
Sequential Mixed Auctions

Boris Mikhaylov
Artificial Intelligence Research

Institute, IIIA
Spanish National Research

Council, CSIC
08193 Bellaterra, Spain
boris@@iiia.csic.es

Jesus Cerquides
Artificial Intelligence Research

Institute, IIIA
Spanish National Research

Council, CSIC
08193 Bellaterra, Spain

cerquide@@iiia.csic.es

Juan A.
Rodriguez-Aguilar

Artificial Intelligence Research
Institute, IIIA

Spanish National Research
Council, CSIC

08193 Bellaterra, Spain
jar@@iiia.csic.es

ABSTRACT
Mixed multi-unit combinatorial auctions (MMUCAs) offer
a high potential to be employed for the automated assem-
bly of supply chains of agents. However, in order for mixed
auctions to be effectively applied to supply chain formation,
we must ensure computational tractability and reduce bid-
ders’ uncertainty. With this aim, we introduce Sequential
Mixed Auctions (SMAs), a novel auction model conceived
to help bidders collaboratively discover supply chain struc-
tures. Thus, an SMA allows bidders progressively build a
supply chain structure through successive auction rounds.
Moreover, the incremental nature of an SMA provides its
participants with valuable information at the end of each
auction round to guide their bidding. Finally, we empirically
show that SMAs significantly reduce the computational ef-
fort required by MMUCA at the expense of a slight decrease
in the auctioneer’s revenue.

Categories and Subject Descriptors
J.2 [Computer Applications]: Social and Behavioral Sci-
ences; I.2.11 [Computing Methodologies]: Artificial In-
telligenceDistributed Artificial Intelligence

General Terms
Algorithms, Experimentation, Performance

Keywords
Supply chain formation, collaboration, combinatorial auc-
tions, mixed auctions, sequential auctions

1. INTRODUCTION
According to [7], “Supply Chain Formation (SCF) is the
process of determining the participants in a supply chain,
who will exchange what with whom, and the terms of the
exchanges”. Combinatorial Auctions (CAs) [2] are a negoti-
ation mechanism well suited to deal with complementarities
among the goods at trade. Since production technologies

often have to deal with strong complementarities, SCF au-
tomation appears as a very promising application area for
CAs. However, whilst in CAs the complementarities can
be simply represented as relationships among goods, in SCF
the complementarities involve not only goods, but also trans-
formations (production relationships) along several levels of
the supply chain.

The first attempt to deal with the SCF problem by means
of Combinatorial Auctions (CA) was done by Walsh et al.
in [7]. Later on, mixed multi-unit combinatorial auctions
(MMUCAs), a generalization of the standard model of CAs,
are introduced in [1]. Rather than negotiating over goods,
in MMUCAs the auctioneer and the bidders can negotiate
over transformations, each one characterized by a set of in-
put goods and a set of output goods. A bidder offering a
transformation is willing to produce its output goods after
having received its input goods along with the payment spec-
ified in the bid. While in standard combinatorial auctions,
a solution to the winner determination problem (WDP) is a
set of atomic bids to accept, in MMUCAs, the order in which
the auctioneer “uses” the accepted transformations matters.
Thus, a solution to the WDP is a sequence of transforma-
tions. For instance, if bidder Joe offers to make dough if
provided with butter and eggs, and bidder Lou offers to
bake a cake if provided with enough dough, the auctioneer
can accept both bids whenever he uses Joe’s transformation
before Lou’s to obtain cakes.

Unfortunately, the MMUCA WDP has been proved to be
NP-complete [1]. Although reasonably fast solvers have been
introduced [3], MMUCA still turns out to be impractical in
real-world procurement scenarios. Furthermore, a bidder
in MMUCA only knows the desired outcome of the supply
chain and the currently stocked goods. Hence, it is difficult,
specially for providers placed in the intermediate levels of
the supply chain, to decide what to bid for. Therefore, in
order for mixed auctions to be effectively applied to supply
chain formation, we must ensure computational tractability
and reduce bidders’ uncertainty. With this aim, we intro-
duce Sequential Mixed Auctions (SMAs), a novel auction
model conceived to help bidders collaboratively discover sup-
ply chain structures.

