

The T-Air architecture is based on three knowledge models and three reasoning
modules (see Figure 3). The first knowledge model is the Chemical Model and
is the basis for determining the similarity between a gas composition in a new
problem and those treated previously and stored in the case base. Moreover,
since we are mixing a polluted gas with a washing liquid, we also have modeled
the properties of the washing liquids, the compatibility among gases and liquids,
and some chemical reactions involved.

The second knowledge model is the Equipment Model. The equipment model
describes the components used in gas treatment plants (gas-washing units,
pumps, fans, tanks, and accessories). Each equipment has involved a collec-
tion of working parameters. The relationships among these working parameters
are modeled by means of a collection of equations, a collection of constraints
about their maximum and minimum values, and a collection of safety conditions
expressed as heuristics.

Finally, the last knowledge model holds the Case Base. T-Air uses a highly
structured representation of cases. A case is represented as a complex structure
embodying four different kinds of knowledge: the Input Knowledge, a Chemical
Case-Model, the solution Flow Sheet, and Annotations.

The Input Knowledge embodies data about the customer such as the indus-
trial sector it belongs or the industrial process that originates the polluting gas;
data about the working conditions of the installation such as temperature or
gas flow; data about the composition and concentration of input polluted gas;
and data about the desired concentration in the output emission. The Chemical
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Fig. 4. An example of a simple flow sheet generated by T-Air with two scrubbers. each
of them with a centrifugal pump that sucks the washing liquids from three tanks to
the scrubbers, and one fan at the beginning of the process.

Case-Model embodies a graph structure, generated by T-Air using the chem-
ical model, modeling the main characteristics of the input gas. The chemical
case-model extends the input knowledge and fixes the thresholds for the work-
ing conditions, the main issues to be analyzed, and the kind of gas treatment
required. The Flow Sheet component describes the solution designed for clean-
ing a polluted gas. As shown graphically in Figure 4, the flow sheet specifies
a collection of required equipment (mainly scrubbers, pumps, tanks, and fans),
the design and working parameters for each equipment, and the topology of the
installation (the gas circuit and the liquid circuits). The flow sheet is also rep-
resented as a graph structure. Finally, Annotations are meta-information that,
when an external factor influences the solution, describe the reasons for a given
solution decision – examples of s annotations are the design decisions forced by
the user requirements such as the washing liquid, over-dimensionated parameters
because of security reasons, or spatial requirements.

The inference in T-Air is performed by three modules (see Figure 3): the
Constructive Adaptation module, the Revision module, and the Retention mod-
ule. The main inference is performed by the constructive adaptation module and
will be described in the next subsection.

Because the chemical knowledge required for covering all the potential prob-
lems is extremely huge, the approach followed was to only model the knowledge
related with the initial case base. This design decision had two main conse-
quences: i) the system required a Revision module where the engineers are able
to correct the system solution, and ii) the system required a mechanism for
gradually built up the chemical knowledge when it is required. Moreover, the
engineer have a complete control over the plant parameters (the system only
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prevents safety violations). The approach we have adopted is close to work of
capturing expert design knowledge through “concept mapping” [6]: when the
engineer is analyzing a problem involving a gas not previously covered, the en-
gineer uses the navigation interactive capabilities of T-Air for determining the
possible characteristics of the gas and improves the chemical knowledge of the
system by means of completing the information.

An important issue during the development of the system was to provide
useful navigation tools for inspecting the chemical knowledge and the case base.
This requirement is crucial when the engineer is trying to design the solution for
a problem that is not covered by the knowledge of the system.

The retention module is the responsible of storing all the problems solved
and manages the indexing structure. Cases are stored in an external database
and accessed by SQL queries.

