
Evolutionary Optimization of Music

Performance Annotation

Maarten Grachten, Josep Llúıs Arcos, and Ramon López de Mántaras

IIIA, Artificial Intelligence Research Institute,
CSIC, Spanish Council for Scientific Research,

Campus UAB, 08193 Bellaterra, Catalonia, Spain,
{maarten,arcos,mantaras}@iiia.csic.es,

http://www.iiia.csic.es

Abstract. In this paper we present an enhancement of edit distance
based music performance annotation. The annotation captures musical
expressivity not only in terms of timing deviations but also represents
e.g. spontaneous note ornamentation. To reduce the number of errors in
automatic performance annotation, some optimization is essential. We
have taken an evolutionary approach to optimize the parameter values
of cost functions of the edit distance. Automatic optimization is desir-
able since manual parameter tuning is unfeasible when more than a few
performances are taken into account. The validity of the optimized pa-
rameter settings is shown by assessing their error-percentage on a test
set.

1 Introduction

Although the use of the edit distance [7] is well known in the field of melodic
similarity [8,12], score following/automatic accompaniment [3,10] and perfor-
mance transcription [6,9], not much attention has been paid to its value for
the expressive analysis and annotation of musical performances. The optimal
alignment between score and performance does not only reveal timing devia-
tions of performed notes, but (depending on the set of edit operations) conveys
a much richer set of expressive variations, such as ornamentations, and frag-
mentations/consolidations. In the context of the ProMusic project1 we are de-
veloping Tempo Express, a Case Based Reasoning system for applying tempo
transformations to audio recordings of solo performances of jazz melodies [5]. In
this system, we use the alignment information to automatically annotate perfor-
mances [1]. The performance annotations serve as example cases to transform
a performance for a given melody. As a result, the expressiveness of the trans-
formed performance is not restricted to timing variations, but it can also contain
for example ornamentations.

For a correct detection of phenomena such as ornamentations, fragmenta-
tions, and consolidations of notes using the edit distance, it is important to
1 MCyT. TIC2003-07776-C2-02

U.K. Wiil (Ed.): CMMR 2004, LNCS 3310, pp. 347–358, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

http://www.iiia.csic.es

348 Maarten Grachten, Josep Llúıs Arcos, and Ramon López de Mántaras

assign appropriate costs to each of the edit operations. Since it turned out to be
unfeasible to manually tune the costs to obtain correct annotations for a large
set of performances, we tried to find good costs using a genetic algorithm. In
this paper, we describe our experiments and results.

In section 2, we explain the idea of annotating performances by performance
events. We wil show how performance annotations can be constructured using
the edit distance algorithm, and motivate the chosen set of cost functions for
assessing the costs of the edit operations. In section 3, we report how the param-
eter values in the cost functions were estimated, using a genetic algorithm, and
evaluate the quality of the estimations. Conclusions are presented in section 4.

2 Performance Annotation

It has been widely acknowledged that human performances of musical material
are virtually always quite different from mechanical renderings of the music.
These differences (the musical expressivity) are thought to be vital for the aes-
thetic quality of the performance, and therefore it is worthwhile to have ways
of making explicit the quality and quantity of these differences. The majority of
research concerning musical expressivity is focused on the temporal, or dynamic
variations of the notes of the musical score as they are performed [2,4,11,13]. In
this context, the spontaneous insertions or deletions of notes by the performer
are often discarded as artifacts, or performance errors. This may be due to the
fact that most of this research is focused on the performance practice of classical
music, where the interpretation of notated music is rather strict. Contrastingly,
in jazz music performers often favor a more liberal interpretation of the score,
so that expressive variation is not limited to variations in timing of score notes,
but also comes in the form of e.g. deliberately inserted and deleted notes. Thus,
research concerning expressivity in jazz music should pay heed to these phenom-
ena and in addition to capturing the temporal/dynamical variations of score
notes, the musical behavior of the performer should be described in terms of
note insertions/deletion/ornamentations etcetera. One way to do this is to de-
fine these expressive phenomena as performance events, and then annotate the
performance with a sequence of such events.