SMAs propose to solve a supply chain formation problem
by means of a sequence of auctions. The first auctioning
round starts with the desired outcome of the supply chain



as requested goods and the stocked goods as available goods.
During the first auction bidders are only allowed to bid for
transformations that either (i) produce goods in the set of
requested goods or (ii) consume goods from the available
goods. After selecting the best set of transformations, the
auctioneer updates the set of requested and available goods
after the execution of these transformations and then it will
start a new auction. The process will continue until no bids
can be found that improve the supply chain.

Each auction involves only a small part of the whole sup-
ply chain. Which means that auction’s WDP is over a
small subsets of bidders, goods and transformations of for-
mer MMUCA. These auctions can be solved faster, while
we keep the ability to scale our model. The resulting so-
lution is constructed from auctions’ WDP solutions. This
method copes with complexity of bidding protocol of for-
mer MMUCA as well. With our approach manufacturers
know which goods are required at any given auction. Con-
sequently, they bid only on those transformations, which
provide these goods. That makes all former complexity and
uncertainty go away. A more detailed elaboration of se-
quential MMUCA and its WDP is presented in following
sections. Section 2 provides some background of mixed auc-
tions, whereas section 3 formally states the WDP and dis-
cusses the means to solve it. Section 4 analyses some initial
empirical results comparing SMAs with MMUCAs in terms
of solution quality and solving time. Finally, section 5 draws
conclusions and discusses future research.

2. BACKGROUND: MIXED AUCTIONS
Next we summarize the work in [1], which introduces mixed
multi-unit combinatorial auctions as a generalization of the
standard model of combinatorial auctions (CA) and dis-
cusses the issues of bidding and winner determination.

Let G be the finite set of all the types of goods. A trans-
formation is a pair of multi-sets over G: (I,O) ∈ NG ×NG.
An agent offering the transformation (I,O) declares that
it can deliver O after having received I. In our setting,
bidders can offer any number of such transformations, in-
cluding several copies of the same transformation. That is,
agents will be negotiating over multi-sets of transformations

D ∈ N(NG×NG). For example, {({ }, {a}), ({b}, {c})} means
that the agent in question can deliver a (no input required)
and that it can deliver c if provided with b. Note that this
is not the same as {({b}, {a, c})}. In the former case, if an-
other agent can produce b if provided with a, we can use
the second transformation and get c; in the latter case this
would not work.

In a MMUCA, agents negotiate over bundles of transfor-

mations. Hence, a valuation v : N(NG×NG) → R is a (typ-
ically partial) mapping from multi-sets of transformations
to real numbers. Intuitively, v(D) = p means that the
agent equipped with valuation v is willing to make a pay-
ment of p in return for being allocated all the transforma-
tions in D (in case p is a negative number, this means that
the agent will accept the deal if it receives an amount of
|p|). For instance, valuation v({({line, ring , head , 6 · screws,
screwdriver}, {cylinder , screwdriver})}) = −10 means that
some agent can assemble a cylinder for 10ewhen provided

with a (cylinder) line, a (cylinder) ring, a (cylinder) head,
six screws, and a screwdriver, and returns the screwdriver
once done.1

An atomic bid b = ({(I1,O1), . . . , (In,On)}, p) specifies
a finite multi-set of finite transformations and a price p.
A bidding language allows a bidder to encode choices be-
tween alternative bids and the like [4]. Informally, an OR-
combination of several bids means that the bidder would be
happy to accept any number of the sub-bids specified, if paid
the sum of the associated prices. An XOR-combination of
bids expresses that the bidder is prepared to accept at most
one of them. The XOR-language is known to be fully ex-
pressive for MMUCAs [1].

