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ABSTRACT
The dynamic formation of coalitions is a well-known area of
interest in multi-agent systems (MAS). Coalitions can help
self-interested agents to successfully cooperate and coordi-
nate in a mutually beneficial manner. Moreover, the organi-
zation provided by coalitions is particularly helpful for large-
scale MAS. In this paper we present a distributed approach
for coalition emergence in large-scale MAS. In particular,
we focus on MAS with agents interacting over complex net-
works since they provide a realistic model of the nowadays
interconnected world (e.g. social networks). Our experi-
ments show the effectiveness of our coalition emergence ap-
proach in achieving full cooperation over different complex
networks. Furthermore, they provide a clear picture of the
strong influence the topology has on coalition emergence.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems

General Terms
Algorithms,Experimentation

Keywords
cooperation, coalition emergence, consensus, MAS

1. INTRODUCTION
Achieving cooperation and coordination in multi-agent

systems is a challenging issue [10]. These becomes even more
difficult to accomplish when dealing with self-interested agents.
Cooperation among self-interested agents is often hindered
by social dilemmas [9]. In these dilemmas, agents must de-
cide between a (short-term) individual benefit or a (long-
term) group benefit. Individual decisions (self-interested),
besides providing only momentary benefits, are detrimen-
tal if many agents take them (e.g. if many individuals try
to download the same file at the same time, their down-
load speed suffers greatly). Instead, group decisions (social)
can result in a mutually beneficial cooperation that holds
over time [17]. In MAS, examples of social dilemmas can be
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often observed in frequency spectrum assignation, load bal-
ancing, packet/message congestion, bandwidth allocation,
etc. Therefore, mechanisms that promote the emergence
and maintenance of cooperation for self-interested agents is
an area of interest [7].

The emergence of cooperation is often studied in the con-
text of the Prisoner’s Dilemma (PD) theoretical framework
[2]. This has been specially useful for understanding the role
of local interactions and the maintenance of cooperation [16,
13, 11]. Moreover, these studies have been successfully ap-
plied to existing applications (e.g. Peer-to-Peer (P2P) sys-
tems [8]). Nonetheless, in P2P and many other complex
systems, the problems relating to social dilemmas still exist.

To prevent social dilemmas and promote cooperation, Ax-
elrod proposed a tribute/tax model [3]. According to this
model, cooperation is achieved when agents form coalitions
around some emerging leaders. To maintain their coali-
tions, leaders charge their agents some tribute/tax. In other
words, leaders extort other agents with some pay in favor of
a benefit (e.g. guaranteed cooperation, protection against
cheaters). This is a clear example of the known tradeoff be-
tween the benefits vs. the costs of collaboration (e.g. taxes)
[18].

Axelrod’s model has been successfully adopted to help
agents, on grid topologies, cooperate when using a spatial
version on the PD [5]. However, whether cooperation is still
possible on actual-world topologies via a tribute/tax model,
such as the one described by Axelrod [3], remains unex-
plored. Complex networks provide a more realistic model
of the topological features found in many nature, social and
technological networks (e.g. social networks, the Internet,
ecological populations) [1, 19]. Furthermore, it is known
that they can influence emergence [15].

The main contribution of this paper is the design of a
mechanism to emerge and sustain full and profitable coop-
eration, via a single super-coalition, but with a low collab-
oration cost (tax). Specially, since we found that: a) the
coalition strategies employed by [5] cannot accomplish full
cooperation on complex network topologies; and b) that the
notion of tribute (having leader agents setting taxes) is un-
fair for the population as a whole. Therefore, our proposed
approach contributes with: i) a set of coalition strategies
that promote a profitable cooperation on complex networks;
and ii) a consensus mechanism that allows coalition mem-
bers themselves (instead of leaders) to reach a convention
over the fair price to pay to be part of a coalition. Thus,
unlike Axelrod’s model, agents in our approach are no longer
subject to leader extortion. Overall, this results in an ap-
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proach fair and profitable for all agents.
Moreover, we show that our approach has a high degree

of resilience against the leader’s failure. This is important,
because if a leader fails, its whole coalition collapses, halting
the cooperative behavior (i.e. leaders induce a single-point
of failure). However, in our approach after the leader fails,
agents promptly emerge a new coalition.

The paper is organized as follows. Section 2 briefly de-
scribes the base model and presents its evaluation on differ-
ent complex networks. Next, in section 3 we propose and
evaluate both a new set of coalition strategies and our con-
sensus mechanism. Finally, in section 4 we draw some con-
clusions.

