
Communication-constrained DCOPs: Message
approximation in GDL with function filtering

Marc Pujol-Gonzalez,
Jesus Cerquides,

Artificial Intelligence Research Institute (IIIA)
Spanish Scientific Research Council (CSIC)

Campus de la UAB, Bellaterra, Spain
{mpujol,cerquide}@iiia.csic.es

Pedro Meseguer,
J. A. Rodriguez-Aguilar

Artificial Intelligence Research Institute (IIIA)
Spanish Scientific Research Council (CSIC)

Campus de la UAB, Bellaterra, Spain
{pedro,jar}@iiia.csic.es

ABSTRACT
In this paper we focus on solving DCOPs in communication
constrained scenarios. The GDL algorithm optimally solves
DCOP problems, but requires the exchange of exponentially
large messages which makes it impractical in such settings.
Function filtering is a technique that alleviates this high
communication requirement while maintaining optimality.
Function filtering involves calculating approximations of the
exact cost functions exchanged by GDL. In this work, we
explore different ways to compute such approximations, pro-
viding a novel method that empirically achieves significant
communication savings.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—intelligent agents, multiagent systems

General Terms
Algorithms, Design

Keywords
Distributed optimization, DCOP, GDL

1. INTRODUCTION
Distributed constraint optimization (DCOP) is a model

for representing multi-agent systems in which agents co-
operate to optimize a global objective. There are several
complete DCOP algorithms that guarantee global optimal-
ity such as ADOPT [11], DPOP [13], and its generaliza-
tion GDL [1, 15]. Since DCOPs are NP-Hard [11], solv-
ing them requires either an exponential number of linear
size messages (ADOPT) or a linear number of exponentially
large messages (DPOP, GDL). Nonetheless, some applica-
tion domains are specially communication constrained. For
instance, data transmission is severely limited in wireless
sensor networks [17], and bandwidth is a scarce resource in
peer-to-peer networks [6]. An approach in these domains is
to drop optimality in favor of lower complexity, approximate

Cite as: Communication-constrained DCOPs: Message approximation
in GDL with function filtering, M. Pujol-Gonzalez et al., Proc. of 10th
Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2011), Yolum, Tumer, Stone and Sonenberg (eds.), May, 2–6,
2011, Taipei, Taiwan, pp. XXX–XXX.
Copyright © 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

algorithms with weaker guarantees [7, 9, 16]. As an alter-
native, we aim at reducing the communication costs while
keeping optimality.

Function filtering [2, 3] is a technique that reduces the size
of exchanged messages, and can be readily applied to GDL.
Essentially, GDL with function filtering exchanges approx-
imations of the messages that would be sent by GDL. As
a consequence, the resulting algorithm’s efficiency is highly
dependent on the strategy used to compute these approx-
imations. Intuitively, better strategies produce better ap-
proximations, leading to larger communication savings.

We first review state-of-the-art approximation methods [5,
14], fitting them in a common framework of bottom-up ap-
proximations. However, these methods are designed for the
centralized case. Hence, their purpose is to reduce the over-
all computation, disregarding any communication costs.

Our main contribution in this paper is a novel class of
message approximation techniques, the top-down approxi-
mations, that are specifically aimed at lowering such com-
munication costs. Thereafter, we present two realizations of
this new approach, namely brute-force decomposition and
zero-tracking decomposition. Finally, we empirically evalu-
ate the overall computation time and communication costs
of these methods on several experiments. The results show
that top-down approximations outperform bottom-up ones,
always achieving larger communication savings. Further,
zero-tracking decomposition remains competitive in compu-
tational effort with respect to state-of-the-art approximation
methods [5, 14] while transmitting much less information.

This paper is structured as follows. Firstly, Section 2 in-
troduces the DCOP model, and Section 3 presents the GDL
algorithm with function filtering. Next, Section 4 describes
the message approximation problem we aim to solve. Then,
Section 5 introduces the bottom-up approximation frame-
work, which represents current state-of-the-art approaches
to message approximation. Next, Section 6 introduces our
novel top-down approximation framework. Section 7 pro-
vides an empirical evaluation of both bottom-up and top-
down approximation methods. Finally, Section 8 draws the
most important conclusions of this work.

2. DCOP
Distributed Constraint Optimization Problems (DCOPs)

involve a finite set of variables, each taking a value in a finite
discrete domain. Variables are related by cost functions that
specify the cost of assigning certain values to a subset of
variables. Costs are positive real numbers (including 0 and
∞). Formally, a DCOP is defined as a tuple (X, D, C):

• X = {x1, . . . , xn} is a set of n variables;

• D = {D(x1), . . . , D(xn)} is a collection of finite dis-
crete domains; D(xi) is the set of xi’s possible values;

• C is a set of cost functions. Each function fS ∈ C is
defined on the ordered set of variables S (its scope),
and specifies the cost of every combination of values of
variables in S. That is, fS :

Q
xj∈S D(xj) 7→ R+. The

arity of fS is |S|.

The objective of DCOP algorithms is to find the assign-
ment of individual values to variables, such that the total
(aggregated) cost over all cost functions is minimized. We
make the common assumption that there are as many agents
as variables, each agent controlling one variable, so from now
on the terms variable and agent will be used interchangeably.

Next, we introduce some definitions of concepts and oper-
ations that will be used throughout the rest of this paper. A
tuple tS , with scope S, is an ordered set of values assigned
to each variable in the subset S ⊆ X. The cost of a com-
plete tuple tX that assigns a value to each variable xi ∈ X
is the addition of all individual cost functions evaluated on
that particular tuple. Whenever a complete tuple tX yields
a cost lower than a user-specified threshold, we say that it
is a solution. Further, a solution tX is an optimal solution
if its cost is the minimum of all possible solutions.

