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Abstract This paper addresses multi agent system (MAS) environments from an
application perspective. It presents a structured view on environment-centric MAS
applications. This comprises three base configurations, which MAS applications may
apply directly or combine into a composite configuration. For each configuration,
the paper presents key issues, requirements and opportunities (e.g. time management
issues, real-world augmentation opportunities and state snapshot requirements). Thus,
the paper delineates what environment technology may implement to serve MAS
applications. Sample applications illustrate the configurations. Next, electronic insti-
tutions provide an example of an environment technology, addressing norms and
laws in an agent society, already achieving some maturity. In comparison, application-
domain specific environment technologies still are in embryonic stages.

Keywords Environments for multi-agent systems · Multi-agent system · Multi-agent
applications

1 Introduction

Recently, the concept of an environment for multi-agent systems (MAS) is being
recognized as a promising research area, manifesting itself in successful AAMAS
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workshops [10, 11]. This research on MAS environments originates from realizing the
benefits and potential of making the environment explicit. Indeed, in many applica-
tions, this environment comprises much more than some computation and communi-
cation infrastructure [39].

This paper addresses MAS applications that are heavily influenced by the structure
of an environment in which their agents operate. Sample applications are the control
of a cooling system on a ship [23], of manufacturing systems [35], or of a group of
surveillance robots [26]. This paper provides a structured view on what MAS environ-
ments may contribute to the development, installation and operation of such MAS in
future.

1.1 Related work

Within this special issue, Weyns et al. discusses what a MAS environment, seen as
a first-class abstraction, entails [38]. Other contributions in the special issue address
technological aspects of MAS environments [14, 28, 37]. This paper is complementary
by providing an applications perspective: what does the environment deliver to appli-
cations, what is its role/position within applications? It provides a structured view
that constitutes a touchstone for conceptual and technical contributions: it facilitates
the assessment of completeness and relevance, it contributes to identifying devel-
opment opportunities, and it provides a base to position individual contributions by
others in a bigger picture from an applications’ viewpoint. For instance, the “abstract
computational resources” put forward by the extended version of Gaia [39] support
“sensing, affecting and consuming.” This paper reveals what other services can be
offered.

Helleboogh et al. discuss simulation in the context of MAS environments [14].
Both papers concur in key points. Helleboogh concludes that “the simulated envi-
ronment must incorporate all necessary information to represent a single snapshot
of the real environment.” The composite configuration in Sect. 5 requires both read
and write access to this state. The simulation configuration in Sect. 2 emphasizes time
management functionality. This is a prerequisite to cope with Helleboogh’s statement
that “modeling, managing and maintaining over time all dynamism in the simulated
environment is crucial.”

Related publications on applications within this research field discuss, relative to
this paper, a specific application [3, 5, 12, 22, 26, 33, 40]. They present valid solutions
for a specific application and discuss what the environment brings to their (class of)
applications. In contrast, this paper brings a generalized view. As such, these related
research results have served as relevant input to this paper.

Most agent-oriented design methodologies focus on goals and decision processes
and neglect addressing the environment explicitly [6]. Still, Klein and Giese present
a MAS development approach that concurs with the structured view in this paper
[19]. All relevant entities in the world-of-interest are modeled ‘as they are’. Envi-
ronment processes are modeled. The modeling supports emulation and reasoning.
The approach distinguishes between environment models being correct and being
appropriate (correctness being independent from the application). Environment ser-
vices correspond to the environment augmentations in this paper. Overall, the ap-
proach of Klein and Giese answers the needs of environment-centric applications
well.
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1.2 Terminology

Within this paper, the term configuration refers to a combination of an agent system,
an environment for multi-agent systems and a world-of-interest. The agents in the
application constitute the agent system. A multi-agent system (or MAS) consists of
an agent system and an environment. The intersection of the agent system and the
environment is empty. Environment refers in this paper to a software system that does
not include the world-of-interest.

The world-of-interest is application-specific and refers to the part of the world (in
cyber space, the physical world. . .) that is relevant to the application. For instance,
for an Internet search engine, this world-of-interest comprises web pages on the In-
ternet, the links on these pages and the content of the pages. For a climate control
application, this world-of-interest comprises the rooms in the building, the doors, the
heaters, etc. This complies with the approach in [17], in which the stability of such a
world-of-interest relative to the application (functionality) itself is recognized.

1.3 Paper overview

This paper discusses three base configurations for MAS applications. The first configu-
ration addresses simulation. Next, applications interacting with the physical world are
addressed. In the third configuration, applications interact with a world-of-interest in a
virtual world. Next, composite configurations, combining several base configurations
within a single application, are presented. An example illustrates each configura-
tion. This provides an idea of the range of applications that MAS environments may
address. Next, the discussion focuses on Electronic Institutions as an example of exist-
ing technology addressing laws and norms of an agent society in MAS environments.
Finally, conclusions are given.

2 Configuration I—simulation applications

Configuration I targets multi-agent simulation [20, 23, 24]. This section first describes
this configuration. Next, it discusses three generic issues for the environment in this
configuration: emulation, the world-of-interest and time. Furthermore, an example
illustrates the configuration and the contribution of the multi-agent environment
therein.

2.1 The configuration

Figure 1, showing the agent system, the environment, the world-of-interest and their
relationships, depicts Configuration I. Most importantly, the relationship between the
world-of-interest and the multi-agent system consists of up-front modeling; there is
no run-time connection during MAS execution. Through modeling, the agent system
and its environment jointly reflect a world-of-interest.

Agents model the actors, which are goal-oriented decision-making entities within
this world-of-interest. These agents can be models of other entities (e.g. humans)
where the simulation aims to assess system behavior or validate the agents as a model
of something else [4, 9]. Importantly, the agents often model themselves: the actor is
the deployed version of the agent. The latter happens when the simulation is a first
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Fig. 1 Simulating the real world. The deployed environment entities are optional and correspond to
an eventual augmentation of the real world (see Sect. 3.2)

phase in the development of a multi-agent system that is subsequently deployed in a
real-world application (see 3.1).