2. A BASE COALITION FRAMEWORK
The purpose of this section is twofold. Firstly, section

2.1 introduces the base mechanism for coalition emergence
that we subsequently extend (in section 3) to support coop-
eration over complex networks. Secondly, in section 2.2 we
empirically analyze the performance of the base mechanism
over complex networks.

2.1 The Base Approach
In this section we summarize the model for coalition for-

mation that we extend in this paper. The model is thor-
oughly described in [5], and it is based on Axelrod’s model
for the emergence of political actors described in [3]. The
main motivation of the Axelrod’s model in [3] is to promote
cooperation by increasing the organization level of a multi-
agent system. This is accomplished through the emergence
of some leading agents that command coalitions of previ-
ously independent agents. Each agent within a coalition co-
operates with its leader agent. Moreover, the leader also im-
poses the strategic behavior to follow against members and
non-members of the coalition. Consequently, notice that the
emergence of a single coalition guarantees full cooperation
between all agents.

The model in [5] considers an agent population using a
grid as its interaction topology. The interaction between
agents is modeled as an n-person game, i.e. n agents inter-
acting simultaneously, where each game is a spatial version
of the Iterated Prisoner’s Dilemma (IPD) [13] that takes into
account each agent’s number of neighbors. Every agent must
decide whether to behave as a defector or cooperator during
each round of the game, and they are payed according to the
payoff matrix depicted in table 1. Therefore, in an attempt
to maximize their individual payoffs, agents must also decide
whether to join or leave a coalition, or switch to another one.
To summarize, the model is composed of: (1) a role model
describing the roles each agent may take on (independent,
coalition member, and leader); (2) a game-based interaction
model describing how agents interact (spatial IPD); (3) a
collection of interaction strategies for the roles that agents
play; and (4) a collection of coalition strategies for the roles
that agents play.

First, the role model considers that each agent can play
one out of three mutually exclusive roles:

• An independent agent decides its own interaction strat-
egy (whether to cooperate or defect) during each game.
It decides its next action using a probabilistic Tit-
for-Tat (pTFT) strategy [5]. Unlike classical TFT
[4], a pTFT strategy stochastically imitates the action

Agent j
C D

Agent i
C (3,3) (0,5)
D (5,0) (1,1)

Table 1: Prisoner’s Dilemma Payoff Matrix

played by the majority of an agent’s neighbors in a pre-
vious round. Additionally, it has coalition strategies to
decide whether to join or not a coalition.

• A coalition member agent leaves the decisions regard-
ing its interaction strategy to its coalition leader. How-
ever, it still has coalition strategies to decide whether
to leave the coalition (to either switch to a better one
or in favor of independence) or stay in it. Moreover, a
coalition member must pay some tax to its leader for
the right to remain in the coalition. This tax serves as
a guarantee for cooperation within the coalition.

• A coalition leader agent decides the interaction strat-
egy for the whole coalition. Leaders impose that all the
agents within a coalition cooperate between them, but
defect when interacting with agents outside the coali-
tion. A leader cannot disband its coalition. However,
it must decide the taxes that its coalition members
must pay to remain in the coalition. Notice that by
applying a tax percentage to its coalition members, a
leader increases its own income. A leader’s income de-
pends on: the amount of tax, the number of agents
in the coalition, and the income of coalition mem-
bers. Therefore, although choosing high taxes may
lead to more short-term revenues, it may also lead to
bankruptcy of coalition members, and hence to the
collapse of the coalition (as observed in [3]).

Now we turn our attention to the actual coalition strate-
gies employed by agents to decide whether to join, leave,
or switch coalitions. These decisions mainly depend on the
agents’ payoffs when compared with their neighbors, and on
their commitments. The notion of commitment, introduced
in [3], reinforces cooperation between agents with previous
cooperative interactions. In what follows, we abstract the
coalition strategies presented in [5] as a collection of quali-
tative, role-based strategies:

Independent agent decision-making

1. Join coalition (worst agents). If my payoff is the worst
in my neighborhood then join my best (payoff-wise)
neighbor’s coalition (request to form one if needed).

2. Join coalition (moderate agents). If my payoff is av-
erage in my neighborhood and I am committed to my
best neighbor then join its coalition (request to form
one if needed).

Coalition member decision-making

3. Leave coalition (isolated agents). If I am isolated (con-
nection wise) from my coalition then leave it.

4. Strengthen coalition (satisfied agents). If my payoff is
good then increase my commitment with my leader.
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5. Coalition switch (worst agents). If my payoff is the
worst in my neighborhood and the agent with the
best payoff in my neighborhood is not my leader then
switch to the best agent coalition.

