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Abstract. In a previous work we extended the notion of multi-unit combinatorial
reverse auction (MUCRA) by adding a new dimension to the goods at auction. A
buyer can express transformability relationships among goods: some goods can
be transformed into others at a transformation cost. Through this new auction
type, a buyer can find out what goods to buy, to whom, and what transformations
to apply to the acquired goods in order to obtain the best savings. The main focus
of the paper is to perform some preliminary experiments to quantitatively assess
the potential savings that a buying agent may obtain in considering transformation
relationships.

1 Introduction

Since many reverse (or direct) auctions involve the buying (or selling) of a variety of
complementary assets, combinatorial auctions [5] (CA) have recently deserved much
attention in the literature. In particular, a significant amount of work has been devoted
to the problem of selecting the set of winning bids [13, 3]. Nonetheless, to the best of our
knowledge, while the literature has considered the possibility to express relationships
among goods on the bidder side —such as complementarity and substitutability (e.g.
[6],[14])—, the impact of the production relationships among the different assets to
sell/buy on the bid-taker side has been only addressed so far in [7].

Consider that a company devoted to the assembly and repairing of personal comput-
ers (PCs) requires to assembly new PCs in order to fulfil his demand. Figure 1 graphi-
cally represents the way a PC is assembled. Our graphical description largely borrows
from the representation of Place/Transition Nets (PTN) [10], a particular type of Petri
Net. Each circle (corresponding to a PTN place) represents a good. Horizontal bars
connecting goods represent assembly/disassembly operations, likewise transitions in a
PTN. Assembly and disassembly operations are labelled with an indexed t, and shall
be referred to as transformation relationships (t-relationships henceforth). In particular,
t1 and t2 stand for assembly operations. An arc connecting a good to a transformation
indicates that the good is an input to the transformation, whereas an arc connecting a
transformation to a good indicates that the good is an output from the transformation.
In our example, a CPU, RAM, USB and Empty Board are input goods to t2, whereas
Motherboard is an output good of t2. Thus, t2 represents the way a motherboard is man-
ufactured (assembled). The labels on the arcs connecting input goods to transitions, and



the labels on the arcs connecting output goods to transitions indicate the units required
of each input good to perform a transformation and the units generated per output good
respectively. In figure 1, the labels on the arcs connected to t2 indicate that 1 moth-
erboard is assembled from 1 CPU, 4 RAM units, 3 USBs and 1 empty motherboard.
Each transformation has an associated cost every time it is carried out. In our example,
assembling a motherboard via t2 costs e 7.

Fig. 1. Graphical representation of an RFQ with t-relationships.

Say that the company’s warehouse contains most of the components composing
each PC. However, there are no components to assemble motherboards. Therefore, the
company would have to start an automated sourcing process to acquire such compo-
nents. For this purpose, it may opt for running a combinatorial reverse auction [14]
with qualified providers. But before that, a buying agent may realise that he faces a
decision problem: shall he buy the required components to assemble them in house into
motherboards, or buy already-assembled motherboards, or opt for a mixed purchase and
buy some components to assemble them and some already-assembled motherboards?
This concern is reasonable since the cost of components plus transformation (assem-
bly) costs may eventually be higher than the cost of already-assembled motherboards.
Hence, the buying agent requires a combinatorial reverse auction mechanism that pro-
vides: (a) a language to express required goods along with the relationships that hold
among them; and (b) a winner determination solver that not only assesses what goods
to buy and to whom, but also the transformations to apply to such goods in order to
obtain the initially required ones. In the first part of this paper we summarize how we
solved these issues in [7].

Firstly, since state-of-the-art multi-unit CA only allow buying agents to require a
fixed number of units per good when expressing his requirements (henceforth referred
to as Request for Quotation (RFQ)), we undo such constraint to allow for the introduc-
tion of t-relationships among goods. Thus, we introduce a formal definition of a Trans-
formability Network Structure (TNS) that largely borrows from Place/Transition Nets
[10], where transitions stand for t-relationships and places stand for goods. Secondly,
we extend the formalisation of multi-unit combinatorial reverse auction (MUCRA),



departing from the model in [13], to introduce transformability by applying the expres-
siveness power of multi-set theory. Additionally, we provide a mapping of our formal
model to integer programming that takes into account t-relationships to assess the win-
ning set of bids along with the transformations to apply in order to obtain a buying
agent’s initial requirements. At this point, it is important to make clear that we focus on
the following central problem: given a collection of bids on bundles and a collection of
t-relationships, find a set of non-conflicting bids that minimises cost. Thus, it is beyond
the scope of this paper to design any CA mechanisms that consider t-relationships from
a game-theoretic perspective. Thirdly, we empirically analyse the benefits of introduc-
ing t-relationships with respect to a classical multi-unit combinatorial reverse auction.
We explain how to generate artificial negotiation scenarios to compare in a fair way the
two types of auctions. Then, we experimentally observe that the benefits of introducing
t-relationships for a buyer increase when its production process is more efficient than
the providers’ one, that is, when its transformation costs are smaller.

