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Abstract. Mixed multi-unit combinatorial auctions (MMUCAs) offer
a high potential to be employed for the automated assembly of sup-
ply chains of agents. However, in order for mixed auctions to be effec-
tively applied to supply chain formation, we must ensure computational
tractability and reduce bidders’ uncertainty. With this aim, we introduce
Sequential Mixed Auctions (SMAs), a novel auction model conceived to
help bidders collaboratively discover supply chain structures. Thus, an
SMA allows bidders progressively build a supply chain structure through
successive auction rounds.

1 Introduction

According to [7], “Supply Chain Formation (SCF) is the process of determining
the participants in a supply chain, who will exchange what with whom, and
the terms of the exchanges”. Combinatorial Auctions (CAs) [2] are a negoti-
ation mechanism well suited to deal with complementarities among the goods
at trade. Since production technologies often have to deal with strong comple-
mentarities, SCF automation appears as a very promising application area for
CAs. However, whilst in CAs the complementarities can be simply represented
as relationships among goods, in SCF the complementarities involve not only
goods, but also transformations (production relationships) along several levels
of the supply chain.

The first attempt to deal with the SCF problem by means of CAs was done by
Walsh et al. in [7]. Later on, mixed multi-unit combinatorial auctions (MMU-
CAs), a generalization of the standard model of CAs, are introduced in [1].
Rather than negotiating over goods, in MMUCAs the auctioneer and the bid-
ders can negotiate over transformations, each one characterized by a set of input
goods and a set of output goods. A bidder offering a transformation is willing
to produce its output goods after having received its input goods along with the
payment specified in the bid. While in standard CAs, a solution to the winner
determination problem (WDP) is a set of atomic bids to accept, in MMUCAs,
the order in which the auctioneer “uses” the accepted transformations matters.
Thus, a solution to the WDP is a sequence of transformations. For instance, if
bidder Joe offers to make dough if provided with butter and eggs, and bidder
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Lou offers to bake a cake if provided with enough dough, the auctioneer can
accept both bids whenever he uses Joe’s transformation before Lou’s to obtain
cakes. Unfortunately, the MMUCA WDP has been proved to be NP-complete
[1]. Although reasonably fast solvers have been introduced [4], MMUCA still
turns out to be impractical in real-world procurement scenarios. Furthermore,
a bidder in MMUCA only knows the desired outcome of the supply chain and
the current stock goods. Hence, it is difficult, specially for providers placed in
the intermediate levels of the supply chain, to decide what to bid for. Therefore,
in order for mixed auctions to be effectively applied to SCF, we must ensure
computational tractability and reduce bidders’ uncertainty. With this aim, we
introduce Sequential Mixed Auctions (SMAs), a novel auction model conceived
to help bidders collaboratively discover supply chain structures.

SMAs propose to solve a SCF problem by means of a sequence of auctions.
The first auctioning round starts with the desired outcome of the supply chain as
requested goods and the stock goods as available goods. During the first auction,
bidders are only allowed to bid for transformations that either (i) produce goods
in the set of requested goods or (ii) consume goods from the available goods.
After selecting the best set of transformations, the auctioneer updates the set of
requested and available goods after the execution of these transformations and
then it will start a new auction. The process continues till no bids can be found
that improve the supply chain. Notice that each auction in the sequence involves
only a small part of the whole supply chain, instead of the whole one as MMUCAs
do. Thus, auctions in an SMA are much less computationally demanding than a
MMUCA. Moreover, the incremental nature of an SMA provides its participants
with valuable information at the end of each auction round to guide their bidding.

The paper is organised as follows. Section 2 provides some background of
mixed auctions, whereas section 3 formally states the WDP and section 4 details
a mixed integer pogram that solves it. Finally, section 5 concludes.

2 Background: Mixed Auctions

Next we summarise the work in [1], which introduces mixed auctions (MMU-
CAs) as a generalisation of CAs and discusses the issues of bidding and winner
determination.

