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In social robots, visual attention expresses awareness of the scenario components and dynamics. As in humans,
their attention should be driven by a combination of different attention mechanisms. In this article, we
introduce multi-modal saliency maps, i.e., spatial representations of saliency that dynamically integrate
multiple attention sources depending on the context. We provide the mathematical formulation of the model
and an open source software implementation. Finally, we present an initial exploration of its potential in social
interaction scenarios with humans and evaluate its implementation.
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1 Introduction

Considerable effort has been dedicated by researchers towards the modelling of robots gazing
behaviours. This is due to the crucial role eyes have in human-human interaction [16]. Gazing
behaviour is often understood as an expression of the attentive status and mental state of the
subjects involved in the interaction. In Human—-Robot Interaction (HRI), researchers have
found similar scientific evidences regarding the role played by a robot’s eyes in interaction with
humans. For instance, intimacy-regulation behaviours [29], social decision-making strategies [6]
and mentalisation [31]. These lead to the idea that robots gazing behaviour triggers in humans an
inferring process about their attentional state.
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Robots need two components to generate a gazing behaviour: an attention model and a gazing
control system. In this context, an attention model is a systematic way to generate saliency infor-
mation for possible gazing targets aiming at expressing the robot’s awareness of the current social
situation and backchanneling interactions. The attention model inputs should be both perceptual
(e.g., an image stream from a camera) and semantic (e.g., information from a knowledge base), while
the output should be a data structure representing a saliency field. While the definition of such a
model takes inspiration from psychology and cognitive sciences, HRI also requires deviating to
some extent from them, as the field has practical necessities that require the model to be modulated
and tunable depending on the specific application.

In the past, efforts have been made in the field of visual attention behaviour generation for
HRI [1, 4]. Most of the proposed methods rely, implicitly or explicitly, on monolithic saliency
estimation processes. They do not take into account different types of attention information
processing at the same time, merely focusing on a single modality, e.g., human faces or colour
schemes.

Few attempts have been made to define a comprehensive multi-modal attention model for HRI
[7, 9, 28]. However, none of these works proposes a standardised approach to represent salient
information from the environment. Such an approach would inform users and developers on how
to extend and generalise the model to novel input types. Additionally, these architectures have not
been tested or compared with human gazing behaviours in social situations. This comparison can
serve as a baseline to measure the appropriateness of the detected saliency.

In this article, we propose a novel approach to saliency representation for interactive robots
by introducing a methodology to construct structures (maps) that represent the contribution of
a specific feature of the environment to the robot’s attention and to integrate those maps into a
unified saliency model. This methodology is characterised by three main features:

(1) multi-route-based, i.e., composed of a flexible number of parallel algorithmic units, with
each unit generating its own saliency estimation. The overall saliency structure is then
formed by aggregating these individual saliency estimations through a saliency-combining
operator. This approach allows both bottom-up and top-down attention processes to be active
simultaneously, in accordance with the concept of biasing effects in attention inspired by
biological principles, as described in the study by Kastner [24];

(2) input-agnostic, as every module translates the various inputs (of perceptual or semantic
origin) into the same type of spatial saliency information;

(3) spatially grounded, thanks to the representation of saliency information as a lightweight and
scalable 3D structure making it particularly suitable for actual robot gazing control.

In Section 3, we detail the theoretical aspects of the proposed approach. In Section 4, we describe
its software implementation as a ROS-based framework. This implementation includes core struc-
tures for integrating novel attention mechanisms into saliency computation, along with examples
of such integration. In Section 5, we evaluate the proposed approach by comparing the saliency
maps generated by the software with human attention in three social tasks.

2 Mechanisms of Attention

From the literature, we identify three particular cognitive mechanisms, driven by exogenous and,
partially, endogenous cues, that are of particular relevance for social robots: low-level perceptual
cues, semantic cues and social cues. In this work, we introduce a mathematical formulation for
a multi-modal saliency map for interactive robots. This formulation is not tied to any specific
cognitive mechanism and can integrate multiple sources of attention from the environment.
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2.1 Cues Driving Attention

2.1.1 Low-level Perceptual Cues. Some human attention behaviours are linked to low-level
perceptual processing. For instance, colours, primitive visual features and contrast are known
to play a determinant role in human visual attention. This has inspired researchers to model
attention and generate gazing behaviours in robots directly from low-level perceptual information.
In [37], the authors combine a bio-inspired visual saliency model for rapid visual search [21] with a
sound localization method [19] to generate a multi-modal saliency map and control the iCub gaze.
Alternative types of biologically inspired attention and gazing models are those imitating human
vision-related neural mechanisms through spiking neural networks [3, 14].

