
A Distributed Architecture for Enforcing Norms

in Open MAS

Natalia Criado1, Estefania Argente1, Pablo Noriega2, and Vicent Botti1

1 Departamento de Sistemas Informáticos y Computación
Universitat Politècnica de València

Camino de Vera s/n. 46022 Valencia, Spain
{ncriado,eargente,vbotti}@dsic.upv.es

2 Institut d’Investigació en Intel.ligència Artificial
Consejo Superior de Investigaciones Cient́ıficas
Campus de la UAB, Bellaterra, Catalonia, Spain

pablo@iiia.csic.es

Abstract. Norms have been promoted as a coordination mechanism for
controlling agent behaviours in open MAS. Thus, agent platforms must
provide normative support, allowing both norm-aware and non norm-
aware agents to take part in MAS controlled by norms. In this paper,
the most relevant proposals on the definition of norm enforcement mech-
anisms have been analysed. These proposals present several drawbacks
that make them unsuitable for open MAS. In response to these prob-
lems, this paper describes a new Norm-Enforcing Architecture aimed at
controlling open MAS.

1 Introduction

One of the main applications of Multi-Agent Systems (MAS) is its usage for sup-
porting large scale open distributed systems. These systems are characterized by
the heterogeneity of their participants; their limited trust; a high uncertainty;
and the existence of individual goals that might be in conflict [2]. In these sce-
narios, norms are conceived as an effective mechanism for achieving coordination
and ensuring social order.

This paper points out the main deficiencies and drawbacks of current plat-
forms and infrastructures when supporting norms. With the aim of enforcing
norms in open MAS, in this paper a Norm-Enforcing Architecture is proposed.
Specifically, our Norm-Enforcing Architecture has been integrated into the Ma-
gentix platform1. The Magentix platform allows the management of open MAS
in a secure and optimized way. Its main objective is to bring agent technology
to real domains: business, industry, e-commerce, among others. This goal entails
the development of more robust and efficient mechanisms for enforcing norms
that control these complex applications.

This paper is organized as follows: Section 2 contains the analysis of the
main proposals on norm enforcement; Section 3 describes briefly the Magentix

1 http://users.dsic.upv.es/grupos/ia/sma/tools/magentix2/

F. Dechesne et al. (Eds.): AAMAS 2011 Workshops, LNAI 7068, pp. 457–471, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



458 N. Criado et al.

platform; Section 4 describes the proposed Norm-Enforcing Architecture; and,
finally, Section 5 contains a conclusion and future works.

2 Related Work

In general, norms represent an effective tool for regulating the actions of soft-
ware agents and the interactions among them. Most of proposals on norms for
controlling MAS tackle this issue from a theoretical perspective [5,25]. However,
there are also works on norms from a computational point of view. These ap-
proaches are focused on giving a computational interpretation to norms in order
to use them in the execution of MAS applications. Thus, they illustrate how
MAS platforms and infrastructures can be extended to implement norms, given
that the internal states of agents are not accessible. Therefore, norms cannot
be imposed as agent’s beliefs or goals, but they must be implemented in the
platforms by means of control mechanisms [18].

These control mechanisms are classified into two categories [18]: regimentation
and enforcement mechanisms. Regimentation mechanisms consist on making the
violation of norms impossible by mediating the resources and the communication
channel, as in case of the Electronic Institutions (EI) [13]. However, the regimen-
tation of all actions can be not only difficult or impossible, but also sometimes
it is preferable to allow agents to violate norms [7]. In response to this, the en-
forcement mechanisms are applied after the detection of the violation of a norm,
reacting upon it.

Proposals on the enforcement of norms can be classified according to the
entities that are in charge of observing norm compliance. There are proposals
in which those agents involved by an interaction are responsible for monitoring
norms. In these approaches, agents evaluate subjectively to their interaction
partners. In accordance with this evaluation, agents may punish or reward their
partners [4] or they may start a grievance procedure [9].