Environment entities and laws reflect the remainder of the world-of-interest. This
includes the modeling of:

• Behaviors of the environment entities,
• State trajectories of the entities,
• Interactions of the entities with each other,
• Response of the entities to inputs from the agents

Constraints and physical laws of the world-of-interest govern the above items. To
the extent that it is feasible, these constraints and laws are modeled within the envi-
ronment. The model is executable: it emulates the world-of-interest for the agent
system.

Configuration I consists of the combination of this executable model (or emulation)
provided by the environment and the agent system.
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2.2 Emulation

Emulation implies that the environment replaces entities in the world-of-interest for
the agent system with a virtual equivalent. Ideally, the agents are unable to distinguish
the emulation from the actual world-of-interest. In practice, the perceptible difference
must be negligible for the simulation purposes at hand. By ensuring this difference is
negligible across the envisaged application range, reusable models are developed.

Validation of the emulation model begins by correlating the behavior of the model
with the corresponding entity in the world-of-interest, independent of the context in
which the emulation model is used. This activity verifies model correctness. However,
validation of the overall simulation still requires testing the system as a whole to
ensure that the system-wide behavior is consistent with the world-of-interest. This
activity ensures that the emulation model is adequate. Some of the standard tech-
niques used for verification and validation of simulation models can be used for this
purpose [2, 18].

Importantly, the environment models can capture domain expertise and knowl-
edge. Today, the performance of too many applications suffers from the naïve models
embedded in their information systems (e.g. ignoring inertia in fast-moving robotic
applications). The environment in MAS constitutes an opportunity to capture domain
expertise, facilitating reuse and ensuring better quality in a wide community.

2.3 World-of-interest

There is great diversity concerning the worlds-of-interest targeted by MAS environ-
ments:

• The emulation may reflect some part of the real world. E.g., the emulation may
model the existing European railway infrastructure.

• The emulation may correspond to something that could exist in the real world, but
still needs to be realized or no longer exists. E.g., emulation models may reflect
possible extensions of the high-speed railway infrastructure or emulate the railway
system as it existed during World War II.

• The emulation may even correspond to parts of an imaginary world, which in
principle cannot exist in the real world. This may happen in some computer game
applications.

In the first cases, the emulation shares a desirable property with the real world. It
strives to always remain in a globally consistent and coherent state. Everybody knows
how our universe handles two cars following intersecting trajectories. The real world
has further properties (e.g. conservation of mass and energy) that address impor-
tant system design concerns. By greatly restricting the possible state trajectories that
the entities in the environment can take, these properties are a powerful aid to the
development of large complex models. An in-depth discussion is outside the scope of
this paper [34]. However, it makes sense to keep such properties in mind even when
designing fictitious worlds.

Hence, in Configuration I, the agent system is embedded in an environment with
laws that impose consistency and coherence, as does the real world. Similar to the
real world, these laws of the environment may sometimes act against the agents’
objectives.



66 Auton Agent Multi-Agent Syst (2007) 14:61–85

2.4 Time

Time management is a key component of the environment in this configuration.
Indeed, the simulation must be sufficiently accurate and therefore can only tolerate
a limited distortion in the progress of time. Still, users want simulations to execute
fast. Together, these requirements translate into the need for (simulation) time man-
agement functionality in which the progress of time (and computations) in both the
emulation and the agent system needs to be controlled. In a simulation, time can
progress in three ways:

• Discrete steps. Time advances in discrete steps of not necessarily equal inter-
vals. Discrete event simulators use this mechanism to advance time as quickly as
possible during periods where no observable state changes are occurring.

• Continuous steps. Time advances in discrete steps of equal intervals. This is often
used when emulations solve differential equations. Continuous time systems may
change the granularity of the times steps (e.g. to cope with stiff systems), but this
is done infrequently.

• Real time. The simulation system is tied to a real time clock with a factor governing
how fast the simulated time advances with respect to the real time clock.

There are several situations requiring support for time management functionality:

• The system that is simulated is a distributed system. Relative progress of time
and computations in the distributed system need to be properly accounted for.
Mirroring the distribution in the simulation will not solve the problem because
the system properties may be partially unknown and time-variant (e.g. behavior
depends on the speed of Internet connections). The simulation needs to control
such variations in relative progress across the distributed system, and must per-
form an adequate number of replications to assess the impact of variability and
uncertainty.

• The execution of the multi-agent simulation is distributed to accelerate the simu-
lation itself.

• Emulation takes longer than real-time. The agent system needs to be frozen when-
ever the emulation cannot respond in time. Otherwise, the agent system receives
too much computation time. Then, conclusions drawn from the simulation may be
painful and expensive illusions. This situation is typical when emulating physical
phenomena by numerical solutions for differential equations [23].

• Emulation takes much less than real-time. This situation is common in discrete
event emulations. This requires an environment in which time progresses as real
time whenever agents are deliberating, and in which time instantaneously pro-
gresses until the next event on the event calendar whenever all the agents are idle.
Such a system requires mechanisms (cooperative or otherwise) to detect agent
activity and involves rerouting all timer functions (used by the agents) through
the emulation (event calendar) [41].

In the first two cases, the environment must synchronize time across all systems.
This is challenging in discrete event systems where time would advance at widely
different rates if systems were left to execute independently. A description of syn-
chronization mechanisms is beyond the scope of this paper. See [13, 14] for examples.
The latter two cases require rather simple time management functions.
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2.5 Example

This section discusses a sample application and highlights the role of the environment
therein. Note that, since explicit support for the environment in MAS is lacking today,
the application illustrates what explicit environment support could contribute. Other
examples can be found in [9] and [23].