2.1.2  Semantic Cues. In contrast to low-level perceptual cues, semantic cues influence attention
in a top-down fashion. The human gaze is attracted by objects and scenario elements not only
because of their colour, shape or movement but also because of their semantics. These aspects are
frequently influenced by the context: if a person is in a room with a television and friends, their
attention will focus on the television while watching a movie and on their friends if they are having
a group conversation. Observing these aspects, roboticists have tried in the past to replicate similar
behaviours in robots. In [5], authors propose a bio-inspired combination of bottom-up and top-down
visual features integrated into a probabilistic Bayesian framework, aiming at continuously shaping
a probability density for the following attention target. Here, visual features are mapped into target
objects, and the memory of already attended objects might influence the following target. In [34],
the authors take inspiration from studies around modelling of human retina [38] and proto-objects
detection [36] to define a bio-inspired attention model combining bottom-up and top-down features.

2.1.3  Social Cues. Due to the importance of human interactions in daily life, human attention
to humans is naturally driven by social cues: facial expressions, proxemics, gestures, and so on.

Given the interactive nature of social robots, roboticists in the field have also tried to generate
their gazing behaviour starting from the social cues detected by humans in the scene. In [41], the
authors build an attention model based on social cues to generate a social gazing behaviour. They
explicitly evaluate the saliency of the people in the scene combining aspects such as proxemics,
verbal cues, effective field of view and Inhibition of Return (IOR); a set of parameters for the
model was empirically extracted from a group of volunteers whose gaze was recorded while
watching a video of a social interaction between two people. In a similar fashion, the authors in
[35] describe a method to generate the illusion of life in a robot through gazing behaviour. Here, the
model targets one of the humans in the scene based on distance, face pose and hand movements,
which are known to be behavioural indicators of engagement and will attract attention from others.
In [2], the authors present a different application for a heuristic-based approach, recording and
analysing videos from 24 dyadic interactions and later specifically modelling the gazing aversion
behaviour for a virtual agent. In [13], a data-driven model for gazing behaviour generation in
a generic social interaction is presented. The authors describe a collection of seven stimuli that
they extract from the people in the scene (for instance, their head pose and gaze direction) and
input into a competitive neural network. The network can be trained over prerecorded interactions
between humans. In a follow-up work [12], the authors expand the presented architecture by
adding a layer of multiple LSTMs networks to implicitly model the IOR. In [18], the authors present
an attention model for balancing participation in group HRIs. They propose two solutions to the
problem: the first one based on behavioural cloning, an interactive learning technique, and the
second one based on the Double Deep Q-learning algorithm, a reinforcement learning technique.
In both cases, the model learns the gazing policy from videos collected in [17] by evaluating the
unevenness generated by the robot gazing during the interactions.
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2.2 Combining Attention Mechanisms

Despite the differences in terms of approach used, all the works presented in the previous sections do
not try to formulate any solution to integrate their results with those from other studies. This limits
their execution to the original use case they were designed for and does not promote re-usability.

This issue has been previously investigated in [28], where the authors implement a visual
attention management system as part of a broader cognitive architecture. A possible attention
target is represented in the architecture knowledge base by adding a relationship want-see between
the robot (that is, the subject) and the target (that is, the object). A client-server structure manages
all the objects connected to the robot by a want-see target in the knowledge base, and a round-robin
selection process establishes which one should be attended by the robot’s gaze. This work, despite
going in the direction of trying to manage attention targets expressed by independent components,
lacks a dedicated saliency information representation, and priority is defined only by the time the
attention requests arrive (the earlier, the higher). Moreover, other assumptions (such as prioritising
targets close to the current gazing direction) limit the flexibility in terms of generated gazing
behaviour.

Another attempt to handle parallel attention processing is presented in [9], where the authors
integrate a framework based on attention-driven processes, ARCADIA [8], and a cognitive archi-
tecture for robotics, DIARC [39]. The authors’ ultimate goal is bridging low-level visual features
processing and high-level cognitive processes. Despite this work being the closest to the concept of
attention model we are introducing in this article, the authors do not discuss how the attention
model is represented in space, nor report their results in comparison with a human baseline to
evaluate the modelling performance.

In summary, the current state of the art in saliency representation and attention architectures
design for interactive robots presents the following limitations:

—lack of a multi-modal representation of saliency that also includes spatial information;

—limited support for multi-modal attention cues; existing literature primarily focuses on visual
stimuli;

—the lack of evaluations comparing computed saliency with human attention patterns.

Addressing these gaps, our main contributions are: (1) a mathematical formulation for a multi-
modal 3D saliency map for interactive robots; (2) a software architecture for generating multi-
modal saliency maps at interactive speed; (3) an evaluation of the proposed formulation and
implementation, measuring how the generated saliency map aligns with human attention in three
social scenarios.