In the next subsections, we propose a set of performance events to be used in
the performance annotation of saxophone jazz performances, we show how the
edit distance algorithm can be used to construct the annotation, and propose
cost functions to be used in the edit distance computation.

2.1 Choice of Performance Events

The decision which performance events to define is important, since they are in a
sense the ‘vocabulary’ we use to represent the musician’s performance behavior.
The set of performance events proposed here (which is a slight extension of the
one proposed in Arcos et. al. [1]), is chosen to reflect the variety of phenom-
ena that we have actually encountered in a set of saxophone jazz performances.

Evolutionary Optimization of Music Performance Annotation 349

4
4

3 3 3 3 3

T T F T T C T T C T T T T T T T

Fig. 1. performance annotation of the first phrase of Once I Loved, played by a
saxophone at 220 bpm. The bars below denote the played notes (the bar lengths
are representative for the note durations). The annotation is the sequence of
performance events in the middle. ‘T’ is for transformation (of duration and
onset), ‘F’ for fragmentation, and ‘C’ for consolidation

Based on the fact that the phrases in our data set were played by a professional
musician and they were performed with the intention of giving a neutral inter-
pretation of the score, it may be thought that expressive deviations of the score
other than changing the timing or dynamics of the notes will occur only very in-
frequently, and that most of the performances can be represented by events that
just describe how the timing and duration of score notes was changed as they
were performed – i.e. transformation events. But listening to the performances
revealed that other types of events occurred frequently as well. For example,
some cases of note deletions and insertions were found. Apart from real inser-
tions of notes, that gave the impression of an elaboration of the melody (such
insertions occurred, but were rare), another type of insertion was found to occur
rather often: ornamentation. By ornamentation we refer to one or more very
short notes (typically about 100 or 200 ms.) that are usually a chromatic ap-
proach from below to the next score note. We have found such ornamentations to
consist of one, two or three notes. Furthermore, we observed that consolidation
(as described in the previous section) occurred in some performances. Occasion-
ally, we found cases of fragmentation. Other transformations, such as sequential
transposition (reversal of the temporal order of notes) were not encountered.

For illustration, figure 1 shows the annotation of a melodic phrase from the
song ‘Once I Loved’ (A.C. Jobim). The performer fragmented the third note into
two shorter notes, and in the repetition of triplet notes, there are two cases of
consolidations. The other notes were played as is, with a lesser or greater degree
of deviation in onset time and duration.

The kinds of events mentioned above can be visualized in a class hierarchy
(as in figure 2) to make explicit their characteristics. The core idea of a perfor-
mance event is that it relates the notes that are actually played by the performer
to the notes that are written in the score. As such, every event refers either to
one or more notes in the score, or to one or more notes in the performance,
or both. We can distinguish, within this general class of reference events, those
that refer to notes in the score and those that refer to elements in the perfor-
mance. Deletion events refer to notes of the score that are not present in the
performance (i.e. the notes that are not played), therefore they can be classified

350 Maarten Grachten, Josep Llúıs Arcos, and Ramon López de Mántaras

Transformation
Duration−

Transformation
Pitch−

Transformation
Onset−

Correspondence Insertion

Reference

Score Reference Performance Reference

Ornamentation

Deletion

TransformationConsolidation Fragmentation

Fig. 2. A hierarchical representation of performance events for performance an-
notation. The unboxed names denote abstract classes; the boxed names denote
‘concrete’ classes that are used in the performance annotation. The dottedly
boxed names denote classes that are derived from the concrete classes

as score-reference events. Conversely, insertion events refer only to elements in
the performance (i.e. the notes that were added), so they form a subclass of
performance-reference events. Transformation, consolidation and fragmentation
events refer to elements from both the score and the performance and thus form
a shared subclass of score-reference and performance-reference events. We call
this class correspondence events.