XSpec (eXecutable Specification) was an agent-based environment for manufac-
turing control in the early ‘90’s [36]. XSpec emphasized the dual physical and control
nature of agents in a manufacturing control application. The control elements in
XSpec correspond to the agent system in Configuration I, while the physical elements
correspond to the entities in the environment. E.g., a robot would consist of a control
element representing its control logic and the physical element would represent a
model of the dynamics of the robot arm and its motion in response to movement
commands from the control element. Control elements sensed the state of and issued
commands to the physical elements within their scope of control. Finally physical
elements communicated the exchange or movement of matter or energy to other
physical elements.

The authors claimed that the separation of the control (agent) and physical (envi-
ronment) elements led to several advantages:

1. The physical models could be more readily reused since they represented a simple
model of a physical entity irrespective of the application domain. In one case they
achieved a 70% reuse of the physical elements.

2. The executable control models, freed from any physical modeling artifacts, could
be transitioned directly into working control software.

XSpec relied on executable models to simulate the control and physical elements
in a manufacturing system. XSpec recognized that there was no single simulation
environment that adequately models all the control and physical elements. The logic
for a control element was specified using an executable control specification language
(e.g. IEC 848). The physical elements were modeled in an appropriate simulation
tool. These models were integrated in a distributed simulation environment called
XFaST (eXecutable Factory Simulation Tool). XFaST integrated the various control
and physical simulation environments and synchronized time so the behavior of all
elements in the system could be modeled together.

After validating the control logic against the physical simulation model, the spec-
ification was compiled or translated directly into an execution environment and the
physical simulation models were replaced with the real world entities or modified
to serve as interfaces to the real physical devices. XSpec was used to design and
build several successful applications including an automotive weld line, an automo-
tive door line, and a flexible assembly material transport system for an electronics
manufacturer. Numerous design errors and performance problems were identified
and corrected using the XFaST simulation environment greatly reducing the integra-
tion time. This demonstrates the use of a Configuration I system for developing a
Configuration II system. The XFaST framework also demonstrates the use of time
management in a distributed simulation environment.

In this application the environment was composed of the set of interacting “phys-
ical elements.” These provided a model of the real world elements that were under
the control of the MAS (“control elements”). The specific services provided by the
environment were:
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• Emulation of the real world entities. The behavior of the real world entities in
response to control signals from the MAS, their internal states, and their interac-
tions with other real-world entities was modeled offline. These models were imple-
mented with kinematic or discrete-event simulators depending on the complexity
of the behavior that needed to be emulated.

• Time management. Since multiple simulation tools were employed simultaneously,
the environment provided the critical time synchronization services to coordinate
and manage time across the different simulations. In particular time synchronization
was managed between continuous and discrete event models.

The environment enabled the development of high fidelity models of the entities
since they were readily re-used in multiple applications. Once the MAS was com-
pletely tested against the simulated real-world entities, they could be replaced by the
actual real-world entities.

2.6 Summary and remarks

Configuration I targets simulation applications. Agents interact with the environment,
which models entities in the world-of-interest. There is no run-time connection from
the real world to the models in the environment.

In this area, repositories of reusable emulation models can capture important
domain knowledge and improve the overall quality of the models employed in MAS.
The fact that these emulation models correspond to parts of the real world facilitates
integration and reusability significantly. To this end, emulation model developers
must avoid relying on a specific context and only reflect the corresponding part of the
world-of-interest.

Specific for the simulation context is the need for time management functions. Some
of these functions are the subject of ongoing research [14]. In contrast, the ability to
slow down agent computations when the emulation requires more than real-time,
or the ability to emulate in real-time while agents are deliberating in combination
with the speed-up of discrete-event simulation when agents are idling, are relatively
simple time management functions. Nonetheless, such functionality is absent in exist-
ing simulation software and cannot be added later. Environment technology has the
opportunity to provide suitable support at the core of its implementations.

3 Configuration II—real-world interaction

Configuration II targets applications rooted in the physical world. These applications
interact with entities in the real world through some intermediary (sensors and actu-
ators). E.g., when one agent makes its robot kick a soccer ball, other agents might
perceive this through a vision sensor and act upon that. Likewise, an office climate
control system reads temperatures and manipulates heaters, coolers and blowers to
adjust temperatures.

This section first describes the configuration. Next, it discusses how the environ-
ment may augment the real world in this configuration. Finally, a sample application
illustrates the configuration and the contribution of the environment therein.
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3.1 The configuration

Figure 2 depicts Configuration II comprising the agent system, the environment, the
world-of-interest and their relationships. This world-of-interest is part of the real
world. Typically, the real-world entities evolve slowly from the perspective of com-
puter processes. In contrast to simulation, the environment and the world-of-interest
have a run-time connection.

Environments for this kind of application can be simple reflections of the current
entities in the physical world, or a combination of real-world and simulated world
emulation. In the simple version, the environment offers an abstraction of the cur-
rent real-world entities and their state to the multi-agent system. Mixed environments
include abstractions of real-world entities and fully simulated elements. Environments
can also capture events in the past or provide projections of future states of the real
world entities.

The agents only interact indirectly with the world-of-interest, using the environ-
ment as an intermediary. In practice, it is possible to develop multi-agent applications
where the agents are directly connected to real-world sensors and actuators. However,
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except for the simplest applications, there exist compelling motivations to interact
indirectly with the real world through environment entities reflecting their real-world
counterparts.

The main incentive is the augmentation of the real world that can only be achieved
by the environment when it is involved in, and to some extent in control of, all inter-
actions between agents and the real world. This is similar to the way in which modern
computer operating systems are a compulsory intermediary between normal users and
the computer resources. This is particularly true for the environment augmentations
enforcing proper usage of real-world entities, which are becoming more and more
important in view of software increasingly becoming pervasive and mission-critical.