6. Coalition switch (unsatisfied agents). If the agent with
the best payoff in my neighborhood is not my leader
and I have some commitment with this best agent
then switch to its coalition.

7. Leave coalition (unsatisfied agents). If my commit-
ment to the leader is low and the agent with the best
payoff in my neighborhood is not my leader and this
best agent is independent then leave my coalition.

The strategies above allow agents to decide how to be-
have with respect to coalitions. Firstly, only independent
agents that are not obtaining good payoffs consider joining
a coalition (strategies 1 and 2). Secondly, an agent obtain-
ing good payoffs in its coalition, strengthens its commit-
ment to the leader (strategy 4). Otherwise, an agent that
performs poorly switches from its current coalition (strat-
egy 5), whereas an agent that does not perform poorly but
is unhappy with its leader may also either switch coalition
(strategy 6) or simply leave the coalition (strategy 7) looking
for potentially better coalitions.

Moreover, the model allows some exploration regarding
interaction and coalition strategies by the introduction of a
mutation probability. Mutation may randomly change ei-
ther the action that independent agents choose to play dur-
ing interactions, the decisions of agents regarding whether
to leave a coalition or not, and the taxes charged by leaders.
Therefore, mutation adds exploration to the strategic behav-
ior of independent agents, coalition members, and leaders.

2.2 Coalition Formation over Complex Net-
works

As stated above, the approach proposed in [5] was suc-
cessful in helping agents achieve full cooperation (or close
to it) on grids. However, grid or grid-like topologies may
not model the connectivity/topology that a MAS applica-
tion may find in a more realistic environment (e.g. P2P,
social networks). It has been argued that complex networks
provide a more realistic model of the topological features
found in many nature, social and technological networks [1,
14] (i.e. computer networks, social networks). Therefore,
complex networks provide actual-world topologies where we
can evaluate if the coalition formation results exhibited on
the grid topology hold. Hence, in this section we aim at eval-
uating this coalition formation approach (hereafter referred
to as the base approach) on actual-world topologies.

To that end, we ran a series of simulations of the base
approach over different complex networks. The networks
that we employed along with the results are described and
discussed in the following subsections.

2.2.1 Network Topologies
This paper’s experiments focus on small-world and scale-

free networks since these type of networks are the ones that
best model the most common networks appearing in soci-
eties and nature.
Small-world: These networks present the small-world phe-
nomenon, in which nodes have small neighborhoods, and yet
it is possible to reach any other node in a small number of
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Figure 1: Coalitions in small-world topologies

hops. This type of networks are highly-clustered (i.e. have a

high clustering coefficient). Formally, we note them as W k,p
V ,

where V is the number of nodes, k the average connectivity,
i.e., the average size of the node’s neighborhood, and p the
re-wiring probability. We used the Watts & Strogatz model
[19] to generate these networks.
Scale-free: These networks are characterized by having a
few nodes acting as highly-connected hubs, while the rest
of them have a low connectivity degree. Scale-free networks
are low-clustered networks. Formally we note them as Sk,−γV ,
where V is the number of nodes and its degree distribution
is given by P (k) ∼ k−γ , i.e. the probability P (k) that a
node in the network connects with k other nodes is roughly
proportional to k−γ . We used the Barabasi-Albert algorithm
[1] to generate these networks.

2.2.2 Experimental Settings
The settings described in this section are also those that

will be employed in the rest of this paper (unless other-
wise indicated). Each experiment consisted of 50 discrete
event simulations, each one running up to 20000 time steps
(ticks). Each simulation ran with 1000 agents over either
a small-world or scale-free underlying topology. Moreover,
all the metrics of the simulations were aggregated using the
inter-quartile mean (IQM). The experiments used a muta-
tion probability of 0.05 (the same reported in [5]).

In all simulations, interaction topologies were generated
by setting the following parameters: W 10,0.1

1000 in small-world
networks and S10,−3

1000 in scale-free networks. The clustering
coefficients of the topologies are high (0.492) and low (0.056)
respectively. Notice that a new interaction topology is gen-
erated per simulation.