Let G be the finite set of all the types of goods. A transformation is a pair of
multi-sets over G: (I,O) ∈ N

G×N
G. An agent offering the transformation (I,O)

declares that it can deliver O after having received I. Bidders can offer any num-
ber of such transformations, including several copies of the same transformation.
That is, agents negotiate over multi-sets of transformations D ∈ N

(NG×N
G). For

example, {({ }, {a}), ({b}, {c})} means that the agent in question can deliver a
(no input required) and that it can deliver c if provided with b.

Since agents negotiate over bundles of transformations, a valuation v :
N

(NG×N
G) → R is a mapping from multi-sets of transformations to real numbers.

Intuitively, v(D) = p means that the agent equipped with valuation v is willing
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to make a payment of p for being allocated all the transformations in D (in case p
is negative, this means that the agent will accept the deal if it receives an amount
of |p|). For instance, valuation v({({line, ring , head , 6 · screws , screwdriver},
{cylinder , screwdriver})}) = −10 means that some agent can assemble a cylin-
der for 10ewhen provided with a (cylinder) line, a (cylinder) ring, a (cylinder)
head, six screws, and a screwdriver, and returns the screwdriver once done.1

An atomic bid b = ({(I1,O1), . . . , (In,On)}, p, β) specifies a finite multi-set
of finite transformations, a price p and the bidder β. A bidding language allows
a bidder to encode choices between alternative bids and the like [6]. Informally,
an OR-combination of several bids means that the bidder would be happy to
accept any number of the sub-bids specified, if paid the sum of the associated
prices. An XOR-combination of bids expresses that the bidder is prepared to
accept at most one of them. The XOR-language is known to be fully expressive
for MMUCAs [1]. Bids in MMUCAs are composed of transformations. Each
transformation expresses either an offer to buy, to sell, or to transform some
good(s) into (an)other good(s). Thus, transformations are the building blocks
composing bids. We can classify the types of transformations over which agents
bid as follows:

1. Output Transformations are those with no input good(s). Thus, an O-
transformation represents a bidder’s offer to sell some good(s).
2. Input Transformations are those with no output good(s). Thus, an I-
transformation represents a bidder’s offer to buy some good(s).
3. Input-Output Transformations are those whose input and output good(s)
are not empty. An IO-transformation stands for a bidder’s offer to deliver some
good(s) after receiving some other good(s): I can deliver O after having received
I. They can model a wide range of different processes in real-world situations
(e.g. assembly, transformation, or exchange).

The input to the WDP consists of a complex bid expression for each bidder, a
multi-set Uin of (stock) goods the auctioneer holds to begin with, and a multi-set
Uout of (required) goods the auctioneer expects to end up with. In standard CAs,
a solution to the WDP is a set of atomic bids to accept. As to MMUCAs, the
order in which the auctioneer ”uses” the accepted transformations matters. For
instance, if the auctioneer holds a to begin with, then checking whether accepting
the two bids Bid1 = ({({a}, {b})}, 10, id1) and Bid2 = ({({b}, {c})}, 20, id2) is
feasible involves realizing that we have to use Bid1 before Bid2. Thus, a valid
solution to the WDP will be a sequence of transformations that satisfies:

(1) Bidder constraints: The multi-set of transformations in the sequence has
to respect the bids submitted by the bidders. This is a standard requirement.
For instance, if a bidder submits an XOR-combination of transformations, at
most one of them may be accepted. With no transformation free disposal, if a
bidder submits an offer over a bundle of transformations, all of them must be
employed in the transformation sequence, whereas in the case of transformation

1 We use 6 ·screws as a shorthand to represent six identical elements in the multi-set.
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free disposal any number of the transformations in the bundle can be included
into the solution sequence, but the price to be paid is the total price of the bid.