Furthermore, virtually all applications targeted by Configuration II are preceded
by a Configuration I development. MAS controlling physical entities have many safety
concerns (human and/or economical). Validation of these systems is a critical aspect
of their development. Several standards governing the development of complex sys-
tems rely heavily on simulation as a tool for validating the system (IEEE 1012-2004
[16], US DoD 5000.2-R [32], and NIST Special Publication 500-234 [7]). Hence most
multi-agent systems that interact with the real world undergo extensive testing and
validation in a Configuration I. Hence, emulation models of the real-world entities
exist when the Configuration II development starts. These models serve as a basis for
developing the necessary intermediary environment entities between the agents and
the real-world entities.

3.2 Augmentation of the real world

The key contribution of a MAS environment in Configuration II is augmentation of
the real world. These augmentations offer various kinds of functionality, as presented
below.

3.2.1 Enhanced access to the real world

The connection between the multi-agent system and the real world often represents
a challenge to application developers. Sensors often measure only indirectly and
approximately the required information and they are not for free. Actuators pose
similar challenges. The environment may support developers in this respect providing:

• Sensor processing. Raw sensory information must be processed before it provides
useful information. Sensor data may need to be fused to provide information of
value. Uncertainty estimates may need to be calculated and conflicting sensory
inputs resolved. The environment provides a mechanism to process and manage
the raw sensory data so agents can get the information they need at the level of
abstraction they require to perform their functions.

• Virtual sensors. No application is instrumented sufficiently to provide all the re-
quired information directly. An environment can fill in the missing pieces of infor-
mation by extrapolating between sensor readings to provide a current estimate
or maintaining state estimates using system models for which there is no sensory
confirmation (e.g. the current position in dead reckoning control).

• Virtual actuators. The environment may provide command-processing facilities at
abstraction levels that are better adapted to the agent system, often combining
several simple actuators. Virtual actuators also require access to sensor data and
real-time processing power when implementing e.g. a feedback control law.
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• Common time base. Combining sensory information from multiple sources often
requires the moment of data capture on a shared (synchronized) time axis. Syn-
chronized execution of commands also benefits from synchronized clocks [21].
The environment may provide this. Failure to provide such time base typically
results in unattainable bandwidth and response time requirements.

• Publish-subscribe services. Agents can subscribe to environment entities to be
notified when certain conditions are fulfilled.

There is an important caveat concerning these enhancements provided by the envi-
ronment: access to (raw) sensor data and (native) command interfaces must be subject
to resource management (see 3.2.3). Ideally, an environment service imposes minimal
requirements for its services.

3.2.2 On-line auto-updated documentation

Applications often use information about the world-of-interest that is not observable
through sensors but is nonetheless available in machine- or man-readable formats.
Discovering such information, validating it, making this information accessible to
the application and keeping it up-to-date often is a daunting task. The environment
provides the appropriate vehicle to make this information accessible. This includes:

• Technical specifications. The environment entities can augment their real-world
counterparts by publishing their technical and physical properties: weight, dimen-
sions, shape, temperature operating range, etc. Note that these specifications will
be time-variant when, for instance, a device is ageing and deteriorating.

• Virtual maps. The environment can maintain information about local connections
and relative positions of the real-world counterparts, both peer-to-peer (e.g. room
connected to a corridor) and parent child (e.g. room belonging to a building).
Agents are able to discover the system topology and spatial properties through
interaction with suitably augmented environment entities. Agents may also dis-
cover new information about the topology when it is maintained by the environ-
ment to reflect changes (e.g. when a new machine is installed in a room). Note
that environment entities only need to know their own real-world counterpart
and (the relative position of and local connection to) their immediate neighbors
to implement this.

Attaching information about a real-world entity to its environment counterpart
offers a simple mechanism to keep such information consistent on condition that this
information is valid for the entity regardless of its context. Also, attaching informa-
tion to an environment entity equipped with an update-checking mechanism keeps it
up-to-date.

3.2.3 Regulating the usage of real-world entities

Similar to modern operating systems controlling user access to computer resources,
the MAS environment ensures and encourages proper usage of the real world entities:

• Ownership management and access control. The environment can enforce rules
governing ownership or manage multiple requests to control the same entity.
An environment can, for example, keep two agents from trying to tell the same
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vehicle to move in two different directions at the same time. Conversely, a profi-
cient resource allocation service discourages developers from having their agents
monopolize resources unnecessarily.

• Safety management. Rather than requiring each agent to anticipate and maintain
safe operation of the system, the environment can ensure that only safe operations
are allowed on the entities it manages. This could prevent the system from being
commanded to exceed its design limits, perform unsafe actions, or perform other
actions that might cause damage to the equipment.

• Enforcing constraints. On a more sophisticated (and challenging) level, the envi-
ronment can enforce constraints on allowed actions. These constraints could be
imposed by physical laws, technological limitations (e.g. device speed limits), or
design rules (e.g. allowed operating envelopes). This creates opportunities to make
the environment more autonomic and to provide higher-level functionality (e.g.
coordination fields indicating imminent deadlocks).

Note that these augmentations can be application-specific, thus contributing func-
tionality to the application (e.g. an unmanned air vehicle environment may limit the
flight envelope depending on the mission). This suggests that the environment needs
interfaces that allow it to be configured correctly for different applications (missions).

Furthermore, these augmentations can be domain-specific, covering a multitude
of applications. Similar to application-specific augmentations, domain-specific aug-
mentations can exploit their specific context to offer higher levels of functionality. In
addition, since they are enjoying a sizeable user community, these augmentations can
go a long way to more accurately reflect the world-of-interest and avoid imposing
artificial constraints. For instance, in ‘one-size-fits-all’ solutions, transfer of ownership
often is restricted to resources in a reference state (e.g. a robot manipulator must be
immobile at its home position). Domain-specific augmentations may impose more
liberal restrictions that reflect the real-world constraints more closely.

