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Abstract. Bounded Second-Order Unification is the problem of decid-
ing, for a given second-order equation t

?= u and a positive integer m,
whether there exists a unifier σ such that, for every second-order vari-
able F , the terms instantiated for F have at most m occurrences of every
bound variable.
It is already known that Bounded Second-Order Unification is decidable
and NP-hard, whereas general Second-Order Unification is undecidable.
We prove that Bounded Second-Order Unification is NP-complete, pro-
vided that m is given in unary encoding, by proving that a size-minimal
solution can be represented in polynomial space, and then applying a
generalization of Plandowski’s polynomial algorithm that compares com-
pacted terms in polynomial time.

1 Introduction

Second-order unification (SOU) is a generalization of first-order unification,
where variables are permitted also at the position of function symbols, hence
they may have arguments. These variables are also called second-order vari-
ables. When solving an equation, the second-order variables can stand for an
arbitrary first-order term with holes for plugging in the arguments, which must
be terms. In lambda-notation, a second-order variable may be instantiated by a
term λx1 . · · ·λxn . t, where t is a first-order term, and the variables xi also stand
for first-order terms. SOU extends the expressivity of first-order unification, and
is a restriction of higher-order unification (see [6, 3]). It is known that SOU is
undecidable [5], even under severe syntactic restrictions [4, 20, 10, 11].

A decidable variant is bounded second-order unification (BSOU) [17], which
restricts the possible instantiations of second-order variables by limiting the
number of occurrences of bound variables. However, the described algorithm
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for BSOU has non-elementary complexity. Recently, we described an improved
algorithm for monadic SOU [9] —which is BSOU where only unary function
symbols and constants are permitted— and determined its complexity to be
NP-complete.

In this paper we apply and extend methods used in [9] for monadic SOU to
improve the BSOU algorithm by compressing the computed solution, and as a
main result we prove that BSOU is in NP, which means that it is NP-complete.
To obtain this result requires compression techniques and, as a basis, the BSOU-
algorithm in [17]. This result shows that BSOU may become a practically useful
restriction of higher-order unification, perhaps via using a SAT-solver.

To illustrate the difficulties in proving the membership of BSOU in NP, we
will compare this problem with other unification problems. Most general first-
order unifiers σ have a very nice property: for every solvable equation E and
variable Xi there exists a subterm ti of the equation E such that σ can be
decomposed in the form σ = [X1 7→ t1] ◦ · · · ◦ [Xn 7→ tn]. This representation is
polynomial and ensures that the problem is in NP. In [13] it is proved that the
search of these subterms can be done very efficiently and the problem is in fact
linear. Well-nested context unifiers [8] —this is, context unifiers where instances
of variables do not overlap— have the same property, but replacing subterms ti

by subcontexts ci of the equation. This property is used to prove that well-nested
context unification is in NP. However, in this case the search of these subcontexts
cannot be done efficiently. The property held by these two problems suggested
us to represent substitutions as compositions of instantiations to save space. In
monadic SOU we have a weaker property: instead of just one subcontext, we need
to compose a bounded number of subcontexts, and in some cases raise them to an
exponent. Moreover, we get the instance of only one of the variables [X1 7→ t1].
This means that we have to use the same property applied to [X1 7→ t1] E to find
the instance of another variable. Notice that [X1 7→ t1] E may be bigger than E,
and the size of the instance of Xn could be exponential in n. In [9] it is proved
that this is not the case, if we represent such an instance using a context free
grammar (CFG). If we have a CFG generating E, to represent a subcontext of
E, we have to enlarge the grammar, and in the worst case to duplicate the size,
obtaining an exponential representation. To avoid this problem in [9] we propose
the conjugation of size and depth of the grammar —the depth of the parse tree—
, which has an effect similar to balancing conditions. Then, the representation
of a subcontext preserves the depth and requires to increase the size of the
grammar only on the depth (see Lemma 4). Showing PSPACE [16] as an upper
complexity bound for stratified context unification used an ad-hoc compression
technique composed of sharing and exponentiation. The algorithm given there
does not look for a polynomial-sized solution, and erases partial solution as early
as possible to keep the PSPACE-bound.

Compared with monadic SOU, the situation in BSOU is even worse. Given
an equation E we can only find a “partial” instance of some variable. This means
that we remove a variable, say X , but we have to introduce new variables, say
X ′, by instantiating [X 7→ c[X ′[•]]] where c is a context composed by a bounded



number of subcontexts of E. Moreover, this context is not ground, contrarily
to the monadic SOU case. Fortunately, we have a well-founded ordering where
[X 7→ c[X ′[•]]] E is smaller than E.

This paper proceeds as follows. After some preliminaries, we define an ex-
tension of singleton CFG for trees in Section 3. In Section 4 we define an order
on equations and show a polynomial upper bound for the length of decreasing
sequences. Then, in Section 5 we prove that given an equation E, and a size-
minimal solution σ, we can find a polynomial-sized partial description ρ of σ,
such that ρ(E) is strictly smaller than E and σ = σ′ ◦ ρ. Finally, in Section 6 we
show how we can get a compact representation of these partial instantiations,
and represent σ in polynomial size. Using an extension of Plandowski’s [14, 15]
result for CFG, we can check in polynomial time if a substitution in such a
representation is a solution, proving that BSOU is in NP.

