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Abstract. Safety in reinforcement learning (RL) is crucial for
agents in both physical and digital settings, requiring them to com-
plete tasks while behaving safely. This work-in-progress report pro-
poses a method for designing environments that enforce safe be-
haviour in RL agents. Building on multi-objective RL, our approach
embeds an environment with two objectives (task and safety) into one
where safety is always prioritised. Unlike prior embedding methods
with high computational costs, we introduce a simplified algorithm
that enables faster design of safe environments, extending applica-
bility to larger and more complex domains. We also demonstrate its
effectiveness on a continuous control task, a setting previously unex-
plored by embedding techniques.

1 Introduction
Autonomous agents are becoming increasingly present in both real
and digital worlds. Consequently, their irruption in different fields
and their performance on a wide range of tasks are raising concerns
about whether these agents are truly reliable, trustworthy, and safe
[8, 7, 2]. Such concerns are especially pertinent to decision-making
agents, whose decisions may imply several risks regarding, for in-
stance, safety or ethics. Within decision-making algorithms, rein-
forcement learning (RL) [22] is being widely used to train agents for
real-world tasks, thanks to its ability to produce adaptable and high-
performing behaviours from experience. RL algorithms that leverage
neural networks (deep reinforcement learning, or DRL) have demon-
strated strong results in generalising complex tasks in real-world set-
tings [14, 5]. However, neural networks are opaque, which ultimately
leads to black-box behaviours that introduce additional safety con-
cerns. Literature on safe RL [4] tries to mitigate the risks of DRL, ap-
plying so-called cost functions. A cost function measures undesirable
behaviours or safety constraint violations that an agent should avoid.
The agents that minimise a cost function below a certain threshold
are therefore agents with a safe behaviour. Employing cost functions
shifts the problem from a single-objective to a multi-objective per-
spective, where both the reward and (one or more) cost functions
have to be regarded. By establishing a threshold on the cost func-
tions, the problem can be framed as a constrained optimisation prob-
lem [1, 3], where only policies that satisfy the constraints are consid-
ered feasible policies. Another option is to treat each cost function
as an objective that must be lexicographically prioritised over the
primary objective of the agent [24, 27, 23]. These two approaches
have different characteristics. Whilst constraining the learning with
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specific thresholds offers more flexibility when a certain amount of
cost is feasible, it also requires more complex algorithms and prior
knowledge of the cost function’s range [21]. On the other hand, lex-
icographic optimisation is stricter on the prioritisation of the objec-
tives, allowing for less flexibility, but generally comes with a smaller
associated computational cost [24].

Constrained RL has been widely used for safety in realistic en-
vironments such as robotics or autonomous driving [9, 11], includ-
ing scenarios with continuous action spaces. However, little work
has been done with lexicographic algorithms, despite lexicographic
prioritisation being perfectly suited to the idea of “safety over per-
formance”. When examining safe continuous control problems, the
situation is even worse, as, to the best of our knowledge, no lexico-
graphic algorithm has been tested for continuous action spaces. One
explanation is the focus on value-based algorithms for solving lexi-
cographic problems, and the difficulties those algorithms encounter
with continuous action spaces. Within the family of policy-gradient
algorithms, only [21] and [27] have approached lexicographic algo-
rithms, both introducing lexicographic versions of PPO [20] and both
calling it Lexicographic PPO (LPPO). On one hand, [27]’s imple-
mentation is incompatible with continuous control, as it uses a dy-
namic action masking module specifically suited for discrete action
spaces. On the other hand, whilst [21]’s LPPO is compatible with
continuous action spaces, their experiments concentrate only on dis-
crete scenarios, as they demonstrate local and global convergence for
their algorithms on discrete problems.