The paper is organised as follows. In section 2 we provide some background knowl-
edge on place/transition nets and multi-sets. In section 3 we present a formal model of
multi-unit combinatorial reverse auctions with t-relationships among goods, along with
its winner determination problem and its mapping to integer programming. Section 4
thoroughly describes the data set generator and some experimental results. Finally, sec-
tion 5 draws some conclusions and outlines directions for future research.

2 Background

A multi-set is an extension to the notion of set, considering the possibility of multiple
appearances of the same element. A multi-set MX over a set X is a function MX :
X → Nmapping X to the cardinal numbers. For any x ∈ X ,MX(x) ∈ N is called the
multiplicity of x. An element x ∈ X belongs to the multi-set MX if MX(x) 6= 0 and
we write x ∈ MX . We denote the set of multi-sets over X by XMS . Given the multi-
setsMS ,M′

S ∈ SMS , their union is defined as:MS∪M′
S(x) = MS(x)+M′

S(x).
Following [10], a Place/Transition Net Structure (PTNS) is a tuple N = (G,T,A, E)

such that: (1) G is a set of places; (2) T is a finite set of transitions such that P ∩T = ∅;
(3) A ⊆ (G×T )∪ (T ×G) is a set of arcs; (4) E : A → N+ is an arc expression func-
tion. A marking of a PTNS is a multi-set over G. A PTNS with a given initial marking
M0 ∈ GMS is denoted by PTN = (N,M0) and it is called a Place/Transition Net
(PTN). The graphical representation of a PTNS is composed of the following graphi-
cal elements: places are represented as circles, transitions are represented as bars, arcs
connect places to transitions or transitions to places, and E labels arcs with values (see
figure 1).

A step is a non-empty and finite multi-set over T . A step S ∈ TMS is enabled in a
markingM∈ GMS if the following property is satisfied: ∀g ∈ G

∑
t∈S E(g, t)S(t) ≤

M(g).
Let step S be enabled in a marking M1. Then, S may occur, changing the M1

marking to another M2 ∈ GMS marking. Setting Z(g, t) = E(t, g) − E(g, t) M2 is
expressed as: ∀g ∈ GM2(g) = M1(g) +

∑
t∈S Z(g, t)S(t). Moreover, we say that

marking M2 is directly reachable from marking M1 by the occurrence of step S , and
we denote it by M1[S > M2.



A finite occurrence sequence is a finite sequence of steps and markings:M1[S1 >
M2 . . .Mn[Sn > Mn+1 such that n ∈ N and Mi[Si > Mi+1 ∀i ∈ {1, . . . , n}. M1

is called the start marking, while Mn+1 is called the end marking. The firing count
multi-set K ∈ TMS associated to a finite occurrence sequence is the union of all its
steps: K =

⋃
i∈{1,2,...,n} Si.

A marking M′′ is reachable from a marking M′ iff there exists a finite occur-
rence sequence having M′ as start marking and M′′ as end marking. We denote it
as M′[S1 . . .Sn > M′′, where n ∈ N. Furthermore the start and end markings are
related by the following equation:

∀g ∈ G M′′(g) = M′(g) +
∑

t∈K
Z(g, t)K(t). (1)

The set of all possible markings reachable from a marking M′ is called its reacha-
bility set, and is denoted as R(N,M′).

In [12], Murata shows that in an acyclic Petri Net a marking M′′ is reachable from
a markingM′ iff there exists a multi-set K ∈ TMS such that expression 1 holds (which
is equivalent to say that the state equation associated to a PTN admits an integer solu-
tion). As a consequence, when a Petri Net is acyclic, the reachability set R(N,M′) is
represented as:

R(N,M′) = {M′′ | ∃K ∈ TMS : ∀g ∈ G

M′′(g) = M′(g) +
∑

t∈K
Z(g, t)K(t)}. (2)

3 MUCRA with t-Relationships

In this section we formalise the winner determination problem (WDP) for MUCRA
with t-relationships (MUCRAtR) borrowing from our work in [7].

