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Abstract

As a scientific community we are slowly but steadily progressing towards the avail-
ability of massive amounts of music and music-related data for research purposes.
The Million Song Dataset [1], Peachnote [2], the Yahoo! Music Dataset [3], the
Last.fm API1, Musicbrainz2, or Wikipedia3 are just but some examples. Certainly,
such big data availability will shift the perspective in which we approach many (if
not all) of the traditional music information retrieval tasks. From genre or mood
classification to audio or cover song identification, practically all tasks will exper-
iment a change of paradigm that will frame them under more realistic, large-scale
scenarios. However, I am perhaps more interested in the new avenues for research
that are awaiting for us. In particular, I am excited about the knowledge that we can
distill from such massive amounts of data. Not only knowledge about music itself
(rules [4], patterns [5], anti-patterns [6], and their evolution [7]), but also knowl-
edge about ourselves, as music listeners [8], users, or creators [9]. Music is an
extremely powerful means of communication [10] that shapes our brain in intricate
ways [11], unique to mankind [12], and transversal to all societies [13]. Thus, we
would expect to gain relevant knowledge from mining massive amounts of music
archives. But what can we learn, exactly?
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