2.2.3 Experimental Results
The purpose of first experiments was to determine whether

or not the base approach is influenced by the underlying
topology. To analyze the results we observed : i) the num-
ber of coalitions and independent agents (the closer to a
single super-coalition, the higher the cooperation); ii) each
agents’ payoff with respect to its maximum payoff (the co-
operation reward × the number of neighbors) and taxes;
and iii) the topology of the leaders’ neighborhoods. In gen-
eral, the experiments showed that the behavior of the base
coalition formation algorithm is strongly dependent on the
network topology as we discuss next.
Small-World. Firstly, we observed that in MAS with a
small-world connectivity (see figure 1), multiple coalitions
emerged (∼ 60). This fragmented population is quite a con-
trast with respect to the grid results, where a single coalition
emerged given enough time. Moreover, figure 1 also shows
that, at any given time step, around 5% of the population
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Figure 2: Coalitions in scale-free.

remains independent. However, the ceaseless spikes exhib-
ited by the plots of both agents in coalitions and indepen-
dent agents, indicate that agents are continuously leaving
and joining coalitions. In other words, coalitions are rather
unstable because their members continuously change.

With respect to the payoffs, figure 3 shows that the aver-
age payoff of an agent in a coalition is significantly low (∼ 20
% of the maximum). Specially when compared with the ∼
99% (of the maximum) obtained in the grid simulations (in
[5]). The reasons behind this lower payoff are two-fold: 1)
a fragmented population; and 2) very high taxes imposed by
leaders. The former means that as a result of multiple coali-
tions and independent agents, it is very likely for agents in
a coalition to interact (play) with agents outside their coali-
tion (for which their strategy is an automatic defect). The
latter occurs because leaders are not pushed to decrease their
taxes. In particular, leaders charge their coalition members
a ∼ 44% of their total payoffs. That fact that agents settle
on paying such high taxes greatly differs from the results
obtained on grids, where low tax values (< 1% of the total
payoff) were reached.
Scale-free. The results over scale-free topologies (depicted
in figure 2) show that agents promptly gravitate towards a
single leader, thus forming a single super-coalition. However,
not all agents join the coalition (∼ 18% of the population,
namely ∼ 180 agents, remain independent). Moreover, fig-
ure 2 exhibits the same kind of instability exhibited by the
small-world case (illustrated by the ceaseless spikes).

Interestingly, agents on this topology receive a higher pay-
off (∼ 50% of the maximum payoff) than on small-world
topologies, but still far from the 99% obtained in grids . This
occurs because a highly populated single coalition amounts
to a very high level of cooperation (i.e. ∼ 80% of the agents
cooperate with each other). Nonetheless, once again, like
in the small-world case, the agents in the coalition also pay
very high taxes (∼ 44% of their total payoff).

Moreover, an in-depth analysis of the simulations showed
that the agents that became leaders had an interesting char-
acteristic in common. They tend to be the agents with
higher connectivity (i.e. they have more neighbors). Hence,
the hubs (in particular the highly connected ones, although
not necessarily the most connected ones) usually emerge as
leaders. Consequently, this is also the reason why a single
leader can emerge, since the considerable high number of
neighbors that hub agents have with respect to the rest of
agents (∼20 vs. ∼150) puts them in an excellent influence
position. Moreover, the relatively low number of hub agents
means that only a few agents compete between themselves
to become a leader, thus it is easier for one of them to dom-
inate others.

In contrast, the neighborhoods under small-world topolo-
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gies are very similar 1 (on average each agent has ∼ 10 neigh-
bors) and thus all agents have more or less the same level
of influence. Hence, this explains why multiple coalitions
coexist (agents start with similar levels of influence).
Summary. Overall, the main drawbacks of the base model
are: its sensitivity towards the topology and the coalitions’
instability. The first one may be solved by analyzing and
revising the base decision making logic (i.e. the coalition
strategies), whereas the second issue is harder. The insta-
bility exhibited by coalitions mainly occurs because the high
mutation (0.05) prompts the agents to leave their coalitions
(as stated above). However, for large coalitions to appear,
high mutation is necessary on both grid (as argued in [5])
and complex network topologies. In other words, mutation
is both detrimental and crucial for the coalition formation
process. Hence, adjusting mutation is challenging when we
want to minimize the instability without affecting coalition
emergence.

In the next section we focus on improving cooperation
mainly by solving or minimizing the above-mentioned draw-
backs.

3. IMPROVING COOPERATION
The aim of this section is to study how to maximize coop-

eration amongst agents ( and consequently improving their
payoffs). To that end, the base approach needs to be re-
vised and extended to address the drawbacks identified in
the previous section.

Specifically, along this section we focus on: a) achieving
full cooperation by emerging a single super-coalition (avoid-
ing a fragmented population); b) sustaining the single coali-
tion through time by minimizing coalition instability; and c)
lowering the taxes needed to maintain the coalition. More-
over, all of these needs to occur regardless of the underlying
topology. However, notice that although a single coalition
promotes cooperation and is beneficial for the agents’ pay-
offs, a single leader becomes a potential single-point of fail-
ure, making the MAS vulnerable. Therefore, we also commit
to an additional objective: d) the promptly re-emergence of
a coalition if the leader fails.

