
Implementing Norms in Electronic Institutions

A. Garćıa-Camino1 P. Noriega1 J. A. Rodŕıguez-Aguilar1

1 IIIA-CSIC, Campus UAB 08193 Bellaterra Spain

{andres,pablo,jar}@iiia.csic.es

Abstract

Ideally, open multi-agent systems (MAS) involve heterogeneous and autonomous agents
whose interactions ought to conform to some shared conventions. The challenge is how to
express and enforce such conditions so that truly autonomous agents can adscribe to them.
One way of addressing this issue is to look at MAS as environments regulated by some sort of
normative framework. There have been significant contributions to the formal aspects of such
normative frameworks, but there are few proposals that have made them operational. In this
paper a possible step towards closing that gap is suggested. A normative language is intro-
duced which is expressive enough to represent the familiar types of MAS-inspired normative
frameworks; its implementation in JESS is also shown. This proposal is aimed at adding flexi-
bility and generality to electronic institutions by extending their deontic components through
richer types of norms that can still be enforced on-line.

1 Introduction

Open Multi-agent systems (MAS) have emerged as a promising approach for creating agile infor-
mation systems suited for addressing problems that have multiple problem-solving entities [12].

In this work we assume that open MAS put together heterogeneous, self-interested agents whose
actions might deviate from expected behaviour. Moreover, their uncontrolled actions may be harm-
ful to other agents and even to the multi-agent system, leading to unwanted states. In this setting,
there is a pending, fundamental issue: the constitution of safe environments that guarantee the con-
straining of agents’ behaviours without restricting their essential characteristic: autonomy. Along
this direction, normative systems allow to ensure that agents’ behaviours will never bring about
unwanted states by specifying the set of illegal actions to be forbidden under particular conditions.

We differentiate three main research lines dealing with normative systems: theoretical models
of norms, formal specification of norms and computational models. Current work on theoretical
models focuses mainly on the formalization of normative systems with deontic logics [14]. For
instance, Dignum et al. propose a variation of deontic logic that includes conditional and temporal
aspects [3][5]. These approaches are fundamentally theoretical and have no current implementation.

As to formal specifications, a remarkable example of normative MAS model is the extension of
the SMART agent specification framework by López y López et al. [16] [15]. They tackle norm
reasoning from an agent-centered perspective, defining different types of agents depending on their
strategy to comply with norms (for instance, a greedy agent would choose to comply with the
set of norms that maximize its benefits). A different perspective is taken in [20] where the ma-
jor concern is to offer an general definition of norm (which integrates conditional and temporal
aspects) from an organizational point of view. Finally, as for computational models, current nor-
mative frameworks are either domain specific or their normative component is not expressive and
flexible enough. An example of the former is the implementation realized by Michael et al. [17],
which permits the specification of market mechanims by the definition of rights, permissions and
obligations. An example of the latter is AMELI [8], which makes operational the notion of Elec-
tronic Institution (EI for short), guaranteeing the preservation of a legal state of the environment.
However, its normative component seriously restricts agents’ behaviours by imposing actions when
norms are activated. Another recent computational model is based on the use of event calculus
for the formalization of norm-governed computational systems [2][1]. Obligations, permissions and
prohibitions are expressed as changing predicates called fluents. Although some examples have

been implemented in Prolog, this formalization focuses on norms triggered by actions, it does not
include the formalization of norms triggered by temporal issues.

Although there are new emerging approaches, there is still a gap between theoretical proposals
and computational models. On the one hand, there are worthy theoretical models and specifications
with no implementation [14] [3] [5] [15] [20]. On the other hand, there are robust frameworks which
lack the degree of expressiveness and flexibility needed for a normative system [17] [8].

The objective of this paper is to try to fill this gap by adapting a formal approach [20] to
enrich an existing framework [8] . More precisely, we have extended the normative language of
an EI to increase its expressiveness and flexibility. We have also proposed the use of Jess [13]
for the implementation of the norm engine which mantains the normative state of an institution,
i.e. the permissions, prohibitions and obligations that hold in the current state of execution. Our
implementation has been carried out by translating the norms specified in our normative language
into Jess rules. At run-time our norm engine can be updated with new utterances and queried
about permissions, prohibitions or pending obligations.

