
A Panoramas-Based Localization System

Arnau Ramisa Ayats∗, David Xavier Aldavert Miró× and Ricardo Toledo Morales+

∗ Institut d’Investigació en Intel.ligencia Artificial, Campus de la UAB, 08193 Bellaterra, SPAIN
E-mail:aramisa@iiia.csic.es
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Abstract In this paper a global localization
method is proposed to be used in a topological
navigation scheme. Such method characterizes, in
a distinctive way, places visited by a robot. The
method extracts a constellation of various types of
local affine covariant features from a panoramic
image and then computes a local descriptor for
each detected region. This constellation is then
added to a map represented as a graph where nodes
are places represented by local feature panoramas
and edges are adjacency relations between known
places. Then the robot find its localization in this
map by acquiring a new local feature constellation
and comparing it to those stored in the graph.

Keywords: Robot Vision, Machine Vision, Pattern
Recognition, Topological Robot Navigation.

1 Introduction

Affine covariant local region detectors and descrip-
tors have received a considerable attention recently.
They also have been shown to work well for different
tasks such as image stitching [1], object and object
class recognition [2, 3, 4], or autonomous robot nav-
igation [5]. In this work we will use them to char-
acterize a place, usually a room in indoor environ-
ments. Such characterization will be used for local-
ize a robot in topological navigation.

Related work

This approach is similar in spirit to the one presented
by Tapus et al. [6]. In her work, Tapus proposes
a fingerprint to characterize every place the robot

visits. This fingerprint is composed of various fea-
tures extracted from an omni-directional image and a
2D laser range-scanner reading. From the image the
features extracted are color blobs and vertical lines
and from the laser reading 3D corners. A circular
string is constructed using all the features extracted.
Each character in the string represents a particular
type of feature. Then a string matching method that
is inspired by the minimum energy algorithm used
in stereo vision is used to decide in which of the
mapped places is located the robot.

The differences between our proposed approach
and the one of Tapus is that in our case the only per-
ceptual information used is a panoramic image. In
addition, the position of the robot in relation to the
reference panorama can be computed up to a scale
ambiguity.

This paper is organized as follows. Section 2 re-
views the affine covariant regions and local descrip-
tors used, as well as the matching procedure between
regions. Section 3 presents the proposed strategy to
find correspondences between panoramas and to esti-
mate the local position of the robot. Section 4 shows
our global localization results in real environments
and, finally, section 5 presents the conclusions and
future work.

2 Affine covariant local features

Extracting local features from an image provides a
way to reduce the dimensionality of the data, making
it manageable for high-level vision tasks. In addition,
this simplification provides robustness against noise,



aliasing or acquisition conditions.
Local features can be defined as points or regions

with high information content, which correspond to
local extrema of a function over the image. An ad-
ditional requirement for local features is that they
should be resistant to image transformations like, for
example, changes in the point of view or illumina-
tion.

This robustness to changes makes local features
well suited to tasks such as matching and recognition.
In addition, its local nature makes them resistant to
partial occlusion and background clutter. In order to
compare local features they are characterized using
descriptors.

To correctly match two instances of the same local
feature, their descriptors must be as similar as possi-
ble. Therefore, the region used to compute the de-
scriptor should be composed by the same pixels in-
dependently of the differences in point of view, illu-
mination or scale between the two images.

In a recent article, Mikolajczyk et al. [7] reviewed
the state of the art of affine covariant region detectors
and compared several of the latest techniques. Based
on Mikolajczyk work, and in the results of some ex-
periments carried out by ourselves, we have chosen
three affine covariant local feature detectors: Harris
affine, Hessian affine and MSER. These three region
detectors have a high repeatability rate with a good
precision and a reasonable computational cost. The
Harris affine detector is an improvement of the Har-
ris corner detector [8] and locates regions around the
corners in the image in a scale and affine invariant
way using the scale-space approach proposed by Lin-
deberg [9].

The Hessian affine is similar to the Harris affine,
but in this case the detected regions are blobs instead
of corners. Local maximums of the determinant of
the Hessian matrix are used as base points.