Definition 1 (Min-marginal). The projection tS [T]
of a tuple tS to T ⊂ S is a new tuple tT , removing the val-
ues assigned to variables not found in T . The min-marginal
fS [T] of a cost function fS over T ⊂ S is a new cost func-
tion fT where each tuple tT is assigned the minimum cost
among all tuples tS whose projection to T is tT .

∀tT fT (tT) = min
tS [T]=tT

fS(tS [T]).

Definition 2 (Combination). The combination of two
cost functions fS and fT , written fS ./ fT , is a new cost
function fU defined over their joint domain U = S ∪T , s.t.:

∀tU (fS ./ fT)(tU) = fS(tU [S]) + fT (tU [T])

Combination is an associative and commutative operation.

Definition 3 (Lower bound). A function fT is a lower
bound of fS, noted fT ≤ fS, iff T ⊆ S and for all tS tuples,
the value by fT of its projection tS [T] is lower than or equal
to the value by fS of tS:

∀tS fT (tS [T]) ≤ fS(tS).

Given two lower bounds fT , fU ≤ fS, we say that fT is at
least as good as fU iff fU ≤ fT .

3. GDL
Several algorithms can optimally solve DCOPs [11, 13].

In particular, we consider the GDL algorithm [1], following
the Action-GDL description [15]. GDL works over a spe-
cial structure named junction tree (JT) [8], also known as
joint tree or cluster tree. JTs represent a decomposition of
the DCOP objective function into an equivalent, partially
ordered sequence of combinations and marginalizations that
are computationally easier to perform. It is partially or-
dered because those operations at the same tree-level can

be carried out in parallel. Further, GDL is easily applica-
ble to distributed solving because, given a DCOP where each
agent holds a different variable, a JT can be computed in dis-
tributed form [12]. Additionally, in the distributed case, JTs
also represent the communication links that are going to be
exploited, and what information they are going to exchange.
As a result, each node of the JT (also known as clique) repre-
sents an agent operating over a subset of problem’s variables
and cost functions, whereas edges represent communication
links that nodes will use by exchanging marginalizations of
their problem parts over their shared variables.

In short, the full serial version of GDL for the all-vertices
problem (also known as DCTE [2]) works as follows [1, 15]:
it sends messages up and down the JT, two messages per
edge of the JT. Each message contains a cost function that
summarizes the effect of the JT part from which this message
comes on the considered agent. After exchanging these mes-
sages, each agent contains enough information to optimally
solve its subproblem. However, it may happen that two op-
timal solutions t1 and t2 (with the same cost) exist, so some
agents would choose t1 while others choose t2. This may
lead to assigning two different values to the same variable.
To prevent this, the JT root decides the optimal assignment
and informs its children in the JT, which recursively inform
their own children and so on. In this way, a coherent opti-
mal solution is selected. For a detailed description of GDL’s
operation, consult [1, 15].
Limiting Message Size. A major drawback of GDL is
that the size of exchanged messages is exponential with re-
spect to the number of variables in the JT edges (s). A
strategy to alleviate this fact is to relax GDL to an approx-
imate form, such that the size of messages can not exceed
exp(r), where r < s. This approach was first introduced
in [2], where it is named DMCTE(r). Since messages’ sizes
are now limited, DMCTE(r) does not necessarily compute
the optimal solution anymore. Nevertheless, it provides an
approximate solution, as well as an interval [lower bound,
upper bound] limiting the optimum cost. In general, the
larger the r-arity parameter, the better the solution quality,
but the higher the communication cost. Hence, the algo-
rithm can also be iterated by slowly increasing r until an
acceptable (or optimal when the lower bound equals the up-
per bound) solution is found.
Function Filtering. Function filtering [2, 3] is a technique
to further reduce messages’ sizes. Remember that messages
are formed by cost functions (f of arity s in GDL, f ′ of
arity r in DMCTE(r)) represented as tuples t, and their
associated cost f(t). The idea is to avoid sending those
tuples t that, when combined with other functions, will have
a cost equal to or higher than the current upper bound.

To see how this can be done, imagine the following situ-
ation: let t be a tuple that should be sent from agent i to
agent j, and let UB be an upper bound of the global cost.
After t arrival, agent j may realize that all possible com-
binations of t with its own cost functions reach or exceed
the UB, so t can not be part of an optimal solution. In
this situation, actually sending t is useless. Hence, if i was
able to detect such irrelevant tuples, it could avoid sending
them altogether, further reducing its message size. In GDL,
function f containing t should be added with g, a function
formed by combining all cost functions of agent j plus all
cost functions received by agent j except the one from agent
i. In the DMCTE(r) approximation, function f ′ containing

GDL (DCTE) DMCTE(r = 1) DIMCTEf

Iteration 1: DMCTE(r = 1)
Iteration 2:

CF (C2 → C1): f2[S1] = g1 =
y

a 1
b 2

CF (C2 → C1): f2[S1] = g1 =
y

a 1
b 2

CF (C2 → C1): f2[S1]g3 = g1 =
y

a 1
b 2

CF (C3 → C1): f3 CF (C3 → C1):

8>><>>:
a unary lower bound of f3,

i.e. f3[y] = g2 =
y

a 3
b 1

CF (C3 → C1): f3
g4 =

y z

a a 3
b b 1

266664
y z

a a 3+1
a b 5+1 ≥ UB
b a 5+4 ≥ UB
b b 1+4

377775
CF (C1 → C2): (f1 ./ f3)[S1] =

y

a 5
b 3

CF (C1 → C2): (f1 ./ g2)[S1] = g3 =
y

a 3
b 3

CF (C1 → C2): (f1 ./ f3)[S1]g1 =
y

b 3

24 y

a 5+1 ≥ UB
b 3+2

35

CF (C1 → C3): f1 ./ g1 =

y z

a a 4
a b 1
b a 7
b b 4

CF (C1 → C3):