It is worth remarking that we consider autonomous norm compliance from an institutional point
of view. That is, we do not care how an agent decides which norms to comply with, but instead we
define the norms and the sanctions to be applied when the violation of norms occurs as part of the
institution. With this approach we allow agents to reason about norm compliance while the choice
and implementation of the agents’ architecture is left to the agent developers.

The paper is organised as follows. In section 2 we summarise the notion of EI. Next, we define
the normative language in section 3 and show its implementation in section 4. We draw some
conclusions and outline our future work in section 5.

2 Electronic Institutions

Our work fits within the context of electronic institutions (EIs) [6], providing them with an explicit
normative layer. There are two major features in EIs – the states and illocutions (i.e., messages)
uttered (i.e., sent) by those agents taking part in the EI. The states are connected via edges labelled
with the illocutions that ought to be sent at that particular point in the EI. Another important
feature in EIs are the agents’ roles: these are labels that allow agents with the same role to be
treated collectively thus helping engineers abstract away from individuals. We define below the
class of illocutions we aim at – these are a special kind of term:

Def. 1 Illocutions ı̄ are terms p(ag , r , ag ′, r ′,T, t) where p is an illocutionary particle (e.g., in-
form,ask); ag , ag ′ are agent identifiers; r, r′ are role labels; T is a term with the actual content of
the message; t ∈ IN is a time stamp.

We shall refer to illocutions that may have uninstantiated (free) variables within themselves as
illocution schemes and will be denoted by I.

Another important concept in EIs we employ here is that of a scene. Scenes offer means to
break down larger protocols into smaller ones with specific purposes. We can uniquely refer to the
point of the protocol where an illocution ı̄ was uttered by the pair (s, w) where s is a scene name
and w is the state from which an edge labelled with I leads to another state.

3 Normative Language

We have extended the normative language recently proposed in [20]. That proposal is enriched
with new types of norms, namely norms that we keep active during a time interval, and conditional
norms over the institutional state, (e.g. the observable attributes of agents and objects of the
environment). Moreover, our extension of that language includes the possibility to sanction agents
by modifying their institutional state, i.e. their observable attributes. Nonetheless, since in EIs alls
actions are speech acts, actions expressed by the language are limited to the utterance of illocutions.

We propose the BNF description of our normative language as follows:
NORM := N(utter(S, W, I) 〈TIME〉 〈IF C〉)

N := OBLIGED | PERMITTED |
FORBIDDEN

I := ι(A, R, A, R, M, T)

TIME := BEFORE D | AFTER D |
BETWEEN (D, D) |

BEFORE uttered(S
∗
, W

∗
, I

∗
) |

AFTER uttered(S
∗
, W

∗
, I

∗
) |

BETWEEN (uttered(S
∗
, W

∗
, I

∗
),

uttered(S
∗
, W

∗
, I

∗
))

C := ¬ (CONDS) | CONDS

CONDS := 〈¬〉COND 〈, C〉

COND := V OP V | uttered(S
∗
, W

∗
, I

∗
) |

N(utter(S
∗
, W

∗
, I

∗
)) | predicate

V := AT | F | value

AT := identifier.attribute|variable
OP := > | < | ≥ | ≤ | =

SANCTION := SANCTION ((COMMS) IF NP (NORM))

NP := VIOLATED | COMPLIED

COMMS := COMM〈, COMMS〉
COMM := AT = F | F

F := identifier(< ARGS >)

ARGS := V <, V >

where S is a scene identifier; W is a state identifier; ι is an illocutionary particle; A is an agent
identifier; R is a role identifier; M is a content message in the language LO from the dialogical
framework; T is a time stamp; D is a deadline; S∗, W ∗, I∗, A∗, R∗, M∗, T ∗ are expressions which
may contain variables referring, respectively, to scenes, states, illocutions, agent identifiers, role
identifiers, messages and time stamp; and predicate is a first-order formula whose variables are
universally quantified.