3.2 Inference Process

The T-Air inference process has been implemented using constructive adaptation
[7], a generative technique for reuse in CBR systems. A solution in T-Air is
constructed by combining and adapting several previously solved designs. We
use the input knowledge and chemical knowledge (stored in the chemical case-
models) as the basis for determining the similarity between a new problem and
those treated previously and stored in the case base. The Chemical Model and
the Equipment Model are used in the adaptation stage for assessing the working
parameters of each equipment of the flow-sheet. The design of a solution in T-Air
is organized in four task levels:

a) selecting the class of chemical process to be realized;
b) selecting the major equipments to be used – and their inter-connections;
c) assessing the values for the parameters of each equipment; and
d) adding auxiliary equipment.

Task levels a) and b) are mainly related with retrieval mechanisms. Tasks
levels c) and d) are mainly related with adaptation mechanisms.

The innovation problem in T-Air is due to the continuous improvements on
the equipment used in the design of gas treatment plants. Specifically, the inno-
vation in the scrubbers (the gas washing elements) that are the core elements
in a gas treatment plant. It is not usual to incorporate new models of scrub-
bers. The usual procedure is to apply innovations to the current models. For
instance, an innovation on the scrubber cover can decrease the pressure drop–
i.e. increase the washing efficiency. Moreover, because there are many washing
parameters estimated experimentally, the behavior and the in-site measurements
of the deployed gas treatment plants is also a source of knowledge continuously
incorporated into future designs. In T-Air, the innovation problem decreases the
quality of proposed solutions. Because the T-Air system has a revision step,
the first consequence is that engineers have to spend more efforts in verifying
and correcting the proposed solutions. Moreover, each time the engineer has to
correct a lot of equipment parameters, the trust in the system decreases.
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When designing gas treatment plants two classes of problems can be identi-
fied: customary designs and occasional designs. Customary designs – for instance
the gas treatment inside wastewater treatment plants – are good examples for
tracking the innovations introduced in scrubbers. Solutions for occasional designs
have to be tuned with customary designs. Otherwise, the quality of a solution
for an occasional design may become very low.

The innovation aware algorithm is only relevant for T-Air tasks levels b) and
c): the selection of the major equipments to be used and the assessment of the
values for the parameters of each equipment.

3.3 Maintenance Policies

As it was argued in section 3.1, due to the impossibility of covering all the chem-
ical knowledge, we only modeled the knowledge required by the cases present in
the case base. Thus, the first maintenance component was designed for refining
the similarity knowledge. The maintenance of the chemical similarity hierar-
chy can be performed graphically by adding new leaves or refining intermediate
nodes. Moreover, each node in the hierarchy has associated a set of perspectives
that locally determine the set of ‘important’ input data. Perspectives [5] is a
mechanism developed to describe declarative biases for case retrieval in struc-
tured and complex representations of cases. This mechanism is also very pow-
erful for assessing similarities among case solutions where, as in design tasks,
solutions are also represented as complex and structured representations. T-Air
performs automatic subsumption tests for restricting the incorporation of a new
perspective that can conflict with the pre-existing ones.

The second maintenance policy implemented in the T-Air system was the
deletion of problems with obsolete solutions. Because we had all the designs per-
formed by tecnium from 1989, some of the solutions provided are now obsolete.
The system provides automatic tools for identifying divergent solutions for the
same problems and options for manually eliminate cases (useful for problems
with non-standard solutions). Moreover, the user can mark a new solution as a
‘non-standard solution’ and then, the solved problem will not be considered as
a case.

The third maintenance policy in T-Air was incorporated in the adaptation
knowledge. One of the components of the adaptation knowledge is the list of
obsolete components. The engineers manually introduce the new components and
their corresponding obsoletes. Unfortunately, only auxiliary equipment become
obsolete.

Finally, the innovation aware algorithm was introduced for dealing with the
improvements of gas-washing units. In the next section we will describe the
experiments performed for assessing the use of the innovation aware algorithm
in T-Air.

3.4 Experimentation

The goal of the experimentation was to compare the quality of solutions provided
by T-Air using the innovation aware algorithm regarding the correct solutions
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Table 1. Summay of experimentation results.

Main Equipments Parameter Ass.
Inn. err. Inn. err.