3.1 Transformability Network Structures

A Transformability Network Structure describes the different ways in which goods can
be transformed and at which cost. More formally, a transformability network structure
(TNS) is a pair S = (N,CT ), where N = (G,T, A, E) is a Place-Transition Net Struc-
ture and CT : T → R+ is a cost function. The cost function associates a transformation
cost to each t-relationship. In this context we associate: (1) the places in G to a set of
goods to negotiate upon; (2) the transitions in T to a set of t-relationships among goods;
(3) the directed arcs in A along with their weights E to the specification of the number
of units of each good that are either consumed or produced by a transformation.

The values of C and the values of E label respectively transitions (between paren-
thesis) and arcs in figure 1.

Given a Place/Transition net PTN = (N,M0), if we consider M0 as a good
configuration, PTN defines the space of good configurations reachable by applying
transformations to M0. The application of transformations is obtained by firing tran-
sitions on PTN . Hereafter, we consider the concepts of transformation step, enabling



of a transformation step, occurrence of a transformation step and transformation se-
quence as the counterparts to, respectively, step, enabling of a step, occurrence of a
step, and finite occurrence sequence on a PTN .

We also need to define the concept of transformation cost, taking into account the
cost of transforming good configuration M0 into another good configuration M1 ∈
R(N,M0) by means of some transformation sequence J = (S1, . . . ,Sn). The K fir-
ing count multi-set associated to J accounts for the number of times a transition in the
sequence is fired. Thus, the cost of transforming good configurationM0 into good con-
figurationM1 amounts to adding the transformation cost of each transition in the firing
count multi-set K associated to J . We assess the transformation cost associated to J as
CTS(J) =

∑
S∈J

∑
t∈S CT (t)S(t) =

∑
t∈K CT (t)K(t). Notice that the transforma-

tion cost of a transformation sequence only depends on its firing count multi-set.

3.2 WDP for MUCRA with t-Relationships

In a classic MUCRA scenario, a Request for Quotation (RFQ) can be expressed as a
multi-set U ∈ GMS whose multiplicity indicates the number of units required per good.
In the example of figure 1, if U(motherboard) = 1,U(CPU) = 1,U(RAM) =
2,U(EmptyBoard) = 1,U(USB) = 2, U would be representing a buying agent’s
need for 1 motherboard (M), 1 CPU (C), 1 empty board (E), 2 RAM units (R), and 2
USB (U) connectors. Nonetheless, since t-relationships hold among goods, the buyer
may have different alternatives depending on the bids he receives. If we represent
each bid as a multi-set B ∈ GMS , whose multiplicity indicates the number of units
offered per good, the buyer might, for instance, have the following alternatives: (1)
buy all items as requested, formally M0 = {M,C, R,R, E, U, U}; and (2) M1 =
{C, R,R, R, R,E, U,U, U} ⋃ {C, R,R, E, U, U}, do not buy any motherboard, but
buy its parts (1 CPU, 4 RAM units, 1 Empty Board, and 3 USB connectors) instead to
manufacture it at cost CT (t2) = e 7. The overall cost of the purchase results from the
cost of the acquired units plus the additional transformation cost. Notice that both alter-
natives allow the buyer to obtain his initial requirement, though each one at a different
cost. The goal of the WDP is to assess what alternative to select optimally.

We begin by defining the set of possible auction outcomes. Given a set of bids B,
a possible auction outcome is a pair (W,J), where W ⊆ B, and J = (S1, . . . ,Sn)
is a transformation sequence, such that the application of J to PTN = (N,∪B∈WB)
allows a buyer to obtain a good configuration that fulfils his requirements in U . More
formally, the set of possible auction outcomes is defined (assuming free disposal) as:

Ω = {(W,J),W ⊆ B | ∃X ∈ GMS(
⋃

B∈W

B)[J > X ,X ⊇ U}. (3)

To each auction outcome (W,J) we associate an auction outcome cost as follows:

CO(W,J) =
∑

B∈W

CB(B) + CTS(J) (4)

where CB : B → R+ stands for the bid cost function.
Given a set of bids B, an RFQ U ∈ GMS , and a transformability network structure