3.2.4 Information processing infrastructures

The environment can be used to augment the world-of-interest with features and func-
tionality, non-existent in this world-of-interest, to support the information processing
needs of the agents:

• Virtual stigmergic worlds. Stigmergic systems rely on interactions through signs in
the environment. While insects may be able to easily deposit and sense chemical
pheromones in the real world, it may be impractical for MAS to do the same. An
environment can support a virtual world counterpart to the real world where the
agents can deposit and sense simulated pheromones. Since they are simulated,
these virtual pheromones can be given capabilities beyond their real world coun-
terparts: specially designed propagation patterns beyond what the laws of diffusion
would normally allow, evaporation rates above or below what is physically possi-
ble, or information content more complex than can be carried by a few different
pheromone flavors. Likewise, the environment may process information that is
deposited (e.g. insert it in an agenda) analogous to and beyond physical/chemical
interactions in the real world.

• User interfacing (for normal users and system managers/administrators). The envi-
ronment provides a rich infrastructure to build user interfaces, user interaction
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models, diagnostic, and performance analysis systems. It may provide a family of
applications with a consistent omnipresent minimal user interface with negligible
recurring implementation efforts.

3.2.5 Past, present and future

Finally, the MAS environment allows the applications to transcend the present. In
addition to the current state, the environment maintains information about the past,
and even estimates about the future:

• The past. The environment entities may keep a log or trace of their history. Agents
may use this to perform diagnosis, construct statistical models, identify patterns in
behavior, etc.

• The future. Augmented environment entities are able to produce information
about their future (behavior, properties). By maintaining a model of its behavior
an entity may be able to predict its future state irrespective of the state of the rest
of the system. For example, given its friction, inertial mass and a change in the
applied torque, a fan could predict its final speed and how long it will take to reach
that speed.

• The future reflecting commitments and intentions. In a resource allocation con-
text, the environment entity predicts its future availability given the current com-
mitments. For instance, a hotel room entity is able to receive bookings from the
authorized agents in the reservation department as well as from the building main-
tenance agents. Based on the information therein, the hotel room entity predicts
its future availability. A sample application of this principle is [35].

3.3 Example

A sample application is the control of unmanned systems. Sauter et al. [30] describes
a demonstration by Altarum and Johns Hopkins University (JHU) of multiple un-
manned ground and air vehicles (UAV) cooperating in a simulated exercise. The MAS
used two stigmergic algorithms to control the behaviors of the unmanned vehicles.
Altarum used a pheromone-based algorithm to control the behavior of the UAVs for
surveillance and convoy patrol. JHU’s force field algorithms were used to control the
ground robots that performed surveillance and perimeter patrol around a group of
buildings.

In this application the environment was primarily used to provide an augmentation
to the real environment. It served as an artificial space in which the MAS could deposit
and sense pheromones. The environment was responsible for managing the phero-
mone dynamics, which included aggregating deposits of pheromones in the spatial
grid, propagating pheromones through the grid, and evaporating those pheromones
over time. The MAS agents were even allowed to do something that real entities could
not do with real pheromones: they could remove pheromone from a location. In this
way the MAS environment was truly an artificial environment since it allowed the
development of pheromone operations that violated physical laws and constraints.

The unmanned vehicle control application used the environment to provide the
following services:

• The environment provided a standard interface between the MAS and both the
simulated and the actual hardware. The standard interface allowed the agents to
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get information on current location, heading and speed of the vehicle as well as
issue commands for new headings and speed. A similar interface for the ground
robot and the unmanned air vehicle (UAV) made it easier to develop a single
agent that could control either vehicle.

• The environment maintained state information on all the entities in the system.
An agent had a single interface and place to go to find out about the location of
all other entities in the system.

• The environment provided a virtual world for the stigmergic algorithms. The agents
were able to deposit and read the state of digital pheromones. The environment
maintained the pheromones by performing all the accumulation, propagation, and
evaporation functions on the pheromones. It also maintained all the force fields
used by the JHU algorithms

• The environment served as an integrating platform between the two stigmer-
gic algorithms. When the UAVs controlled by Altarum’s pheromone algorithm
needed to communicate information to other UAV’s they used deposits in the envi-
ronment. When they needed to communicate similar information to the ground
robots controlled by JHU they used the same mechanism. The UAV agent did not
know or care what agent responded to the deposit, or even what kind of algorithm
the agent used.

The advantages of the first item (maintaining a standard interface) became clear
when it came time to integrate the agent algorithms with the hardware platforms.
Initially the MAS applications were developed and tested in a simulated environment
(Configuration I). When the algorithms had been validated in simulation they were
loaded unchanged onto the hardware control platform for the ground robot. The
MAS application worked the first time without modification. A similar experience
was had when installing the algorithms on the UAVs. First it was possible to reuse
the same agents that controlled the ground robots to control the UAVs. Secondly, the
agents were installed unchanged on the UAV and the control software worked first
time. In fact the only change that had to be made to the algorithms was the knowledge
of the UAV turning radius. The simulation had not previously taken this into account
and the algorithm required a slight modification to predict future headings far enough
in advance to accommodate the restricted turning radius of the platform. The latter
demonstrates the need for quality emulation models that can be reused (some model
deficiencies will be hard to remedy).

3.4 Summary and remarks

Configuration II targets applications rooted in the physical world. Agents handle all
decision-making aspects; the environment reflects the remaining entities in the world-
of-interest. There is a run-time connection between the environment and the real
world. The agents only interact with the real world through the environment as an
intermediary.