Bids in MMUCAs are composed of transformations. Each
transformation expresses either an offer to buy, to sell, or
to transform some good(s) into (an)other good(s). Thus,
transformations are the building blocks composing bids. We
can classify the types of transformations over which agents
bid as follows:

1. Output transformations are those with no input
good(s). Thus, an O-transformation represents a bid-
der’s offer to sell some good(s). Besides, an O-transformation
is equivalent to a bid in a reverse CA.

2. Input transformations are those with no output
good(s). Thus, an I-transformation represents a bid-
der’s offer to buy some good(s). Notice that an I-
transformation is equivalent to a bid in a direct CA.

3. Input-Output transformations are those whose in-
put and output good(s) are not empty. An IO-transformation
stands for a bidder’s offer to deliver some good(s) af-
ter receiving some other good(s): I can deliver O after
having received I. They can model a wide range of dif-
ferent processes in real-world situations (e.g. assembly,
transformation, or exchange).

The input to the WDP consists of a complex bid expression
for each bidder, a multi-set Uin of (stock) goods the auction-
eer holds to begin with, and a multi-set Uout of (required)
goods the auctioneer expects to end up with.

In standard CAs, a solution to the WDP is a set of atomic
bids to accept. As to MMUCAs, however, the order in
which the auctioneer ”uses” the accepted transformations
matters. For instance, if the auctioneer holds a to begin
with, then checking whether accepting the two bids Bid1 =
({({a}, {b})}, 10, id1) and Bid2 = ({({b}, {c})}, 20, id2) is
feasible involves realizing that we have to use Bid1 before
Bid2. Thus, a solution to the WDP will be a sequence of
transformations. A valid solution has to meet two condi-
tions:

(1) Bidder constraints: The multi-set of transformations in
the sequence has to respect the bids submitted by the bid-
ders. This is a standard requirement. For instance, if a
bidder submits an XOR-combination of transformations, at

1We use 6 · screws as a shorthand to represent six identical
elements in the multi-set.



most one of them may be accepted. With no transformation
free disposal, if a bidder submits an offer over a bundle of
transformations, all of them must be employed in the trans-
formation sequence, whereas in the case of transformation
free disposal any number of the transformations in the bun-
dle can be included into the solution sequence, but the price
to be paid is the total price of the bid.
(2) Auctioneer constraints: The sequence of transformations
has to be implementable: (a) check that Uin is a superset
of the input set of the first transformation; (b) then update
the set of goods held by the auctioneer after each transfor-
mation and check that it is a superset of the input set of the
next transformation; (c) finally check that the set of items
held by the auctioneer in the end is a superset (the same set
in the case of no good free disposal) of Uout.

An optimal solution is a valid solution that maximizes the
sum of prices associated with the atomic bids selected.

The WDP for MMUCAs is a complex computational prob-
lem. In fact, one of the fundamental issues limiting the ap-
plicability of MMUCAs to real-world scenarios is the compu-
tational complexity of the WDP, which is proved in [1] to be
NP-complete. Although [3] introduces an integer program
to efficiently solve the WDP that drastically outperforms
the original IP described in [1], the computational complex-
ity impedes scalability. The next section introduces a new
mixed auction model that allows to tame complexity while
reducing bidders’ uncertainty.

3. SEQUENTIAL MIXED AUCTIONS
3.1 An informal introduction
An SMA proposes to solve a supply chain formation problem
by means of a sequence of auctions. The first auction in
the sequence starts with the desired outcome of the supply
chain as requested goods and the stocked goods as available
goods. During the first auction, bidders are only allowed
to bid for transformations that either: (i) produce goods
in the set of requested goods; or (ii) consume goods from
the available goods. After selecting the winning bids (the
best set of transformations), the auctioneer updates the set
of requested and available goods after the execution of these
transformations. Moreover, the winning bids are included as
part of the supply chain. Thereafter, the auctioneer starts a
new auction in the sequence. The process continues until no
bids can improve the supply chain. Hence, the purpose of the
auctioneer is to use a sequence of auctions to progressively
build the structure of the supply chain.