In the context of ethical decision-making, recent literature [15, 12]
has shown that it is possible to embed multiple objectives (e.g., eth-
ical and individual task objectives) into a single scalarised reward
function, starting from a lexicographic (hence strict) priority order-
ing. These algorithms allow environment designers to combine dis-
tinct objectives into a single one, where the importance of the objec-
tives is the environment designer’s choice. In the case of ethics, the
environment designers can impose ethics as the most important ob-
jective. Environment design is a compelling solution to value align-
ment because it allows a designer to enforce ethical learning.

With a single objective, a learning agent cannot disregard ethics,
as it cannot manipulate or prioritise the embedded objectives differ-
ently. Conversely, if the reward signals are given separately, the envi-
ronment designer loses control over how agents prioritise the distinct
reward signals. However, existing embedding approaches are time-
consuming because they require the construction of a partial Convex
Hull [15, 16, 12], a process that involves computing optimal policies



for various scalarised environments. When these optimal policies are
difficult to learn due to environment complexity, the embedding tech-
niques become even more expensive to compute, limiting their appli-
cability.

Although these environment-centred techniques have only been
used to align agents with ethics, their lexicographic nature makes
them suitable for safety applications. Therefore, analogously to the
way in which they prioritise ethics, we can prioritise safety and de-
velop techniques to design safe environments.

Against this background, we present a work-in-progress Safety
Embedding algorithm that simplifies the existing Approximate Em-
bedding[12] algorithm, making it computationally less demanding.
Our work-in-progress contributes to the safety RL literature in the
following key aspects:

• We explore the applicability of lexicographic learning algorithms,
specifically LPPO [21], in continuous action spaces. This includes
evaluating its performance in the MetaDrive environment [10],
where an autonomous car agent must simultaneously control both
acceleration and steering through continuous actions. To the best
of our knowledge, this is the first application of DRL lexico-
graphic techniques to continuous actions and partial observability.

• We show that the internal coefficients LPPO [21] uses to scalarise
loss functions can be repurposed to scalarise the reward func-
tions of a multi-objective environment in order to create a single-
objective safe environment.

• We perform a preliminary assessment of the generalisation capa-
bilities of the scalarised reward function computed through the
embedding, to investigate if the same embedding can be used
across multiple scenarios. That is, in the case of Metadrive, check
if the scalarisation function computed for a certain driving situa-
tion is able to incentive safe behaviour for other unseen situations.

2 Background
Multi-objective sequential decision-making can be framed as a
multi-objective Partially Observable Markov Decision Process
(MOPOMDP) [17, 18], where an agent acts in an environment, alter-
ing its state, receiving multiple rewards, and perceiving only partial
observations. Formally:

Definition 1. A Multi-Objective Partially Observable Markov Deci-
sion Problem is defined by a tuple M = ⟨S,A, R1,...,m, T,O,O, γ⟩
where S is the state space of the environment, A is the action set
of the agent, R : S × A → Rm are the reward functions, T :
S×A×S → [0, 1] is the transition function of the environment, O is
a finite set of observations and the function O : A×S×O → [0, 1]
represents the probabilities over the agent’s possible observations o
given the state s and action a. Finally, γ ∈ [0, 1) is the discount fac-
tor, indicating future rewards’ importance are on the current state.

On a MOPOMDP, a stochastic policy π(a|ht) assigns the
probability of selecting action a given the past history ht =
(o0, a0, o1, a1, . . . , ot, at) up to the current time step t. Throughout
a complete history h (until a terminal state), a policy accumulates
multiple rewards and produces a vector representing the achieve-
ment of the multiple objectives. The expected discounted return vec-
tor V⃗ π(s) = Eh∼π

[∑∞
t=0 γ

tR⃗(st, at)
]
, namely the value vector

represents the expected overall performance of the policy π over all
the objectives and possible histories h.