If there are agents not directly involved by an interaction that are capable of
observing it, then they would be also capable of forming an own image about the
interacting participants. Moreover, these evaluations or reputations may be ex-
changed. Thus, agents are persuaded to obey norms because their non-normative
behaviour can be observed by others. In this case, the society as a whole acts as
norm enforcer [24]. These non-compliant agents might be even excluded from the
society [11]. The role of emotions in the social enforcement [12] is also interesting.
For example, the work described in [14] models the emotion-based enforcement
of norms in agent societies. In this approach, the whole society observes com-
pliance of norms and generates social emotions such as contempt or disgust, in
case of norm violation; and admiration or gratefulness, in case of norm compliant
behaviour. In the same way, agents observe the expression of these emotions and
are also able to generate emotions such as shame or satisfaction in response. The
main drawback of these proposals is the fact that the infrastructure does not
offer support for enforcing norms. Thus, the norm monitoring and reaction to vi-
olations must be implemented by agent programmers at user level. In this sense,



A Distributed Architecture for Enforcing Norms in Open MAS 459

agent programmers are responsible for watching over norm compliance. Even if
the infrastructure provides authority entities that act as arbiters or judges in
grievance processes, agents must be endowed with capabilities for both detecting
of norm violations and participating in these dispute resolution processes.

Usually, normative agent platforms provide entities that are in charge of both
observing and enforcing norms. The work contained in [20] proposes a distributed
enforcement mechanism in which each agent has an interface that sends legal
messages and enforces obligations. One of the main drawbacks of this proposal
is the fact norms can be only expressed in terms of messages sent or received by
a single agent; i.e., this framework does not support the definition of norms that
affect an agent as a consequence of a message independently sent by another
agent. This problem is solved by Gaertner et al. in [17]. In this work, Gaertner
et al. propose a distributed architecture for enforcing norms in EI. Specifically,
dialogical actions performed by agents are taken into account by the normative
level; i.e., a higher level in which norm reasoning and management processes
are performed in a distributed manner. Norms only control the illocutions per-
formed by agents, whereas non-illocutive actions and states of affairs cannot
be controlled by this approach. Modgil et al. propose in [21] a general archi-
tecture for monitoring norm-governed systems. In particular, this architecture
takes an overhearing approach; i.e., all messages exchanged among agents are
observed and processed. Thus, it is a two layer architecture in which observers
(i.e., the lower layer) are capable of reporting to monitors (i.e., the higher layer)
on states of interest relevant to the activation, fulfilment, violation and expi-
ration of norms. In this paper, we also propose a two layer approach to norm
enforcement. However, in our approach the reasoning about norm enforcement
is performed in the two layers whereas in the proposal of Modgil et al. the rea-
soning process is performed only by monitors. Moreover, our proposal takes as a
reference a trace event system based on a publish/subscription procedure (this
trace event system is explained in Section 3.1). It reduces appreciably the num-
ber of messages exchanged in the platform for controlling norms. Finally, the
proposal of Modgil et al. does not give any detail of how the monitoring and ob-
servation levels can be dynamically distributed into a set of coordinated entities
in response to a changing environment.

There are also works that use a mixed approach for controlling norms [10,19].
Thus, they propose the use of regimentation mechanisms for ensuring compliance
with norms that preserve the integrity of the application. Moreover, institutional
enforcement is also used for controlling norms that cannot be regimented due to
the fact that they are not verifiable or their violation may be desirable. In these
two proposals only the norms controlling access to the platform are controlled
whereas other problem domain norms are not automatically controlled.