2 Preliminary Definitions

We consider one base (first-order) type o, and second-order types described by
the syntax τ ::= o → o | o → τ , with the usual convention that → is associative
to the right. We deal with a signature Σ =

⋃

i≥0 Σi, where constants of Σi

are i-ary, and a set of variables X =
⋃

i≥0 Xi, where variables of Xi are also
i-ary. Variables of X0 are therefore first-order typed and those of Xi, with i ≥
1, are second-order typed, and similarly for Σ. We use the convention that
X, Y (possibly with primes and subindexes) mean free first-order or second-
order variables (unknowns), while constants are denoted by lower-case letters
a, b, . . . , for first-order, and f, g, . . . , for second-order ones.

Terms are built as usual in simply typed λ-calculus. We assume that they are
in βη-long normal form, or are immediately reduced, so we will use a first-order
notation, if possible. We denote terms with lower case letters like t, u, . . . .

Contexts are first-order typed terms with one hole at some position, notated
as •. We call Z-contexts to the union of first-order terms and contexts, hence they
may contain zero or one hole. We denote contexts and Z-contexts by lower case
letters: c, d, . . . for contexts and c, d, . . . , t, u, . . . for Z-contexts. If the Z-context
d is plugged into the hole of a Z-context c, we denote the result as the Z-context
c[d]. (In the special case that c is a term, c[d] = c). We sometimes abbreviate
c1[c2[c3 . . . ]] as c1 c2 c3 . . . and c[c[c n. . .]] as cn. For any pair of Z-contexts c1 and
c2, if for some Z-context d we have c1 = c2[d], then c2 is said to be a prefix
of c1 (notated c2 � c1 and c2 ≺ c1 for strict prefixes), and if for some context
d (with hole) we have c1 = d[c2], then c2 is said to be a suffix of c1. Notice
that, if c2 is a suffix of c1, then c1 contains a hole iff c2 contains a hole. On
the contrary, a subterm u of a context c does not need to contain a hole. This
distinguishes a suffix from a subterm. If c is a prefix of a subterm of d, then c is
called a subcontext of d. The size of a Z-context c is denoted |c|, and defined as
its number of symbols (including the hole).

We use positions in terms, noted p, q, as sequence of positive integers following
Dewey’s notation. The empty word is notated ε, p ≺ q notates the prefix relation,



p · q the concatenation, and t|p the subterm at position p of t. For a context c,
its main path is the position of the hole. A position p is in the main path of c if
p is a prefix of the main path of c.

Second-order substitutions are functions from terms to terms, defined as
usual. The application of a substitution σ to a term t is written σ(t). An instance
of the bounded second-order problem (BSOU) is an equation t ?= u, where t and
u are first-order terms, and a number m given in unary encoding. The set of
variables (unknowns) occurring in an equation E is denoted by V ar(E), and the
notational size by |E|. We assume that equations are symmetric. A substitution
σ is said to be a unifier of (t ?= u, m), iff σ(t) = σ(u), and for all X ∈ V ar(E)
every bound variable in σ(X) occurs at most m times. A unifier σ is said to be a
solution of (E, m), iff σ(t) and σ(u) are ground (do not contain free variables).

It is easy to see that it suffices to consider only unifiers and solutions built
from constant, and function symbols that occur in E. A solution σ of (t ?= u, m)
is said to be size-minimal if it minimizes |σ(t)| among all solutions of (t ?= u, m).

As already shown in [17], there is an NP-reduction of BSOU to the specialized
problem, where m = 1, and every second-order variable is unary. Hence in the
following, we will only treat this case. In the simplification of the problem we go
a step further by considering only second-order variables. To do so we can replace
all occurrences of the first-order variable X by the term X ′(a) where X ′ is a fresh
(unary) second-order variable and a is any 0-ary constant. This transformation
allow us to P-reduce BSOU to BSOU without first-order variables. Therefore,
from now on, all variables will have type o → o, and all terms type o, or o → o.
Moreover, we will represent second-order typed terms λy . t as the Z-context
resulting from replacing in t the occurrence of y (if any) by the hole. Thus, from
now on, we will only deal with Z-contexts, and terms will be assumed to be
first-order typed.

We know that size-minimal solutions of a BSOU equation satisfy the ex-
ponent of periodicity lemma [12, 7, 19, 17]. However, since we have a slightly
different definition of size-minimality, after some encoding by enlarging E, we
have a quadratic dependency on |E|:

Lemma 1 ([17], Lemma 4.1). There exists a constant α ∈
�

such that, for
every BSOU-problem E, every size-minimal unifier σ, and every variable X, if
dn is a nonempty subcontext of σ(X), then n ≤ 2α|E|2.

3 Singleton Tree Grammars

We generalize singleton context free grammars (SCFG) to trees, since we require
a device for a compressed representation of solutions. We extend the expressivity
of SCFGs by permitting terms and contexts. The definition is a special case of
the context free tree grammars defined in [2].

Definition 1. A singleton tree grammar (STG) is a tree grammar, i.e. a 4-tuple
(T N , CN , Σ, R), where T N are tree nonterminals, CN are context nontermi-
nals, and Σ is a signature of terminals symbols (variables and constants), such



that the sets T N , CN , Σ are pairwise disjoint. The set of nonterminals N is
defined as N = T N ∪ CN . The rules in R may be of the form:

– A ::= f(A1, . . . , An), where A, Ai ∈ T N , and f ∈ Σ is an n-ary terminal
symbol.