(2) Auctioneer constraints: The sequence of transformations has to be imple-
mentable: (a) check that Uin is a superset of the input set of the first trans-
formation; (b) then update the set of goods held by the auctioneer after each
transformation and check that it is a superset of the input set of the next trans-
formation; (c) finally check that the set of items held by the auctioneer in the
end is a superset (the same set in the case of no good free disposal) of Uout.

An optimal solution is a valid solution that maximizes the sum of prices
associated with the atomic bids selected.

The WDP for MMUCAs is a complex computational problem. In fact, one
of the fundamental issues limiting the applicability of MMUCAs to real-world
scenarios is the computational complexity of the WDP, which is proved in [1]
to be NP-complete. Although [4] introduces an integer program to efficiently
solve the WDP that drastically outperforms the original IP described in [1],
the computational complexity impedes scalability. The next section introduces a
new mixed auction model that allows to tame complexity while reducing bidders’
uncertainty.

3 Sequential Mixed Auctions

An SMA proposes to solve the SCF problem by means of a sequence of auctions.
The first auction in the sequence starts with the desired outcome of the supply
chain as requested goods and the stocked goods as available goods. During the
first auction, bidders are only allowed to bid for transformations that either: (i)
produce goods in the set of requested goods; or (ii) consume goods from the avail-
able goods. After selecting the winning bids (the best set of transformations), the
auctioneer updates the set of requested and available goods after the execution
of these transformations. Moreover, the winning bids are included as part of the
supply chain. Thereafter, the auctioneer starts a new auction in the sequence.
The process continues until no bids can improve the supply chain. Hence, the
purpose of the auctioneer is to use a sequence of auctions to progressively build
the structure of the supply chain.

Figure 1 illustrates the operation of an SMA. Say that a cocktail bar intends
to form a supply chain using an SMA to produce a gin & lemon cocktail. Assume
that the bar knows approximate market prices for a gin & lemon cocktail as well
as for its ingredients. The auctioneer starts the first auction in the SMA issuing
a request for quotation (RFQ) for a gin & lemon cocktail. Figure 1a depicts the
RFQ along with each good’s market price in brackets (e.g. the expected market
price of 1 liter of gin is 4e ). During the first auction, the auctioneer received two
bids: one offering to deliver a cocktail for 9e (figure 1b); and another one to make
a cocktail for 1ewhen provided with lemon and gin (figure 1c). The auctioneer
must now choose the winning bid out of the bids in figure 1d. However, notice
that the bid in figure 1c can only be used whenever some provider(s) offer gin
and lemon. Thus, the auctioneer assesses the expected price of the bid using
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(4€)

RFQ : Cocktail

inGin LemonLemon (3€)

CocktailCocktail (10€)

(a) First auction

9€t1t1

CocktailCocktail

(b) Bid for good

1€t2t2

CocktailCocktail

GinGin LemonLemon

(c) Bid for trans-
formation

1€t2

CocktailCocktail

Gin Lemon

9€t1t1

(d) All bids

1€t2t2

CocktailCocktail

GinGin LemonLemon

(e) Winning bid

(4€)

RFQ : Gin, Lemon

GinGin LemonLemon (3€)

(f)Second auction

5€t3t3

GinGin LemonLemon

(g) Combinatorial
bid for goods

1€t2t2

CocktailCocktail

GinGin LemonLemon

t3t3 5€

(h)Resulting sup-
ply chain

Fig. 1. Example of sequential mixed auction

the market prices of gin (4e ) and lemon (3e ). Since the expected price is
8(= 1+4+3)e , the auctioneer chooses this bid as the winning bid and discards
the bid in figure 1b, namely buying the cocktail for 9e .