The Maximally Stable Extremal region detector
proposed by Matas et al. [10] detects connected com-
ponents at all the possible thresholding levels of an
image. The concept of extremal region defines a set
of pixels with a value either higher or lower than all
the neighboring pixels, which can be seen as a local
maximum or minimum (an extremum) of the surface
defined by pixel intensities. Finally, maximally sta-
ble refers to extremal regions where the intensity val-
ues of the pixels of the region is several levels higher
(or lower) compared to the neighbors.

Figure 1: Example of normalized regions.

The regions detected with this methods are de-
noted in the image by an ellipse that encloses all the
region pixels. Later, this ellipse is remapped to a cir-
cle to normalize the region. Figure 1 shows an exam-
ple of this normalization. Even though both normal-
ized regions are very similar, in the top right corner
we can observe one of the drawbacks of the affine co-
variant region detectors used: the planarity assump-
tion. Regions detected in an affine invariant manner
can be recovered under projective transformations as
long as the surface imaged in the region can be ap-
proximated by a plane.

Local features are of little use if they can not be
compared and matched with regions from other im-
ages.This step implicitly involves the use of a local
descriptor. The objective of these descriptors is to
provide a compact and distinctive representation of
the local feature to simplify the matching stage, and
at the same time induce robustness to the remaining
variations in the measurement regions. These varia-
tions can be illumination changes, noise and changes
in the measurement region introduced by deep dis-
continuities or non-flat surfaces.

Recently, Mikolajczyk and Schmid published a
performance evaluation of various local descriptors
[11]. In this review more than ten different descrip-
tors are compared for affine transformations, rota-
tion, scale changes, jpeg compression, illumination
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changes and blur.
The conclusions of this analysis observe an advan-

tage in performance of the Scale Invariant Feature
Transform introduced by Lowe [12, 2] and its vari-
ants GLOH [11] and, at a certain distance, PCA-SIFT
[13].

Taking these results and the growing number of
applications that make use of the SIFT into account,
we have chosen this descriptor and its variant GLOH.

To compute the SIFT descriptor, the local region
is divided into 16 sub-regions and an histogram of
the orientations of the gradient is computed for every
sub-region. A gradient can move within a sub-region
and still produce the same descriptor, in this way the
shift in position is allowed to compensate for small
3D rotations.

The orientations are quantized by the magnitude
of the gradient to lower the contribution of insta-
ble orientations from sample points in flat zones of
the image. The histograms have eight bins, each of
45 degrees. A trilinear interpolation is used to dis-
tribute gradient samples across adjacent bins of an
histogram, to avoid boundary effects in the gradient
orientation. In this way, a small change in the orien-
tation will not change the descriptor abruptly. Once
all the histograms are constructed, the values of all
bins are arranged as a vector of 128 dimensions.

Gradient location-orientation histogram (GLOH)
proposed by Mikolajczyk and Schmid [11] is an ex-
tension of the SIFT descriptor. The algorithm to
compute the descriptor is the same except for the
distribution of the sub-regions. Here a log-polar lo-
cation grid is used, with three sub-regions in radial
direction, each divided into 8 sub-regions in angular
direction except the central sub-region. This results
in 17 sub-regions. Instead of 8 orientation bins for
each histogram, 16 bins are used. The resulting fea-
ture vector has 272 values, which are reduced to 128
with PCA.

To compare two descriptors, the Euclidian dis-
tance between the descriptors is computed. In princi-
ple, a global threshold on the distance could be used
to filter the improbable matches, but such a value
is difficult to adjust to perform well in every possi-
ble situation. The proposal of Lowe [2] is to com-
pute matches comparing the distance of the local fea-
ture with the nearest-neighbor and with the second
nearest-neighbor. If these two distances are too sim-
ilar, the nearest-neighbor is not disctintive enough to

be considered a correct match, so it is discarded. The
threshold to the relation between the distances of the
first two nearest-neighbors proposed by Lowe is 0.8.

3 Global localization method

The main goal of this work is to construct a topo-
logical localization system using only a conventional
panning camera or an omni-directional camera.

In our case, the fingerprint is a constellation of
feature regions extracted from a panoramic image
of each room in the map. All these feature region
panoramas are arranged as the nodes of a graph,
where edges represent accessibility information be-
tween places. This graph is the topological map for
the robot. The local feature region detectors used
are the MSER [10], the Harris affine and the Hessian
affine [14]. To characterize the detected regions, we
have used the descriptors with better results as stated
in [11]: the Scale Invariant Feature Transform (SIFT)
[12, 2] and one of its variants, the Gradient Location
and Orientation Histogram (GLOH) [11].