These value vectors V⃗ π(s) can be combined using a weight vector
w⃗ ∈ Rm to produce a single scalar objective. However, linear priori-
tisations are not desirable to represent non-linear preferences among

objectives. In domains like safety, where there is a non-linear priori-
tisation in favour of safety, significant domain knowledge or exten-
sive experimentation may be required to determine a weight vector
that avoids dangerous trade-offs between safety and performance in
other tasks [6]. Non-linear prioritisations are then preferable, in the
form of a lexicographic order ℓ = {V1 ⪰ V2}, where objective V1

is always prioritised over V2. This leads to defining Lexicographic
POMDP[24] as a variant of MOPOMDPs:

Definition 2. A Lexicographic Partially Observable Markov Deci-
sion Process (LPOMDP) is a tuple M = ⟨S,A, R1,...,m, T,O,O,
ℓ, γ⟩, where ℓ is the lexicographic order among the objectives, that
is, any possible permutation of {1, . . . ,m} where the first objective
in the order is the higher-ranked objective. The rest of the elements
of the tuple are defined exactly like in a MOPOMDP.

2.1 Lexicographic DRL

A common state-of-the-art DRL technique is to train an agent with
two different neural networks. These actor-critic algorithms have an
actor neural network that models the policy π(a|ht, θ), while a critic
neural network is trained to predict the value of a certain observation
V (o|ϕ) given its parameters ϕ. The critic network is trained by ob-
serving the returns the actor is obtaining throughout the learning, and
the actor is updated by increasing the probability of the actions with
better estimations from the critic.

In multi-objective DRL, each reward function Rj has its own loss
function K̂j(θ), defined as the average loss of the current training
batch, which generates gradients aimed at maximising the expected
discounted return in the j-th objective. Lexicographic DRL algo-
rithms [21] aim to minimise each of the loss functions K̂j(θ) without
increasing the loss on higher-ranked loss functions K̂k(θ) in the lex-
icographic order (k < j). To transform the constrained problem into
an easier unconstrained optimisation, a common practice is to use
Lagrangian relaxation [3, 28], where the constraints are added to the
primary objective as penalties weighted by Lagrange multipliers λ’s.

For lexicographic actor-critic methods [21], the Lagrange multi-
plier λ, together with the lexicographic order ℓ, is used to scalarise
the distinct loss functions into a single loss signal. Thus, without en-
tering into much detail, cjt(λ

j
t , ℓ) are the scalarisation coefficients

that will be used to train the actor at time-step t. For the sake of
simplifying notation, we will just write cjt . Thus, the scalarised loss
function can be expressed as follows:

K̂(θ) :=

m∑
j=1

cjtK̂
j(θ) (1)

During training, the coefficients λj
t should increase when the cur-

rent loss on objective j, K̂j(θ), exceeds the average loss k̂j for the
same objective, computed over a buffer of bs past losses, and de-
crease otherwise. This update rule can be relaxed by including a tol-
erance τ , K̂j(θ) > k̂j + τ , which should start at a higher value at
the beginning of training and gradually decrease to zero. The inclu-
sion of this tolerance parameter ensures adequate exploration of the
state–action space and prevents early convergence to overly conser-
vative policies.

With the correct adjustment of each λj and, therefore, the cjt co-
efficients, formulating lexicographic optimisation problems becomes
simple and at a low computational cost. In practice, this approach can
be integrated with any actor-critic algorithm (i.e. PPO, A2C, TRPO),
and training it with regular temporal difference methods [20, 19].



3 Formalising the safety embedding problem
We aim to design a single-objective environment in which an agent
learns to perform its primary task while exhibiting safe behaviour. To
achieve the learning of safe policies, we must create an environment
where safe behaviour is optimal. In the literature [15, 16, 12], this
type of problem has been addressed only in the context of ethics.
To design ethical environments, first, they encode the primary task
and the ethics alignment into different reward functions. Then, both
objectives are combined into a single objective in which ethics has
a lexicographic preference over performance on the primary task.
Since safety and ethics share a major importance over the primary
task, we argue that the same approach can be applied to safety.

Consider an original source LPOMDP, where ℓ establishes a pref-
erence for safety objectives. Consequently, the optimal policy πr for
such an LPOMDP corresponds to safe behaviour that maximises the
primary task. We refer to such policies as safe policies. We then aim
to design a target environment with a single reward function such
that πr is also optimal for this target environment.