– A1 ::= C[A2] where A1, A2 ∈ T N , and C ∈ CN .
– C1 ::= C2C3, where Ci ∈ CN .
– C ::= f(A1, . . . , Ai−1, [•], Ai+1, . . . , An), where Ai ∈ T N , C ∈ CN , [•] is

the hole, and f ∈ Σ an n-ary terminal symbol.

The tree grammar must be non-recursive (the relation
+
−→ has no cycles).

Furthermore, for every non-terminal N there is exactly one rule having N as
left hand side. Give a term t where nonterminals may occur, the derivation by G
is an exhaustive iterated replacement of the nonterminals by the corresponding
right hand sides.

Definition 2. The size of a grammar (STG) G is the number of its rules and
denoted as |G|.
The depth of a nonterminal D is defined as the maximal number of →G-steps
from D, where D′ →G D′′ for two nonterminals D′, D′′, iff D′ ::= T is a rule
of G, and D′′ occurs in T .
The depth of a grammar is the maximum of the depths of all nonterminals.
When a grammar G generates a Z-context t from a non-terminal symbol D (and
the grammar is clear from the context) we write depth(t) to denote depth(D).

The following theorem is a generalization to trees of Plandowski’s one in [14, 15].

Theorem 1 ([1, 18]). Given an STG G, and two tree nonterminals from G, it
is decidable in polynomial time depending on |G| whether they generate the same
tree or not.

The following lemmas state how the size and the depth of a grammar are
increased by extending it with concatenations, exponentiation, prefixes and suf-
fixes of Z-contexts. Proofs may be adapted from the extended version of [9].

Lemma 2. Let G be an STG defining the Z-contexts d1, . . . , dn for n ≥ 1. Then
there exists an STG G′ ⊇ G that defines the Z-context d1 · · · dn and satisfies
|G′| ≤ |G|+n−1 and depth(d1 · · · dn) ≤ max{depth(d1), . . . , depth(dn)}+dlog ne.

Lemma 3. Let G be an STG defining the context d. For any n ≥ 1, there exists
an STG G′ ⊇ G that defines the context dn and satisfies |G′| ≤ |G| + 2 blognc
and depth(dn) ≤ depth(d) + dlog ne.

Lemma 4. Let G be an STG defining the context d. For any nontrivial prefix
or suffix context d′ of d, there exists an STG G′ ⊇ G that defines d′ and satisfies
|G′| ≤ |G| + depth(d) and depth(d′) ≤ depth(d).

Similarly if d is a Z-context and d′ is a subterm of d.



Lemma 5. Let G be an STG defining the term t. For any nontrivial prefix con-
text d of the term t, there exists an STG G′ ⊇ G that defines d and satisfies |G′| ≤
|G|+ 2 depth(t) (log(depth(t)) + 1) and depth(d) ≤ depth(t) + 2 + log(depth(t)).

Notice that for prefixes of contexts we get better bounds than for prefixes of
terms.

4 A Well-Founded Ordering on Equations

In this section we define an ordering on the equations. This order is similar to
the one proposed in [17] to prove the decidability of BSOU. However, in our
case, the order is not only well-founded: we prove that the length of any strictly
decreasing sequence is polynomially bounded on the size of the first element.

Definition 3. We say that p is a surface position of t if there are no variable
occurrences strictly above p.

Given an equation E = (t ?= u), the relation ≈E ⊆ V ar(E)× V ar(E) is the
reflexive-transitive closure of the relation defined by: if X occurs at the surface
position p of t and Y occurs at the same surface position p of u, then X ≈E Y .

The relation �E ⊆ V ar(E)×V ar(E) is the relation defined by: if X occurs
at the surface position p of t and, for some nonempty sequence q, Y occurs at
the surface position p · q of u, then X �E Y . We extend this relation to classes
of equivalences with if X �E Y then X �E Y .

If p is a surface position of t and of u, then t|p
?= u|p is called a subequation

of t ?= u.

In first-order unification all variable occurrences are at surface positions.
Moreover, if �+

E is not irreflexive then there is occur-check and the equation
is unsolvable. In second-order unification this is not the case, �+

E may be not
irreflexive and E solvable.

Definition 4. A cycle in an equation E = (t ?= u) is a sequence of variables
X1, . . . , Xn and pairs of positions 〈p1, p1 · q1〉, . . . , 〈pn, pn · qn〉, such that, for
i = 1, . . . , n, Xi is at the surface position pi of t, and Xi+1 is at the surface
position pi · qi of u, and there is at least one nonempty qi.

1

The length of the cycle is n.

Notice that an equation E contains a cycle iff the relation ≺+
E for classes

of equivalences is not irreflexive. The shortest cycle in an equation E is shorter
than |V ar(E)|.

Definition 5. Given an equation E, the measure µ(E) is a lexicographic com-
bination 〈µ1(E), µ2(E), µ3(E)〉 of the following components:

1. µ1(E) = |V ar(E)| is the number of variables occurring in E.

1 When the length n of the cycle is clear from the context, all indexes i greater than
n are replaced by ((i − 1) mod n) + 1.