S = (N, CT ), the winner determination problem for an MUCRA with t-relationships



amounts to assessing the auction outcome (W opt, Jopt) ∈ Ω that minimises the auction
outcome cost function CO. Formally,

(W opt, Jopt) = arg min
(W,J)∈Ω

CO(W,J) (5)

3.3 Mapping to Integer Programming

In section 2, we defined the reachability set according to equation 2 for the case of
acyclic Petri nets. Thus, if we restrict to the case of acyclic TNS, a finite occurrence
sequence J is completely specified by its firing count vector K. Then, we can rewrite
expressions 3 and 4 respectively as follows:

Ω = {(W,K), W ⊆ B,K ∈ TMS | ∃X ∈ GMS(
⋃

B∈W

B)[K > X ,X ⊇ U}. (6)

CO(W,K) =
∑

B∈W

CB(B) + CTS(K) (7)

where CTS(K) =
∑

t∈K CT (t)K(t). Hence, the WDP when considering acyclic TNSs
can be restated, from equation 5, to assess:

(W opt,Kopt) = arg min
(W,K)∈Ω

CO(W,K) (8)

We can model the problem of assessing (W opt,Kopt) as an Integer Programming
problem. For this purpose, we need to associate integer variables to the elements in: (1)
a generic subset of bids (W ⊆ B); and (2) a generic firing count multi-set (K).

In order to represent W we assign a binary decision variable xB to each bid B ∈ B,
standing for whether B is selected (xB = 1) or not (xB = 0) in W . A multi-set is
uniquely determined by its mapping functionK : T → N. Hence, we represent a multi-
set K ∈ TMS by considering an integer decision variable qt for each t ∈ T . Each qt

represents the multiplicity of element t in the K multi-set.
Then, consider G = {g1, . . . , gn}, n ∈ N, is a finite set of goods, T = {t1, . . . , tr}, r ∈

N, is a finite set of transitions, U = {u1, . . . , un} is a finite set of requirements,
where ui = U(gi) stands for the number of units requested of good gi, and B =
{B1, . . . ,Bm},m ∈ N, is a finite set of bids. Furthermore, for each bid Bj ∈ B
we construct a pair 〈pj , [a1

j , . . . , a
n
j ]〉 where pj = p(Bj) stands for the bid price and

ai
j = MBj (gi) stands for the units offered of good gi by bid Bj . Therefore, the prob-

lem represented by expressions 6, 7 and 8 can be translated into the following integer
program:

min[
m∑

j=1

xjpj +
r∑

k=1

qkc(tk)] (9)

s.t. ∀1 ≤ i ≤ n

m∑

j=1

ai
jxj +

r∑

k=1

qkmi
k ≥ ui (10)

where xj ∈ {0, 1} ∀1 ≤ j ≤ m stands for whether bid Bj is selected or not, and mi
k =

Z(gi, tk). Hence, notice that each element mi
k is in fact obtained from the incidence



matrix[12] of the place-transition net within a TNS3. Notice that leaving the qt(t ∈ T )
decision variables unbounded is utterly unrealistic because it is equivalent to say that
the buyer has got the capability of applying as many transformations as required to fulfil
U .Therefore it is realistic to assume that the number of in-house transformations that
he can apply are constrained. Hence, we add the following constraints: ∀t ∈ T qt ∈
{0, 1, . . . ,maxt}, where maxt ∈ N.

The new integer program defined by expressions 9 and 10 can be readily imple-
mented with the aid of an optimisation library. Notice too that our integer program can
be clearly regarded as an extension of the integer program we must solve for an MU-
CRA as formalised in [15]. Thus, the second component of expression 9 changes the
overall cost as transformations are applied, whereas the second component of expres-
sion 10 makes sure that the units of the selected bids fulfil with a buyer’s requirements
taking into account the units consumed and produced by transformations.

4 Empirical Evaluation

The main purpose of our experiments is to empirically evaluate the benefits of introduc-
ing t-relationships in a multi-unit combinatorial reverse auction. Our experiments arti-
ficially generate different data sets, each one composed of a a TNS, a buyer’s require-
ments, and a collection of combinatorial bids. Each data set stands for a multi-unit com-
binatorial reverse auction problem. We solve the WDP for each auction problem regard-
ing and disregarding t-relationships to quantitatively assess the potential savings that a
buyer/auctioneer may obtain thanks to t-relationships. In order to solve the WDP for
an MUCRA, as formalised in [15], we exploit the equivalence to the multi-dimensional
knapsack problem pointed out in [9]. In order to solve the WDP for an MUCRA with
t-relationships we implement the integer program represented by expressions 9 and 10.