Using a linear scalarisation function f(w⃗s) = w⃗s · R⃗ to com-
bine the objectives, the safety embedding problem is to find a weight
vector w⃗s that is sufficiently large to ensure that safe behaviour is
optimal over any unsafe behaviour. Formally:

Problem 1. Let M = ⟨S,A, R1,...,m, T,O,O, ℓ, γ⟩ be a LPOMDP
where ℓ establishes a prioritisation in favour of safety. Then, the
safety embedding problem is that of finding a weight vector w⃗s

that can define a POMDP M′ = ⟨S,A, R = w⃗s · R⃗, T,O,O, γ⟩
such that any lexicographically dominant policy in M attains higher
scalarised expected return in M′ than any dominated policy.

When the safety embedding problem is solved, we can build the
target POMDP by utilising the scalarised function R = f(w⃗s),
which will lead learning agents to safe behaviour.

The next section proposes a new method for solving the safety
embedding problem and relates it with the state of the art.

4 Safety embedding process
Although no existing embedding algorithm addresses safe environ-
ment design, related literature tackles similar embedding problems.
[15, 16] introduced optimal embedding (OE), the first techniques for
designing ethical environments. Optimal embedding used learning
algorithms with convergence guarantees to find an optimal environ-
ment design. Recent work [12] introduced an approximate embed-
ding (AE) method using DRL to address scalability in ethical multi-
agent design with large state spaces and partial observability. AE
employs lexicographic DRL to compute a reference policy and lever-
ages PPO to train agents in scalarised POMDPs, using binary search
to identify the weight required for a policy equivalent to the refer-
ence, enabling scenarios previously infeasible with tabular methods.

Overall, the existing methods share a key limitation: they require
the computation of a Convex Hull. While OE costs may be justi-
fied by optimal solutions, AE remains computationally expensive for
an approximate approach, with its binary search comprising 85.71%
of total costs in original experiments. This stems from the cost of
POMDP learning, often needing several attempts in complex set-
tings. Thus, we argue that minimising learning processes is crucial
for reducing embedding technique costs.

In contrast to these methods that construct an aligned environment
as a result of exploring different scalarisation weights, there are al-
gorithms that directly learn an aligned policy. Lexicographic algo-
rithms such as LPPO [21] do so by dynamically changing the im-

portance of each objective using Lagrange multipliers during learn-
ing. Thus, throughout training, the impact of each objective on the
overall policy learning changes to adapt to the lexicographic order.
That is, when a more prioritised objective is losing performance, it is
given more weight. In the case of LPPO, this continual adaptation is
achieved through a linear scalarisation of the loss functions (Eq. 1)
using a vector of coefficients c⃗t at each time step t.

Since the LPPO algorithm optimises a single scalarised loss sig-
nal derived from a multi-objective loss, we say that LPPO addresses
a problem similar to the safety embedding problem. Arguably, as
LPPO learns aligned policies, this suggests that during learning, the
scalarisation via the coefficients c⃗t, and the relative importance as-
signed to each objective, has incentivised aligned behaviour.

We then propose the Safety Embedding (SE) algorithm. The algo-
rithm takes one source LPOMDP M, with a specific lexicographic
prioritisation ℓ, as input, and returns a POMDP M′ where the max-
imisation of a single reward signal leads the agents to a behaviour
that abides by the prioritisation ℓ. The algorithm follows three steps:

1. Compute a reference policy πr on an LPOMDP using LPPO and
tracking its internal coefficients c⃗t.

2. Select the coefficients c⃗T , where T is the final time-step, as the
scalarisation weight vector w⃗s = c⃗T .

3. Build and return a POMDP M′ using the weights w⃗s to scalarise
the reward function as:

R =

m∑
j=1

wj
s ·Rj (2)

This algorithm is general for embedding a lexicographic order ℓ
in a single reward signal. Therefore, it can be used for any domain
where lexicographic prioritisation is appropriate, including ethical
embedding. However, in this work-in-progress, we focus on safety.