Figure 1 illustrates the operation of an SMA. Say that a
cocktail bar intends to form a supply chain using an SMA
to produce a gin & lemon cocktail. Assume that the bar
knows approximate market prices for a gin & lemon cocktail
as well as for its ingredients. The auctioneer starts the first
auction in the SMA issuing a request for quotation (RFQ)
for a gin & lemon cocktail. Figure 1a depicts the RFQ along
with each good’s market price in brackets (e.g. the expected
market price of 1 liter of gin is 4e ). During the first auction,
the auctioneer received two bids: one offering to deliver a
cocktail for 9e (figure 1b); and another one to make a cock-
tail for 1ewhen provided with lemon and gin (figure 1c).
The auctioneer must now choose the winning bid out of the
bids in figure 1d. However, notice that the bid in figure 1c

(4€)

RFQ : Cocktail

GinGin LemonLemon (3€)

CocktailCocktail (10€)

(a) First auction

9€t1t1

CocktailCocktail

(b) Bid for good

1€t2t2

CocktailCocktail

GinGin LemonLemon

(c) Bid for transformation

1€t2

CocktailCocktail

Gin Lemon

9€t1t1

(d) All bids

1€t2t2

CocktailCocktail

GinGin LemonLemon

(e) Winning bid

(4€)

RFQ : Gin, Lemon

GinGin LemonLemon (3€)

(f) Second auction

5€t3t3

GinGin LemonLemon

(g) Combinatorial bid for
goods

1€t2t2

CocktailCocktail

GinGin LemonLemon

t3t3 5€

(h) Resulting supply
chain

Figure 1: Example of sequential mixed auction.

can only be used whenever some provider(s) offer gin and
lemon. Thus, the auctioneer assesses the expected price of
the bid using the market prices of gin (4e ) and lemon (3e ).
Since the expected price is 8(= 1 + 4 + 3)e , the auctioneer
chooses this bid as the winning bid and discards the bid in
figure 1b, namely buying the cocktail for 9e .

At this point, the structure of the supply chain is the one
depicted in figure 1e. Nonetheless, in order to run the supply
chain, the auctioneer must still find providers of gin and
lemon. With this aim, the auctioneer starts a new auction
of the SMA by issuing an RFQ for gin and lemon (figure
1f). According to our example, this time the auctioneer
only receives the combinatorial bid in figure 1g, which offers
both lemon and gin for 5e . Since the bid is cheaper than
the overall market price of both gin and lemon (4e+3e ),
this bid is selected as the winning bid of the second auction.
Figure 1h shows the resulting structure of the supply chain
after the second auction. Since there are no further goods
to allocate, the auctioneer closes the SMA. The resulting
supply chain produces a cocktail at the cost of 6e .

Although the SMA in this example obtains the optimal so-
lution, this is not always the case. In general, at the end
of each auction the auctioneer discards some bids because
other bids are expected to lead to cheaper solutions. For in-



stance, the bid in figure 1b is discarded to favour the bid in
figure 1c. Therefore, since discarded bids might eventually
lead to better solutions during subsequent auctions, unlike
an MMUCA, an SMA is not guaranteed to obtain an opti-
mal solution (sequence of transformations). Although SMAs
may lose optimality, the example anticipates how an SMA
help cope with computational complexity and bidders’ un-
certainty. Firstly, an SMA breaks the formation of a supply
chain into several auctions, instead of running a single auc-
tion with all bids as MMUCA does. Secondly, after each
auction in an SMA, bidders are informed about the needs of
the supply chain. Therefore, the auctioneer guides bidders
after each tier of the supply chain is formed, hence reducing
their uncertainty with respect to participating in MMUCAs
(MMUCA bidders only know the expected final outcome of
the supply chain!).