We also present a comparative analysis between the multi-cue saliency approach and a baseline
approach that focuses solely on human faces.

3 Mathematical Formulation of a Multi-modal Saliency Map

As we showed in the previous section, different attention mechanisms have been proven to be
relevant in HRI. This section presents the formal definition of a source-agnostic saliency map for
interactive robots.

Through this formulation, we use the concepts of Saliency Maps and Attention Processing Units
(APUs). Saliency maps are spatial representations of saliency. They map 3D world coordinates
to scores that indicate how relevant each area is to the robot’s attention. APUs are functions
that take as input a subset of the information available to the robot at a given time and output a
saliency map. Each function represents a specific attention mechanism, with its output providing a
partial evaluation of global saliency.
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To generate the global saliency map, we define a saliency-combining operator through a set of
properties that ensure the robustness of the proposed approach. Finally, we propose a definition
for this operator that adheres to the required properties.

3.1 Mathematical Formulation

We define S as the set of all the perceptual and semantic information available to the robot at a
given time and P (S) its power set; we define the generic APUs space P as the set of functions:

P:={P(S) —» M}, (1)
M is itself a set of functions, where every element represents a saliency map:
M :={R® = [0,1] c R}. (2)

Limiting saliency values between 0 and 1 bounds the scores semantics and avoids scores explosion
due to the combination of several attention mechanisms.

Given x € R%,p € P,s € P(S),m € M : m = p(s), then m(x) = 0 would mean that p, given the
subset of information s, did not find any proof of relevance in terms of saliency for the point x.
On the contrary, m(x) = 1 would suggest an absolute certainty of the relevance of the point. The
whole spectrum between these two semantics is represented by the values between 0 and 1.

Over M, we define the saliency-combining operator x. To guarantee consistency and reliability
in how saliency maps are combined, the operator should be such that:

—when combining two or more saliency maps with %, the result is another saliency map; this
guarantees that independently from the number of APUs, the combination of their saliency
maps adheres to the properties of saliency maps;

—when combining two or more saliency maps, the final result does not depend on their pro-
cessing order; this guarantees that the APUs execution order does not affect the combination
of saliency maps;

—when an APU does not find any relevant point in space, its empty saliency map does not affect
the others; an empty saliency map means that an APU has not found salient information, and
this result should not affect the findings of other APUs.

To respect these points, given three saliency maps my, mp, ms € M, we postulate that x should
present four properties:

(1) commutative, that is

my * my = my * My (3)
(2) associative, that is
my * (my * ms) = (my * my) x ms (4)
(3) closed w.r.t. M, that is
m=myxmy; =>meM (5)
(4) identity element, that is
dmy e M: m*xmy=m,VYm e M. (6)

In different words, we theorise that (M, x, mgy) should define a commutative monoid.
We define the set of active APUs as:

P:={p;ePi=1.n}, (7)
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and their outputs (or the set of partial saliency maps) as:
M;: {7;11 :m; €M, m; 2151' (s),i:I..n,s ESD(S)} (8)
We define the global saliency map, that is, the final result of the saliency estimation process, as:

g = 1y K iy % ... K T, )

3.2 x Operator Formulation
Taking inspiration from blending modes in computer graphics [27], given my, m; € M, we define
the % operator as:

mpxmy=m

(10)

m(x) = screen(my(x), my(x))Vx € R®’
where:
screen(a,b) =a+b—ab,a,b e R. (11)

Intuitively, we choose this operator as given two values a,b € [0,1] C R and screen(a,b) >
max(a, b). Due to the (sometimes radically) different nature of each APU, we should think of the
scores generated as unlikely to represent the same type of information. Hence, restricting the
saliency value of a point in space to a specific one provided by an APU or calculating the average of
all the given values would imply deeming certain information processed by the APUs as pointless
or incorrect.

To prove that screen verifies the four saliency-combining operator properties, we will start by
proving that the algebraic structure ([0, 1] C R, screen, 0) is a commutative monoid. For notation
clarity, we will use o in place of screen.

THEOREM 3.1. The algebraic structure ([0,1] C R, 0,0) is a commutative monoid.

Proor. We will independently prove that each one of the four commutative monoid properties
yield for ([0,1] C R, o, 0).