3.1 Topology Influence
The experimental results in section 2.2 showed that the

base coalition formation approach is considerably sensitive
to the MAS underlying topology. In particular, we observed
that the topology influences the structure of coalitions (frag-

1because of the small-world phenomenon, see [19]
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mented population vs. single coalition). However, the topol-
ogy also influences other aspects of emergence, i.e. the emer-
gence time. Hence, the purpose of this subsection is to per-
form a sensitivity analysis of the decision making process
(described in subsection 2.1) with respect to the topology.

3.1.1 Influence on Coalition Structures
The most noticeable topological effect observed during

the previous experiments was the fragmented population.
Specifically, in small-world topologies agents form multiple,
different coalitions, which are detrimental to their total pay-
offs. Therefore, in what follows we aim to promote the emer-
gence of a single coalition.

To understand why multiple coalitions emerged instead
of a single one, we must first explain how we expected the
base approach to behave. Initially, regardless of the topol-
ogy, agents organize in small coalitions. Then, agents were
expected to leave their coalitions in favor of independence or
better coalitions if their payoffs were not sufficient. In other
words, by continuously joining and leaving coalitions, agents
were expected to incrementally move towards larger coali-
tions (under the principle that the larger the coalition the
higher the payoff) until only a single one remained. However,
as the experiments demonstrated in subsection 2.2.3, this
behavior does not occur on small-world topologies. Hence,
the join and/or leave coalition strategies do not behave as
needed.

We determined that the shortcoming stems from join coali-
tion strategies instead of leave coalition strategies. Our rea-
soning is that because of high mutation some agents will
always leave their coalitions, thus the fault occurs when
they (re-)join them. That is to say, in small-world topolo-
gies the join strategies are not moving the agents towards a
larger coalition, and instead they keep the population frag-
mented. Specifically, this occurs because the combination of
the small-world’s inherent high clustering, the commitment
notion, and join coalition strategy 2, prompt each agent to
rejoin the coalition they just left (i.e. most agents never
truly leave their coalitions).

We re-ran the experiments to verify if the join coalition
strategy 2 truly halts the emergence of a single coalition. As
expected, we confirmed that without this strategy, agents
on small-world topologies are capable of emerging a single
super-coalition. Moreover, interestingly enough we found
that agents in the single coalition have the additional advan-
tage of paying a significantly low tax (∼5% of the agent’s
total payoff instead of ∼44%). The reason behind such low
taxes is very reasonable. The fact that every agent can
potentially become a leader (as discussed in section 2.2.3)
drives a fierce competition between leaders to charge lower
taxes (akin to a price war). Overall, low taxes translate onto
higher payoffs for coalition agents (∼90 % of the maximum),
which is our main objective. Nonetheless, the instability of
coalitions is still present and is accountable in lower average
payoff obtained by the non-leader agents when compared to
the coalition agents (see figure 3).

Nevertheless, the removal of join coalition strategy 2 is
detrimental to scale-free topologies. Because of the highly
connected hubs in scale-free networks, a single coalition promptly
emerges. However, the low clustering of scale-free networks
causes agents that recently became independent to remain
independent for longer periods of time. This considerably
increases the coalition’s instability (around one third of the

agents are independent at any given point in time). Basi-
cally, without a strategy to force agents into a coalition (such
as join coalition strategy 2), the number of agents leaving a
coalition is higher than the number of agents joining one. In
other words, scale-free suffers the full-blown effect of muta-
tion.

To summarize, we reaffirmed the fact that the effect of
the coalition decision making process varies depending on
the network topology. However, since agents are not capa-
ble of identifying the underlying topology where they inter-
act, creating specific strategies for each topology is unrealis-
tic. Nonetheless, when join strategy 2 is removed, coalition
emergence is relatively similar in both small-world and scale-
free, since only single coalition emerges. This is important
because now only one drawback remains for both topologies:
instability (although to a much higher degree in scale-free).
Therefore, the remaining objective is to minimize instability,
which is the focus of subsection 3.2.

3.1.2 Influence on Emergence Time
In the previous subsection we determined that a single

coalition can emerge regardless of the topology. However,
we did not mention that the time required for this single
coalition emergence varies depending on the topology. In
particular, we observed that agents in small-world require a
longer time to group up unto a single coalition (4000 time
steps) with respect to the agents on scale-free (< 500 time
steps). This time disparity is once again a product of the
strong influence that hub agents have over the rest of agents.
Thus, in this section we aim to speed-up the coalition emer-
gence process on both topologies.