2. µ2(E) is the length of the shortest cycle in E, or ∞ if there are no cycles.
3. µ3(E) is zero, if E contain cycles, otherwise

µ3(E) = |V ar(E)| − |V ar(E)/ ≈E | + 2|�E| =
∑

C ∈ V ar(E)/≈E

(|C|−1) +
∑

X,Y ∈V ar(E)
X�EY

2

Lemma 6. Any decreasing sequence of equations {Ei}i≥1, i.e. where µ(Ei) >
µ(Ei+1), terminates in at most 2 |V ar(E1)|3 steps.

Proof: Let n = |V ar(E1)|. The first component of µ(Ei) can have values
from j = n, . . . , 1. When the first component is j, the second component can
have values from ∞, j, . . . , 1. When there are no cycles, the third component is
maximal when all the equivalence classes are singletons, and is j(j−1). Therefore,
the set of possible values of µ(Ei) is smaller than

∑n
j=1 j + j (j − 1) + 1 =

1/3n3 + 1/2n2 + 7/6n ≤ 2n3.

5 Finding the Partial Instance of Some Variable

In this section we show how, given an equation E and a minimal solution σ,
we can find an instantiation [X 7→ t] or a partial instantiation [X 7→ c[X ′(•)]]
for every variable X ∈ V ar(E) such that the composition ρ of all them satisfies
σ = σ′ ◦ ρ, where σ′ is a size-minimal solution of ρ(E), and the new equation
ρ(E) is smaller than E w.r.t. µ. Moreover the (partial) instantiation can be built
up from a linear number of pieces (subcontexts) of E, which as we show in the
next section, ensures that it can be efficiently represented.

Lemma 7 (Partial instance). Given an equation E and a size-minimal so-
lution σ, with exponent of periodicity bounded by e, there exist substitutions
ρ = ρ2 ◦ ρ1 such that the ρi’s have the form

[X1 7→ c1[X
′
1(•)] , . . . , Xn 7→ cn[X ′

n(•)]]

such that:

1. n ≤ |V ar(E)|,
2. X ′

1, . . . , X
′
n are fresh variables not occurring in E,

3. the Z-contexts ci can be constructed taking O(n)-many subcontexts of E [or of
ρ1(E) in the case of ρ2], composing them, raising the result to some exponent
smaller than e and taking a prefix,

4. ρ is coherent with σ, i.e. σ decomposes as σ = σ′ ◦ ρ, for some σ′, and
5. µ(E) > µ(ρ(E)).

Remark 1. Notice that Lemma 7 and 6 allow us to decompose σ = ρm ◦ · · · ◦ ρ1,
where m is polynomial on the size of the original equation E, and ρi can be
represented polynomially on the size of ρi−1 ◦ · · · ◦ ρ1(E) using singleton tree
grammars. From this we can only conclude that σ has a representation bounded



by a composition of a polynomial number of polynomials, i.e. that σ has an
exponential-size representation. Obviously, this is not enough for proving the
NP-completeness of BSOU. We need an important result that will be proved in
Section 6.

Lemma 7 is proved in the following subsections. We also need the following
Lemma.

Lemma 8. If σ is a size-minimal solution of E, and σ decomposes as σ = σ′◦ρ,
then σ′ is a size-minimal solution of ρ(E).

5.1 There Are Cycles in the Set of Equations

If E = (t ?= u) contains a cycle defined by X1, . . . , Xn and 〈p1, p1 ·q1〉, . . . , 〈pn, pn ·
qn〉, then, for every i = 1, . . . , n, we have a subequation t|pi

?= u|pi
of the form

Xi(vi)
?= ci[Xi+1(wi)]

for some terms vi and wi, and some context ci that has its hole at position qi

and has no variables in its main path. Note that there is at least one context ci

different from •. The unifier σ of t ?= u has to solve all these subequations.
Now we find how long each variable “stays” in the cycle: For i = 1, . . . , n, let

ri be the longest prefix of (qi · . . . · qn · q1 · . . . · qi−1)
∞ such that, if σ(Xi) has no

hole, then ri is a position inside the term σ(Xi) and, if σ(Xi) has a hole, then
this hole must be below or at position ri.

We select a minimal ri: Let minlength = mini∈{1,...,n} |ri|, and assume w.l.o.g.
that r1 is minimal, i.e. minlength = |r1|.

We make all variables copy along this distance: For i = 1, . . . , n, let si be
the prefix of (qi · . . . · qn · q1 · . . . · qi−1)

∞ of length minlength, and let di be the
context resulting from putting a hole at position si of (ci . . . cn c1 . . . ci−1)

∞.
Note that, since the exponent of periodicity of σ does not exceed e, then di has
the form (ci . . . cn c1 . . . ci−1)

ei d′i where ei ≤ e and the context d′
i is a prefix of

ci . . . cn c1 . . . ci−1.
Since di is a prefix of σ(Xi), the substitution ρ1 = [X1 7→

d1[X
′
1(•)], . . . , Xn 7→ dn[X ′

n(•)]] is coherent with σ. Moreover, the sequences
X ′

1, . . . , X
′
n and 〈p1 · s1, p1 · q1 · s2〉, 〈p2 · s2, p2 · q2 · s3〉, . . . , 〈pn · sn, pn · qn · s1〉

define a cycle in ρ1(E) of the same length as the original cycle. Now, we define a
new substitution ρ2 such that ρ = ρ2◦ρ1 is coherent with σ and µ(ρ(E)) < µ(E).
There are three cases:

Case 1: If σ(X1) does not contain any hole, then r1 corresponds to the position
of a first-order constant in σ(X1). Since r1 and q1 · r2 are both prefixes
of (q1 · . . . · qn)∞ and |r1| ≤ |r2|, r1 is a prefix of q1 · r2. Since σ solves
X1(v1) = c1[X2(w1)], and r2 is a position inside σ(X2), σ(X2) has a first-
order constant at position r2 and r1 = q1 · r2. Therefore, since |r1| ≤ |r2|,
we have q1 = ε and c1 = •. Thus, |r2| = minlength and σ(X2) also has a
constant at position r2. Repeating this argument we would get ci = •, for



every i = 1, . . . , n, which contradicts the assumption that we have a cycle
(for some i, ci 6= •). Therefore this situation is not possible.