The reference, score-reference, performance-reference and correspondence
classes are abstract classes that are just conceived to express the relationships
between concrete classes of events, and are not intended to be used directly in
the performance annotation. The concrete classes, that are used to construct the
performance annotation, are depicted in figure 2 with boxes. They are:

Insertion Represents the occurrence of a performed note that is not in the score
Deletion Represents the non-occurrence of a score note in the performance
Consolidation Represents the agglomeration of multiple score notes into a

single performed note
Fragmentation Represents the performance of a single score note as multiple

notes
Transformation Represents the change of nominal note features
Ornamentation Represents the insertion of one or several short notes to an-

ticipate another performed note

In the case of transformation, we are not only interested in the one-to-one cor-
respondence of performance elements to score elements itself, but rather in the
changes that are made to attribute values of score notes when they are trans-
formed into performance elements. Therefore, we view transformation events
as compositions of several transformations, e.g. pitch transformations, duration
transformations and onset transformations.

Evolutionary Optimization of Music Performance Annotation 351

2.2 Constructing Performance Annotations Using Edit Distance

Performance annotations, being sequences of performance events, can be treated
as a sequence of operations that tell you how to perform a written score, or
alternatively, how to transform a sequence of score notes into a sequence of per-
formed notes. As such, the relation between the performance annotation and the
concept of optimal alignment between score and performance becomes obvious.
When performance events are defined as edit operations, then computing the
edit distance between the score and the performance yields a sequence of edit
operations, from which the performance annotation is constructed.

One problematic aspect of defining the performance events as edit operations,
is the fact that the subclasses of transformation events (pitch transformations,
duration transformations and onset transformations), can occur simultaneously
(that is, they can refer to the same score and performance notes), whereas in
the edit distance, each sequence element is covered by exactly one operation.
Our solution is to have a single Transformation operation for the computation
of the alignment, as a rough identification of the expressivity. In a second stage,
after the alignment has been computed, the score and performance events cor-
responding to Transformation operations can be compared in more detail to
establish which of the pitch, duration, and onset transformation really occurred.
The corresponding classes are shown in figure 2 as dotted boxes.

The edit distance between a source and a target sequence is defined as the
minimum cost of transforming the source sequence into the target sequence us-
ing a fixed set of edit operations. This cost can be calculated using the follow-
ing recurrence equation, that defines the distance dm,n between two sequences
〈a1, a2, ..., am〉 and 〈b1, b2, ..., bn〉 (using insertion, deletion and replacement, the
standard set of edit operations):

di,j = min

di−1,j + w(ai, ∅) (deletion)

di,j−1 + w(∅, bj) (insertion)

di−1,j−1 + w(ai, bj) (replacement)

for all 0 ≤ i ≤ m and 0 ≤ j ≤ n, where m is the length of the source sequence and
n is the length of the target sequence. The initial conditions for the recurrence
equation are:

di,0 = di−1,j + w(ai, ∅) (deletion)

d0,j = di,j−1 + w(∅, bj) (insertion)

d0,0 = 0

The weight function w, defines the cost of operations, such that e.g. w(a4, ∅)
returns the cost of deleting element a4 from the source sequence, and w(a3, b5)
returns the cost of replacing element a3 from the source sequence by the element
b5 of the target sequence.

For two sequences a and b, consisting of m and n elements respectively, the
values di,j (with 0 ≤ i ≤ m and 0 ≤ j ≤ n) are stored in an n + 1 by m + 1
matrix. The value in the cell at the lower-right corner, dm,n is taken as the

352 Maarten Grachten, Josep Llúıs Arcos, and Ramon López de Mántaras

distance between a and b, that is, the minimal cost of transforming the sequence
〈a0, ..., am〉 into 〈b0, ..., bn〉.

In our particular case, we define the following edit operations: insertion, dele-
tion, ornamentation, transformation, fragmentation, and consolidation. To use
these operations for score performance alignment, cost values must be assigned
to each of them. This is done by means of weight functions for each type of
operation (w in the recurrence equation).

2.3 The Cost Values

Ideally, the cost values for each type of operation will be such that the resulting
optimal alignment corresponds to an intuitive judgment of how the performance
aligns to the score (in practice, the subjectivity and ambiguity that is involved
in establishing this mapping by ear, turns out to be largely unproblematic). The
main factors that determine which of all the possible alignments between score
and performance is optimal, will be on the one hand the features of the note
elements that are involved in calculating the cost of applying an operation, and
on the other hand the relative costs of the operations with respect to each other.