As being illustrated by this section, existing proposals that provide support
to norm-enforcing present some drawbacks that make them unsuitable for con-
trolling norms in open MAS. In summary, the most important requirements for
norm-enforcing architectures are:



460 N. Criado et al.

– Automatic Enforcement. It must provide support for the detection of
norm violations and the application of remedial mechanisms. It implies that
agents can trust the enforcement system that will sanction their partners if
they behave dishonestly. Moreover, the enforcement architecture must pro-
vide normative information in order to allow norm-aware agents to realise
that they or other agents have violated a norm. Thus, agents are persuaded
to obey norms not only by a material system of sanctions but also since
their non-normative behaviour can be observed by others, which may reject
to interact with them in the future.

– Control of general norms. It must control complex and general norms.
Thus, it must allow the definition and management of norms that control
not only the messages exchanged among agents but also other actions carried
out by agents. In addition, it must support the enforcement of norms that
control states of affairs. Finally, it must bring the possibility of controlling
norms that are defined in terms of actions and states of affairs that occur
independently (e.g., actions that are performed by different agents).

– Dynamic. Dynamic situations may cause norms to lose their validity or to
need to be adapted. Thus, norm-enforcing mechanisms should provide solu-
tions to open MAS in which the set of norms evolves along time. Moreover, it
must provide support for the enforcement of unforeseen norms that control
activities and actions that are defined on-line.

– Efficient, Distributed and Robust. Finally, enforcement mechanisms
must bring the possibility of performing this task in a distributed way. There-
fore, they must be unlikely to fail. Thus, this distributed architecture must
be capable of operating quickly and effectively in an organized way.

With the aim of meeting these requirements, we propose in Section 4 a Norm-
Enforcing Architecture for controlling norms in the Magentix platform. Thus,
the Norm-Enforcing Architecture takes as basis the organization and interaction
support offered by Magentix. Next, the Magentix platform is briefly described.

3 The Magentix Platform

Magentix is an agent platform for open MAS in which heterogeneous agents
interact and organize themselves into Virtual Organizations (VO) [16]. Thus, it
provides support at two levels:

– Organization level. Magentix provides access to the organizational infras-
tructure [1] through a set of services included on two main components:
the Service Facilitator [26], which is a service manager that registers ser-
vices provided by entities and facilitates service discovering for potential
clients; and the Organization Management System (OMS) [10], which is in
charge of VO management, taking control of their underlying structure, the
roles played by the agents and registering the norms that govern the system
behaviour.



A Distributed Architecture for Enforcing Norms in Open MAS 461

– Interaction level. Magentix provides support to: agent communication, sup-
porting asynchronous reliable message exchanges and facilitating the inter-
operability between heterogeneous entities; agent conversations [15], which
are automated Interaction Protocols; tracing service support [6], which al-
lows agents in a MAS to share information in an indirect way by means of
trace events; and, finally, Magentix incorporates a security module [3] that
provides features regarding security, privacy, openness and interoperability.

Norms define what is considered as permitted, forbidden or obliged in an abstract
way. However, norm compliance must be controlled considering the actions and
messages exchanged among agents at the interaction level. The Norm-Enforcing
Architecture proposed in this paper tries to fill the gap between the organiza-
tional level, at which norms are stored by the OMS; and the interaction level,
at which actions and communications between agents can be traced. Next, the
Tracing Service Support and the register of norms, provided by the OMS, are
described in more detail.

3.1 Tracing Service Support

In order to facilitate indirect communication (i.e., indirect ways of interaction
and coordination), Magentix provides Tracing Service Support [6]. This service
is based on the publish/subscribe software pattern, which allows subscribers
to filter events attending to some attributes (content-based filtering), so that
agents only receive the information they are interested in and only requested
information is transmitted. In addition, security policies define what entities are
authorized to receive some specific events. These tracing facilities are provided
by a set of components named Trace Manager (TM).