Case 2: If for some i = 1, . . . , n, si corresponds to the position of the hole in
σ(Xi) then take ρ2 = [X ′

i 7→ •]. The variable Xi is completely instantiated,
and the first component of µ decreases. This situation corresponds to some
variable that “finishes inside the cycle, i.e. it is completely instantiated”.

Case 3: Otherwise, r1 corresponds to some proper prefix of the hole position
of σ(X1). Let m be the minimal index such that c1 = · · · = cm−1 = • and
cm 6= •. Notice that q1, . . . , qm−1 are empty, r1 = s1 = · · · = sm−1, and, for
j = 2, . . .m − 1, r1 ≺ rj strictly. For i = 1, . . . , m − 1, let li ∈ � satisfy: the
hole of σ(Xi) is below or at r1 · li, if σ(Xi) has a hole, or li = 1, otherwise.
Let l ∈ � satisfies r1 ·l � qm ·sm+1. The equation ρ1(E) contains as subequa-
tions {X ′

1(ρ1(v1))
?= X ′

2(ρ1(w1)), · · · , X ′
m−1(ρ1(vm−1))

?= X ′
m(ρ1(wm−1)),

X ′
m(ρ1(vm)) ?= ρ1(cm[dm+1[X

′
m+1(wm)]]|r1)} where r1 is a proper prefix of

the main path of cm[dm+1[•]], i.e. ri ≺ qm · sm+1. Let f be the constant at
the root of cm[dm+1[X

′
m+1(wm)]]|r1 . We take

ρ2 = [X ′
i 7→ f(w1

i , . . . , wli−1
i , X ′′

i (•), wli+1
i , . . . , w

arity(f)
i )]i∈{1,...,m}

where, for k 6= lm, wk
m = ρ1(cm[dm+1[X

′
m+1(wm)]]|r1·k). And, for every i =

m−1, . . . , 1, let X ′
i(ρ1(vi))

?= X ′
i+1(ρ1(wi)) be the subequation of ρ1(E). For

every k 6= li, li+1, we have wk
i = wk

i+1 and, if li 6= li+1, w
li+1

i = X ′
i+1(ρ1(wi)).

The new equation ρ2 ◦ ρ1(E) contains a cycle defined by the variables
X ′

m+1, . . . , X
′
n and the variables X ′′

i that do not leave the cycle, i.e. that
satisfy li = l. Among the pairs of positions we have 〈pn ·sn, pn ·qn ·qm ·sm+1〉.
This cycle is shorter than the original one because l1 6= l. This situation cor-
responds to some variable that “leaves the cycle”. Notice that in the special
situation where n = 1, we always fall into case 2.

5.2 There Are No Cycles

If the surface positions of variables in t are the same as in u, then either σ(X) = a
or σ(X) = •, for every X ∈ V ar(E). Therefore if we take ρ = σ we fulfil the
requirement of the lemma. Notice that the size-minimality of σ is only needed
in this point and in the exponent of periodicity lemma.

Otherwise, there exists a ≺∗
E-maximal ≈E-equivalence class {X1, . . . , Xn}

such that, there exists a variable (assume w.l.o.g. that it is X1) and a surface
position q of X1 in t, satisfying u|q has not a variable in the root. Let v = u|q,

then X1(. . . )
?= v is a subequation of E. We consider two cases:

Case 1 If, for all i = 1, . . . , n, σ(Xi) does not contain the hole, then take ρ =
[X1 7→ v, . . . , Xn 7→ v]. It is easy to prove that ρ is coherent with σ, and
since it completely instantiates some variable, µ(ρ(E)) < µ(E).

Case 2 Otherwise, let p be the largest sequence such that, for all i = 1, . . . , n
1. if σ(Xi) contains a hole, then p is a prefix of this hole occurrence,
2. if σ(Xi) does not contain a hole, then p is inside σ(Xi), and



3. for any q and r, if q is a surface occurrence of Xi in t, and u|q has not a
variable on the root, and q · r is a surface occurrence of a variable in u,
then r 6≺ p.