The motivations to use local features to construct
the fingerprint of each room are:

• A fingerprint based on local features has the ad-
vantage of being more resistant to occlusions
and partial changes in the image. This robust-
ness is obtained because many individual lo-
cal regions are used for every fingerprint and,
thus, if some of them disappear the constella-
tion can still be recognized. If new or differ-
ent local features appear in a new constellation
of a place, the matching can, still be success-
fully done against the stored fingerprint. Lowe
showed in [2], in the context of object recogni-
tion, that correct subsets of features where se-
lected even if they represented only 1% of the
total local features.

• Local features have demonstrated its usefulness
in many tasks, some of them of great interest to
mobile robotics. For example, the same features
can be used in motion estimation, 3D object
recognition [2] and panorama construction [1],
reducing the computational load for the robot.

• These features are robust to several distortions
common to the images acquired by the robot.
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• Finally, some local navigation information can
be obtained through the geometric interpreta-
tion of the changes occurred in the constellation
of feature points.

The steps of the proposed method are the follow-
ing

• A new panoramic image is acquired.

• The local affine covariant regions are detected
using the three region detectors.

• The detected regions are described using either
the SIFT or the GLOH descriptors.

• The constellation of described feature regions is
compared with every constellation in the map of
the robot.

• To discard false matches, the essential ma-
trix between the panoramas is computed using
RANSAC, and as a result the matches will be
classified as inliers or outliers.

• Finally, the panorama with the highest num-
ber of inliers is selected as the corresponding
panorama where the robot is located.

As mentioned above, an interesting property of
our approach is that it implicitly recovers metric in-
formation up to a certain degree. The room is mod-
elled as a cylinder and using the essential matrix,
which in any case has to be computed, we can re-
cover the position of the robot in relation to the refer-
ence panorama up to a scale factor, which can be later
estimated using stereovision techniques if at least one
more panorama of the room is available and the met-
ric distance between two of the panoramas is avail-
able [15].

4 Results

The test set consists of 27 panoramas from the
IIIA research center captured rotating a Sony DFW-
VL500 camera and stitching the images in a cylin-
drical panorama. The location of the test panoramas
can be observed in figure 2, and one of the panora-
mas acquired in figure 3 with the detected affine co-
variant regions. The panoramas correspond to dif-
ferent rooms and corridors of the center, and there
are at least two panoramas of every mapped place.

Figure 2: Map of the center with the location of the
acquired panoramas.

Figure 3: Example of panorama.

For every panorama a constellation of feature regions
was constructed using the three region detectors pro-
posed, and the regions where described using the
SIFT and the GLOH descriptors.

Even though a mobile robot can capture multi-
ple panoramas when navigating within a room, our
test was performed assuming only one panorama was
available as a first measure of the distinctiveness of
the proposed fingerprint. Therefore, two tests for ev-
ery panorama were performed: a test with feature re-
gions described with the SIFT descriptor and another
test using the GLOH descriptor. The following re-
sults where obtained: using the SIFT 13 of the 27
panoramas where correctly matched, thus giving an
accuracy of 48.1% of matches at the first attempt; in
the case of the GLOH, 15 panoramas where correctly
matched, which represent an accuracy of 55.6%.

5 Conclusions

The conclusions of this work are the following: Even
though the presented schema obtained some success,
it needs to be improved in order to reliably localize a
mobile robot. Possible ways to improve this method
are:

• Using other local feature detectors and descrip-
tors.
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• Specifying the contribution of every type of
local feature employing, for example voting
schemas.

• Finding a different matching strategy between
local region descriptors. If many similar objects
and, thus, similar regions are present in the im-
age, the relation of the distance between the two
nearest-neighbors gives poor results. A match-
ing strategy based on lists of tentative matching
could improve the performance.

• Color information is neglected in this approach
but it could be very helpful in the localization
process.

• Finally, to reliably estimate the essential matrix,
it is important that features are homogeneously
distributed over the panorama. In consequence,
a method to discriminate which panorama will
better represent a place is necessary.
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