(1) Commutative Property: Given a,b € [0,1] C R:
aocb=a+b-ab

(12)

boa=b+a-ba

Then, a o b = b o a is proven by commutative properties of addition and multiplication for
real numbers.
(2) Associative Property: Given a, b, c € [0,1] C R:
(aob)oc=(a+b—ab)oc=a+b+c—ab—-bc—ac+ abc
13
ao(boc)=ao(b+c—bc)=a+b+c—ab—bc—ac+abc (13)
Then, (aocb)oc=ao (boc).
(3) Closeness: Given a, b € [0,1] C R, we need to prove that (i) ao b > 0 and (ii)ao b < 1.
(@) aob=>0
a>b(a-1)
Given that a > 0 and b(a — 1) < 0, the condition is proved.
(b) aob<1
a(1-b)<1-b
If b # 1 then 1 — b is strictly positive, and the inequality simplifies to a < 1, which is
true. If b = 0, then the inequality simplifies to 0 < 0. The condition is proved.
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(4) Identity Element: Given a € [0,1] C R:
ao0=a+0-a0 =a. (14)

This proves that 0 is the identity element for o over [0,1] Cc R.

We can now use this result to prove that (M, %) defines a commutative monoid, that is, x as
defined in Equation (10) satisfies the properties theorised for the saliency-combining operator. The
* operator can be defined as the composition on M induced by o. As per induced compositions
properties [40], we have that:

LEMMA 3.2. Associative property for o on [0,1] € R = associative property for * on M.
LeEMMA 3.3. Commutative property for o on [0,1] C R = commutative property for x on M.
LEMMA 3.4. Being 0 the identity element for the inducing operator o on [0,1] C R, then:
mo € M : my(x) =0,Vx € R, (15)
Given these results, we are missing the closure of the x operator on M to prove that (M, %, m)
is a commutative monoid.
LEMMA 3.5. M is closed under x.
Proor. By the definition of % as in Equation (10) and o as in Equation (11), and given Theorem 3.1,
we have that:
m(x) = my(x) o my(x) = m(x) € [0,1] C R, Vx € R>, (16)

We can therefore restrict the co-domain of m to [0,1] C R, thatis, m € M.

THEOREM 3.6. The algebraic structure (M, %, mg) is a commutative monoid.
Proor. Given the previous results:

(1) Lemma 3.2 proves that % is associative on M;

(2) Lemma 3.3 proves that % is commutative on M;

(3) Lemma 3.4 proves that my is the neutral element for x on M;
(4) Lemma 3.5 proves the x closure on M.

As the four commutative monoid properties are satisfied, (M, %, my) is a commutative monoid.

We have then proved that x, as defined in Equation (10), satisfies the requirements suggested for
a saliency-combining operator. In the next chapter, we will illustrate a software implementation for
the theorised model. We will use Equation (10) as saliency-combining operator.

4 Implementation

Given the HRI-oriented nature of the tools described in Section 3, a software implementation is
needed to demonstrate their ability to model attention information in a robot’s environment. Robots
typically have limited computational resources and must run other computation-heavy processes,
such as navigation. Therefore, the implementation must be lightweight.

We chose a ROS-based implementation. ROS is a mature platform for robot programming
and provides the tools needed to meet the desired performance. The software architecture is
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plugin-based. Plugins were implemented using the ROS pluginlib C++ library. We developed
two open source ROS packages:

—attention_map: A package defining the basic structure and API for the development of
attention plugins. We further implemented four plugins, each one representing a different
attention mechanism.

—attention_plugins: A package defining the basic structure to handle the plugins loading
and unloading, as well as their saliency maps combination.

4.1 attention_map

This package offers the software required to manage the plugins’ activation (that is, the software
implementing a specific APU), as well as their deactivation. This allows an attention information
mapping which can adapt at runtime to different scenarios and contexts, dynamically changing the
active APUs. Moreover, the attention_map node handles the combination of the different partial
maps returned by each plugin, applying a software implementation of the % operator as described
in Section 3, in its screen-based form. The attention_map package also defines some structures to
support the processing of evaluation scores for the model and classes to handle the saliency maps
visualisation.

4.2 attention_plugins

Each plugin part of the package inherits from a base class, attention_plugin_base, which de-
fines a generic interface for the development of specialised plugins as well as an API for the 3D
representation of basic shapes in the saliency map such as spheres, cones, and pyramids. Each
plugin can subscribe to different ROS topics. The set of all the information collected from the
robot and used at a given timestep represents s € P(S) as described in Section 3. To represent
saliency maps, we opted for OpenVDB [32], a state-of-the-art fast library for dense, voxel-based,
spatial representation. Specifically, we used the OpenVDB structure as defined in the original
OpenVDB library, which offers a variety of tools supporting additional data processing over the
data structure. Each plugin has its own OpenVDB-based saliency map, representing the ri; € M
elements as described in Section 3. The attention_plugin_base API offers tools to efficiently and
transparently handle the transformation of the 3D information expressed in sensor frame into a
reference frame, which is common to all the plugins and should be set when starting the saliency
modelling system. This allows a coherent representation among all the plugins, independently of
the nature of the information used to generate the saliency information. The procedure establishing
the sensor frame is not predetermined, and every plugin can implement this step differently; for
instance, a plugin processing information from an RGB image might use the frame defined in
the header of the ROS Image message received. To test our approach, we developed four plugins,
covering the three attention mechanisms described in Section 2.