8>><>>:
a unary lower bound of f1 ./ g1,

i.e. (f1 ./ g1)[y] = g4 =
y

a 1
b 4

CF (C1 → C3): f1 ./ g1
g2 =

y z

a b 1
b b 4

266664
y z

a a 4+3 ≥ UB
a b 1+3
b a 7+1 ≥ UB
b b 4+1

377775
SS(C1 → C2): {y = b} SS(C1 → C2): {y = a} SS(C1 → C2): {y = b}
SS(C1 → C3): {y = b, z = b} SS(C1 → C3): {y = a, z = b} SS(C1 → C3): {y = b, z = b}

BB(C2 → C1): lb = 4, pub = 1 BB(C2 → C1): lb = 5, pub = 2
BB(C3 → C1): lb = 4, pub = 5 BB(C2 → C1): lb = 5, pub = 1
BB(C1 → C2): lb = 4, pub = 5 BB(C1 → C2): lb = 5, pub = 3
BB(C1 → C3): lb = 4, pub = 1 BB(C1 → C3): lb = 5, pub = 4

Figure 1: Sequence of messages exchanged by GDL, DMCTE(r = 1) and DIMCTEf solving the instance of Figure 2.

t is a lower bound of the exact function f . If agent i knows
any lower bound g′ ≤ g before sending f ′, it can detect some
tuples that exceed the UB cost, and therefore avoid sending
them. Removing such useless t tuples is called filtering f ′

with g′, noted f ′
g′

.
Finally, notice that if we iterate DMCTE(r) with increas-

ing r values, the function g′ sent from agent j to agent i in
the previous iteration is a lower bound of g. Hence, agent i
can readily use g′ to filter f ′ before sending it at the current
iteration, leading to a lower size message. The resulting al-
gorithm is known as DIMCTEf, consisting of three phases
for each iteration: (1) Cost propagation: agents exchange
approximate cost functions (CF messages), using cost func-
tions of the previous iteration to filter cost functions at
the current iteration. (2) Solution propagation: values for
the variables in the separators of the JT are decided in a
top-down manner (SS messages). (3) Bound propagation:
agents exchange global lower bounds and local upper bounds
(BB messages) among nodes of the JT, following the same
communication strategy as cost propagation. For a detailed
description of each phase and the structure of the different
message types, the reader should consult [2].
Example. The toy example of Figure 2 allows us to illus-
trate the behavior of the above mentioned algorithms. Fig-
ure 1 shows messages exchanged by GDL (left), DMCTE(r =
1) (middle) and DIMCTEf (right). GDL performs exact
solving. CF messages contain cost functions, while SS mes-
sages contain assignments of variables propagated top-down
in the JT. After receiving them, each agent is able to com-
pute the optimum cost (5) and the same global solution
(xyz ← bbb). DMCTE(r = 1) performs approximate solv-
ing, where only cost functions of arity 1 (r = 1) can be
exchanged (when sending/receiving cost functions to/from
C3, since initial cost functions are binary they are approx-
imated by unary lower bounds). BB messages contain a

C3

{y, z}

f3(y, z)

C2

{x, y}

f2(x, y)

V2 = {y, z}V1 = {y}

C1
{y, z}

f1(y, z)

f1:

y z
a a 3
a b 0
b a 5
b b 2

f2:

x y
a a 1
a b 4
b a 2
b b 2

f3:

y z
a a 3
a b 5
b a 5
b b 1

Figure 2: Toy example and a simple junction tree.

lower bound lb and a partial upper bound pub of the cost
of the solution propagated by SS messages. After receiving
them, each agent is able to compute a lower bound (4) of
the optimum cost, a global upper bound (6) and the same
solution of that cost (xyz ← aab). DIMCTEf performs ex-
act solving with function filtering. The first iteration is
DMCTE(r = 1), only unary cost functions can be sent.
The second iteration, when also binary cost functions can be
sent, uses cost functions of the first iteration (g1, g2, g3, g4)
to filter current cost functions (the filtering process is shown
between brackets). As result, some tuples are removed be-
cause they reach or exceed the UB computed at the previous
iteration (6). Since the allowed arity equals the largest sep-
arator size, at the end of this iteration each agent is able
to compute the minimum cost (5) and the same optimal
solution (xyz ← bbb).

4. MESSAGE APPROXIMATIONS
During the cost propagation phase, GDL’s task is to prop-

agate cost functions in the form of min-marginals. DMCTE(r)
relaxes this phase by sending lower-bound approximations
instead of exact min-marginals, so that less information needs
to be sent. Therefore, the more accurate these approxima-
tions are, the better results DMCTE(r) is going to achieve at
the same iteration. Further, because greater accuracy means
that function filtering will be able to prune more tuples, in-
creasing the accuracy should also lower the total amount of
communication needed to solve the problem.

Since we are interested in communication-constrained sce-
narios, from now on the bound r means that agents can not
send functions of more than r variables. However, agents
can compute functions of any arity. Consider an agent op-
erating in DMCTE(r). Eventually, it will receive messages
from all its children in the JT. Then, the agent combines
this information with its own and marginalizes it over the
variables in the separator, to send the result to its parent.
Nevertheless, since the agent is now constrained by the ar-
ity limit r, it can not send the exact min-marginal and it
has to compute an approximation. Hence, the objective of
the approximation task is to find a good lower bound for
the min-marginal while communicating only functions of at
most r variables. Some algorithms for this task have already
been proposed in the literature [5, 14]. In the next section
we review them and we fit them into a common framework
which we call bottom-up approximation. In order to do that

F = {fxt, fyt, fzt}
V = {x, y, z}
r = 2

fxt:

x t
a a 2
a b 1
b a 3
b b 2

fyt:

y t
a a 4
a b 1
b a 2
b b 2

fzt:

z t
a a 0
a b 2
b a 0
b b 1

Figure 3: Example of functions to approximate.

precisely, we need to introduce some additional definitions.
In the following, let F = {fT1 , . . . , fTn} be a set of func-

tions, V a set of variables and r an arity limit.
We define ./ F , the combination of F , to be the function

resulting from the joint combination of every function in F ,

./ F = fT1 .// fTn .