In Configuration II, the environment provides important augmentations of the real
world.Thefunctionalitydiscussedtypicallyisreusableandmodular.Indeed,manyofthe
above-discussedenvironmententitiescanbedevelopedbasedonself-knowledge(ofthe
correspondingreal-worldentity)only.Hence,suchaugmentedenvironmententitiescan
be constructed to be reusable wherever and whenever an instance of the corresponding
real-world entity exists. And, much of the functionality is application-independent.
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4 Configuration III—Adaptive structured information systems

In Configuration III, the multi-agent system operates on an external system in cyber
space. In contrast to previous configurations, the link to the external world is straight-
forward. This section first describes this configuration. Next, it discusses functionalities
offered by the environment in this configuration. Then, a sample application highlights
the contribution of the environment therein.

4.1 The configuration

Figure 3 depicts Configuration III. The world-of-interest is an information system
external to the multi-agent system. The environment and the world-of-interest have a
run-time connection. Changes in the information system are important events, which
the run-time connection must address. Preferably, the agents only interact indirectly
with the world-of-interest, using the environment as an intermediary, but it is not
mandatory.
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Typically, environment entities reflect the information entities (e.g. web pages) in
the information system as well as their structure (e.g. links between pages). For the
configuration to provide added value to the agent system, the information system
must have some structure that can be exploited. Moreover, the information system
must evolve slowly from the perspective of multi-agent application. Nonetheless, the
information system changes over time, which creates the conditions calling for an
agent-based solution.

4.2 Augmentation of the information system

In Configuration III, the environment provides a reflection of the structured infor-
mation system, which is kept synchronized, while adding extra functionality. More
specifically, the environment may:

• Extend the information system:
• Provide abstractions and aggregations of the information.
• Maintain separation between the agent system and the peculiarities of access-

ing the information in a particular information system. This makes the agent
system more reusable.

• Cache information.
• Preserve older versions of the information, no longer available in the external

system.
• Monitor the information system:

• Monitor the structured information system and provide a publish-subscribe
service.

• Collect information about usage by the agents, possibly correlated to a success
or satisfaction indication.

• Add information processing structures:
• Provide co-field- and stigmergy-supporting infrastructures.
• Provide a supervision cockpit for the information systems operator(s).
• Maintain and process additional information created by the agents and used

to perform their functions.
• Moderate and constrain access, impose norms and regulations, possibly as a service

used by the agents voluntarily.
• Create and maintain a relationship amongst several such adaptive structured infor-

mation systems.

An important advantage of the environment concept is that the adaptive infor-
mation system need not be aware of the functionality augmentation delivered by
the environment. Likewise, the environment may collect information about agent
activities without explicit cooperation from all these agents. However, some minimal
cooperation by the agents may enhance the service level that can be supported (e.g.
by indicating satisfaction and/or activity type).

4.3 Example

Bandini et al. discusses the development of a type III configuration to enhance ac-
cess to web sites [3]. In this application, agents (human or otherwise) access the
Internet through an intermediary system (environment) that observes user behavior.
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Usage patterns are recognized and registered. This information is employed to offer
enhanced services, which include:

• Caching the information on web pages, visited by the agents, while using web
crawlers to discover changes. The crawling activity is driven by usage patterns.

• Cached information keeps information available after it has disappeared at its
source. For instance, information that is regularly accessed by the users/agents will
be preserved.

• A notification service informs agents of changes to web pages. Agents have to
subscribe to this service.

• Web designers may exploit the usage patterns to enhance their web site.
• The agents are presented with an augmented view on the web pages that they are

visiting, reflecting the usage patterns that are recognized by the environment.

This augmented view is based on both the behavior of the individual agent and
of the agent community. The latter is hard to achieve without a proper environment;
it also provides the most significant benefits to the agents. Consider the following. It
is quite common that ‘frequently wanted information’ on a web site is hard to find
and requires navigating along several links without informative labels (e.g. the input
needed for a route planner on the web site of an airport). If sufficient agents execute
such search patterns successfully, the environment recognizes this and provides short-
cuts, eliminating loops and detours, also to agents that visit the web site for the first
time.

4.4 Summary and remarks

In Configuration III the environment provides a mechanism to augment information
systems. The augmentations are transparent to the information system and impose
minimal requirements on the agents. The research community still has to explore what
possibilities open up when the environment establishes and maintains connections
and bridges between multiple information systems. Also, the research community has
only started to discover the collection of suitable information systems (other than the
Internet) and the corresponding augmentations.

5 Composite configurations—real-world interaction plus run-time simulations

The configurations discussed above constitute a basis for environment-centric multi-
agent applications. However, not every application fits into exactly one of these con-
figurations. Therefore, this section discusses Composite Configurations illustrating
how the environment (and its software support) needs to integrate embedded base
configurations. The discussion reveals services that cross the boundaries of base con-
figurations and cannot be added as an afterthought. Which composite configurations
are needed remains an open issue. The Composite Configurations discussed here
originate from users concerned about deploying and operating their MAS.

Figures 4 shows the embedded configurations in a Composite Configuration as
discussed in this section. In base Configurations I and II, the environment maintains
the state of all entities at the same point in time. In Configuration I that is the current
time in the simulation. In Configuration II it is the current wall-clock time of the real
world. In the Composite Configurations, the environment not only maintains a model
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of the entities at a particular point in time, but it is able to support multiple models of
the system at different points in time.

5.1 The composite configurations

Figure 4 depicts one possible alternative comprising the agent system, the environ-
ment, the world-of-interest and their relationships. Alternatively, the front layer may
consist of a Configuration I model of the current state of the system. The layers
behind this front layer each correspond to a Configuration I simulation of the system
at alternative points in time and possibly varying states. Time progresses in the back-
end simulations much faster than time progresses in the front layer configuration.
This enables multiple explorations of alternative system trajectories in the backend
simulation before time has advanced significantly in the front layer configuration.