3.2 Defining and solving the winner determi-
nation problem

As mentioned above, an SMA is essentially a sequence of
auctions. For instance, the SMA in figure 1 is composed of
two consecutive auctions. Each auction in the sequence re-
ceives a set of stock goods and final goods along with the bids
submitted by bidders. Then the auctioneer solves the WDP
to assess the winning bids as well as the remaining stock
goods and required final goods, which are passed on to the
next auction in the sequence. When solving the WDP, we
assume that the auctioneer is aware of the market prices of
goods (recall the example in figure 1) so that it can compute
the expected price of bids when necessary.

The sequence of auctions continues till an auction either: (i)
obtains a set of winning bids that produce the required goods
while consuming all the stock goods; or (ii) does not receive
any bids that can improve the supply chain (there are no
winning bids). At this point, each auction in the sequence
has assessed its winning bids. Thereafter, the transforma-
tions in the bids must be merged to compose a solution (a se-
quence of transformations) for the SMA. The merging must
ensure that each transformation in the solution sequence has
enough input goods available.

Next, we focus on: (i) formally defining the WDP faced
in each auction; (ii) solving the WDP by casting it as an
MMUCA WDP. Moreover, we prove that it is possible to
guarantee that an SMA solution can be composed from the
solutions of the auctions in the sequence. To provide such
guarantee, we observe that the winnig bids in each auction
define an order on goods that subsequent auctions must ful-
fill. For instance, consider the example in figure 1. After the
clearing of the first auction, a cocktail is obtained after gin.
Thus, during the second auction, we disallow that bidders
offer to produce gin out of a cocktail. Enforcing that the
bids in each auction abide by the goods ordering established
in previous auctions will allow us to merge auction solutions
into an SMA solution.

For the formal definition of the WDP, we restrict ourselves
to bids in the XOR-language, which is known to be fully
expressive. For each bidder i, let Bidij be the jth atomic bid
occurring within the XOR-bid submitted by i. Recall that
each atomic bid consists of a multi-set of transformations
and a price: Bidij = (Dij , pij), where Dij ∈ N(NG×NG) and

pij ∈ R. For each Bidij , let tijk be a unique label for the kth
transformation in Dij (for some arbitrary but fixed ordering
ofDij). Let (Iijk,Oijk) be the actual transformation labeled
by tijk. Finally, we assume that each auction knows the
expected market prices at which goods can be bought (P− :
G→ R) and sold (P+ : G→ R).

We are now ready to define under what circumstances a
sequence of transformations constitutes a valid solution for
an auction in a sequence:

Definition 1. Valid solution (l-th auction). Given a multi-
set U l

in of available goods and a multi-set U l
out of required

goods, and a partial order on the goods ≺, an allocation
sequence Σl for a given set of XOR-bids over transformations
tijk is said to be a valid solution iff:

1. Σl either contains all or none of the transformations
belonging to the same atomic bid. That is, the seman-
tics of the BID-operator is being respected:

tijk ∈ Σl ⇒ tijk′ ∈ Σl

2. Σl does not contain two transformations belonging to
different atomic bids by the same bidder. That is, the
semantics of the XOR-operator is being respected:

tijk, tij′k′ ∈ Σl ⇒ j = j′

3. Each transformation in Σl fulfills the partial order on
goods ≺.

4. For each transformation in Σl, either its input goods
are in U l

in, its output goods are in U l
out, or both.

In order to assess the expected revenue of a valid solution
Σl, we must first compute the goods that the auctioneer
should buy and sell in the market to implement the solution,
namely to use all the transformations in the sequence. First,
we calculate the units of each good produced by a sequence
Σl as:

P(g) = U l
in(g) +

∑
tijk∈Σl

[Oijk(g)− Iijk(g)] (1)

Hence, we assess the units of each good to buy or sell in the
market as:

U l+1
out (g) = U l

out(g)− P(g)

U l+1
in (g) = P(g)− U l

out(g)

Notice that in fact U l+1
out and U l+1

in stand for the remaining re-
quired goods and available stock goods that auction l passes
on to the next auction.