The min-marginal of F over V is the min-marginal of the
combination of all the functions in F , that is (./ F)[V]. In
contrast, the one-to-one min-marginal of F over V is the
set containing the min-marginal of each of its functions fTi

over Ti∩V , namely F ↓ V = {fT1 [T1∩V], . . . , fTn [Tn∩V]}.
Given a function fV , we say that F is a V -lower bound of

fV iff the combination of the one-to-one min-marginal of F
over V is a lower bound of fV , that is if ./(F ↓ V) ≤ fV .

Furthermore, F is an (r,V)-lower bound of fV iff F is a
V -lower bound of fV and every function in F ↓ V has arity
smaller than or equal to r.

Given F and G (r,V)-lower bounds, F is at least as good
as G (G ≤ F) iff ./(F ↓ V) is at least as good as ./(G ↓ V).

Observation 1. F is a V -lower bound of the min-marginal
of F over V . Formally,

./(F ↓ V) ≤ (./ F)[V].

For any fS , fT ∈ F , the combination of fS and fT in F ,
is the set of functions that results from removing fS and fT

from F and adding fS ./ fT , namely

FfS ./ fT = (F \ {fS , fT }) ∪ {fS ./ fT }.

Two functions fS and fT are (r, V)-combinable iff the min-
marginal over V of the combination of fS and fT can be ex-
pressed by a function of arity smaller than or equal to r. Any
fS and fT such that |(S∪T)∩V | ≤ r are (r,V)-combinable.

The approximation task receives as input a set of functions
F 0, a set of variables V , and an arity limit r. Its goal is to
find an (r,V)-lower bound for the min-marginal of F over
V . Since for a given approximation task the set of variables
V is fixed, in the following we talk of r-combinable, r-lower
bound, and min-marginal without explicitly mentioning V .

5. BOTTOM-UP APPROXIMATIONS
Informally, the fundamental idea behind current algorithms

for min-marginal approximation is the following. If we com-
bine any pair of functions from a set that is an r-lower bound
of the exact min-marginal, the result is another lower bound
which is at least as good as the original (and, in fact, most of
the times better). Furthermore, if the two functions selected
are r-combinable, then the result is also an r-lower bound.

The pseudocode for bottom-up approximation appears in
Algorithm 1. Since by Observation 1 we know that F is a
lower bound of the min-marginal of F over V , a bottom-
up algorithm starts from the original set of functions F 0.
At each iteration, the algorithm: (1) selects a pair of r-
combinable functions (fS ,fT) from the current set of func-
tions; and (2) updates the set of functions to the combina-
tion of fS and fT in F , that is FfS ./ fT . Since FfS ./ fT is

Algorithm 1 Bottom-up approximation(F, V, r)

1: (found, (fS , fT))← bestCombinablePair(F, V, r)
2: while found do
3: F ← FfS ./ fT

4: (found, (fS , fT))← bestCombinablePair(F, V, r)
5: end while
6: return F ↓ V

also an r-arity lower bound and it is at least as good as F ,
the iterations are likely to improve the lower bound. When
no more pairs of r-combinable functions are found, the al-
gorithm returns approximation represented by the last F .

5.1 Scope-based partitioning
Scope-based partitioning (SCP) is the most common bottom-

up method [5]. Basically, it tries to combine as many func-
tions as possible by choosing the two highest arity functions
at each iteration, so long as they are r-combinable.

More in detail, the r-combinable pairs are selected as fol-
lows. First, the set of functions F is sorted decreasingly by
arity and each function in the list is marked as non-finished.
At each iteration, SCP takes the first non-finished element
fS1 of F and the element fSi of F closer to the head such
that fS1 and fSi are r-combinable. It removes them from
F and inserts its combination at the head of the list. When
there is no function fSi r-combinable with fS1 , it marks fS1

as finished. The algorithm proceeds until all functions are
marked as finished.

Figure 4a depicts how SCP would compute an approxi-
mation for the example in Figure 3. Since all functions in F
have the same arity (two), they are readily sorted. Hence,
SCP would merge the two leftmost ones, and send the third
one independently, resulting in the approximation:

F ′ = {(fxt ./ fyt)[xy], fzt[z]} =

8>>><>>>:
x y
a a 2
a b 3
b a 3
b b 4

,
z
a 0
b 0

9>>>=>>>;
The main advantage of SCP is the low computational com-

plexity that results from its simplicity. The algorithm per-
forms a nested scanning through the list of functions. During
this scanning process, the algorithm computes up to |F | − 1
function combinations. To determine the maximum arity of
these functions, consider that S is the joint domain of all
functions in F . Then, the number of variables that do not
appear in V is |S\V |. Since the arity limit is r, the maximum
arity of each single merged function is |S\V |+r. As a result,
the complexity of the algorithm is O(|F |exp(|S \ V |+ r)).

5.2 Content-based partitioning
A major advantage of scope-based partitioning is its small

computational overhead. Nonetheless, its main drawback is
that it does not consider the information within each func-
tion. For instance, consider again the previous example. We
showed that scope-based partitioning would produce parti-
tion F ′ above. However, notice that there are further ap-
proximations that satisfy the r-bound.