On the one hand, utter(s∗, w∗, i∗) is the predicate that represents the action (not carried out
yet) of submitting an illocution at the state w∗ of scene s∗. This predicate is the only one that
can be restricted with deontic operators. On the other hand, uttered(s∗, w∗, i∗) is used to denote
that the submission of an illocution has been carried out. The latter predicate can be used in the
conditional construct of a normative rule.

From the BNF notation follows that a norm (NORM) can be either an obligation (OBLIGED),
a permission
(PERMITTED) or a prohibition (FORBIDDEN) upon the utterance of a given illocution (utter(S, W, I))
if conditions are satisfied (IF C). The BEFORE construct is used to activate the norm before a dead-
line or an action. The AFTER construct is used to activate the norm after a given deadline or an
action. The BETWEEN construct results from the combination of the previous two and it is used
to activate the norm once the time specified by the first argument is reached and de-activate it
once the time specified by the second argument is reached. The IF construct is used to introduce
conditions over variables, agents’ observable attributes or function results. The AT definition no-
tates how attribute values can be accessed with the language, identifier.attribute denotes that the
value of the attribute with name attribute of the agent or object with name identifier is retrieved.

Sanctions (analogously, rewards) can also be expressed by defining the sequence of attribute
updates or functions (COMMS) to be executed if a norm is violated (analogously, complied)
(VIOLATED NORM or COMPLIED NORM).

4 Executable Norms

Once the normative language has been defined, we need to handle the normative state of an in-
stitution. A rule-based system was chosen to implement norms because the normative language is
of the form preconditions postconditions, which is easily expressable with rules. In order to
facilitate the integration with AMELI we decided to implement this tool with Jess since both are
written in Java.

In this section we first introduce the (norm) engine used for implementing executable norms.
The translation of norms expressed in the language presented in section 3 into executable norms
written in Jess will be also detailed.

4.1 Jess

Jess is an expert system shell and scripting language from Sandia National Laboratories [13] written
entirely in Java [11]. Jess supports the development of rule-based systems that can be tightly
coupled to code written in Java. It can manipulate Java objects and can be extended with new
functions implemented in Java.

4.1.1 Facts

A rule-based system maintains a collection of knowledge portions called facts. This collection is
known as the knowledge base. In Jess, there are three kinds of facts: ordered facts, unordered
facts, and definstance facts. Ordered facts are simply Lisp-style lists where the first field, the head
of the list, acts as a category for the fact. Unordered facts allow the programmer to structure the
properties of a fact in slots. Before the creation of unordered facts, the slots they have must be
defined using the deftemplate construct.

Figure 1 shows an example of an unordered fact template used to model the predicate uttered.
An uttered fact is composed of several slots: scene, state, agent, receiver, performative and
content. The scene and state where an utterance takes place is specified by the scene and state
slot; while the agent and receiver slots define the sender and receiver of the message (content).
The illocutionary particle of the illocution is stated by the performative slot.

(deftemplate uttered
(slot scene)
(slot state)
(slot agent)
(slot receiver)
(slot performative)
(multislot content))

Figure 1: Example of a Jess unordered fact

4.1.2 Rules

Rules have two parts separated by the connective =¿ : a left-hand side (LHS) and a right-hand
side (RHS). The LHS is employed for matching fact patterns. The RHS is a list of actions (post-
conditions) to perform if the patterns of the LHS (preconditions) are satisfied. These actions are
typically method calls. An important feature of Jess is that the RHS can call native Jess methods,
instance methods of externally referenced Java objects and static class methods. This feature adds
enormous flexibility to the code.

(defrule cob-1-sanction
”Reduce agent’s credit on violation”
(V (type negative) (constraints ?c) (agent ?a)

(scene deliver) (state w0) (receiver ?b)
(performative inform) (content deliver ?it))
(agent (id ?a) (attrs ?at))

=>
(bind ?old (?at get ”credit”))
(bind ?new (- ?old 100))
(?at put ”credit” ?new))

Figure 2: Example of a Jess rule

Figure 2 shows an example of a rule. When a violation occurs, that is, when exists a fact V
with the specified slots and the attributes of the violator agent ?a can be retrieved in the variable

?at then store the value of the credit of the agent in variable ?old, store in ?new the value of
variable ?old decreased by a hundred and change the credit of the violator agent ?a into the value
of variable ?new.