At this point, the structure of the supply chain is the one depicted in figure
1e. Nonetheless, in order to run the supply chain, the auctioneer must still find
providers of gin and lemon. With this aim, the auctioneer starts a new auction
of the SMA by issuing an RFQ for gin and lemon (figure 1f). According to our
example, this time the auctioneer only receives the combinatorial bid in figure
1g, which offers both lemon and gin for 5e . Since the bid is cheaper than the
overall market price of both gin and lemon (4e+3e ), this bid is selected as the
winning bid of the second auction. Figure 1h shows the resulting structure of
the supply chain after the second auction. Since there are no further goods to
allocate, the auctioneer closes the SMA. The resulting supply chain produces a
cocktail at the cost of 6e .

Although the SMA in this example obtains the optimal solution, this is not
always the case. In general, at the end of each auction the auctioneer discards
some bids because other bids are expected to lead to cheaper solutions. For
instance, the bid in figure 1b is discarded to favour the bid in figure 1c. Therefore,
since discarded bids might eventually lead to better solutions during subsequent
auctions, unlike an MMUCA, an SMA is not guaranteed to obtain an optimal
solution (sequence of transformations). Although SMAs may lose optimality, the
example anticipates how an SMA help cope with computational complexity and
bidders’ uncertainty. Firstly, an SMA breaks the formation of a supply chain into
several auctions, instead of running a single auction with all bids as MMUCA
does. Secondly, after each auction in an SMA, bidders are informed about the
needs of the supply chain. Therefore, the auctioneer guides bidders after each
tier of the supply chain is formed, hence reducing their uncertainty with respect
to participating in MMUCAs (MMUCA bidders only know the expected final
outcome of the supply chain!).
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3.1 Defining the Winner Determination Problem

An SMA is essentially a sequence of auctions (henceforth step auctions). For
instance, the SMA in figure 1 is composed of two consecutive auctions. Each
step auction receives a set of stock goods and final goods along with the bids
submitted by bidders. Then the auctioneer solves the WDP to assess the winning
bids as well as the remaining stock goods and required final goods, which are
passed on to the next auction in the sequence. When solving the WDP, we
assume that the auctioneer is aware of the market prices of goods so that it can
compute the expected price of bids when necessary. The sequence of auctions
continues till an auction either: (i) obtains a set of winning bids that produce
the required goods while consuming all the stock goods; or (ii) does not receive
any bids that can improve the supply chain. At this point, the winning bids of
the last step auction stand for the SMA solution.

Next, we focus on formally defining the WDP faced by the auctioneer during
each step auction of an SMA. Henceforth, we consider that the auctioneer holds
a multi-set Uin of stock goods to begin with and expects to end up with a multi-
set Uout of required (needed) goods. These are the input to the first auction in
the SMA. For the formal definition of the WDP, we restrict ourselves to bids
in the XOR-language, which is known to be fully expressive. Let C be the set
of bidders. Let B be the set of all atomic bids. An atomic bid b = (Db, pb, βb)
consists of a multiset of transformations, a price, and a label indicating the owner
of the bid, i.e. Db ∈ N

(NG×N
G), pb ∈ R, and βb ∈ C. Let Bβ be the set of all

atomic bids submitted by bidder β ∈ C. Note that a bid can offer several units
of the very same transformation. For each bid b, let tbk be a unique label for
the kth different transformation offered by bid b. Let (Ibk,Obk) be the actual
transformation labelled by tbk.

At the l-th step auction in an SMA, let Tl be the set of labels tbk for all
transformations mentioned anywhere in the bids received by the auctioneer.
The auctioneer has to decide which transformations to accept and the order
to implement them. Thus, an allocation sequence Σl is an ordered list of a
subset of the transformations in Tl. We write tbk ∈ Σl to say that the k-th
transformation in bid b has been selected and |Σl|tbk

for the number of times
that tbk appears in Σl. Intuitively, an allocation sequence for a step auction is
a valid solution iff: (i) it fulfills the semantics of the bidding language; (ii) it
inherits all the transformations in the valid solution of the previous step auction
while preserving their ordering; and (iii) the new transformations in the sequence
(not inherited from the previous step auction) offer to either buy produced goods
or sell required goods from the previous step auction. The last condition ensures
that the new transformations accepted by the auctioneer either provide goods
required to use the transformations in the previous step auction or consume
goods produced in the same step auction. We are now ready to define under
what circumstances a sequence of transformations constitutes a valid solution
for a step auction in an SMA.