Content-based partitioning techniques guide the bottom-
up approximation by consulting the functions’ contents in
addition to their scopes. In general, content-based parti-
tioning tries to assess which pair of r-combinable functions
yield the highest improvement.

fxt fyt fzt

��

fxyt

{xy}

fxy

{z}

fz

(a) Bottom-up

fxt fyt fzt

��

f0

{xyz}

f0
xy f1��

{xy}

{xz}

f1
xz ��- 0

-

(b) Top-down

Figure 4: Examples of approximation strategies. Functions
in a double-lined box are the ones finally sent.

In [14] Rollon and Dechter present a framework for content-
based partitioning that implements the general approach
outlined in Algorithm 1. Given an r-lower bound F , content-
based partitioning provides the mechanism for selecting the
best r-combinable pair of functions fS , fT ∈ F such that the
approximation represented by FfS ./ fT is better than the ap-
proximation represented by F . At each iteration, the tech-
nique: (1) generates every pair of r-combinable functions
fS , fT ∈ F ; (2) measures the gain obtained by combining fS

and fT ; and (3) selects the pair that maximizes the gain.
Notice that the advantage of combining two functions be-

fore sending them is that they will be marginalized together.
Hence, the gain can be calculated based on the difference
between marginalizing together or marginalizing separately,
which can be computed as:

fV = (fS ./ fT)[V]− (fS [V] ./ fT [V]).

Therefore, the gain function is a metric that takes fV as
its input. Rollon and Dechter present two such functions.
Firstly, the local relative error (LRE) metric, which is equiv-
alent to the averaged 1-norm of fV , assigns as gain the result
of adding the costs of all tuples in fV and dividing by the to-
tal number of tuples. Secondly, the local maximum relative
error (LMRE) metric, which is equivalent to the ∞-norm of
fV , assigns as gain the maximum cost of any tuple in fV .

The downside of content-based decomposition is that, in
the worst case, the algorithm performs up to |F | − 1 selec-
tions, computing |F |−1 differences for each selection. Hence,
the complexity of the algorithm is O(|F |2exp(|S \ V |+ r)).

6. TOP-DOWN APPROXIMATIONS
Bottom-up approximation methods focus on lowering the

computational cost. Instead, our purpose is to primarily
reduce communication costs. With this aim, we propose
a new approach to generate approximations based on: (1)
initially computing the function to approximate, and; (2)
subsequently decomposing it into lower arity output func-
tions. Figure 4b represents the process of building a top-
down approximation of the example in Figure 3. As a first
step, fxt, fyt and fzt are combined and then marginalized
over {x, y, z} to produce f0, the function to approximate.
After that, the decomposition process starts. Firstly, con-
sider that we select S′ = {x, y} out of all possible subsets of
{x, y, z} with arity two. Secondly, f0 is marginalized over
S′ to produce f0

xy, and this marginal is subtracted from f0

to obtain f1 (namely f1 = f0 ./(−f0
xy)) 1. Therefore, f0

1Given f , we define −f as f but changing the sign of f costs.
It is easy to see that f ./ −f is the null function.

Algorithm 2 Top-Down Approximation(F, V, r).

1: f ← (./ F)[V]
2: F ′ ← ∅
3: (found, fS′)← selectBestMarginal(f ,r)
4: while found do
5: F ′ ← F ′ ∪ {fS′}
6: f ← f ./(−fS′)
7: (found, fS′)← selectBestMarginal(f ,r)
8: end while
9: return F ′

is decomposed as f0
xy ./ f1, where f0

xy can be regarded as a
function ready to communicate and f1

xyz as the remainder
after communicating f0

xy. The process continues searching
for a decomposition for this remainder.

The main advantage of top-down over bottom-up methods
is that they can represent a much wider space of approxi-
mations, and hence they should yield more accurate results.
Unlike bottom-up methods, which start from an inital set of
input functions and proceed by deciding which functions to
join, top-down methods start from the function to approx-
imate and proceed by successively selecting the best lower
arity min-marginal. While such min-marginal is already part
of the decomposition, the process continues by decomposing
the result of subtracting the min-marginal from the func-
tion to approximate. In general a top-down approximation
method is an iterative procedure that at each step i focuses
on finding the most informative min-marginal for f i whose
arity is smaller than or equal to r. It incorporates the se-
lected min-marginal, f i−1[S′i], to the list of output functions
and updates the function to approximate as follows:

f i = f i−1 ./ (−f i−1[S′i]). (1)

When the iterative process terminates, the following set of
functions stands for the resulting decomposition of f :

F = {f0[S′1], f1[S′2], . . . , fn[S′n+1]}.

More in detail, a general top-down approximation method
works as outlined in Algorithm 2. First, it computes the
function to approximate (f) by combining the input func-
tions in F and marginalizing over V . After that, it uses some
heuristic to select the best min-marginal fS′ . Finally, fS′ is
added to the set of output functions and subtracted from
f . This process is repeated until no min-marginal provides
additional information. In the remaining of the section we
introduce two top-down approximation methods that imple-
ment the general method outlined in Algorithm 2.

6.1 Brute force decomposition
In order to determine the most informative min-marginal,

a first approach is to consider every possible min-marginal
over r variables from V2. Then, we can readily use the gain
functions from content-based partitioning to rank the min-
marginals and select the most informative one.