Notice that p is a position of v, and there are not variables in v above or at p.
Roughly speaking, p is the result of following the main path of the Z-contexts
σ(Xi) until they split, or someone finish, or we find another variable below.
Let c be the context resulting of putting a hole at position p of v. Then
ρ1 = [X1 7→ c[X ′

1(•)], . . . , Xn 7→ c[X ′
n(•)]] is coherent with σ. Moreover

X ′
1, . . . , X

′
n belong to the same equivalence class of ρ1(E), and X ′

1(. . . )
?=

ρ1(v|p) is a subequation of ρ1(E). Now there are three possibilities:
Case 2a For some i = 1, . . . , n, the hole of σ(Xi) is at position p. Then take ρ =

[X ′
i 7→ •]◦ρ1. The first component of µ decreases. This situation corresponds

to the case when one of the main paths finish.
Case 2b If there exists a surface position q of some variable Xi in t, and q ·p is a

surface position of some variable Y in u (hence Xi �E Y ) then take ρ = ρ1.
This situation corresponds to the case when we have found a variable Y
(belonging to a smaller equivalence class) before two main paths split or
some one finishes.
In this situation ρ(E) either contains a cycle, or the equivalence class C =
{X1, . . . , Xn} is merged getting C ′ = {X ′

1, . . . , X
′
n} ∪ Y ∪ . . . . In the second

case, |C ′| > |C|, but we pass from Xi �E Y to X ′
i 6�ρ(E) Y , and no new

� related pairs are added. The increasing in the first term of µ3 is strictly
compensated by the decreasing in the second term of µ3.

Case 2c For every i = 1, . . . , n, let li ∈ � satisfy: if σ(Xi) has a hole, then it is
below or at p · li, otherwise, li = 1. If cases 2a and 2b does not apply, then
there exists at least two distinct li’s. This situation corresponds to the case
when two main paths of variable instantiations split.
Let f be the constant symbol at the root of v|p.We take ρ = ρ2 ◦ ρ1 where

ρ2 = [X ′
i 7→ f(w1

i , . . . , wli−1
i , X ′′

i (•), wli+1
i , . . . , w

arity(f)
i )]i∈{1,...,n}

Now we show how the subterms wk
i are chosen. First wj

1 = ρ1(v|p·j), for every

j 6= l1, being X1(. . . )
?= v a subequation of E. Then, for every i, j = 1, . . . , n,

if Xi(w
′) ?= Xj(w

′′) is a subequation of E, then wk
i = wk

j , for any k 6= li, lj ,

and, if li 6= lj , then w
lj
i = X ′′

j (w′′) and wli
j = X ′′

i (w′). The existence of
a connection between any pair of variables of the same equivalence class
ensures that we define all the wk

i ’s. We can prove that ρ is coherent with σ.
Moreover ρ2 can be built up from a linear number of pieces of ρ1(E), and
ρ1 from a linear number of pieces of E.
If we compare ≈E and �E with ≈ρ(E) and �ρ(E), we see that the equivalence
class C = {X1, . . . , Xn} has been split into arity(f) (possibly empty) subsets
Ck = {X ′′

i | li = k}. The existence of two distinct li’s ensures that there are
at least two nonempty of such equivalence classes, and the first term of µ3

has decreased. There can also be merges between equivalence classes, but
then the second term of µ3 decreases and compensates the increasing in the
first term of µ3. There can also appear cycles, but then µ2 decreases.



6 Compacting the Solutions

One of the key ideas to compact the representation of a unifier is notating it as
a composition of instantiations [X1 7→ v1] ◦ · · · ◦ [Xn 7→ vn]. Another key idea
is representing the Z-contexts vi using a STG. Finally, the representation of the
instance of a variable may involve the computation of subcontext of a term t
represented as t = [X1 7→ v1]◦· · ·◦ [Xn 7→ vn] u. In this section we show how this
can be done efficiently without increasing very much the depth of the grammar.

To understand the main ideas, assume that the vi’s, t and u are words, and we
have a grammar G that generates Ai →∗ vi and A0 →∗ u. We can get a grammar
G′ that generates B →∗ t replacing in G the variables Xi by the nonterminals
Ai. This preserves the size of the grammar, but not the depth: in the worst case
depth(B) =

∑n
i=0 depth(Ai). This means that, to represent a prefix t′ of t, we

have to enlarge G′ in depth(B). A less expensive solution is finding a prefix v′
i of

vi and u′ of u such that t′ = [X1 7→ v1] ◦ · · · ◦ [Xn 7→ vn] u′ v′n . . . v′1, and enlarge
G in order to generate B →∗ A′

0 A′
n · · ·A′

1 →∗ u′ v′n . . . v′1. Then, in the worst
case the depth is only depth(B) = log n + maxn

i=0{depth(Ai)}.

Definition 6. We say that a term t is compactable as t = [X1 7→ v1]◦· · ·◦[Xn 7→
vn]u with a grammar G, if

1. Xi 6= Xj , when i 6= j,
2. Xi does not occur in v1, . . . , vi−1,
3. G generates vi, for i = 1, . . . , n, and u.

Similarly when t and u are equations.

The following is a technical lemma used to handle the proof by induction of
Lemma 10.

Lemma 9. Let σ = [X1 7→ v1] ◦ · · · ◦ [Xn 7→ vn]. For any context t compactable
as t = σ(Xi(u)) with a grammar G, and any prefix c � t satisfying σ(Xi) 6≺ c, c
is compactable as c = σ(d) with a grammar G′ ⊇ G satisfying

depth(d) ≤ 3 i + M
|G′| ≤ |G| + i2 + 3 i + 2 i M

where M = max{depth(u), depth(v1), . . . , depth(vn)}.