In establishing which features of the compared note elements are considered
in the comparison, we have taken the choices made by Mongeau and Sankoff [8]
as a starting point. In addition to pitch and duration information (proposed by
Mongeau and Sankoff), we have decided to incorporate the difference in position
in the costs of the correspondence operations (transformation, consolidation and
fragmentation), because this turned out to improve the alignment in some cases.
One such case occurs when one note in a row of notes with the same pitch and
duration is omitted in the performance. Without taking into account positions,
the optimal alignment will delete an arbitrary note of the sequence, since the
deletions of each of these notes are equivalent based on pitch and duration in-
formation only. When position is taken into account, the remaining notes of the
performance will all be mapped to the closest notes in the score, so the deletion
operation will be performed on the score note that remains unmapped, which is
often the desired result.

It is important to note that when combining different features, like pitch,
duration and onset into a cost-value for an operation, the relative contribution
of each term is rather arbitrary. For example when the cost of transforming one
note into another would be defined as the difference in pitch plus the difference
in duration, the outcome depends on the units of measure for each feature. The
relative weight of duration and pitch is not the same when measured in seconds,
as when measured in beats. Similarly, pitch could be measured in frequency,
semitones, scale steps, etcetera. Therefore, we have chosen a parametrized ap-
proach, in which the relative contribution of each term in the weight function is
weighted by a constant parameter value.

The other aspect of designing cost-functions is the relative cost of each opera-
tion. After establishing the formula for calculating the weights of each operation,
it may be that some operations should be systematically preferred to others. This

Evolutionary Optimization of Music Performance Annotation 353

independence of costs can be achieved by multiplying the cost of each operation
by a factor and adding a constant.

The cost functions w for the edit operations are given below. The arguments
of the functions are elements from a sequence of score notes s, and a sequence
of performed notes p. P , D, and O are functions such that P(x) returns the
pitch (as a MIDI number) of a score note or performed note x, D(x) returns its
duration, and O(x) returns its onset time. Equations 1, 2, 3, 4, 5, 6 define the
costs of deletion, insertion, ornamentation, transformation, consolidation and
fragmentation, respectively.

w(si, ∅) = αd · D(si) (1)

w(∅, pj) = αi · D(pj) (2)

w(∅, pj , · · · , pj+L+1) = αo ·

β · ∑L

l=1
|1 + P(pj+l) − P(pj+l−1) |+

γ · ∑L

l=0
D(pj+l) |

 (3)

w(si, pj) = αt ·

β· |P(si) − P(pj) | +

γ· |D(si) −D(pj) | +

δ· |O(si) −O(pj) |

(4)

w(si, ..., si+K , pj) = αc ·

β · ∑K

k=0
|P(si+k) − P(pj) | +

γ· |D(pj) −
∑K

k=0
D(si+k) | +

δ· |O(si) −O(pj) |

(5)

w(si, pj , ..., pj+L) = αf ·

β · ∑L

l=0
|P(si) − P(pj+l) | +

γ· |D(si) −
∑L

l=0
D(pj+l) | +

δ· |O(si) −O(pj) |

(6)

The parameters β,γ, and δ control the influence of pitch, duration, and onset,
respectively. αd, αi, αo, αt, αc, and αf are the parameters that scale the costs of
deletion, insertion, ornamentation, transformation, consolidation and fragmen-
tation, respectively.

The costs of transformation (4), consolidation (5), and fragmentation (6),
are principally constituted of the differences in pitch, duration and onset times
between the compared elements. In the case of one-to-many matching (frag-
mentation) or many-to-one (consolidation), the difference in pitch is calculated
as the sum of the differences between the pitch of the single element and the
pitches of the multiple elements. The difference in duration is computed between
the duration of the single element and the sum of the durations of the multiple
elements. The difference in onset is computed between the onset of the single
element and the onset of the onset of the first of the multiple elements. The
cost of deletion (1) and insertion (2)is determined by the duration of the deleted

354 Maarten Grachten, Josep Llúıs Arcos, and Ramon López de Mántaras

element. The cost of ornamentation (3) is determined by the pitch relation of the
ornamentation elements and the ornamented element (chromatically ascending
sequences are preferred), and the total duration of the ornamentation elements.