4.1 Data Set Generation

As outlined above, each data set shall be composed of: (1) a TNS; (2) an RFQ; and
(3) a set of combinatorial bids. The WDP for an MUCRA will consider the last two
components of the data set, whereas the WDP for an MUCRAtR will consider them all.
When we create a TNS associated to an auction, we should enforce a certain coherence
among the items prices, and thus among bid prices. This concern is taken into account
at bid generation time, and it will be explained in section 4.1. Thus, in the following we
detail the generation of TNSs, RFQs and bids.

First we detail the TNS creation. Recall from section 3 that if we restrict to the
case of an acyclic TNS, then the WDP for an MUCRAtR can be formulated as an
integer program. Thus, we shall focus on generating acyclic TNSs for our data sets. For
this purpose, we create TNSs fulfilling the following requirements: (a) each transition
receives a single input arc; (b) each place has got no more than one input and one output

3 Given a TNS (N, CT ) where N = (G, T, A, E) is a place-transition net with r transitions
and n places, its incidence matrix M = [mi

k] is an r × n matrix of integers such that mi
k =

E(tk, gi)− E(gi, tk) represents the difference of tokens of place gi produced and consumed
by transition tk.



arc; and (c) there exists a place, called root place, that has got only output arcs. Figure
2(b) depicts an example of a TNS that satisfies such requirements.

We have designed an algorithm to construct acyclic TNSs that is composed of two
sequential sub-algorithms. Firstly, algorithm 1 creates a tree structure from which a
second algorithm constructs a TNS by creating transformations with costs and attach-
ing weights to the edges connecting places with transformations. Figure 2 illustrates
the extension of a tree to an acyclic TNS. A distinguishing feature of our algorithm is
that, since we aim at empirically assessing the potential savings when considering t-
relationships independently of TNSs’ shapes, it is capable of constructing acyclic TNSs
that may largely differ in their shapes (e.g. with different widths, depths, either sym-
metric or asymmetric,...etc).

(a) Example of good tree (b) Corresponding TNS
Fig. 2. Extension of a tree to a TNS.

Algorithm 1 constructs a tree of n nodes (goods) and r branching points (i.e. nodes
with children). It represents the tree as a vector of n components, named Tree. The
value of each vector component is a pointer to the index of the father good. For instance,
if the i-th component of Tree is set to j, it means that good gj is the father of good gi.
Given this representation, it is easy to build a random tree. The rough idea is: (1) build a
null vector Tree of n components; (2) set to 0 the first component of Tree; (3) set each
element of the vector Tree[j] to a random number chosen in [1, j−1]. This constructive
process first builds the root (g1), then assigns a child (g2) to the root (g1), then assigns
a child (g3) to a random node within {g1, g2},...etc. More in detail. While (line 2) the
exact required number (r) of father goods are not generated, the algorithm proceeds as
follows. At each iteration of the loop in line (5), the algorithm assesses the father of
each good gj . Firstly, it stores the indexes of the goods that have at least one child into
Fathers through the EXTRACT-NONZERO-ENTRIES function applied over Tree. If
the father goods that have been generated are less than r (line 8), the father of gj is
randomly assessed (line 9), otherwise its father is selected out of the goods that have
already children (line 11). Finally, the algorithm returns a tree (line 18).

From the tree generated by algorithm 1, a second algorithm extends it to generate a
TNS taking as inputs the minimum and maximum arc weights (wmin and wmax respec-
tively) and the minimum and maximum transformation costs (cmin and cmax respec-



Algorithm 1 CREATE-TREE(n, r)
1: k ← 0
2: while k 6= r do
3: Tree← Empty-Vector(n)
4: k ← 0
5: for j ← 2 to n do
6: Fathers← EXTRACT-NONZERO-ENTRIES(Tree)
7: k ← length[Fathers]
8: if k < r then
9: father ← EXTRACT-RANDOM-NUMBER(1, j − 1)
10: else
11: father ← EXTRACT-RANDOM-ELEMENT(Fathers)
12: end if
13: Tree[j]← father
14: end for
15: Fathers← EXTRACT-NONZERO-ENTRIES(Tree)
16: k ← length[Fathers]
17: end while
18: return Tree

tively). The algorithm assigns to each branching node of the input tree a t-relationship
having as input good the branching node, and as output goods the children of the very
same branching node. Then it attaches to each created t-relationship a transformation
cost randomly chosen in [cmin, cmax]. Finally, the algorithm assigns to each arc in the
created TNS an integer random weight in [wmin, wmax]. The outputs of the algorithm
are thus the incidence matrix M of the associated TNS and a transformation cost vector
C. Notice that M and C are enough to characterise a TNS and to build expressions 9
and 10 of the Integer Program.