Definition 2. Expected revenue (l-th auction). The ex-
pected revenue for the auctioneer associated with a valid
solution Σl is the sum of the prices associated with the se-
lected atomic bids plus the expected prices of the goods that
are required to be bought (U l+1

out ) and sold (U l+1
in ) in the mar-

ket, namely:∑
{pij | ∃k : tijk ∈ Σl}+

∑
g∈G

[U l+1
out (g)P−(g)+U l+1

in (g)P+(g)]

Definition 3. WDP (l-th auction). Given a set of XOR-
bids, multi-sets U l

in and U l
out of initial and final goods, re-

spectively, and a partial order on the goods ≺, the winner
determination problem is the problem of finding a valid solu-
tion Σl that maximizes expected revenue for the auctioneer.

Once an optimal valid solution is obtained for the l-th auc-
tion, the partial order on goods must be updated to be
fed into the next auction. Thus, for each transformation
(Iijk,Oijk) ∈ Σl, and for every pair of goods (g, g′) such
that g ∈ Iijk and g′ ∈ Oijk, the relationship g ≺ g′ is added
to the partial order.

We say that a sequence of auctions is complete when the last
auction in the sequence either: (i) has a valid solution that
produces all the required goods and consumes all the stock
goods (U l+1

out = { } and U l+1
in = { }); or (ii) does not obtain

any valid solution (Σl = { }). At this point, the solution
for the SMA must be computed from the valid solutions of
the auctions in the sequence. First, we characterize a valid
solution for an SMA.

Definition 4. Valid solution (SMA) Given a multi-set Uin
of available goods and a multi-set Uout of required goods, and
a complete sequence of m auctions, an allocation sequence Σ
over the transformations in the solutions Σ1, . . . ,Σm is said
to be a valid solution iff:

1. Every transformation in Σ has enough input goods
available, and hence can be used, when the sequence
starts with the multi-set Uin+Um+1

out of available goods,
where Um+1

out stands for remaining required goods after
the last auction.

2. The sequence produces the multi-set Uout + Um+1
in of

goods, where Um+1
in stands for the remaining available

goods after the last auction.

The following lemma ensures that we can compose a solution
for an SMA from the solutions of its auctions. Because of
lack of space, the proof of the lemma is detailed in [5].

Lemma Theorem 1. The transformations in the valid so-
lutions of a complete sequence of auctions of an SMA can
be ordered into a solution for the SMA.

Finally, we focus on solving the WDP for an auction in an
SMA. Firstly, in practice, to ensure that the bids submitted

by bidders can only produce valid solutions, we discard bids
that do not comply with the partial order on goods. Sec-
ondly, to allow a WDP solver to assess the expected price of
bids we generate a collection of phantom bids. The purpose
of phantom bids is to guarantee that there are enough input
goods and enough output goods for all the bids received by
the auctioneer. Thus, they are meant to stand for potential
market bids. In general, phantom bids will be of the type
BID(({}, {g}), P−(g)) and BID(({g′}, {}), P+(g)), repre-
senting offers to sell some required good and buy some stock
good respectively. At this point, the set of bids (received
bids as well as phantom bids), the required goods and the
input goods can be fed into a WDP solver for MMUCA,
such as the computationally-efficient solver in [3].

4. EMPIRICAL ANALYSIS
One of the reasons to introduce SMAs is to reduce the
computational complexity of solving MMUCAs. Opposite
to MMUCAs, SMAs provide a non-optimal solution to the
MMUCA problem. In this section we evaluate the trade-off
between solution quality and solving time provided by SMAs
with respect to a state-of-the-art optimal MMUCA solver as
the size of the problems increases.