4.2.1 Optical Flow-based Plugin. Human attention can be influenced and attracted by moving
objects in the scene [20]. This has led in the past to the implementation of a similar attention
mechanism in social robots [7]. We developed the OpticalFlowPlugin that implements a low-level
perceptual attention mechanism based on optical flow. This plugin subscribes to the RGB stream of
a camera, and given two consecutive frames, the plugin computes the optical flow intensity as per
the OpenCV implementation of the Farneback [15] method. It extracts the coordinates of the pixel

=
with the highest intensity, and unprojects the pixel, i.e., compute the equation of the 3D vector o f
originating at the camera sensor, and passing through the pixel.
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This vector is transformed in the plugin’s saliency map into a cone of aperture 6 = 0.2rad with a
saliency m(x) = w,r along the cone’s principal axis, decreasing towards zero at the edge of the
cone:

_d(xof) L
m(x) = {Wef "€ 7 for x inside cone ’ (17)
0 elsewhere

where w,r is an hyper-parameter that can be used to balance the contribution of the plugin to the

- —
global saliency map, d(x, of) is the distance of point x to the cone’s axis and r = (x - of) X tan(0).
To stick to the saliency map definition, w,¢ € [0, 1].

4.2.2 Object-based Attention Plugin. Object-based attention, that is, the attention elicited by
objects (and their semantics), is known to be a relevant mechanism in humans [10]. As shown
in Figure 2, aspects regarding object detection have already been implemented for generating
visual attention behaviours in robots. Here, we have implemented the ObjectDetectionPlugin. This
plugin does not directly perform object detection, but subscribes to a topic where information on
the detected objects in the scene is published. Another node performs the object detection and
publishes the detected bounding boxes as vision_msgs/Detection2Darray. In this case, we used a
YOLOvS8 [22] ROS wrapper to detect objects and publish the related information; the wrapper can
also perform position estimation for the object, when the depth image of the scene is available. The
plugin, starting from the object detection data, adds saliency information for each detected object
to its map:

—if no depth information is available, as pyramids. These have origin in the camera frame, fixed
length and are oriented toward the direction associated with the central pixel of the bounding
box;

—if depth information is available, as spheres. The plugin computes the radius of the sphere
through the depth camera intrinsics, to make it fit the associated bounding box.

For objects, saliency is context-dependant. Other works in the past investigated context-dependent
attention behaviours in social robots [7]. In order to establish the saliency of the objects in the
scene, the plugin leverages a Large Language Model. The plugin queries ChatGPT [33] for the
saliency values of the objects in the scene, providing a list of objects and a context in YAML format.
In the initial prompt, the plugin specifies:

—the task context;

—the format that ChatGPT should expect for the queries;

—the format that ChatGPT should use for its answers, that is, YAML;

—the minimum and maximum value for the objects saliency. We fixed the lower bound to 0 and
the upper bound to wyg € [0, 1]. wyg is a hyper-parameter that can be used to balance the
contribution of the plugin to the global saliency map.

Then, by sending the following input (with wyg = 1.0):

context: “You are watching a presentation on the TV screen during a
professional meeting.”
objects: [“tv”, “cup”, “person”, “cell phone”, “potted plant”]
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ChatGPT returns:
tv: 1.0
cup: 0.4
person: 1.0
cell phone: 0.7
potted plant: 0.3

We use those values to set the saliency score. The plugin-ChatGPT communication was imple-
mented by means of a ChatGPT ROS wrapper. The plugin exposes a service to dynamically change
at runtime the context, which might imply an update in the objects’ saliency scores.

4.2.3  Face Detection Plugin. Faces are known to attract human visual attention, even when
competing with relevant objects in the scene [25]. As we have seen in Section 2, this has motivated
various authors to study and implement attention mechanisms based on face detection and face-
related features. Here, we developed the FacesPlugin. The plugin does not directly perform face
detection, retrieving information regarding the position and orientation of the faces in the scene.
This information is published by another node, whose role is to detect faces and perform pose
estimation. All the data is published according to the ROS4HRI [30] standard, and the plugin uses
the 1ibhri API to access it. The plugin maps each face in the space according to the retrieved face
pose, modelling it as a sphere with a fixed radius r. Then, it assigns a saliency score to each point x
lying inside the sphere, with a maximum value of wrg € [0, 1], according to the following formula:

{wfd . absles=x2)  for x inside the sphere
m(x) = r

s 18
elsewhere (18)

where wyg is a hyper-parameter that can be used to balance the contribution of the plugin to the
global saliency map, x, and c, are the coordinates of the point and the face’s center alongside
the camera optical axis. This score is meant to generate a higher saliency for the central area of the
face when this is frontal to the camera.