5 Experimental Analysis
With our experiments, we want to highlight several aspects of the
Safety Embedding algorithm. At a high level, our primary objective
is to show that SE can compute a weight vector w⃗s that creates a
POMDP where the optimal policy is to be safe. As a first exploration
of SE, we will test it for an initial multi-objective setting with an in-
dividual task and a single safety objective (m = 2). Crucially, we
target continuous action spaces, an unexplored area in both embed-
ding algorithms and lexicographic DRL literature.

On a technical level, we investigate the robustness of SE in iden-
tifying scalarisation weights w⃗s, particularly whether it converges to
the same weights across runs. We further hypothesise that, while not
guaranteed, the learned weights transfer across similar environments,
making the embedding generalisable and extending the algorithm’s
applicability. For example, weights learned in a smaller environment
could be reused in a larger one with more obstacles, where comput-
ing the embedding would be more expensive.

The following list details how we empirically investigate the
above-mentioned ideas:

1. Robustness. We run LPPO multiple times with different seeds to
prove that different learning instances converge to similar scalari-
sation weights, with low standard deviation, thus demonstrating
the robustness of the Lagrangian method in finding a specific
weight vector that incentivises safe behaviour.

2. Embedding accuracy. When an agent is trained in a single-
objective environment designed with a reward function such as
Eq. 2 with the corresponding scalarisation weights, the agent



learns a safe policy similar to the reference policy in terms of
environment-specific safety metrics.

3. Generalisation. We assess generalisation by setting an agent to
learn in an environment using the scalarised reward function com-
puted for a different environment.

All the experiments will be conducted in MetaDrive [10], a cus-
tomisable autonomous driving environment. The next section speci-
fies the MetaDrive environment we use: we use the default observa-
tions, but we set a reward function that better suits our goal.

5.1 The MetaDrive environment

In MetaDrive [10], the agent’s objective is to reach the end of the
road as quickly as possible while navigating a variety of obstacles,
including traffic, damaged vehicles, fences, and cones. To enable a
controlled evaluation of the SE algorithm, we eliminated all stochas-
tic elements, rendering the environment fully deterministic. Future
work will explore the performance of SE under stochastic conditions.
We model the MetaDrive environment as follows:

Observation The partial observations of the agent include: (1) a
240-dimensional vector lidar that detects cars and cones with a max-
imum detection distance of 70 meters, (2) a 40-dimensional vector
lidar that detects the sides of the road, (3) an ego state vector that
includes the current steering, heading, velocity and relative distances
to the left and right boundaries and, (4) navigation information that
guides the vehicle towards the goal through a set of checkpoints. All
this forms a 296 vector of continuous values.

Figure 1. Experimental environments with right and left turns and
obstacles to force lane change.

Action space We configured MetaDrive in its continuous control
task, where the action of the agent is a vector of two real numbers
at, as ∈ [−1., 1.], representing the throttle (from maximum braking
force to maximum acceleration) and steering (from maximum steer-
ing to the left to maximum steering to the right).

Reward function We define two distinct reward functions. The
individual objective Rp uses the following reward:

1. A speed component received each step that rewards going as fast
as possible: v

vmax
·c1, where v is the current speed of the car, vmax

is the maximum speed of the car, and c1 is a scalar coefficient that
modulates the importance of speed on the overall reward function.
In our configuration of the environment, vmax = 80, c1 = 0.2.

2. A cutting distance component received each step that rewards how
close the car is to the next checkpoint in comparison to the previ-
ous step: c2 · ∆distance, where ∆distance is the distance re-
duced (in environments’ map coordinate units) to the checkpoint
w.r.t the last step, and c2 is a scalar coefficient that modulates the
importance of this component. We set c2 to 0.3.