3 Experimentation

The introduction of the nine parameters in the cost functions comes with the
problem of finding appropriate values for those parameters. Although the edit
distance has some robustness (it aligns sequences reasonably well, even if bad
parameter values are chosen), it is difficult to bring the amount of annotation
errors down to a few percent. Manually tuning the parameters is possible for a
small set of performances, but this becomes unfeasible for larger sets (adjust-
ments that improve the annotation of one performance, worsened the annotation
of others). Surprisingly, our manually tuned settings hardly improved the accu-
racy of annotation with respect to random parameter settings when tested on
larger sets of performances. Therefore, we have employed a genetic algorithm to
obtain a good parameter setting. In this section we describe our experimentation
with the tuning of the parameters.

The idea of the evolutionary optimization of the parameter values is rather
simple: an array of the nine parameter values (one value for each parameter) can
be treated as a chromosome. The number of errors produced in the annotation
of a set of performances using that set of parameter values, is inversely related
to the fitness of the chromosome. By evolving an initial population of (random)
chromosomes through crossover, mutation and selection, we expect to find a set
of parameter values that minimizes the number of annotation errors, and thus
improves automatic performance annotation.

We are interested in two main questions. The first is whether it is possible
to find a parameter setting that works well in general. That is, can we expect a
parameter setting that worked well for a training set to perform well on unseen
performances? The second question is whether there is a single setting of pa-
rameter values that optimizes the annotations. It is also conceivable that good
annotations can be achieved by several different parameter settings.

3.1 Experiment Setup

We have run the genetic algorithm with two different (non-overlapping) training
sets, both containing twenty performances. These were (monophonic) saxophone
performances of eight different phrases from two jazz songs (Body and Soul, and
Once I Loved), performed at different tempos. For each of the performances,
the correct annotation was available. The fitness of the populations was assessed
using these annotations.

The fitness evaluation of a population (consisting of 20 chromosomes) on the
training set is a rather time consuming operation. Therefore, it can take a long
time before a good solution is obtained, starting the evolution with a randomly
initialized population. In an attempt to solve this problem, we initialized the

Evolutionary Optimization of Music Performance Annotation 355

population with solutions that were trained on the individual phrases of the
training set (which is a much faster procedure). Assuming that the solution
optimized for one phrase may in some cases work for other phrases, this speeds
up the time needed to find a good solution for the whole training set.

A new generation is generated from an old generation as follows: From the
old generation (consisting of N chromosomes), the k best chromosomes are se-
lected (where k is dependent on the distribution of the fitness across the popula-
tion); Then, N − k new chromosomes are created by a cross-over of the selected
chromosomes; The newly generated chromosomes are mutated (multiplying each
parameter value by a random value), and the N − k mutated chromosomes, to-
gether with the n (unchanged) chromosomes from the old generation, form the
new generation.

3.2 Fitness Calculation

The fitness of the chromosomes is calculated by counting the number of an-
notation errors using the parameter values in the chromosome. For example,
assume that the correct annotation of a melodic fragment is ‘T T C T’, and the
annotation of that fragment obtained by using the parameter values of the chro-
mosome is ‘T T T D T’ (that is, a consolidation operation is confused with an
transformation and a deletion operation). The ‘C’ doesn’t match to an element
in the second sequence, and the ‘T’ and ‘D’ don’t match to elements in the first
sequence and thus three errors occur. To count the errors between the correct
and the predicted annotations (which are represented as sequences of symbols),
we use the edit distance (don’t confuse this use of the edit distance to compare
annotations with the use of the edit distance to generate annotations).