This procedure has, however, a high computational cost.
At the first iteration, it must compute

`|V |
r

´
marginals and

evaluate them, each requiring exp(|V |) operations. At each
following iteration, the number of marginals to compute de-
creases by one (the selected marginal is never computed

2Note that discarding functions whose arity is lower than r
does not reduce the space of representable functions.

i = 0 aa ab ba bb
xy
xz
yz

C
4
4
4

i = 1 aa ab ba bb
xy X
xz X
yz X

C
3
3
3

i = 2 aa ab ba bb
xy X X
xz X X
yz X X X X

C
2
2
0

i = 3 aa ab ba bb
xy X X X X
xz X X X X
yz X X X X

C
0
0
0

(a) Zeroes tracking ta-
ble and counter vector

x y z f0 f1 f2 f3

a a a 4 2 0 0
a a b 2 0 0 0
a b a 4 2 0 0
a b b 3 1 0 0
b a a 5 3 1 0
b a b 3 1 1 0
b b a 5 3 1 0
b b b 4 2 1 0

(b) Per iteration re-
mainders

f0[∅] = 2

f1[yz] =

y z
a a 2
a b 0
b a 2
b b 1

f2[xz] =

x z
a a 0
a b 0
b a 1
b b 1

(c) Selected min-
marginals

Figure 5: Zero-tracking decomposition example.

again, but all others have to be reevaluated because f i is
different from f i−1). Hence, its worst time complexity is

O
“`|V |

r

´2 · exp(|V |)
”

.

6.2 Zero-tracking decomposition
The main disadvantage of brute force decomposition is its

high computational cost. Here we introduce zero-tracking
decomposition, a top-down approximation method that aims
at dodging this burden to reduce the computational cost.

Zero-tracking decomposition uses the zero norm of a min-
marginal as the heuristic to assess its quality. The zero
norm of a function is simply the number of elements in the
domain whose image is not zero. Intuitively, if a function
is only composed of zeros, it communicates no information
whatsoever. The larger the number of non-zero entries in a
function, the more informational it will be considered.

The reduction in computational cost comes from realizing
that, at each iteration, there is a way to compute the zero
norms of each min-marginal from the results of the previous
iterations. This avoids the need for recomputing every min-
marginal at each iteration as we pursue.

In what follows we detail the operation of the zero-tracking
methods when applied to the example in Figure 3. Let
p=
`|V |

r

´
be the number of possible r-arity min-marginals and

q the number of tuples for each min-marginal3. First, the
algorithm allocates a boolean table Zeroes of p rows and
q columns. Each entry [U, tU] in Zeroes encodes whether
the value for tU of the min-marginal of f over U is zero
or not. That is, Zeroes[U, tU] is true whenever f [U](tU) is
zero. Hence, all entries are initialized to false. Additionally,
it allocates a vector C of p integers to count the number
of non-zero tuples for each min-marginal. Since C counts
non-zero elements, it is initialized to the number of tuples
in each min-marginal (q). At the top of Figure 5a we show
(for iteration i=0) table Zeroes and vector C after initializa-
tion. Next, the exact min-marginal (./ F)[V] is calculated
by combining all the initial functions and marginalizing the
result over {x, y, z}. The result is shown in Figure 5b as f0.

3For simplicity of exposition we assume that all variables
are defined over the same domain.

Notice that, at this point, f0 does not contain any zero. In
order to introduce some zeroes, we subtract from f0 its min-
imum (which amounts to the min-marginal of f0 over the
empty set). In the example, this subtraction yields func-
tion f0[∅], shown at the top of Figure 5c. Subsequently, it
calculates the next remainder f1 using Equation 1.

After calculating the new remainder f1, the new func-
tion to approximate, the algorithm proceeds to update the
Zeroes table along with the C counter. Back to our ex-
ample, notice that f1 contains a single tuple with zero cost
tS=(xyz ← aab). Then, the algorithm calculates the pro-
jection of tS to each row U and sets cell [U, tS [U]] to true in
the Zeroes table. In the example, the cell for row xy and
column aa is set to true in the Zeroes table. Moreover, the
counter for row xy decreases to record that there is one less
non-zero cost tuple. Figure 5a (i=1) shows the state of both
the Zeroes table and the counter vector after iteration i=1.
In general, for each new zero cost tuple tS , the algorithm
checks the Zeroes table cell at row U and column tS [U]. If
the cell is false, it is set to true to indicate that the cost of
the min-marginals for the tuple will be zero from iteration
i onwards. Moreover, the value of the counter of non-zero
cost tuples for the min-marginal, C(U), decreases by one.

Once the Zeroes table and counters are updated, there are
two cases: (1) If all counters’ values are zero, it means that
the cost for all tuples of all subsequent min-marginals will
be zero. Therefore, since it is not possible to extract more
information from subsequent min-marginals, the algorithm
terminates and returns the list of selected min-marginals
so far, {f0[S′1], f1[S′2], . . . , fm[S′m+1]}, as the resulting de-
composition. (2) Otherwise, the min-marginal with more
non-zero tuples is selected as the best min-marginal, and
the algorithm continues.

In the example in Figure 5, all candidate min-marginals
(see the rows in table Zeroes at iteration i=1) contain 3 non-
zero tuples. Thus, at the next iteration (i=2), the algorithm
can randomly choose the marginalization of f1 over any pair
of variables. Say that the algorithm chooses {yz}. There-
fore, the selected best min-marginal is f1[yz], and hence
the new remainder f2 can be computed. After updating the
Zeroes table, there are still two counters larger than zero, as
shown in Figure 5a (i=2). In our case, the algorithm selects
f2[xz] (discarding f2[xy]), calculates the new remainder f3,
and updates the Zeroes table to yield the table in Figure 5a
(i=3). At this point, since all counters are zero, the algo-
rithm terminates to return the following set of selected best
min-marginals as the resulting decomposition:

F ′ = {f0[∅], f1[yz], f2[xz]}.