In the base approach, the switch and leave coalition strate-
gies (3,5,6, and 7) are expected to improve coalition emer-
gence time, since they prompt agents to leave their coalitions
in search for better ones. However, the leave strategies tar-
geting unsatisfied agents (6 and 7) are hardly ever employed.
Therefore, we propose to replace them with the by far more
aggressive disband coalition strategy. With this strategy,
leaders of unprofitable coalitions may disband their coali-
tions and free multiple unsatisfied agents in just a single
time step. This can be regarded as the dual of strategies
6 and 7, since instead of each agent leaving its leader, the
leader leaves all its agents.

8. Disband coalition (unsatisfied leader). If I am a leader
and I am not satisfied with my payoff then disband
my coalition.

Algorithm 1, stands for the resulting coalition decision
making process. Notice that after removing the join and
leave strategies (strategies 2,6, and 7), none of the remain-
ing strategies employ the notion of commitment employed in
Axelrod’s tribute model [3]. Thus, the strengthen coalition
strategy (strategy 4) was also removed. That is to say, com-
mitment between agents is not actually needed for coalition
emergence. We re-ran the simulations to verify the speed-up
provided by algorithm 1.

The results showed that by employing the disband strat-
egy a single coalition emerges ∼ 12.5 % faster (than when
employing strategies 6 and 7) in a small-world topology.
Moreover, it speeds up the emergence on scale-free by∼ 50%.

Overall, we have simplified the agents’ coalition decision
making algorithm. Therefore, we can now turn our attention
to our remaining drawback: coalition instability.
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Algorithm 1 CoalitionDecisionMaking

if (myRole = INDEPENDENT ) then
/∗ Strategy 1 ∗/
joinCoalitionWhenWorst(best neighbor);

end if
if (myRole = COALITION MEMBER) then

/∗ Strategy 3 ∗/
leaveCoalitionWhenIsolated();
/∗ Strategy 5 ∗/
switchCoalitionWhenWorst(best neighbor);

end if
if (myRole = LEADER) then

/∗ Strategy 8 ∗/
disbandCoalitionWhenBad();

end if
mutation(pmutation);

3.2 A Consensus Mechanism for Stable Coali-
tions

After section 3.1 the only issue remaining that prevents
full cooperation is coalition instability. Therefore, in what
follows we propose to extend the coalition formation ap-
proach (in algorithm 1) to endow it with capabilities to min-
imize instability. However, to accomplish this we must first
understand exactly what we are trying to minimize.

3.2.1 Rebellion vs. Mutation
Along this paper we have found that mutation is both a

nuisance and a crucial factor for the coalition formation pro-
cess. However, when analyzing its effects, we realized that
the “mutation” employed by the base approach is actually a
merge of two different concepts: classic mutation (a random
change in the agents’ properties) and rebellion. The former,
has been well studied in the literature [12] and affects agents’
actions to play and/or the taxes to charge, whereas the lat-
ter is the probability of an agent to become a rebel (leaving
its coalition). Thus, in the base approach when mutation oc-
curs in an agent, it randomly changes its actions and taxes,
and it prompts the agent to leave its coalition (if applica-
ble). That is to say, both random changes and rebellion
occur concurrently. Nonetheless, rebellion (achieved by mu-
tation in previous experiments) is the actual factor that is
crucial for the coalition formation process. Hence, it must
be treated as a separate entity if we want to minimize the
instability resulting from it.

The importance of a rebellion capability is not hard to un-
derstand. We have discussed before that larger and stronger
coalitions emerge when agents leave their current one to join
others. However, the leave or switch coalition strategies do
not activate that frequently, and it is actually the rebellion
probability the factor that often drives agents to leave their
coalitions. This is akin to the not always logical real-life
rebellion, e.g. humans may rebel from a social group with-
out actually knowing if there is something better somewhere
else. However, as the instability in all previous experiments
shows, continuous/constant rebellion is detrimental to agent
coalitions. Thus, we propose that, to minimize instability,
agents need to adjust their rebelliousness according to their
needs (e.g. their payoffs).