Proof: We proceed by induction on i.
In the base case i = 1 we have c � t = σ(X1(u)) = v1[σ(u)]. The position

of the hole of c must correspond to some position inside v1 (otherwise σ(X1) =
v1 ≺ c, contrarily to the assumptions). Therefore, either c does not contain any
part of σ(u) or contains it completely. So, there exists a prefix d of v1[u] such
that c = σ(d). Now, by Lemmas 2 and 4 we can generate any prefix d of v1[u]
with depth(d) ≤ depth(v1[u]) = 1 + max{depth(v1), depth(u)} using a grammar
G′ with size |G′| ≤ |G| + 2 + max{depth(v1), depth(u)}.



In the induction case i > 1 we have c � σ(Xi(u)) = σ(vi[u]). Let di be the
largest prefix of vi[u] such that σ(di) � c. This prefix is uniquely defined.

By Lemmas 2 and 4, since di � vi[u], we can generate di with depth(di) ≤
1 + max{depth(vi), depth(u)} using a grammar G′′ of size |G′′| ≤ |G| + 2 +
max{depth(vi), depth(u)}.

If σ(di) = c, taking d = di and G′ = G′′ we fulfil the requirements of the
lemma.

Otherwise σ(di) ≺ c, and the hole of c fall inside the instance of some variable
Xk occurring in vi, with k < i (remember that σ(Xi) 6≺ c). This position may
be in the main path of vi or not. In the first case, we have vi[u] = di[Xk[v′i[u]]],
for some suffix Z-context v′

i of vi, i.e. di does not contain any part of u. In
the second case, we have vi[u] = di[Xk[v′i]], for some subterm v′

i of vi, i.e. di

completely contains u.
In the first case, we can decompose c = σ(di)[ĉ], for some Z-context ĉ

satisfying ĉ ≺ σ(Xk[v′i[u]]) and σ(Xk) 6≺ ĉ. Using Lemmas 2 and 4, we see

that there exists a grammar Ĝ deriving Xk[v′i[u]] with depth(Xk[v′i[u]]) ≤

2+max{depth(vi), depth(u)} and satisfying |Ĝ| ≤ |G′′|+2+depth(vi). Moreover,
σ(Xk[v′i[u]]) is compactable with Ĝ. Since k < i, by induction hypothesis, we

can compact ĉ = σ(d̂) with a grammar Ĝ′ that generates d̂ with

depth(d̂) ≤ 3k + max{depth(Xk[v′i[u]]), depth(v1), . . . , depth(vn)}
≤ 3k + 2 + M

and has size

|Ĝ′| ≤ |Ĝ| + k2 + 5 k + +2 k max{depth(v1), . . . , depth(vn), depth(v′
i[u])}

≤ |Ĝ| + k2 + 3 k + 2 k (1 + M)

Now since c = σ(di)[ĉ] and ĉ = σ(d̂), we have c = σ(di[d̂]). Therefore, by
Lemmas 2 and 4, we can find a grammar G′ with |G′| ≤ |Ĝ′|+ 1 that generates

d = di[d̂] with depth(d) = 1+max{depth(di), depth(d̂)} and allow us to compact
c.

In the second case we obtain lower bounds. Finally, all the inequalities allow
us to conclude

depth(d) = 1 + max{depth(di), depth(d̂}
≤ 1 + max{1 + max{depth(vi), depth(u)} ,

3k + max{depth(Xk[v′i[u]]), depth(v1), . . . , depth(vn)}}
≤ 1 + max{1 + M, 3k + max{2 + M, M}}
= 3(k + 1) + M ≤ 3i + M

|G′| ≤ |Ĝ′| + 1

≤ |Ĝ| + k2 + 3 k + 2 k (M + 1) + 1
≤ |G′′| + 2 + M + k2 + 3 k + 2 k (M + 1) + 1
≤ |G| + 2 + M + 2 + M + k2 + 3 k + 2 k (M + 1) + 1
= |G| + (k + 1)2 + 3 (k + 1) + 1 + 2 (k + 1) M ≤ |G| + i2 + 3 i + 2 i M



Lemma 10. For any Z-context t compactable as t = [X1 7→ v1]◦· · ·◦[Xn 7→ vn]u
with a grammar G, any prefix, subterm or subcontext t′ of t, is also compactable
as t′ = [X1 7→ v1] ◦ · · · ◦ [Xn 7→ vn]u′, for some Z-context u′, with a grammar
G′ ⊇ G satisfying

depth(u′) ≤ M + O(n)
|G′| ≤ |G| + O(n M)

where M = max{depth(u), depth(v1), . . . depth(vn)}.

Proof: We only show the proof when t′ is a prefix of t, and t is a context. We can
write t = [X1 7→ v1]◦· · ·◦[Xn 7→ vn]u as t = [X1 7→ v1]◦· · ·◦[Xn 7→ vn]◦[Xn+1 7→
u]Xn+1(•) for any fresh variable Xn+1. Then we can apply Lemma 9.

For subterms we need a variant of Lemma 9, and for subcontexts the appli-
cation of a subterm and then a prefix. For prefixes of terms we need a variant of
Lemma 9 based on Lemma 5. These proofs exceeds the length of this paper.