3. When reaching the destination, the agent receives reward:

300 ·
(
1− 0.9 · t

Tmax

)
,

where t is the current time step and Tmax is the maximum number
of steps allowed in an episode.

In contrast, the safety objective Rs is a sum of multiple components
received at each step t depending on the state s:

1. Staying centered within the current lane rc(st) ∈ [0, 0.125] where
a perfectly aligned car receives a reward of 0.125.

2. Driving in the rightmost lane rr(st) ∈ [0, 0.5] where driving in
the centre of the right lane yields a reward of 0.5.

3. Maintaining a minimum speed of 20 km/h rms(st) ∈ [−0.7, 0]
where a stopped car receives a penalty of −0.7 and a car above
the minimum speed does not get penalised.

At each step, we add these three components and give the outcome
to the agent. Collisions or leaving the road terminate the episode with
a −2000 penalty. The multi-level definition of Rs has a hierarchy:
rc, rr and rms that encourages safe driving but may be violated in
justified cases, such as lane changes. From a constraint optimisation
view, staying right, centred, and above minimal speed are soft con-
straints [13], which may be surpassed to avoid breaching hard con-
straints like crashes or leaving the road.

5.2 LPPO Robustness

We trained an LPPO agent on the track in Fig. 1 (left) for 45M
steps and with 3 different seeds. Fig. 2 shows the averaged learn-
ing curves for the different seeds in terms of accumulated return.
Notably, the learning of both objectives is stable, with low variance,
which smoothly leads the agents to convergence. Importantly, it is
even more stable for the (prioritised) safety objective.

Figure 2. Learning curves for both objectives during LPPO training.

Metric Reference Scalarised Generalised
Policy πr Policy πs Policy πg

Avg Speed (km/h) 20.82 ± 0.239 7.53 ± 0.06 33.43 ± 2.44
Crash-free episodes 98.7% ± 1.5% 100% ± 0% 98% ± 1.6%
Reached goal 98.7% ± 1.5% 0% ± 0% 98% ± 1.6%
Nº Time-steps to Goal 998 ± 26 1100 ± 0 651 ± 49
Avg. Normalised rr 0.44 ± 0.019 0.83 ± 0.05 0.0 ± 0.0
Avg. Normalised rc 0.7 ± 0.019 0.915 ± 0.017 0.65 ± 0.01

Table 1. Averaged metrics (over the three seeds) of policy rollouts. rr :
normalised reward per step for driving in the rightmost lane; rc: normalised

reward per step for driving in the centre of the current lane.

The first column in Table 1 shows the performance of the three
LPPO policies computed on three different seeds, averaged over 100
episodes. We observe that the agent learns a safe policy without
crashing in 98.7% of the episodes. Regarding the individual objec-
tive, the reference policy follows a speed marginally above the min-
imum speed required, and reaches the goal on average at t = 998,
almost at the end of the episode (which ends at Tmax = 1100).



To proceed with the SE algorithm, we must retrieve the value of
the scalarisation coefficient cst LPPO uses at the end of the training.

Figure 3. Average and standard deviation of the scalarisation coefficient
cst throughout the training on three different seeds.

Fig. 3 shows how the coefficient cst changes during the learning
of three runs of LPPO. We can see how cst increases while training
and by the end it slowly converges to csT = 5.7 on average and with
a very low standard deviation. These results indicate that LPPO is
robust in finding a weight large enough to produce safe policies.

Since, by default, we set the less prioritised objective, in this case,
the individual objective, to have a fixed coefficient of cpT = 1. There
fore the weight vector w⃗s = (csT , c

p
T ) = (1, 5.7) would then be used

to build the target M′ POMDP.

5.3 Embedding accuracy

Figure 4. Training curves of the scalarised policy πs (left) and
generalisation policy πg (right) averaged for 3 different seeds each.

With the computed weight vector w⃗s, we define a scalarised
POMDP suitable for standard single-objective RL and train a pol-
icy using Proximal Policy Optimisation (PPO) [20], denoted as the
scalarised policy (πs). Comparing πs with πr assesses the effective-
ness of the embedding.