Definition 1 (Valid solution of a step auction). Given an SMA, let Σl−1

be a valid solution, and Buyl−1 and Selll−1 the multi-sets presenting the required
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and available goods after the (l − 1)-th step auction. An allocation sequence Σl

of the l-th step auction for a given set of atomic bids B is said to be a valid
solution iff:

1. Σl either contains all or none of the transformations belonging to the same
atomic bid.

2. Σl does not contain two transformations belonging to different atomic bids
by the same bidder.

3. Each transformation in Σl−1 belongs also to Σl.
4. Σl preservers the order of transformations in Σl−1. Thus, for every two

transformation t, t′ ∈ Σl−1, if t appears before t′ in the allocation sequence
Σl−1, it also appears before t′ in the allocation sequence Σl.

5. For each transformation in Σl that is not in Σl−1, either some of its input
goods are in Selll−1, some of its output goods are in Buyl−1, or both.

For the first auction of the SMA, 〈{ },Uout,Uin〉 stand for the valid solution, and
the needed and stock goods.

In order to assess the expected revenue of a valid solution Σl, we must first
compute the goods that the auctioneer should buy and sell in the market to
implement the solution, namely to use all the transformations in the sequence.
First, we compute the units of each good produced by a sequence Σl as:

Pl(g) =
∑

tbk∈Σl

|Σl|tbk
· [Obk(g) − Ibk(g)] (1)

Hence, we can obtain the number of units of each good held by the auctioneer
after all the transformations in the sequence are used as:

Ql(g) = Uin(g) + Pl(g) − Uout(g)
Now, we assess the units of each good to buy or sell in the market as:

Buyl(g) =

{
0 if Ql(g) > 0

−Ql(g) otherwise
Selll(g) =

{
Ql(g) if Ql(g) > 0

0 otherwise
.

Notice that in fact Buyl and Selll stand for the remaining required goods and
available stock goods that step auction l passes on to the next auction. Now,
assuming that the auctioneer knows the expected market prices at which goods
can be bought (P− : G → R) and sold (P+ : G → R), the acutioneer can
compute the expected revenue of a valid solution.

Definition 2 (Expected revenue of a valid solution). The expected revenue
of a valid solution Σl for step auction l is the sum of the prices associated with
the selected atomic bids minus the expected prices of the goods that are required
to be bought (Buyl) plus the expected prices of the goods that are sold (Selll) in
the market, namely:

∑

b∈Selected(Σl)

pb −
∑

g∈G

Buyl(g)P−(g) +
∑

g∈G

Selll(g)P+(g)

where Selected(Σl) = {b ∈ B|∃k : tbk ∈ Σl} is the set of selected atomic bids.



Solving Sequential Mixed Auctions with Integer Programming 49

Definition 3 (WDP of a step auction). Given multi-sets Uin and Uout of
initial and final goods for an SMA, a set of atomic bids B for step auction l,
a valid solution Σl−1 of step auction l − 1, and Buyl−1 and Selll−1 contain
the units of each good to buy or sell in the market after step auction l − 1, the
winner determination problem for step auction l is the problem of finding a valid
solution Σl that maximizes the expected revenue for the auctioneer.

We say that a sequence of auctions is complete when the solution to the last
step auction (n) in the sequence either: (i) produces all the required goods and
consumes all the stock goods (Buyn = { } and Selln = { }); or (ii) is equal
to the solution to the previous step auction (namely Σn = Σn−1. The first
condition occurs when the auctioneer fully satisfies his initial requirements, while
the second condition occurs when the auctioneer cannot find further bids that
improve the current solution, hence the current supply chain. Whatever the case,
the valid solution Σn contains the solution to the SMA.