Standard Algorithm 0.0 % 25.0 % 0.0 % 83.3 %

IN-AW Algorithm 21.6 % 8.3 % 75.0 % 18.3 %

and the solutions proposed without the innovation aware algorithm. We say
that the quality of a solution is preserved when the solution proposed by the
innovation aware algorithm prevents the manually revision of the solution.

For testing the performance of the innovation aware algorithm we experi-
mented with a case base of 900 design solutions. These 900 cases are the per-
formed installations since 1997 (the last seven years). Then, the worst situation
for the T-Air system is to propose a new solution for an occasional problem
based on a solution of 7 years old.

From the case base we selected as testing problems 60 occasional designs –
20 from 2001, 20 from 2002, and 20 from 2003. All the testing problems had as
similar cases designs with at least 4 years old. An important remark is that we
tested each problem using only the cases older than the problem – i.e problems
from 2001 were tested only with cases from 1997 to 2001.

We analyzed the quality of the solutions at two different task levels: the
selection of the main plant components and structure (task level b) and the
selection of equipment working parameters (task level c). Errors performed at
task level b) are critical because the system is proposing an inappropriate type
of solution. Errors performed at task level c) are less critical for the chemical
process involved, but they increase the analysis cost because the design has to
be revised by a more qualified engineer.

Performance at ‘Main Equipments’ Task Level. The IN-AW algorithm pro-
posed a different design solution for 13 problems (representing the 21.6 %).
Two of the proposed solutions were not justified by the case base content.
After the experimentation, this situation was easily corrected by refining the
equipment model. Moreover, there were three problems with better solutions
that were not identified (the error percentage representing both situations is
8.3 %). When T-Air is not able to identify the best solution for a given prob-
lem, the inference algorithm behaves like in the standard CBR algorithm.
The improvement of quality of solutions at this level was not high but this
is coherent with the fact that the design improvements occur mainly in the
equipment parameters.

Performance at ‘Parameter Assessment’ Task Level. The important dif-
ference between the IN-AW algorithm and the standard CBR algorithm arisen
in this task level. IN-AW proposed different parameter values in 45 of the test
problems (representing the 75 %). All the proposed parameter values were
correct improvements – comparing with the standard CBR algorithm. The
error of 18.3 % arose when comparing the differences with the real solutions.
The difference is motivated by the conservative policy we chose when reusing
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innovation variants: only those innovation variants with a high confidence
degree are applied. The consequence is that in those cases the solution pro-
posed by the IN-AW algorithm represents an intermediate point between the
solution provided by the standard CBR algorithm and the engineer solu-
tion – i.e. the quality of the solution was improved but the optimal was not
reached.

4 Conclusions

We presented a CBR algorithm for dealing with problem domains with evolving
solutions concentrating the efforts on the retrieval and the reuse steps. The
algorithm has been developed for design and configuration tasks, where a solution
has a complex and structured representation and is usually constructed with the
contribution of different cases. The innovative aware CBR algorithm manages
the periodically incorporation of innovations in the problem solutions avoiding
the decreasing of the system performance. The solution provided incorporates
an additional retrieval and adaptation step into the usual CBR inference cycle
for capturing the innovations performed in customary problems and applying
them to the solutions of occasional problems.

We incorporated the innovation aware algorithm in T-Air, a deployed appli-
cation for aiding engineers in the design of gas treatment plants. The experi-
ments we performed with occasional problems demonstrated the utility of the
algorithm: the quality of the solutions provided by T-Air were improved. This
effect was clearly significant at the ’Parameter Assessment’ task level where the
percentage of solutions improved is the 75 %.

When the performance of the system degrades, the psychological effect on
the users is the lack of trust. An important contribution of the algorithm is that
increased the trust of the users in the T-Air application.

In the current implementation of the IN-AW algorithm we have manually
tuned the values of the recency thresholds δ and γ for their use in the T-Air
application. As a future work we plan to investigate the use of variable recency
thresholds.

Although the use of learning techniques for acquiring adaptation knowledge
is a hard task in incomplete domain models, it can be an interesting complement
to our proposed algorithm. Future research will continue in this direction.
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