Secondly, we detail the RFQ creation. Considering the notion of requirements as
described in section 3.3, an RFQ is represented as a set U = {u1, . . . , un} where
ui = U(gi) stands for the number of units requested of good gi. We generate each
number of required units ui ∈ U from a uniform discrete distribution U [umin, umax],
where umin and umax are two parameters standing for the minimum and maximum
number of units required per item respectively. Notice that this differs from Leyton-
Browns’s approach [11] since we have not included any constraint ensuring that each
data set involves the same total number of required units.

Finally, we focus on generating bids. In order to create a data set, the most deli-
cate task is concerned with the generation of a collection of combinatorial bids. To the
best of our knowledge, and as already pointed out in [3], no real-world benchmarks of
combinatorial bids do exist. Thus, with the purpose of comparing winner determination
algorithms, we find two approaches in the CA literature to generate artificial data sets:
(1) design a specific generator for the MUCA/MUCRA domain, as in [11]; or (2) given
the equivalence of the WDP for an MUCA/MUCRA to the multi-dimensional knapsack
problem [9], employ the very same data sets used for evaluating MDKP solvers (e.g.
[2],[4] and [1]). Unfortunately, we cannot benefit from any previous results in the lit-
erature since they do not take into account the novel notion of t-relationship, and thus
the generated data set never reflects the relationships among goods. For instance, con-
sider the t2 transformation in figure 1. It is clear that it is unrealistic that a bid offers
a motherboard cheaper than some of its components. This fact motivated the need for
substantially changing the approach in [11] to coherently introduce t-relationships.



In order to generate a plausible set of combinatorial bids, we assume that all pro-
viding agents produce goods in a similar manner. In other words, they share similar
production structures (similar TNSs). This means that given a particular good, two pro-
viding agents will roughly use the same raw materials (components), but acquired at
different prices and transformed at different costs. We believe that this assumption is
utterly realistic. Under this assumption, we can artificially generate bids that can be
used for both MUCRA and MUCRAtR. Nonetheless, one might be tempted to intu-
itively think that bids that take into account t-relationships are not valid whatsoever
for an MUCRA since that would lead to an unfair comparison with MUCRAtR. Not
at all. Upon reception of an RFQ, providing agents do compose bids taking into ac-
count their own t-relationships, and thus their own production costs. Thereafter, in an
MUCRA scenario, the winner determination algorithm shall solely focus on finding an
optimal allocation for the required goods, whereas in an MUCRAtR scenario, the win-
ner determination algorithm shall assess whether an optimal allocation that considers
the buying agent’s t-relationships can be obtained. Therefore, the difference is that an
MUCRAtR winner determination algorithm does consider and exploit both the buying
agent’s t-relationships along with the implicit transformation cost within each bid, while
an MUCRA winner determination algorithm does not.

Recall from section 3.3 that from eachBj ∈ B we can construct a pair 〈pj , [a1
j , . . . , a

n
j ]〉

where pj stands for the bid price and [a1
j , . . . , a

n
j ] for the units offered per good.

First of all, we describe how to generate the units to offer for each bid based on
algorithm 2. This algorithm receives several input parameters, namely: n (number of
goods); m (number of bids to generate); pbid density (parametrizes a geometric distri-
bution [8] used for obtaining the number of goods that jointly appear in a bid); and
poffered units (parameter of a geometric distribution used for obtaining the number of
units offered per good.).

Algorithm 2 GENERATE-OFFER-VECTOR[n,m, pbid density, poffered units]
1: for j ← 1 to m do
2: [a1

j , . . . , an
j ]← Empty-Vector [n]

3: k ← SAMPLE-GEOMETRIC-DISTRIBUTION[pbid density ]
4: for l← 1 to k do
5: i← randomly choose in [1, .., n] such that ai

j = 0

6: u← 0
7: while u 6= 0 do
8: u← SAMPLE-GEOMETRIC-DISTRIBUTION[poffered units]
9: ai

j ← u

10: end while
11: end for
12: end for

Algorithm 2 proceeds as follows. For each bid, it firstly obtains the number of goods
to jointly bid for from a geometric distribution (line 3). It subsequently obtains the
number of units to offer per good (line 8) from another geometric distribution. We
employed geometric distributions since they provide large variances.