4 Solving an SMA Step by Means of a Mixed Integer
Linear Program

As outlined above, solving an SMA amounts to solve the WDP for the first step
auction, then for the second step auction and so on and so forth until the SMA
is complete. Hence, the key computational problem is how to solve the WDP for
a step auction. In this section, we first summarise the Connected Component
IP Solver (CCIP), which maps the original MMUCA WDP into a mixed integer
program. Then, we modify it to solve an SMA step auction.

4.1 Connected Component IP Solver (CCIP)

In order to create a linear program we need to determine the maximum length
of the allocation sequence. The worst case is assuming that every possible bid is
accepted and hence every transformation in used. The total number of transfor-
mations (including multiple copies of the same transformation) can be assessed
as r =

∑
b∈B |Db|.

Let Tb be the set of all tbk for bid b. Let T be the set of all tbk, namely the
set of all distinguishable transformations (no copies of the very same transfor-
mation) mentioned anywhere in the bids. The auctioneer has to decide which
transformations to accept and the order to implement them. At this aim, we
represent each solution with a partial sequence J : {1, . . . , r} → T . We employ
the following decision variables: xb is a binary variable that takes value 1 if bid b
is accepted; xm

bk is a binary variable that takes value 1 only if transformation tbk
is selected at the m-th position within the solution sequence (i.e. J(m) = tbk).

Let S be a solution template, restricting the positions at which transforma-
tions can be executed. For each position m, S(m) is a set containing the subset
of transformations that can be executed at position m in the sequence. For more
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information on how to define solution templates see [4]. We will only allow as so-
lutions partial sequences fulfilling S. Hence we only have to create those variables
xm

bk such that tbk ∈ S(m).
We introduce two additional definitions to ease encoding the solver. First, xbk

represents the number of times that transformation tbk is used in the solution
sequence, assessed as:

xbk =
∑

m∈S−1(tbk)

xm
bk.

Second, we need to see how to assess the stock of a given good after m steps in
terms of the decision variables we have defined. Say that we represent with the
multiset of goods Stockm the quantity of resources available to the auctioneer
after performing m steps.

Now, Pm(g), the units of good g available at the end of step m can be
assessed as

Pm(g) =
m∑

i=1

∑

tbk∈S(m)

xi
bk · (Obk(g) − Ibk(g)).

That is, for each time step from 1 to m, we add the output goods of the trans-
formation executed at that step and remove its input goods. Hence, the stock of
good g after step m is:

Stockm(g) = Uin(g) + Pm(g) (2)

Finally, the constraints that a valid solution has to fulfil in solver CCIP are:

1. We enforce that, whenever a bid is selected each of the transformations in
that bid is used as many times as it is offered in the bid. Formally:

xbk = xb · |Db|tbk
∀b ∈ B, ∀k ∈ {1, . . . , |Tb|} (3)

where |Db|tbk
is the multiplicity of transformation tbk in bid b.

2. We enforce that at most one bid can be accepted per bidder (XOR con-
straint): ∑

b∈Bβ

xb ≤ 1 ∀β ∈ C. (4)

3. We enforce that enough goods are available to use the corresponding trans-
formations at each position of the solution sequence. This constraint, rep-
resented by equation 5 below, is only needed for some of the positions (see
[3] for a detailed description on LF , the set of positions in which it must be
enforced). Formally:

Stockm−1(g) ≥
∑

tbk∈S(m)

xm
bk · Ibk(g) ∀g ∈ G, ∀m ∈ LF (5)
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4. We enforce that, after having performed all the selected transformations, the
goods held by the auctioneer must be more than the goods that he requested,
namely at least Uout:

Stockm(g) ≥ Uout(g) ∀g ∈ G (6)

Hence, solving the MMUCA WDP amounts to maximising the objective func-
tion: ∑

b∈B

xb · pb (7)

subject to inequations 3 to 6.