4.2 Norm implementation

In addition to the normative language we need to keep at run-time the sequence of done actions
and to query what actions are permitted or forbidden and what are the pending obligations. To
introduce utterances, permissions, prohibitions and obligations in the norm engine, a translation
from our language to Jess rules is needed.

This translation can be carried out using the criteria established in the following sections.
We define four types of Jess unordered facts: O, P, F and V that stand, respectively, for obliga-

tions, permissions, prohibitions and violations.

4.2.1 Conditional norms.

Conditional norms are those norms that include an IF section. The translation of IF sections is
directly realised by placing the conditions in the LHS of a Jess rule.

OBLIGED(utter(delivery, w0,
inform(C, storemanager, A, payer, deliver(IT)))

BEFORE 15 days
IF uttered(payment, w0,

inform(A, payer, B, payee, pay(IT, P))))

Figure 3: Example of a conditional obligation with deadline

(defrule cob-1
(uttered (agent ?a) (scene payment)

(state w0) (receiver payee)
(performative inform)
(content pay ?it ?price))

=>
(assert (O (agent storemanager) (scene delivery)

(state w0) (receiver ?a)
(performative inform)
(content deliver ?it)))

(bind ?date (new java.util.Date))
(bind ?deadline (add-date ?date 0 0 15 0 0 0 0))
(bind ?rule (str-cat

”(defrule cob-1-deadline ”
”(not(uttered (agent payee)”

”(scene delivery)”
”(state w0) (receiver ” ?a ”)”
”(performative inform)”
”(content deliver ” ?it ”)))”

” => ”
”(assert (V (type negative) ”

”(constraints b̈efore ”
(?deadline toString) ”\”)”
”(agent payee) (scene deliver)”
”(state w0) (receiver ” ?a ”)”
”(performative inform)”
”(content deliver ” ?it ”))))”))

(set-deadline ?deadline ?rule))

Figure 4: Implementation in Jess of a conditional obligation with deadline

4.2.2 Action-dependent norms.

Action-dependent norms are those norms that include a BEFORE, AFTER or BETWEEN section
followed by an action. To translate an obligation to be fulfilled before the utterance of an illocution
i1, we add a rule that asserts a violation fact if illocution i1 has been uttered but the obliged

Figure 5: Time diagram of rule activation for norm OBLIGED(utter(s, w, i) BETWEEN t1, t2)

illocution has not. The assertion of facts can be achieved with the Jess function (assert ?fact).
The translation of permissions or prohibitions that are active before the utterance of an illocution
i1 occurs is made by asserting the given permission or prohibition and adding to the Jess engine a
rule that retracts it when illocution i1 is uttered.

In order to translate obligations, permissions and prohibitions that are active after the utterance
of a given illocution i2; we add a rule that asserts the obligation, permission or prohibition when
i2 is uttered.

The translation of permissions, prohibitions and obligations during a time interval (BETWEEN
construct) is a combination of the three previous cases. We decompose the BETWEEN construct into
two Jess rules as if it had an AFTER and BEFORE constructs. The translation of these constructs
is carried out as stated above.

4.2.3 Time-dependent norms.

Time-dependent norms are those norms that include a BEFORE, AFTER or BETWEEN section
followed by a date.

To translate rules with temporal constraints (i.e. the BEFORE,
AFTER and BETWEEN constructs with time objects) into Jess rules we use the user-defined function
(set-deadline ?deadline ?rule) where ?deadline is an absolute date object indicating when the
rule fires and ?rule is a string-based representation of a rule. In this way the set-deadline function
adds the given rule to the Jess engine only when the specified absolute date arrives.

To translate obligations with deadline (BEFORE construct), we use the set-deadline function
to add a Jess rule that asserts a violation when the deadline has not been met. In other words,
it checks, after the deadline, if the obliged illocution has not been uttered yet, in order to fire the
corresponding violation.

The translation of permissions and prohibitions that are active before a deadline is done by
asserting the permission or prohibition and setting a deadline rule that retracts the permission or
prohibition when the deadline has passed.