Once generated the units to offer per good for all bids, we must assess all bid prices.
This process is rather delicate when considering t-relationships if we want to guarantee



the production of a set of plausible bids. As outlined above, we make the assumption
that all providing agents in the market share similar production structures, which in turn
are similar to the buying agent’s one. In practice, our providing agents use the same TNS
as the buying agent, though each one has his own transformation costs, which in turn are
assessed as a variation of the buying agent’s ones. With this assumption in mind, next
we describe how to produce a unitary price for each good offered in a given bid. For
this purpose, we depart from the value of a parameter, proot, standing for the average
price of the root good of a TNS 4.1 (e.g. the root good in figure 2(b) is g1).

The first step of our pricing policy calculates the unitary price of the root good for
each bid under the assumption that all providing agents have similar values for such
good. Thus, for each bid Bj ∈ B, its unitary price for the root good is assessed as
Proot,j = proot · |λ|, where λ is sampled from a distribution N(1, σroot price)4.

After that, our pricing policy proceeds as follows. Given a particular bid and a good
whose unitary price is known, this is propagated down the TNS through the transition it
is linked to towards its output goods. In fact, the value to propagate results from weight-
ing the unitary price (considering the arc connecting the input good to the transition)
and adding the transformation cost of the transition. The resulting value is unevenly
distributed among the output goods according to a share factor randomly assigned to
each output good. For instance, consider the TNS in figure 2(b) and a bid Bj such that:
its unitary cost for g1 is Pg1,j = e 50, its transformation cost (different from the buying
agent’s one) for t1 is e 10, and w1 = 2. In such a case, the value to split down through
t1 towards g2, g3, g4, and g5 would be 50 ∗ 2 + 10 = e 110. Say that g2 is assigned 0.2
as share factor. Thus, 110 ∗ 0.2 = e 22 would be allocated to g2. Finally, that amount
should be split further to obtain g2 unitary price if w2 > 1. For instance, if w2 = 2,
then the final unitary price for g2 would be e 11.

Generalising the example above, in what follows we provide a general way of cal-
culating the unitary price for any good in a given bid. Let Bj be a bid represented by
〈pj , [a1

j , . . . , a
n
j ]〉 and g a good such that ag

j 6= 0. Let t be a transition such that g is one
of its output goods, and father(g) is its single input good5. Besides, we note as G′ the
set of output goods of t. Then, we obtain Pg,j , the unitary price for good g of bid Bj as
follows:

Pg,j =
Pfather(g),k · |M [father(g), t]|+ c(t) · |ν|

M [g, t]
ωg (11)

where Pfather(g),k is the unitary price for good father(g) in a bidBk 6= Bj ; |M [father(g), t]|
indicates the units of good father(g) that are input to transition t; ν is a value ob-
tained from a distribution N(µproduction cost, σproduction cost) that weighs transforma-
tion cost c(t); M [g, t] indicates the number of units of good g that are output by transi-
tion t; and ωg is the share factor for good g.

Several remarks apply to equation 11. Firstly, the share factors for output goods
must satisfy

∑
g′∈G′ ωg′ = 1. Secondly, it may surprise the reader to realise that the

4 We consider the absolute value of the sample since the large tails of the normal distributions
could occasionally bring about negative values.

5 Recall that our method to construct acyclic TNSs ensures that there is a single input good per
transition.



value to propagate down the TNS (Pfather(g),k) is collected from a different bid. We
enforce this crossover operation among bids to avoid undesirable cascading effects that
occur when we start out calculating unitary prices departing from either high or low
unitary root prices. In this way we avoid to produce non-competitive and extremely
competitive bids respectively that could be in some sense regarded as noise that could
eventually lead to diverting results. Notice that after applying our pricing policy we
obtain P , an n×m matrix storing all unitary prices.

Finally, from equation 11 we can readily obtain the bid price for a each bid Bj ∈ B
as pj =

∑n
i=1 ai

j · Pi,j . To summarise, the parameters that is possible to set when
creating an MUCRAtR scenario are listed along the first column of table 1.

Table 1. Parameters characterising our experimental scenario.