4.2 Solving the WDP for an SMA Step

Next we focus on modyfing the CCIP solver so that it can solve an SMA step
auction. Recall that Σl−1 = 〈t1, . . . , tq〉 is the sequence describing the transfor-
mations accepted in a previous auction and their execution order and that B
contains the set of bids received at this step.

There are two modifications that need to be put in place. First, we need to
ensure that every transformation accepted in the previous SMA step, does also
appear in solution of the current step and that the order in which they are
executed is also maintained in the new solution. Second, we need to take into
account the possibility of buying from and selling to the market.

To ensure that all the transformations accepted in the previous SMA step, do
also appear in solution of the current step we add an additional bidder to C,
and a single atomic bid to B, namely b0. b0 is a combinatorial bid offering the
set of all the transformations accepted in the previous SMA step (that is, the
transformations in Σl−1) at no cost. Hence, from now on we can refer to any
transformation tk ∈ Σl−1 as tb0k. Now, to ensure that this bid is taken, we add
the additional constraint

xb0 = 1. (8)

We do also need to ensure that the ordering in the sequence of transformations
accepted in the previous SMA step is maintained in the solution of this step. To
encode this, for any transformation tbk we define the time at which it is fired as
fbk =

∑
m∈S−1(tbk) m ·xm

bk. Now, for each consecutive pair of transformations we
need to ensure that they are placed in the correct order in the solution sequence
of this SMA step. That is:

fb0k ≤ fb0k+1 ∀k ∈ {1, · · · , q − 1}. (9)

We take into account the possibility of buying from and selling to the market
by introducing a new integer decision variable yg , for each good at trade. yg

represents the number of units of good g that will be bought directly from
the market. We can assume that goods are bought from the market before the
solution sequence starts its execution. Hence, we can modify the expression for
Stockm in equation 2 to consider the goods bought from the market:



52 B. Mikhaylov, J. Cerquides, and J.A. Rodriguez-Aguilar

Stockm(g) = Uin(g) + Pm(g) + yg. (10)

Furthermore, we need to modify the objective function in 7 so that it takes into
account the costs of buying from the market and the benefits obtained by selling
to the market as described in definition 2. Note that Sell(g), the units of good g
that will be sold to the market can be assessed as the stock for that good after
executing the last step minus the requirements of the auctioneer for that good,
that is Sell(g) = Stockr(g) − Uout(g). The objective function for a step auction
is written as:

∑

b∈B

xb · pb −
∑

g∈G

yg · P−(g) +
∑

g∈G

Sell(g) · P+(g) (11)

Hence, solving the SMA step WDP amounts to maximising objective function
11 subject to constraints 8 and 9 and to the regular MMUCA constraints 3 to 6
with the definition of Stock modified as in equation 10.

5 Conclusions and Future Work

In this work, we continue the approach introduced in [5] to make mixed auctions
applicable to supply chain formation in real-world procurement scenarios.

Following [5], to cope with the extensive computing times of MMUCA and
bidder’s uncertainties we moved the supply chain formation process from a single
auction to a sequence of auctions. At each step auction, bidders are only allowed
to bid on transformations that consume available goods or produce requested
goods. After selecting the best set of transformations, the auctioneer updates
the set of requested and available goods. The sequence ends when supply chain
cannot be further improved. Each auction deals with just a small part of the
supply chain. Thus, while solving the WDP for an individual auction we deal
with small subsets of bidders, goods and transformations of former MMUCA.
Preliminary results in [5] have shown savings on solution times up to 6 times
while maintaining a reasonable quality.

The main contribution of this paper, the mapping of a step auction to a
mixed integer linear program, is less restrictive that the approach introduced
in [5], based on keeping a strict ordering among transformations. Hence, future
experimental results using this mapping are expected to increase solution quality.
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