4.2.4 Agents Gaze Plugin. The gazing behaviours of other agents present in the environment
also offer important social cues to direct one’s attention. This mechanism, joint attention [16], has
been investigated in detail in HRI, both in terms of implementation and effects on the interactions
with humans [11].

We developed the AgentsGazePlugin, whose purpose is to identify the gazing targets of other
people, and map them to a dedicated saliency map. As in the FacesPlugin, the node does not directly
perform the gaze estimation, which is provided by the ROS4HRI APL We simply retrieve the gaze
direction of each agent in the scene through the libhri library as a /gaze ROS TF frame. The
origin of the frame is placed on the sellion of the associated face. The frame is oriented to have its
z axis oriented in the gazing direction, and accordingly, the plugin represents the region of space
currently looked at by the agent i.e., his/her current field of attention) as a cone.

We set the aperture of the field of attention to 6 = 0.5rad. The equation of the saliency map is
then simply:

, (19)

wqg for x inside the cone
m(x) =
0 elsewhere

where wgy € [0,1] is a hyper-parameter that can be used to balance the contribution of the plugin
to the global saliency map.
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5 Evaluation
5.1 User Data Collection

To evaluate the effectiveness of the proposed saliency-mapping approach, we conducted a com-
parative analysis against a baseline derived from human visual attention data in three different
social situations. The goal of the study is to evaluate how the saliency map generated by combining
multiple attention mechanisms aligns with the participants’ attention. We collected data regarding
the gazing target of the participants using an eye-tracking device, we processed them through the
ROS-based architecture previously described and we derived a measure to evaluate how these align.

5.1.1 Participants. We collected data from 12 participants (M = 8, F = 4, age: min = 22,
max = 38, mean = 28). All participants were employees from the same institution, but external to
the research team; they had no knowledge of the exact purpose of the study. All the participants
agreed to take part in the study and signed consent forms after being briefed about the study’s
purpose and data collection process.

5.1.2  Procedure. Participants entered the room where the tasks would take place. They were
asked to wear the gaze tracker, a Pupil Core device (Pupil Labs [23]) and to proceed with the
calibration process. The three tasks were then carried out in sequence in the same order for all
participants. If necessary, the tracker device was re-calibrated between tasks. Once the third task
was fulfilled, the participant removed the tracker device. The whole session, including the calibration
phases, lasted around 30 minutes per participant.

To elicit natural behaviour from the participants, they were not informed about the specific
contents of the tasks. Moreover, they were encouraged to act and intervene freely during the
experiment. The experimenters followed a semi-scripted behaviour to maximise reproducibility
and comparable outcomes for each task.

5.1.3 Tasks. We designed three different tasks, considering the following requirements: (1) the
tasks have to be as natural as possible, representing common social situations in a context familiar
to the participants; and (2) while being natural, tasks need to be sufficiently reproducible, so that
the variations between each can be statistically accounted for, leading to statistically meaningful
comparisons between baselines and conditions.

Given the participant profiles, we opted for locating the tasks in a professional set-up, i.e., an
office in the building. The designed tasks as well as the expected attentional behaviour are:

Task 1: A Professional Presentation. The set-up involves the presentation of a work-related project
in a meeting room. The experimenter plays the role of a presenter, while the participant listens
to the short talk. The participant is familiar with the presentation topic, as well as with the room
where the task takes place. The participant sits in front of a screen displaying the presentation,
while the experimenter sits on his/her left. In Figure 1 (left), an example of actual task setting as
captured from the world camera (that is, participant point of view). Expected behaviour: we expect
the participant to mainly focus on the screen or on the presenter.

Task 2: A Conversation with Two Colleagues. The participant and the experimenter are sitting in
the same position as in task 1. The experimenter initiates the conversation on a generic topic (‘Do
you have any plan for the weekend?’). A few seconds later, a confederate enters the room carrying
three objects, included as potential distractors in the scene and to be used in the third task, and
places them on the table, clearly visible to the participant. The confederate then sits on the right
side of the participant and joins the conversation. A few minutes later, the confederate leaves the
scene. During the whole task, the screen used for the previous task is displaying the last slide. In
Figure 1 (middle), an example of actual task setting as captured from the world camera. Expected
behaviour: we expect the participant to mainly focus on the two colleagues. We do not expect the
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Fig. 1. Interaction settings for the three tasks in the data collection process. In all tasks the experimenter is
sitting on the left side of the participant; the TV is in front of the participant and is turned on throughout the
sessions.

participant to focus on the objects introduced (a bottle, a cup and a book), nor the screen, since
neither object is relevant to the social scene.