For a given set S of performances (for which the correct annotations are
known), we define the fitness of a chromosome c as:

fit(c) =
1

E(c, S) + 1

where E(c, S) is the total number of errors in the predicted annotations for S
using the parameter values in c. The fitness function fit ranges from zero to one.
Obviously, a fitness value of one is the most desirable, since it corresponds to
zero annotation errors.

3.3 Results

For each of the two training sets, Tr1 and Tr2, the evolution algorithm was run
three times. The resulting parameter settings are shown in figure 3. Table 1
shows the number of annotation errors each of the parameter settings produced
on the training sets, and on a test set (a set of 35 performances, none of which
occurred in Tr1 or Tr2). The average number of annotation errors on the test
set is about 32 on a total of 875 annotation elements in the test set, an error-
percentage of 3.66%. This is only slightly higher than the error-percentages on

356 Maarten Grachten, Josep Llúıs Arcos, and Ramon López de Mántaras

 0

 0.2

 0.4

 0.6

 0.8

 1

β γ δ αd αi αo αt αc αf

Train1a
Train1b
Train1c
Train2a
Train2b

Fig. 3. Estimated parameter values for two different training sets (Tr1 and
Tr2). Three runs were done for each set (a, b, and c). The x-axis shows the nine
different parameters of the cost functions (see section 2.3). For each parameter
the values are shown for each run on both training sets

the training sets: 2,60% for Tr1, and 2,37% for Tr2 (averaged over three runs),
and substantially lower than the average error-percentage of random parameter
settings on the test set, which is about 13,70%.

Tr1a Tr1b Tr1c Tr2a Tr2b Tr2c

Errors on Train 19 (3.89) 9 (1.84) 10 (2.05) 11 (2.30) 12 (2.51) 11 (2.30)
Errors on Test 19 (2.17) 26 (2.97) 30 (3.43) 19 (2.17) 32 (3.66) 65 (7.43)

Table 1. Annotation errors produced by the obtained solutions for three differ-
ent runs (denoted by the letters a, b, and c) on two different training sets (Tr1
and Tr2) and a test set. The first row shows the number of errors on the set
that the solutions were trained on, and the corresponding percentages in paren-
theses (Tr1 contained 488 annotation elements in total, and Tr2 contained 479).
The second row shows the number of errors on the test set (875 elements), with
percentages in parentheses

Table 2 shows the pair-wise correlations of the values. As can be seen from
the cross-correlations in the table, the parameter settings did not all converge
to the same values. Nevertheless, there were some cases in which the parameters
were highly correlated. In particular the solutions found in runs Tr1a, and Tr2a
are highly similar (this can be easily verified by eye in figure 3. A rather strong

Evolutionary Optimization of Music Performance Annotation 357

correlation is also observed between the solutions found in Tr1c and Tr2b, and
those in Tr1b, and Tr2c. It is interesting that the correlated solutions were
obtained using non-overlapping sets of performances. This is evidence that the
solutions found are approximations of a single parameter setting that is valid
for the performances in both training sets. In the case of the solutions of Tr1a
and Tr2a, the approximated parameter setting may also have a more general
validity, since both solutions have a low error number of annotations on the test
set as well (see table 1).

Tr1a Tr1b Tr1c Tr2a Tr2b Tr2c

Tr1a 1.00 -0.32 -0.70 0.92 -0.32 -0.28
Tr1b -0.32 1.00 0.17 -0.02 -0.33 0.68
Tr1c -0.70 0.17 1.00 -0.61 0.76 0.07
Tr2a 0.92 -0.02 -0.61 1.00 -0.33 -0.12
Tr2b -0.32 -0.33 0.76 -0.33 1.00 -0.47
Tr2c -0.28 0.68 0.07 -0.12 -0.47 1.00

Table 2. Cross-correlations of the parameter values that were optimized using
two different training sets (Tr1 and Tr2), and three runs for each set (a, b, and c)

4 Conclusions and Future Work

We have presented a method to enhance the automatic annotation of music
performances. The annotation includes information about e.g. note ornamenta-
tions and deletions as part of the musical expressivity. To correctly detect such
phenomena, an evolutionary approach was chosen to optimize the parameter
values of cost functions, that were used in the (edit distance based) performance
annotation process.