Lemma 11. For any equation E, and any substitution τ = [X 7→ c[X ′(•)]],
where c is a Z-context not containing X, and built up using O(|V ar(E)|) sub-
contexts of E, and one exponentiation to e, if E is compactable as

E = [X1 7→ v1] ◦ · · · ◦ [Xn 7→ vn]E′

with a grammar G, then, for some Z-context d, some m ∈ {0, . . . , n}, and some
permutation π, τ(E) is also compactable as

τ(E) = [Xπ(1) 7→ vπ(1)] ◦ · · · ◦ [Xπ(m) 7→ vπ(m)] ◦ [X 7→ d]
◦[Xπ(m+1) 7→ vπ(m+1)] ◦ · · · ◦ [Xπ(n) 7→ vπ(n)] E

′

with a grammar G′ ⊇ G deriving d and satisfying

depth(d) ≤ M + O(|V ar(E)|n + log e)
|G′| ≤ |G| + O(|V ar(E)|n M + log e)

where M = max{depth(E), depth(v1), . . . , depth(vn)}.

Proof: By Lemma 10, we can compact each one of the O(V ar(|E|) subcontexts
ci of E that compound c as ci = σ(di) with the same grammar G′ increasing
the size of G in O(V ar |E|)O(n M) and the depth of the symbols generating di

being at most M +O(V ar |E|)O(n). Let d be constructed from the pieces di as
c is constructed from the pieces ci.

By Lemmas 3 and 2, applied as many-times as pieces we have to assemble,
we can prove that there exists a grammar G′′ ⊇ G′ that generates d with depth
M + O(|V ar(E)|n + log e) , and satisfying |G′′| = |G′| + O(log e). Using this
grammar G′′, we can compact τ(E) as

τ(E) =
[

X 7→ [X1 7→ v1] ◦ · · · ◦ [Xn 7→ vn] d
]

E
=

[

X 7→ [X1 7→ v1] ◦ · · · ◦ [Xn 7→ vn] d
]

◦ [X1 7→ v1] ◦ · · · ◦ [Xn 7→ vn] E′

= [X1 7→ v1] ◦ · · · ◦ [Xn 7→ vn] ◦ [X 7→ d] ◦ [X1 7→ v1] ◦ · · · ◦ [Xn 7→ vn] E′



Let < be the transitive closure of the relation: if Xi occurs in vj then Xi <

Xj . By definition of compaction this relation is irreflexive. Extend this relation
considering X < Xi when X occurs in vi and and Xi < X when Xi occurs in
d. Then, for every i = 1, . . . , n, either Xi 6< X or X 6< Xi. (Otherwise we would
get X < X and either c1 or c2 would contain X , contrarily to our assumption).
Now,for every i, if Xi 6< X we can remove [Xi 7→ vi] from the left of [X 7→ d],
and if X 6< Xi we can remove [Xi 7→ vi] from the right of [X 7→ d]. In this way we
obtain the desired compaction. Notice that we have to re-order the Xi according
to the extension of <, i.e. Xπ(1) < · · · < Xπ(m) < X < Xπ(m+1) < · · · < Xπ(n)

is a total ordering of the variables compatible with the partial ordering <.

Theorem 2. If σ is a size-minimal solution of E = (t ?= u), then σ(t) is com-
pactable as σ(t) = [X1 7→ v1] ◦ · · · ◦ [Xm 7→ vm] t′ with a grammar of depth
O(|E|9) and size O(|E|18), where m = O(|E|4).

Similarly for u.

Proof: Using Lemmas 7 and 8 inductively, we can get a decomposition σ =
ρn ◦ · · · ◦ ρ1 such that µ(ρi ◦ · · · ◦ ρ1(E)) < µ(ρi−1 ◦ · · · ◦ ρ1(E)). Therefore, by
Lemma 6, we have n = O(|E|3). Moreover, each one of the ρi’s is the composition
of at most |V ar(E)| many (partial) instantiations of just one variable. So, there
are m = O(|E|4) of these instantiations.

Each one of these partial instantiations τj fulfill the requirements of
Lemma 11. So, using this Lemma 11 inductively, we can prove that τi◦· · ·◦τ1(E)
is compactable with a grammar Gi such that the maximal depth di of a
Z-context derived by Gi is di ≤ di−1 + O(|V ar(E)| i + log e), i.e. di =
O(|V ar(E)| i2+i log e), and for the size |Gi| ≤ |Gi−1|+O(|V ar(E)| i di+log e) =
|Gi−1| + O(|V ar(E)|2 i3 + |V ar(E)| i2 log e), i.e. |Gi| = O(|V ar(E)|2 i4 +
|V ar(E)| i3 log e).

We have i ≤ O(|E|4). The exponent of periodicity lemma ensures that log e =
O(|E|2). We have also |V ar(E)| = O(|E|).

Finally, composing all the bounds we get the polynomial bounds stated in
the Theorem.

Corollary 1. Bounded Second-Order Unification is NP-complete.

Proof: For any equation E, and any size-minimal solution σ, there exists a STG
of polynomial size in |E| that generates σ(X), for every X ∈ V ar(E). Notice
that we represent σ as a composition of substitutions, and the grammar can
generate each one of the compositions, but replacing variables by non-terminal
symbols of the grammar, we can (increasing the depth, but without increasing
the size) generate σ. A small enlargement of the grammar allow us to generate
σ(t) and σ(u).

Now, a nondeterministic algorithm, guessing a representation of the substi-
tution σ not exceeding the polynomial bound, and using Theorem 1 to check if
σ(t) = σ(u) can decide if t ?= u is solvable or not.

NP-hardness is proved in [17].
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