Figures 3 and 4 show an example of the translation of a conditional obligation with a deadline
into a Jess rule. Their intuitive meaning is that paid goods must be delivered before 15 days.
If agent A playing the payer role pays for an item to an agent B playing the payee role in the
payment scene, an agent playing the storemanager role must deliver that item to the purchaser in
the delivery scene before 15 days.

To translate obligations, permission or prohibitions that activate after a deadline, we add a
deadline rule that asserts the obligation, permission or prohibition after the deadline.

For this purpose we use the set-deadline function to add a Jess rule that asserts the obligation,
permission or prohibition once the deadline has passed.

Finally, obligations, permissions and prohibitions during a time interval can be translated as a
combination of the previous two cases: we add a rule for the AFTER construct and another one for
the BEFORE construct.

OBLIGED(utter(deliver, w0,
inform(C, storemanager, A, buyer, deliver(IT)))

BETWEEN 3 day, 15days
IF uttered(payment, w0,

inform(A, payer, B, payee, pay(IT, P))))

Figure 6: Conditional obligation along a time interval

Figure 5 depicts the time diagram of a rule with a BETWEEN construct which is translated into
two Jess rules that activate at times t1 and t2.

(defrule obt-1
(uttered (agent ?a) (scene payment)

(state w0) (receiver payee)
(performative inform)
(content pay ?it ?price))

=>
(bind ?date (new java.util.Date))

(bind ?t1 (add-date ?date 0 0 3 0 0 0 0))
(bind ?t2 (add-date ?date 0 0 15 0 0 0 0))

(bind ?rule1 (str-cat
”(defrule obt-1-after => ”

”(assert (O (agent storemanager) (scene deliver) ”
”(state w0) (receiver ” ?a ”)”
”(performative inform)
”(content deliver it))))”))

(bind ?rule2 (str-cat
”(defrule obt-1-before =>”

”(assert (V (type negative)”

”(constraints b̈efore ”
(?t2 toString) ”\”)”

”(agent storemanager) (scene deliver)”
”(state w0) (receiver ” ?a ”)”
”(performative inform)”
”(content deliver it))))”))

(set-deadline ?t1 ?rule1)
(set-deadline ?t2 ?rule2))

Figure 7: Implementation in Jess of a conditional obligation along a time interval

Figures 6 and 7 show a compound norm that has conditional and temporal sections. In figure
6 the action dependence of the norm is expressed in the conditional section. In figure 7 the time
dependence is described by the BETWEEN construct. They oblige a store manager agent to deliver
the goods between 3 to 15 days after the sale date. Figure 7 shows the translation of the normative
rule in 6 into a Jess rule.

5 Conclusions and Future Work

We have defined a normative language to specify obligations, permissions, prohibitions, violations
and sanctions to restrict agents’ dialogical actions. This normative language can be used as an
extension of the normative rules of the current version of electronic institutions obtaining a higher
degree of expressiveness and flexibility. We have also implemented a norm engine which mantains
the normative state of an institution, i.e. the permissions, prohibitions and pending obligations
that hold in the current state of execution.

There are some differences between our normative proposal and other recent ones, the more
salient are that we do not need norms over predicates since we have assumed that all admissible
actions within an electronic institutions are speech acts (as in for example, [18][19][7]), we do not
make the strong assumption (as in, for example, [20]) that there is a prohibition before an action iff
there is a permission after that action, and we do have a working proof of concept implementation
of a computationally feasible framework. With respect to other implementation proposals for
normative frameworks, ours is more expressive in the sense that other implementations do not

include temporal aspects in the definition of norms and, in the test of conditional norms or in the
application of sanctions, fail to consider observable agent attributes or attributes of objects in the
environment.

As far as future work is concerned, we intend to produce an upward compatible extension of the
EIDE environment through the addition of an automatic translation module to map our normative
language into Jess rules and integrates our norm engine with AMELI. We are extending the notions
stated above in the formalization and development of a norm-based agent programming language
[10]. We leave as future work the analysis of the expressiveness of our language in comparison to
another recent approaches as [9] and [4].

Acknowledgments

The present paper was funded by the Spanish Science and Technology Ministry as part of the
Web-i-2 project (TIC-2003-08763-C02-00). A. Garcia-Camino enjoys an I3P grant of the Spanish
Council for Scientific Research (CSIC).