On the one hand, notice that the whole procedure –shown
in Algorithm 3– never calculates a min-marginal unless it is
going to be returned as part of the resulting decomposition.
Further, since the maximum number of functions in a decom-
position is

`|V |
r

´
, the worst case complexity of calculating the

decomposition is O(
`|V |

r

´
exp(|V |)). On the other hand, the

algorithm has to maintain the zeroes table, which also has a
cost. Note that function selectBestMarginal only processes
the tuples that are zero in the current iteration and were not
zero in the previous iteration4. This means that to maintain
the table, each tuple will be processed at most once. Since

4New zeros can be detected at no cost while computing the
combination in line 7.

Algorithm 3 ZeroDecomposition(F, V, r).

1: initialize(Zeroes, C)
2: f ← (./ F)[V]
3: F ′ ← ∅
4: (fS′ , gain)← (f [∅], 1)
5: while gain > 0 do
6: F ′ ← F ′ ∪ {fS′}
7: f ← f ./(−fS′)
8: (fS′ , gain)← selectBestMarginal(f ,Zeroes,C)
9: end while

10: return F ′

11:
12: function selectBestMarginal(f ,Zeroes,C)
13: for all new tS s.t. f(tS) = 0 do // new zeroes in f
14: for all U ∈ T do // subsets of r variables
15: if not Zeroes(U, tS [U]) then
16: C(U)← C(U)− 1
17: Zeroes(U, tS [U])← true
18: end if
19: end for
20: end for
21: S′ ← arg maxU∈C C(U)
22: return f [S′] , C(S′)
23: end function

for each tuple we mark each possible min-marginal, the time
complexity of maintaining the table is O(

`|V |
r

´
exp(|V |)), not

increasing the overall time complexity.

7. EMPIRICAL EVALUATION
In this section we evaluate the performance of the different

function approximation approaches on DIMCTEf. For each
experiment, we present both the communication savings and
increase in overall computational cost with respect to GDL.
We choose to track these measures because they are the key
ones in constrained environments. For instance, consider a
wireless sensor networks setting. Since running out of bat-
tery disables a node, battery consumption is probably the
most important figure to consider. Therefore, both commu-
nication and computation costs are important because they
directly determine battery consumption. We estimate the
overall computational cost by adding the processing times
incurred by each node, while ignoring communication times.
Similarly, the overall communication cost can be easily de-
termined by adding the number of bytes of all sent messages.

Since GDL’s communication and computation is mainly
determined by the maximum clique size of the computed
Junction Tree, experiments are segmented by this parame-
ter. Consequently, both GDL and all DIMCTEf approaches
use the very same Distributed Junction Tree Generator [15]
algorithm to compute JTs. Additionally, notice that the
parallelism degree is roughly the same for all algorithms,
because it mainly depends on the computed JT. As a con-
sequence, since DIMCTEf always communicates less infor-
mation than GDL, the relative increase in real solving time
between GDL and DIMCTEf would be lower than the rela-
tive increase in overall computation shown in this paper.

Since DIMCTEf removes tuples, it generates sparse func-
tions. Sending sparse functions can lead to communication
savings, but only if the implementation uses a special codi-
fication to transmit these functions. However, exploring the
codification of sparse functions was not one of the objec-

tives of this paper. Hence, we simply set a special value as
cost for the filtered tuples, and compressed the messages.
Specifically, we chose an Arithmetic Encoder [4] with a Par-
tial Prediction Matching model of 8 bytes. This compression
method is known to achieve good compression ratios, so long
as its input contains repeated values. The downside is that
compressing has a high computational cost, which is consid-
ered as part of our overall cost. Regarding GDL, compres-
sion hurts because the overall computation increases by an
order of magnitude, while communication savings are prac-
tically negligible. Therefore, we report GDL results without
compressing (following the idea of presenting results for each
algorithm in its best possible condition). Likewise, although
we tried both the LRE and LMRE metrics for both content-
based partitioning and brute-force decomposition, we only
report the best results obtained.

We conducted tests with the sensor networks instances
from [10]. However, those problems were very easy for GDL
(5 maximum clique variables). Thus, all approaches lead to
the same results, requiring 3 times less communication while
maintaining the same computation cost as GDL.

Next, we designed an experiment to measure the trend of
the different methods as variables’ arity increases. The ex-
periment is composed of 35 problems of 20 variables for each
domain size, with a random structure of densities ranging
from p=0.1 to p=0.3, where p is the probability of appear-
ance for all edges. Function costs are taken from a normal
distribution N (0, 1), and then made positive by adding its
minimum value to each relation. Results in Figure 6a show
that top-down approximation methods perform significantly
better than bottom-up approximations in the communica-
tion front, with nearly constant savings between two and
three times better. As expected, the brute force approach
is way more expensive computationally than other meth-
ods (up to 100 times slower than GDL in the worst case).
Nevertheless, zero-tracking’s overall computation cost is just
slightly higher (13 times that of GDL at most) than that
of the content-based approach (10.5 times), whereas their
savings are much larger (110.5 times less sent bytes for zero-
tracking against 38.3 times for content-based). Moreover,
its savings in communication increase almost 10 times faster
than the computational cost.

We conducted a second experiment that measures the dif-
ferent method’s trends when the variables’ domain size is
fixed to 5 while the problems’ maximum clique variables
increases. Consequently, it contains problems of 20 vari-
ables for each maximum clique variables, also with random
structures between p=0.1 and p=0.3, and normal costs. Fig-
ure 6b shows that the communication savings increase expo-
nentially for all methods, yet zero-tracking grows at a much
faster rate than the others while keeping the computational
cost under control.

Finally, the third experiment measures the impact of struc-
ture in the problems’ constraint graph. Thus, it contains
lattice-structured problems of 25 and 36 variables, leading
to JTs of 8 and 10 maximum clique variables respectively.
Once again, top-down approximation methods achieve the
largest communication savings. In particular, zero-tracking
decomposition requires up to 612 times less bytes than GDL
in 25% of the clique size 8 problems, while being only 44
times slower.