Two main questions we have tried to answer is whether it is possible to find a
parameter setting that has a broader validity than just the set of performances it
was optimized for, and whether there is a single parameter setting that optimizes
the annotations. All solutions from different trials on two non-overlapping sets of
performances substantially improved the quality of annotation of a test set over
random parameter settings. Moreover, cross-correlations were found between
some parameter settings that were optimized for different training sets. This
suggests that they are approximations of a parameter setting that works well
for a larger group of performances. In general however, the solutions did not all
converge to a single set of parameter values.

In the future, we wish to extend the experiments to see whether the solutions
found converge to a limited range of parameter settings. And if so, we wish to
investigate how the distributions of values over the parameters relate to each
other (for example, do high αc values imply low γ and δ values and vice versa?).

358 Maarten Grachten, Josep Llúıs Arcos, and Ramon López de Mántaras

Acknowledgments

This research has been partially supported by the Spanish Ministry of Sci-
ence and Technology under the project TIC 2003-07776-C2-02 “CBR-ProMusic:
Content-based Music Processing using CBR” and EU-FEDER funds. The au-
thors acknowledge the Music Technology Group of the Pompeu Fabra University
for providing the analysis module that was used to extract note information from
the audio files.

References

1. J. Ll. Arcos, M. Grachten, and R. López de Mántaras. Extracting performer’s be-
haviors to annotate cases in a CBR system for musical tempo transformations.
In Proceedings of the Fifth International Conference on Case-Based Reasoning
(ICCBR-03), 2003.

2. Sergio Canazza, Giovanni De Poli, Stefano Rinaldin, and Alvise Vidolin. Sono-
logical analysis of clarinet expressivity. In Marc Leman, editor, Music, Gestalt,
and Computing: studies in cognitive and systematic musicology, number 1317 in
Lecture Notes in Artificial Intelligence, pages 431–440. Springer, 1997.

3. R. Dannenberg. An on-line algorithm for real-time accompaniment. In Proceedings
of the 1984 International Computer Music Conference. International Computer
Music Association, 1984.

4. P. Desain and H. Honing. Does expressive timing in music performance scale
proportionally with tempo? Psychological Research, 56:285–292, 1994.

5. E. Gómez, M. Grachten, X. Amatriain, and J. Ll. Arcos. Melodic characterization
of monophonic recordings for expressive tempo transformations. In Proceedings of
Stockholm Music Acoustics Conference 2003, 2003.

6. E. W. Large. Dynamic programming for the analysis of serial behaviors. Behavior
Research Methods, Instruments & Computers, 25(2):238–241, 1993.

7. V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics Doklady, 10:707–710, 1966.

8. M. Mongeau and D. Sankoff. Comparison of musical sequences. Computers and
the Humanities, 24:161–175, 1990.

9. B. Pardo and W. Birmingham. Improved score following for acoustic performances.
In International Computer Music Conference (ICMC), Goteborg, Sweden, 2002.
The International Computer Music Association.

10. M. Puckette and A. C. Lippe. Score following in practice. In Proceedings, Inter-
national Computer Music Conference, pages 182–185, San Francisco, 1992. Inter-
national Computer Music Association.

11. B. H. Repp. Quantitative effects of global tempo on expressive timing in music
performance: Some perceptual evidence. Music Perception, 13(1):39–58, 1995.

12. Ll. A. Smith, R. J. McNab, and I. H. Witten. Sequence-based melodic comparison:
A dynamic programming approach. In W. B. Hewlett and E. Selfridge-Field,
editors, Melodic Similarity. Concepts, Procedures, and Applications, Computing in
Musicology, pages 101–118. MIT Press, 1998.

13. G. Widmer. Large-scale induction of expressive performance rules: First quan-
titative results. In Proceedings of the International Computer Music Conference
(ICMC2000), San Francisco, CA, 2000. International Computer Music Association.

	Introduction
	Performance Annotation
	Experimentation
	Conclusions and Future Work