3.2.2 The Consensus Mechanism
Rebellion is necessary during the coalition formation pro-

Algorithm 2 The new coalition formation algorithm em-
ployed by each agent

1: interactWithNeighbors();
2: if (myRole 6= LEADER) then
3: spread(〈[tax,prebellion],payoff〉,pspreading);
4: [tax,prebellion]←select(spreadings);
5: innovate([tax,prebellion],pinnovation);
6: end if
7: coalitionDecisionMaking();
8: if (myRole = COALITION MEMBER)

& (tax<leader.getTax()) then
9: leaveCoalition(prebellion);

10: end if

cess. Nonetheless, it induces instability once a single coali-
tion emerges. Therefore, agent rebelliousness needs to be
controlled by the agents themselves accordingly (i.e. only
rebel when necessary). Not only that, since agents are dis-
tributed entities, rebellion must be controlled distributedly.

However, if we intend for rebellion to only occur when nec-
essary, we firstly require to give rebellion a motive within the
agent, i.e. why should an agent rebel? That is to say, rebel-
lion needs to be dependent on some other property or char-
acteristic of the agents. In the coalition formation process,
dissatisfaction with respect to the taxes to pay provides a
very logical and reasonable motive for rebellion. Therefore,
we propose that an agent may only rebel once its coalition
leader is charging more taxes than what the agent is willing
to pay. Nevertheless, in both the base approach and in al-
gorithm 1 the agents pay the taxes that the leader charges
unconditionally. Hence, to relate taxes and rebellion the
agents need to have the notion of how much they are will-
ing to pay, i.e. a tax threshold. Moreover, like the rebellion
probability, this tax threshold should also be decided by the
agents themselves.

In human culture rebellion often occurs as a social move-
ment. Individuals are more likely to rebel if their peers are
rebelling, or are more likely to be satisfied with their taxes if
their neighbors are satisfied. In other words, rebellion can be
regarded as a collective decision. To that end we propose to
employ a collective adaptive approach to reach a consensus
about the rebellion probability and tax threshold. This pro-
posed collective approach, inspired on the social contagion
phenomenon [6], is designed to collectively emerge conven-
tions/consensus about properties common to the agents of
a MAS. Under this approach agents with good properties
(ones that help them improve their payoffs) are more likely
to spread them to other agents. For the coalition formation
scenario, agents attempt to spread their rebellion probabil-
ity and tax threshold. For instance, an agent spreading that
its tax threshold and rebellion resulted in a high payoff, is
likely to persuade other agents to adopt that threshold and
rebellion.

Algorithm 2 outlines to the coalition formation algorithm
designed to achieve full cooperation and closely maximize
the individual agents’ payoff on complex networks. The con-
sensus mechanism is included in lines 2-6. Each non-leader
agent firstly attempts to spread, with probability pspreading,
its rebellion and tax threshold using its payoff as an evalua-
tion metric. This is followed by each agent having to decide
which of all the incoming spreadings to take (line 4). In our
case, an agents always takes the incoming spreading with
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Figure 4: Coalition evolution with consensus on
small-world topologies.
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Figure 5: Coalition evolution with consensus on
scale-free topologies.

highest payoff (elitist selection). Finally, the rebellion prob-
ability and threshold are randomly changed with probability
pinnovation (line 5).

3.2.3 Sustaining Cooperation
To evaluate the new capacity embedded into the agents,

we ran experiments using a moderated spreading probability
(0.2) and a low innovation rate (8×10−4). Additionally, the
rebellion probability and tax threshold take on values in the
range (0,1).

In general, the experimental results showed that with al-
gorithm 2 most agents in the MAS receive high payoffs.
Specifically, for both topologies a stable single super coali-
tion emerges with a leader that charges low taxes.

The experiments on small-world topologies (depicted in
figure 4) show that initially (less than 50 time steps) agents
arrange themselves in different coalitions (∼ 80), which promptly
start to disappear into a single coalition. Specifically, the
single leader emerges in just ∼ 1100 time steps, and around
time step 2000 most agents (∼ 99.5%) are already part of
the single super-coalition. In other words, a single stable
coalition arises such that, almost no agent leaves (very low
number), and where agents have a high payoff (∼ 93% of the
maximum, as shown in figure 3). Moreover, the time needed
to emerge such coalition is faster than before (∼ 60% faster,
see subsection 3.1.2). These results are achieved through
the emergence of low tax values (∼ 2.5% of the total pay-
off) together with an extremely high rebellious capacity (∼
55%). This combination translates to the lemma: “low taxes
or rebellion!”, which the leaders are forced to comply.