References

[1] A. Artikis. Executable Specification of Open Norm-Governed Computational Systems. PhD
thesis, Department of Electrical & Electronic Engineering, Imperial College London, Nov.
2003.

[2] A. Artikis, L. Kamara, J. Pitt, and M. Sergot. A Protocol for Resource Sharing in Norm-
Governed Ad Hoc Networks. volume 3476 of LNCS. Springer-Verlag.

[3] J. Broersen, F. Dignum, V. Dignum, and J.-J. C. Meyer. Designing a deontic logic of deadlines.
In Procs. 7th Intl. Workshop of Deontic Logic in Computer Science (DEON’04), volume 3065
of Lecture Notes in Artificial Intelligence, Portugal, May 2004. Springer Verlag.

[4] H. L. Cardoso and E. Oliveira. Virtual enterprise normative framework within electronic
institutions. In Proceedings of the Fifth International Workshop Engineering Societes in the
Agents World (ESAW), 2004.

[5] F. Dignum, J. Broersen, V. Dignum, and J.-J. C. Meyer. Meeting the deadline: Why, when
and how. In 3rd Goddard Workshop on Formal Approaches to Agent-Based Systems (FAABS),
Maryland, USA, Apr. 2004.

[6] M. Esteva. Electronic Institutions: from Specification to Development. PhD thesis, Universitat
Politècnica de Catalunya (UPC), 2003. IIIA monography Vol. 19.

[7] M. Esteva. Electronic Institutions: from specification to development. Number 19 in IIIA
Monograph Series. PhD Thesis, 2003.

[8] M. Esteva, B. Rosell, J. A. Rodŕıguez-Aguilar, and J. L. Arcos. AMELI: An Agent-Based
Middleware for Electronic Institutions. In Procs. AAMAS 2004, 2004.

[9] N. Fornara, F. Viganò, and M. Colombetti. A Communicative Act Library in the Context
of Artificial Institutions. In 2nd European Workshop on Multi-Agent Systems, pages 223–234,
Barcelona, 2004.

[10] A. Garcia-Camino, J.A.Rodriguez-Aguilar, C. Sierra, and W. Vasconcelos. A distributed ar-
chitecture for norm-aware agent societies. In Proceedings of the Declarative Agent Languages
and Technologies (DALT) workshop, Utrecht, July 2005.

[11] J. Gossling. The Java programming Language. Reading. Addison-Wesley, 1996.

[12] N. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research and development.
Journal of Agents and Multi-Agents Systems, 1:7–38, 1998.

[13] Jess. The Rule Engine for Java. Sandia Nat’l Labs. http://herzberg.ca.sandia.gov/jess, Oct.
2005.

[14] A. Lomuscio and D. Nute, editors. Proc. of the 7th Intl. Workshop on Deontic Logic in
Computer Science (DEON’04), volume 3065 of Lecture Notes in Artificial Intelligence. Springer
Verlag, 2004.

[15] F. López y López. Social Power and Norms: Impact on agent behaviour. PhD thesis, University
of Southampton, June 2003.

[16] F. López y López, M. Luck, and M. d’Inverno. Constraining Autonomy Through Norms. In
Procs. AAMAS 2002. ACM Press, 2002.

[17] L. Michael, D. C. Parkes, and A. Pfeffer. Specifying and monitoring market mechanisms using
rights and obligations. In Proc. AAMAS Workshop on Agent Mediated Electronic Commerce
(AMEC VI), New York, USA, 2004.

[18] P. Noriega. Agent-Mediated Auctions: The Fishmarket Metaphor. Number 8 in IIIA Mono-
graph Series. PhD Thesis, 1997.

[19] J. A. Rodriguez-Aguilar. On the Design and Construction of Agent-mediated Electronic Insti-
tutions. Number 14 in IIIA Monograph Series. PhD Thesis, 2001.

[20] J. Vázquez-Salceda, H. Aldewereld, and F. Dignum. Norms in Multiagent Systems: Some
Implementation Guidelines. In 2nd European Workshop on Multi-Agent Systems, Barcelona,
2004.