Task 3: Contextualised Presentation of Objects. The experimenter talks about the three objects that
the confederate brought in during the previous task, i.e., a bottle, a cup and a book, in sequence
following a prescripted narrative and by grabbing or pointing at each. In Figure 1 (right), an example
of an actual task setting is captured from the world camera. Expected behaviour: we expect the
participant to focus either on the experimenter or on the object being described at each moment.

5.2 Computation of the Baseline
The data collected from the study is post-processed as follows:

—we extract, for each recorded frame, the gazing direction of the participant, expressed as pixel
coordinates (that is, the gazing point);

—for each frame, we perform object segmentation. We store the extracted segmented masks
and the class they belong to (the object detector was trained on the COCO [26] dataset);

—for each frame, we check which object the participant was looking at by finding the segmen-
tation mask containing its gazing point (see Figure 2);

—for each task and for each participant, we compute the per-object probability distribution of
being ‘looked at’ (e.g., in task 2, participant 5 looked 20% of the time at the TV screen, 30% of
the time at a person, 40% at the background).

5.3 Baseline Variability across Tasks

We first want to verify that the gaze targets in the baseline are consistent within each task, while
maintaining distinctiveness across tasks. To this end, we compare the per-object gazing distributions
across all the participants in the different tasks. To compare discrete distributions, we compute the
Bhattacharyya distance between each participant’s distribution and all the other participants. The
Bhattacharyya distance between two discrete probability distributions h, h; is defined as:

Dpc(hy, hy) = —1In (Z Vhi(x) - hz(x)): (20)

xeX

where X is the probability distribution domain (in our case, the known object classes of the object
detection algorithm).

We compute the distance for all the possible pairs of distributions. Given the three tasks, we
have six possible combination: Task 1-Task 1, Task 1-Task 2, Task 1-Task 3, Task 2-Task 2, Task 2-
Task 3 and Task 3-Task 3. We divide all of the distances based on which of these types of pairs
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Fig. 2. In the upper image, the results of the object detection for one of the task frames. The blue dot
represents the estimated gazing point of the participant. In the lower image, the looked-at segmentation

mask is highlighted.

they belong to. Then, for each pair type, we compute the average of all the distances and their
distribution, to evaluate o.

Results are plotted in Figure 3. As we can observe, the average distance between distributions
of the same task type is clearly smaller (between 0.03 and 0.06) than those distances between
distributions of two different types of tasks. We can then safely conclude that the baseline de-
scribes three distinct attention behaviours, one per each task, while being consistent within each
task.

5.4 Assessment of the Saliency Map

Next, we outline the process of computing saliency maps for the baseline above and assess their
representational accuracy.

For each recorded task, a ROS bag file was created. The file contains the video frames, the looked-
at object segmentation mask, represented as std_msgs/Uint8MultiArray object, and the world
camera parameters. For each file, the context (required by the ObjectDetectionPlugin) was manually
annotated as a std_msgs/String object. The saliency map for a task was generated by running
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Fig. 3. Each cell in the plot reports the average Bhattacharyya distance between the gazed-object distributions
from two different tasks. Each cell also contains the distribution of the computed distances.

the ROS-based architecture on the bag files. We generated a saliency map for every task recorded.
We set the four weighting hyper-parameters to woq = 0.7, wrg = 0.25, wgg = 0.3 and w,r = 0.5,
based on a preliminary grid-search tuning performed over a small training set, consisting of one
episode per scenario.

To establish the precision of our model when compared with the baseline, we define the semantic-
based score:

shy = —, (21)

‘E |:=w

where:

—nﬁ is the number of semantic hits, that is, how many times one of the k most salient points
from the processed global saliency map, (when projected in the world camera plane), matches
the semantic mask of the object looked at by the participant;

—ny is the number of frames where an object was detected as fixated by the participant.

For every recorded task and for each participant in the baseline, we computed sh;, sh; and shs.
The average results per task are reported in Figure 4. We discuss these results in Section 6.1.

To run at 10Hz on a PAL Robotics TIAGo equipped with 16-core Intel i7 9th generation CPU and
16 GB RAM, the system required on average 1 core and 0.5% memory.

We also conducted an ablation study comparing the saliency map generated by combining all four
plugins (full architecture) with the map generated by the face plugin alone (faces-only architecture).
For each task, we computed the shs score and report the results in Figure 5. The faces-only approach
serves as well as a baseline for evaluating the performance of the full architecture. We discuss these
results in Section 6.2.
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Fig. 4. Barplots representing the shy scores, with k increasing left to right. In each plot, the scores are divided
by task type.
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Fig. 5. Barplots representing the shs scores for the full architecture (F) and the faces-only architecture (FO)
across the three tasks.