The learning curve of πs (Fig. 4, left) shows stable training, with
all seeds converging to similar scalarised returns. Performance, aver-
aged over 100 evaluation episodes and three seeds (Table 1, second
column), reveals that the agent adopts an overly cautious strategy:
it moves at 5.8 km/h, well below the 20 km/h minimum speed, and
thus fails to reach the second obstacle or the goal within the 1100-
step limit (Fig. 1, left). While this prevents direct comparison with
the reference policy, πs exhibits strong safety near the first obstacle,
with zero collisions and high scores for the soft safety metrics rr and
rc, which benefit from slower speeds.

5.4 Generalisation

We apply the scalarised reward function from Section 5.2 to a new
environment with a more complex road (Fig. 1, right), which adds
a lane and obstacle compared to training. Using this fixed reward,
we trained an agent and obtained the generalisation policy πg , with
learning curves shown in Fig. 4. Training with three seeds produced
similar outcomes, though with some instability. Direct comparison to

prior policies is not possible due to track differences, but analysis of
πg reveals key findings: it matches the reference policy in crash-free
rate despite higher complexity, reaches the goal in 712 steps with an
average speed of 30 km/h, and while maintaining lane-centring, fails
to stay in the rightmost lane.

6 Discussion
6.1 Current results

Our preliminary experiments suggest that both the scalarised
and generalisation policies have converged to local optima. The
scalarised policy adopted a conservative strategy, characterised by
slow, risk-averse behaviour, while the generalisation policy disre-
garded secondary objectives that had minor presence on the rewards,
such as adhering to the right lane. This is a consequence of having
all safety considerations collapsed into a single reward; lower-valued
components might be under-represented. To address the early conver-
gence to conservative policies, we plan on increasing the minimum
speed penalty component rms. With the current value, an agent is
able to accumulate a safety reward each step while being below the
threshold. For instance, when driving at 10 km/h, the agent receives
a penalty of −0.35, which can be worth it since driving centred on
the right lane has a maximum reward of rc + rr = +0.625, which is
easier to attain by driving slower.

Since all policies have a high percentage of safe runs and are at
least as good as the reference policy in that regard, we can consider
that SE has effectively built a safe environment.

6.2 Comparison with approximate embedding

The Safety Embedding algorithm presents a promising and compu-
tationally efficient alternative to the approximate embedding algo-
rithm. By bypassing the costly binary search inherent to AE, a pro-
cess that requires solving multiple scalarised learning problems, SE
achieves a substantial improvement in scalability.

Another distinction is that AE approximates the minimal safety
weight (ws), while SE’s weight is not necessarily close to this min-
imum. However, SE’s ws can serve as an upper bound for AE’s
search, narrowing the interval and speeding convergence. Thus, com-
bining both methods may benefit weight minimisation. In conclu-
sion, SE is a notable advancement, as it directly learns a scalarisation
weight without exhaustive search.

In conclusion, the SE approach represents a notable advancement
for embedding techniques, as it directly learns a scalarisation weight,
rather than relying on exhaustive trial-and-error searches.

7 Conclusions and Future Work
Safety Embedding offers a scalable solution to the challenges of
existing multi-objective embedding methods, making the design of
aligned environments feasible in large-scale and continuous do-
mains. While future work will extend experiments to validate our
hypotheses (see Section 6), several directions stand out. First, SE
can support environments with multiple alignment reward functions,
as its Lagrangian foundation is effective in multi-constraint settings
[26, 25]. This could help distinguish between hard and soft safety
constraints, simplifying reward design. Second, LPPO could be re-
fined to minimise the Lagrangian multiplier, thereby reducing the
scalarisation coefficient and keeping the final weight ws close to its
minimum effective value. Finally, extending SE to multi-agent do-
mains [12] by combining it with PPO variants such as ILPPO or
MALPPO could enable the creation of complex, aligned multi-agent
environments.
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