An important characteristic is the interaction between the front layer and the
backend layers:

• The backend simulations can be initiated from the front layer configuration. The
initial state of the simulation is a consistent ‘image’ extracted from the front layer
configuration.

• Multiple backend simulations can execute in parallel with the front layer configu-
ration to investigate alternative future scenarios.

• The configuration imposes an upper bound on the number of backend simulations,
thus guaranteeing efficiency (given a computationally efficient MAS).
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• Using the simulation results, the agents determine what actions to take in the
present. These actions are implemented in the front-layer configuration.

Backend simulations can also be initiated from past states and projected future states:

• The maintenance of a history of environment state snapshots offers the possibil-
ity to initiate the simulations with ‘images’ from interesting states in the past. A
typical usage would be to prepare adequate responses to major disturbances that
have occurred and to which the agent system failed to respond well.

• Certain advanced Configuration II systems are able to forecast near-future states
[15, 35]. This provides predicted snapshots of the system state that are used to
initialize the simulation models. These simulations are allowed to execute until
the time of the snapshot when the answers derived from the simulation results are
injected into the front layer system.

• Backend simulations may also instantiate new simulations. This “forks” the simu-
lation timeline so that multiple alternative futures can be investigated at any point
in the backend simulation. The potentially exponential growth in the number of
backend simulations is prevented by a suitable control mechanism.

These interactions reveal the need to provide access to the ‘system state’ in the embed-
ded base configurations. The environment must support (1) the extraction of ‘images’
from base configurations, (2) the initialization of a Configuration I by such image and
(3) the injection of ‘simulation results’ into the front layer configuration. Time and
time management services are also prominent. Experience indicates that this kind of
services cannot be implemented as afterthoughts.

5.2 Uses of the composite configurations

These backend simulations provide useful functionality to the MAS; the simulated
environments provide a virtual playground for the agents to work with. The agents
can use this as follows:

• What-if scenarios. The same complex nature of MAS that requires simulation for
testing and validation during the design phase also hinders their behavior in the
real world. Mapping multiple individual agent actions into an expected outcome
is not always possible without simulating the system. By giving the agents a vir-
tual environment to try out different actions, they can choose the best actions
for accomplishing their goals without having to perform trial and error in the real
world. These trial and error exercises in the backend simulations may start from an
image provided by the front layer that corresponds to its current state. However,
the front layer cannot be frozen and the developments therein may erode and
eventually invalidate the course-of-action derived from the results of the backend
simulations. To counter this, provided the front-end is able to generate short-term
forecasts, the backend simulations may be initialized by predicted images of the
front layer.

• Learning and adaptation. A simulated environment provides an opportunity for
agents to use different learning mechanisms. For example agents could use evolu-
tion or other techniques to adapt to new, previously unforeseen circumstances by
using future simulations to evolve the fittest behaviors.

• Explore possible futures. Most systems exhibit some stochastic and non-determin-
istic behavior. Simulation can be used to explore the range of possible futures that
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the agents will encounter. This can be used for predicting possible future states as
well as probabilities of reaching those states.

• Game playing. When the MAS is dealing with intelligent entities that are not
under its control, game playing is an important tool for identifying best behaviors.
Simulated environments can be used to model cooperating and non-cooperating
entities in friendly and adversarial relationships.

5.3 Example

DARPA’s RAID program is developing technologies to aid a commander in urban
combat operations. Altarum is developing an Adversarial Reasoning Module (ARM)
that attempts to predict the behavior of the adversarial (Red) units and advise the
commander (Blue) on the best course of action [27].

ARM uses a composite configuration to solve the problem. Snapshots are main-
tained of the system state in the past, which includes the location of all the known
entities, their actions, and the events that transpired. These snapshots are used to
evolve a behavioral model for each of the Red entities in the system.

The model is used to predict the future behavior of the Red entity by running a sim-
ulation starting from the current state of the system and simulating up to 60 minutes
into the future (using Configuration I). ARM uses a stigmergic approach to control
the actions of Red, so the environment also provides support for the pheromone
fields used in this simulation. Simultaneously, Blue agents are using the future sim-
ulations of Red’s behavior to identify their best response. The models are stochastic
so multiple simulations are executed to identify different possible futures. Based on
repeated simulations, ARM is able to identify the most likely Red actions and most
dangerous Red actions along with the best course of action for Blue to take.

ARM is currently being evaluated in a simulated wargaming exercise (a Configura-
tion I simulation of current state with multiple backend simulations of the future). In
the future it will be deployed as a combination Configuration II (receiving real world
inputs on entity states and real-world events) and multiple backend simulations for
estimating future states.

The RAID urban combat advisor application uses the environment extensively in
a number of ways:

• It serves as an emulation of the real-world entities, modeling their behavior, and
maintaining their state.

• It emulates the sensors in the real world.
• The environment was used to maintain a recent history of past states and events.
• The environment was used as an augmentation to the real environment similar to

the UAV control application. It provided a spatial grid that agents could use to
deposit and sense pheromones.

• Finally the environment was used as a future prediction tool. In addition to pages
representing past states, pages also represented potential future states of the sys-
tem. Agents representing the known and suspected units in an area would make
various attempts at reaching their anticipated goals by simulating from the cur-
rent state of the system forward in time, faster than real time. In this way several
alternative futures all starting from the current state could be explored.

RAID represents a sophisticated use of the environment. By simultaneously emu-
lating real-world entities, providing an artificial world to support the pheromone
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algorithms, maintaining complex state histories, and supporting the simulation of
multiple future scenarios, it provides rich suite of services to the multi-agent system
for managing a complex application. By developing these services as an environment,
the application developers were able to focus more effort at optimizing the execution
environment so it was able to manage hundreds of entities over a city-wide landscape
while keeping 60 minutes of state history and still having sufficient time left to inves-
tigate hundreds of future scenarios an hour into the future in a matter of seconds.