In summary, top-down approximations result in large com-
munication savings. Additionally, zero-based decomposition

2 3 4 5
Variables' domain size

0

20

40

60

80

100

120

S
a
v
in

g
s

w
rt

 G
D

L

Overall communication savings

2 3 4 5
Variables' domain size

0

20

40

60

80

100

120

R
a
ti

o
 w

rt
 G

D
L

Overall computation cost

(a) Domain size variation, constant
maximum clique variables of 10

2 3 4 5 6 7 8 9 10
Maximum clique variables

0

20

40

60

80

100

120

S
a
v
in

g
s

w
rt

 G
D

L

Overall communication savings

2 3 4 5 6 7 8 9 10
Maximum clique variables

0

10

20

30

40

50

60

70

80

R
a
ti

o
 w

rt
 G

D
L

Overall computation cost

(b) Maximum clique variables varia-
tion, constant domain size of 5

8.0 10.0
Maximum clique variables

0

100

200

300

400

500

600

700

S
a
v
in

g
s

w
rt

 G
D

L

Overal communication savings

8.0 10.0
Maximum clique variables

0

10

20

30

40

50

60

R
a
ti

o
 w

rt
 G

D
L

Overall computation cost

(c) Maximum clique variables varia-
tion in lattice-structured problems

Figure 6: Performance evaluation results.

remains competitive in computational effort with respect to
state-of-the-art approximation methods. Hence, we consider
zero-based decomposition to be the method of choice to opti-
mally solve DCOP instances in communication-constrained
scenarios.

8. CONCLUSIONS
We addressed the issue of optimal DCOP solving in

communication-constrained scenarios, using GDL with func-
tion filtering. We first reviewed current state-of-the-art ap-
proaches to message approximation, presenting them in a
common framework that we named bottom-up approxima-
tions. Next, we proposed top-down approximations, a new
class of methods specifically designed to reduce communica-
tion costs. We then presented two realizations of this novel
approach: (1) brute-force decomposition, a naive implemen-
tation with high computational cost; and (2) zero-tracking
decomposition, which greatly reduces the amount of compu-
tation. Finally, we empirically evaluated their performance,
showing that top-down approximations always achieve larger
communication savings than bottom-up ones. In fact, zero-
tracking decomposition does so while keeping the computa-
tional cost at bay, becoming the method of choice for optimal
DCOP solving in communication-constrained scenarios.

9. REFERENCES
[1] S. M. Aji and R. J. McEliece. The generalized distributive

law. IEEE Transactions on Information Theory,
46(2):325–343, 2000.

[2] I. Brito and P. Meseguer. Distributed cluster tree
elimination. In IJCAI DCR Workshop, 2009.

[3] I. Brito and P. Meseguer. Improving dpop with function
filtering. In AAMAS, pages 141–148, 2010.

[4] J. Cleary and I. Witten. Data compression using adaptive
coding and partial string matching. Communications,
IEEE Transactions on, 32(4):396 – 402, apr. 1984.

[5] R. Dechter and I. Rish. A scheme for approximating
probabilistic inference. Proceedings of Uncertainty in

Artificial Intelligence (UAI’97), pages 132–141, 1997.
[6] B. Faltings, D. Parkes, A. Petcu, and J. Shneidman.

Optimizing streaming applications with selfinterested users
using M-DPOP. In COMSOC’06, pages 206–219, 2006.

[7] A. Farinelli, A. Rogers, and N. Jennings. Bounded
approximate decentralised coordination using the max-sum
algorithm. In IJCAI DCR Workshop, pages 46–59, 2009.

[8] F. V. Jensen and F. Jensen. Optimal junction trees. In
UAI, pages 360–366, 1994.

[9] C. Kiekintveld, Z. Yin, A. Kumar, and M. Tambe.
Asynchronous algorithms for approximate distributed
constraint optimization with quality bounds. In W. van der
Hoek, G. A. Kaminka, Y. Lespérance, M. Luck, and S. Sen,
editors, AAMAS, pages 133–140. IFAAMAS, 2010.

[10] R. T. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce,
and P. Varakantham. Taking dcop to the real world:
Efficient complete solutions for distributed multi-event
scheduling. In AAMAS, pages 310–317, 2004.

[11] P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo. Adopt:
asynchronous distributed constraint optimization with
quality guarantees. Artif. Intell., 161(1-2):149–180, 2005.

[12] M. A. Paskin, C. Guestrin, and J. McFadden. A robust
architecture for distributed inference in sensor networks. In
IPSN, pages 55–62, 2005.

[13] A. Petcu and B. Faltings. A scalable method for multiagent
constraint optimization. In IJCAI, pages 266–271, 2005.

[14] E. Rollon and R. Dechter. New mini-bucket partitioning
heuristics for bounding the probability of evidence. In
AAAI, pages 1199–1204, 2010.

[15] M. Vinyals, J. A. Rodŕıguez-Aguilar, and J. Cerquides.
Constructing a unifying theory of dynamic programming
dcop algorithms via the generalized distributive law.
JAAMAS, pages 1–26, 2010.

[16] M. Vinyals, J. A. Rodŕıguez-Aguilar, and J. Cerquides.
Egalitarian utilities divide-and-coordinate: Stop arguing
about decisions, let’s share rewards! In ECAI, pages
1025–1026, 2010.

[17] W. Zhang, G. Wang, Z. Xing, and L. Wittenburg.
Distributed stochastic search and distributed breakout:
properties, comparison and applications to constraint
optimization problems in sensor networks. Artif. Intell.,
161(1-2):55–87, 2005.