Parameter Explanation Value
n The number of items 20
r The number of transitions 8

umin, umax The minimum/maximum number of units required per item 10/10

wmin, wmax Minimum/Maximum arc weight 1/5
cmin, cmax Minimum/Maximum Transformation cost 10/10

m The number of bids to generate 1000
poffered goods Statistically sets the number of items simultaneously present in a bid {0.2, 0.3, 0.4, 0.5}
poffered units Statistically sets the number of unit offered per item {0.2, 0.3, 0.4, 0.5}

proot Average price of the root good 1000
µroot price Parameters of a Gaussian 1
σroot price distribution weighting the root price proot 0.01

µproduction cost Parameters of a Gaussian distribution setting 0.8:0.1:1.8
σproduction cost the production costs difference between buyer and providers 0.1

4.2 Experimental Settings and Results

In order to measure the benefits provided by the introduction of t-relationships among
goods we compute the cost of the optimal outcome, that is, the cost of the winning bid
set for MUCRA (OCMUCRA) and the cost of the winning bid set plus transformations
for MUCRAtR (OCMUCARtR). We define the savings increment (SI) as: SI = 100 ∗
OCMUCRA−OCMUCRAtR

OCMUCRA The larger the index, the higher the benefits that a buyer can
expect to obtain by using an MUCRAtR instead of an MUCRA.

The third column of table 1 shows the parameter configuration used in our ex-
periments. In this preliminary experiment we consider the outcomes produced when
varying three parameters, namely µproduction cost, poffered units and pbid density . In
particular µproduction cost takes on values in [0.8, 1.8], and we set poffered units =
pbid density ∈ {0.2, 0.3, 0.4, 0.5}. Our experimental hypothesis are: (1) the SI index
increases as the buyer’s transformation costs decrease (larger µproduction cost) with re-
spect to the providers’ ones; and (2) SI will increase when increasing the bid density
(low pbid density) and the number of offered units (low poffered units). This hypothesis
is motivated by the following reasons. Firstly, increasing the µproduction cost parame-
ter models the fact that in-house transformations are cheaper, therefore more likely to



be employed. An MUCRAtR improves savings with respect to an MUCRA as more
in-house transformations are employed. In such a case the sets of winning bids of MU-
CRA and MUCRAtR largely differ among them. Secondly, when increasing the bid
density and the number of offered units, it is very difficult for an MUCRA to allocate
offers so that they perfectly fit the requirements. An MUCRAtR, instead, can employ
the free-disposal goods obtained by imperfect allocations as inputs to transformations,
so as to obtain other required goods. Therefore, we will analyse how the difference in
production costs between the buyer and providers affects SI . The difference among the
buyer’s transformation costs and the average transformation costs of providers is set
by the µproduction cost parameter. We expect that, as the average transformation costs
of providers increases with respect to the buyer’s ones, so do the benefits of using an
MUCRAtR instead of an MUCRA. In fact, the experimental results do strongly agree
with our hypothesis. Figure 3 depicts the results when varying µproduction cost from 0.8
to 1.8. The x axis represents the values of the µproduction cost parameter. The y axis
represents the corresponding values of SI . Each point is obtained by averaging 30 runs
of the experiment. The legend lists the value of the poffered goods = (poffered units)
parameter6. As µproduction cost increases, so do savings. As the bids’ density and the
number of offered units jointly increase, so does savings.

Fig. 3. Varying the µproduction cost parameter

5 Conclusions and Future Work

We have performed a set of preliminary experiments to quantitatively assess the poten-
tial savings of employing an MUCRAtR instead of an MUCRA in different scenarios.

6 Notice that an increment in poffered units = pbid density stands for a decrement in the number
of offered units and in the bids’ density, since they are parameters of a geometric distribution.



The main conclusion that stems from the experiments is that the cheaper the in-house
t-relationships available to the buyer, the more he can benefit from applying them. The
second conclusion is that when the number of offered units and the bid density increase
simultaneously, so does the savings (SI).

The novel idea presented in the paper opens several paths to future development.
The first being a further development of the empirical experiments and to carry out a
sound sensitivity analysis. That would allows us to fully characterize the auction sce-
narios where exploiting t-relationships is expected to bring larger savings than an MU-
CRA. On the other hand, we aim at comparing MUCRAtR and MUCRA in terms of
computational complexity, performing some scalability experiments, too.

Finally, notice that it was beyond the scope of this paper any mechanism design
analysis. That is left out for future work.
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