4.1 Experimental settings
Since no real world examples of MMUCA problems are avail-
able we have artificially generated MMUCA problems fol-
lowing the recommendations in [6]. For an initial evaluation
of SMAs, we generated auctions in simple scenarios. Par-
ticularly, we generated problems with: (i) only one atomic
bid in every XOR-bid, (ii) only one transformation in each
atomic bid, (iii) six goods, and (iv) only one unit of each
good.

We compare CCIP, an optimal state-of-the-art MMUCA
solver introduced in [3], with our recently introduced se-
quential solver SMA. Note that SMA takes advantage of the
existence of a market for goods. The offers coming from this
market are incorporated into the auction via phantom bids.
For some problems, the existence of phantom bids leads to
better solutions. Hence, to make a fair comparison, phan-
tom bids are also included into the CCIP MMUCA solver.

To analyze the evolution of performance as the problem size
increases, we increase the number of transformations from
60 to 200 in steps of 10. We generate 100 different problem
instances for each different problem size.

4.2 Results
In order to compare solving times, in Figure 2a we plot the
median, 75% percentile and 25% percentile of the solving
times across the 100 instances generated for each problem
size. The speed-up ranges between 4 and 6 times, growing
larger as the number of supply chain operations (and hence
the problem size) increases.

To benchmark how close the quality of the approximate so-
lution provided by SMA (xSMA) is to that of the optimal one
(x∗), we need to identify a baseline solution. In our case, this
baseline (xB) is the solution where every requested good is
bought at market price and every stocked and unrequested
good is sold at market price. The quality of the solution



(a) CCIP and SMA times

(b) Quality of SMA solution

Figure 2: Experimental results

found by SMA is assessed as

Quality(xSMA) = 100% · R(xSMA)−R(xB)

R(x∗)−R(xB)
. (2)

Thus, the quality of the optimal solution is 100% and the
quality of our baseline solution is 0%.

Figure 2b shows the median, 75% percentile and 25% per-
centile of the solution quality for SMA. We observe that the
median quality never falls below 85% in our experiments.
These results, although preliminary, show that SMAs de-
crease computational complexity while keeping a reasonably
high accuracy. Further empirical analysis needs to be done
to ascertain the impact of the spread of market prices and
of the number of goods in the reported trade-off.

5. CONCLUSIONS AND FUTURE WORK
In this work, we have attempted to improve supply chain
formation mechanism of Mixed Multi-Unit Combinatorial
Auctions (MMUCAs) to make it applicable to real-world
procurement scenarios.

To cope with extensive computing times of MMUCA and
bidder’s uncertainties we moved from single auction to a
sequence of auctions that form a supply chain. At each auc-
tion bidders are only allowed to bid on transformations that
consume available goods or produce requested goods. After
selecting the best set of transformations, the auctioneer up-
dates the set of requested and available goods. The sequence
ends when supply chain cannot be further improved.

As at each auction bidders are aware of which goods are re-
quired and available at current supply chain stage, they only
get involved when their services are in need and form more
efficient bids. There is no more uncertainty for providers,

especially at intermediate levels.

Each auction deals with just a small part of supply chain.
Consequently, while solving WDP for individual auction we
deal with small subsets of bidders, goods and transforma-
tions of former MMUCA. Preliminary tests have shown de-
crease of solution times up to 6 times.

One of our concerns about SMA mechanism was the solu-
tion quality. However, our experimental work showed that
median quality does not fall below 85% .

As part of our future work we will explore the possibility to
keep n solutions from auction i to auction i+1. This should
increase solution accuracy significantly.

Our next task in future is to extend empirical analysis. It
is important to test how different supply chain structures
affect SMA solutions, which should help identify in what
scenarios auctioneer benefits the most.

Also, as currently both MMUCA and SMA solvers are based
on integer programming, it might be very interesting to an-
alyze how the picture changes when we implement heuristic
algorithms to improve computing times.
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