6 Discussion
6.1 Evaluation Results

As we can observe from Figure 4, there is a trend of gradual rise in the number of hits across all
tasks as the value of k increases. This observation implies that the saliency map incorporates the
baseline targets. However, what remains to be addressed is the need for a more precise estimation
of saliency. For instance, our current object detection plugin may produce extensive regions with
identical saliency values (potentially high), potentially resulting in multiple points being identified
as having the highest saliency.

Figure 4 also tells us that the performance did not drop off significantly for any of the tasks.
This might suggest that a generic, human-like saliency processing can emerge starting from the
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combination of the four implemented plugins, through the proposed approach. The investigation
of this aspect is a possible future direction for our research.

The data presented in Figure 4 indicates a notable variance, potentially stemming from the
diverse visual attention patterns exhibited by individuals. Furthermore, the involvement of the
ObjectDetectionPlugin introduces variability in the saliency map processing, as the output obtained
from the queried LLM, while maintaining a constant context and list of objects, does not consistently
yield identical results.

When analysing the results, it is important to consider the limited number of attention mecha-
nisms currently implemented and applied to perform the saliency map estimation. While these
mechanisms are relevant and already define a relatively precise saliency modelling, we have not
taken into account other basic ones, for instance, voice/sound direction detection, voice recognition,
face recognition and engagement detection.

Moreover, we have not yet explored how context should influence the weight assigned to
each plugin in the architecture (i.e., each attention mechanism). As discussed in Section 6.2, the
contribution of each plugin should vary depending on the situation. For example, a face should
have higher saliency when a person is speaking. Although this possibility is not addressed in the
current work, we plan to include a context-dependent weighting system for the plugins in future
research.

6.2 Ablation Study Results

The results (Figure 5) show that, in Task 1, the full architecture aligns better with the human
baseline than the faces-only architecture. In contrast, the faces-only architecture outperforms the
full architecture in Task 2 and Task 3.

In Task 1, participants spent a significant amount of time looking at the screen. The full architec-
ture, which includes object saliency, correctly assigns a high saliency score to the screen, leading
to a higher score than the faces-only architecture.

In Task 2, participants primarily focused on each other’s faces while talking. Given the con-
text, the full architecture’s object plugin limits the saliency of the objects. However, it does not
set the objects saliency to zero. This behaviour leads the architecture, in some cases, to gen-
erate high saliency values for the objects: for instance, if these fall into the field of view of a
person. As a result, faces do not always receive the highest saliency score. The faces-only archi-
tecture performs better in this task, as it does not incorporate information about objects in the
environment.

In Task 3, participants alternated between looking at objects and the experimenter, with a
predominant focus on the experimenter. Participants looked at objects when the experimenter
introduced them or provided additional information. The full architecture, using context from
the object plugin, correctly identifies the most salient object during each presentation. However,
it cannot model the shifts in saliency caused by what the experimenter was saying. As a result,
it captures some object-related focuses from the human baseline but misses some focuses on
the experimenter. The faces-only architecture frequently matches the predominant behaviour
observed in the human baseline. This leads to a higher shs score for the faces-only architecture.
However, the difference in average scores between the two architectures is smaller in Task 3 than in
Task 2.

This ablation study also serves as a comparison between the proposed architecture and a simpler
baseline in which all saliency is allocated to human faces. The results demonstrate that, depending
on the task, this face-focused baseline is not always sufficient to capture the full range of salient
elements in the environment.
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6.3 Generation of Gazing Behaviours

In this article, we proposed a mathematical formulation for functions and properties to represent
salient information in the environment. We focused on the idea that salient information should
guide a robot’s attention. The saliency map is intended to serve as the foundation for an attention
manager to generate gazing behaviours. However, generating gaze from a saliency map is not as
simple as looking at the most salient point. For instance, as in humans, robots are also expected to
occasionally avert their gaze from salient areas [2].

In future works, we will investigate how to transition from saliency maps to gazing behaviours.
We plan to:

—extend the recorded dataset of human attention in social scenarios;
—use the recorded human data to both improve saliency mapping (considering a weighting
system for saliency maps, as described in Section 6.1) and learn gazing behaviours.

7 Conclusion

We have introduced a novel method for representing multi-modal saliency in the context of social
robot attention. After presenting a mathematical formulation of the modelling procedure and
its software implementation, we conducted a comparative analysis. We compared the outcomes
produced by our proposed approach with the visual attention patterns exhibited by 12 individuals
across three social scenarios. This comparison aimed to determine whether their observed gaze
targets aligned with the salient regions as estimated by our method.

Looking ahead, our future objectives include deploying this architecture onto a social robot to
generate its gaze behaviour. Evaluating the final system will require not only quantitative but also
qualitative assessment of how natural the humans perceive the robot’s actions. This undertaking
may call for the development of new features, both in terms of implementation and mathematical
modelling.
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