5.4 Discussion

Composite configurations are important for two reasons. First, they bring forward
integration issues, which are likely to remain unresolved unless recognized early on.
Second, they address key functionality for the deployment and operation of multi-
agent systems, especially for Configuration II. The availability of a simulation ‘play-
ground’ in the multi-agent environment makes a difference where it really counts: it
convinces the human decision makers that are involved.

6 Electronic institutions and environments for multi-agent systems

Research into Electronic Institutions has been investigating MAS environments for
several years [25]. E-Institutions are a technology to enforce and monitor the norms
and laws that apply to the agent society in a given environment. Several Configuration
I applications have been developed in the past (for e-commerce [29], for power man-
agement [31]) as well as a Configuration II in the actual trade of fish where humans
and agents compete in real time [8].

Figure 5 depicts how the E-institution controls the interactions between the exter-
nal agents and the world-of-interest. The E-Institution is part of the environment and
is realized by a collection of so-called staff agents. The application’s agent system
consists of so-called external agents (i.e. external to the institution). External agents
only interact through the environment via a set of specialized agents called gover-
nors. Furthermore, there is a collection of norms that structures all interactions in the
environment. In other words, the dynamics of the environment is restricted to those
that satisfy the social laws represented by the norms and enacted by the coordinated
actions of governors and staff agents. As to the external world, it is considered to be
similar to the configurations described above.

The flexibility of the concept comes from its clear separation of concerns between
the internal behavior of agents and their external interaction (environment model-
ing). From the perspective of an agent, the real world is modeled in this respect as
several components:

• As a number of agents (usually called staff agents) that model/expand their coun-
terparts in the real world (as in Configuration II systems) or that simply behave
according to an internal model (as in Configuration I systems).

• As a number of norms that restrict the behavior of agents preventing them to
behave in unacceptable/impossible ways. In this respect norms can be thought
as physical laws (hence in the direction of Configuration II systems) or as social
conventions that shape/constraint the evolution of interactions (needed in both
Configuration I and II systems).
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• As an explicit agreement on language. An institution contains as a component a
particular Ontology and a set of illocutionary particles.

• As an explicit set of activities. Activities represent tasks solved by groups of agents
and are nodes within a network that models the flow of agents. Actions within activ-
ities are further fixed as a protocol that will only permit certain dialogues among
the agents.

Institutions establish conventions on behavior, language, and protocols that force
agents to behave in particular and restrictive ways. In a sense the environment is
given structure, so the agents have an easy comprehension of its working laws. These
restrictions help a lot in the programming of agents as, by restricting the set of actions
agents have to consider at each moment in time, it facilitates addressing the frame
problem by limiting the set of options that agents have to think about.

Summarizing, Electronic Institutions are a representative example of more mature
research concerning technology for MAS environments. E-Institutions provide oppor-
tunities to enhance the world-of-interest, specifically by inducing the agent society to
obey norms and rules. They add value by offering guarantees and separation of con-
cerns. Such technology complements the yet-to-be-developed environment technolo-
gies that bring a specific world-of-interest (application domain) to the agent world.
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7 Conclusion

7.1 Summary

This paper presents three base configurations for environment-centric MAS applica-
tions. These configurations address applications that respectively execute simulations,
perform real-world interaction and act upon structured information systems.

Simulation applications require the environment to emulate the world-of-interest
and to support time management functionality. The nature of the world-of-interest
helps to prevent inconsistencies and incoherence within the emulation. The agents in
the simulation often model themselves, typically when they are to be deployed in a
real-world application subsequently.

In the second configuration, the environment augments the real world. This in-
cludes enhanced access to the real world, auto-updated documentation, controlled
access to and usage of real-world entities, information processing infrastructures, and
virtual extensions into the past and future. A simulation along the first configuration
often precedes these real-world applications.

In the third configuration, the environment augments adaptive structured infor-
mation systems. These augmentations extend the information system, monitor the
information system and add information processing structures. Furthermore, the envi-
ronment captures the behavior of the agents themselves, allowing the agents to benefit
from past experience of the agent community. Moreover, the environment may pro-
vide links between information structures.

Next, the paper discusses composite configurations and ascertains how support
for base configurations must anticipate integration requirements. The functionality
identified in the composite configuration includes access to the ‘system state’ in base
configurations. Time and time management services are also important.

Finally, the paper addresses software support. Electronic Institutions are discussed
as an example of relevant technology. E-institutions provide the means to enforce and
monitor the norms and laws within an agent society. Similar technologies for specific
application domains (e.g. manufacturing or traffic) still remain to be elaborated.

7.2 Future work

The above discussion uncovers a multitude of environment services and infrastruc-
tures, which are only supported by ad hoc implementations within today’s applica-
tions. The development of more systematic support remains on the research agenda.
Such support allows many applications to share development efforts, mobilizing the
necessary resources to increase the quality and service level significantly.

The precise shape of software support for MAS environments also remains an
open issue. Before the environment was recognized explicitly, many ad hoc imple-
mentations presented themselves as a collection of agents to the ‘real agent system’
(environment entities have an agent hull). Future research needs to investigate which
embodiments of the environment are capable of providing the proper environment
services, infrastructure and functionalities effectively and efficiently.

This paper discusses electronic institutions [1] as a sample environment technol-
ogy to enact a particular type of environments for MAS. But, it is an open issue
whether and how this technology can be further extended. More generally, the distri-
bution of responsibilities over environment technologies and subsystems remains
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an open issue. MAS environments are natural candidates to capture application
domain expertise, but developments addressing this opportunity are still embryonic
and isolated.

Finally, the designs of MAS environments and agent systems have different starting
points. The design of a MAS environment starts by reflecting the world-of-interest or,
more ambitiously, the relevant application domains. Suitably adapted design method-
ologies still have to be developed.
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