Regarding scale-free topologies (see figure 5), a single coali-
tion is achieved faster than before (in less than 200 time
steps vs. ∼ 300). What is more, the coalition now is com-
pletely stable (very unusual for an agent to leave it) and the
taxes (∼20% of the agent’s total payoff) are lower than when
employing the base approach or just algorithm 1 (∼ 44% in
both cases). When comparing with small-world, observe
that the process is similar (an initial peak in the number
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Figure 6: Fault resilience on small-world topologies.
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Figure 7: Fault resilience on scale-free topologies.

of coalitions that then decreases into a single coalition) but
much faster (10 times faster).

Finally, although full cooperation is closely achieved, it
comes with an associated cost: extra communication. The
spreadings sent by agents represent additional messages.
Nonetheless, to emerge a single coalition each agent in a
scale-free topology needs to send only ∼ 4 messages, while
an agent in a small-world topology needs ∼ 40 messages.

3.2.4 Fault Resilience
Notice that, in actual (real-world) environments, our co-

operation scheme has an associated risk: the existence of a
single leader. If the leader agent becomes a target of mali-
cious attacks or fails by chance, all the agents in the coali-
tion will immediately become independent. Therefore, the
experiments in this section were designed to evaluate the
resilience of our approach to such failures.

To that end we repeated the experiments in the previ-
ous section, but now attacking the leader once the single
coalition is stable. Specifically, after 4000 time steps (once
a single coalition has emerged and proven to be stable) we
completely removed the leader agent from the MAS to sim-
ulate the leader’s failure.

Figures 6 and 7 depict how agents react after the leader
is taken down. In general, observe that the response is sim-
ilar for both topologies. After the leader disappears and
all agents become independent, multiple coalitions begin to
emerge. However, these coalitions do not last very long (less
than 50 time steps) and rapidly start to disband so their
members can join a single super-coalition. The peaks in the
small-world and scale-free number of coalitions plots depicts
this transition. The single super-coalition emergence occurs
faster because agents already have some good estimations
of the tax threshold and rebellion probability (i.e. they are
not searching for these values from scratch). Furthermore,
once again agents on scale-free are quicker to emerge a sin-
gle coalition than the small-world ones (< 100 against < 600
time steps). When compared with the previous experiments
(figures 4 and 5), emergence is twice as fast on scale-free and
four times faster on small-world.
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Overall, the experiments show that coalition emergence
with a consensus mechanism is resilient against leader fail-
ures, which was also one of our main objectives (mentioned
at the beginning of this section).

4. CONCLUSIONS
In this paper we confirmed that coalitions indeed facilitate

cooperation between self-interest agents. However, we found
that the coalition formation process is considerably sensitive
to the MAS topology. In particular, to the complex network
topologies that model actual-world environments.

To that end we proposed a new distributed, lightweight
and efficient coalition emergence approach. We showed that
agents on complex network topologies employing this ap-
proach can achieve full cooperation by grouping into a single
super-coalition. Moreover, agents in this super-coalition can
maintain cooperation over time in exchange of some signif-
icantly low tax, which is agreed by the agents themselves
(thus increasing their overall profits). Hence, closely maxi-
mizing their payoffs.

In our experiments, we determined that rebellion is a
crucial factor for coalition emergence. Through rebellion,
smaller and unprofitable coalitions disappear so that big-
ger ones can rise. Moreover, the agent population can use
rebellion to pressure leaders to decrease their taxes. Con-
sequently, increasing competitiveness among leading agents.
This contrasts with Axelrod’s model [3], where leaders were
the ones who pressured the population to the point of ex-
tortion. Overall, our proposed approach results in a faster
single-coalition emergence and in lower taxes for the popu-
lation as a whole. Nonetheless, the emergence time and the
taxes still vary depending on the topology.

On the one hand, the lowly-clustered, with highly-connected
hubs, structure of scale-free topologies gives hub agents an
inherent advantage over the rest of the population. Specifi-
cally, hub agents can promptly emerge as leaders, dominat-
ing the population and getting away with somewhat higher
taxes. On the other hand, in the highly clustered small-
world topologies, any agent has the potential to become a
leader, thus sparking a fiercer and longer (time-wise) price
war, which results in much lower taxes.

Furthermore, we determined that commitment to either
other agents or leaders (and employed in [3] and [5] ) is
not essential for coalition formation and maintenance. Even
without commitment, a single coalition can emerge and be
sustained over time as long as the agents are satisfied with
their leaders, which is likely to occur since a leader is always
under the threat of rebellion when misbehaving.

Finally, even though it is known that employing a leader
based super-coalition introduces a single point of failure into
the MAS, our proposed approach is resilient against leader
failures (e.g. DOS attacks, disappearance, removal). How-
ever, we plan to study how multiple coalition could emerge
when the population is divided by goals.
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