A trace event or event is a piece of data representing an action, message ex-
change or situation that has taken place during the execution of an agent or any
other component of the MAS. Generic events, which represent application inde-
pendent information, are instrumented within the code of the platform. In addi-
tion, application events are domain information generated by agents, artefacts or
aggregations of agents. An event e is defined as a tuple 〈Type, T ime,Origin,Data〉
where: Type is a constant that represents the nature of the information repre-
sented by the trace event; T ime is a numeric constant that indicates the global
time at which the event was generated; Origin is a constant that identifies the
entity that has generated the event; and Data contains extra attached data re-
quired for interpreting the event. Trace events can be processed or even combined
in order to generate compound trace events, which can be used to represent more
complex information.

There can be three types of tracing entities (i.e., those elements of the system
capable of generating and/or receiving events): agents, artefacts or aggregations
of agents. Any tracing entity of the system is provided with a mail box for re-
ceiving or delivering events (EIn and Eout). In this sense, entities that want to
receive certain trace events request the subscription to these events to the TM
by adding an event template to their subscription template list (Sub). An event



462 N. Criado et al.

template is a tuple 〈Type,Origin,Data〉 where: Type, Origin and Data are the
filtering specified criteria.

3.2 Organization Management System (OMS)

The Organization Management System (OMS) [10] is responsible for the man-
agement of VO and their constituent entities. In order to allow this management,
the OMS provides a set of services classified in: structural services, which com-
prise services for adding/deleting norms (RegisterNorm and DeregisterNorm ser-
vices), adding/deleting roles and groups; informative services, that provide
information of the current state of the organization; and dynamic services,
which allow agents to enact/leave roles inside VOs (AcquireRole and LeaveRole
services). Moreover, agents can be forced to leave a specific role (Expulse service).
When the OMS provides successfully any of these services, then it generates an
event for informing about the changes produced in the VO.

The RegisterNorm/DeregisterNorm services allow entities to modify the
norms that are in force (i.e., that are applicable) within the VO. In particular,
a norm is defined as a conditional rule that defines under which conditions obli-
gation, permission and prohibition instances should be created [23]. A norm is
defined as a tuple n = id : 〈D,T,A,E,C, S,R〉 where: id is the norm identifier;
D ∈ {F ,O} is the deontic modality of the norm, F represents prohibition and
O represents obligation; T is the target of the norm, the role to which the norm
is addressed; A is the norm activation condition, it defines under which circum-
stances the norm is active and must be instantiated; E is the norm expiration
condition that determines when the norm expires and no longer affects agents;
C represents the action or state of affairs that is forbidden or obliged; S and
R describe the sanctioning and rewarding actions that will be carried out in
case of norm violation or fulfilment, respectively. This work takes a closed world
assumption where everything is considered as permitted by default. Therefore,
permissions are not considered in this paper, since they can be defined as norma-
tive operators that invalidate the activation of an obligation or prohibition. As
previously argued, our Norm-Enforcing Architecture builds on the event tracing
approach to monitoring. Thus, all the norm conditions (i.e., A,E and C) are
expressed in term of events.

Once the activation condition of a norm holds; i.e., the activation event is
detected, then it becomes active and norm instances (or instances for short),
according to the possible groundings of the activation condition, must be created.
Given a perceived event e, a norm n = id : 〈D,T,A,E,C, S,R〉 is instantiated
into an instance i = id : 〈D,T,E′, C′, S′, R′〉 where: there is a substitution σ
such as e = σ(A); C′ = σ(C); E′ = σ(E); S′ = σ(S); and R′ = σ(R).

From that moment on, a new instance is created and all agents playing the
target role are under its influence. Thus, a normative power (or power for short)
represents the control over a concrete agent that is playing the target role of an
instance. Thus, a power is defined as a tuple p = id : 〈D,T,AgentID,C, S,R,W 〉
where: id,D, T, C, S,R are defined as in case of instances; AgentID is a constant



A Distributed Architecture for Enforcing Norms in Open MAS 463

that identifies the agent affected by the power; and W is a boolean constant that
expresses if C has been detected or not (i.e., if the event C has been received).

The next section describes the Norm-Enforcing Architecture proposed in this
paper. It is a two layer architecture formed by: a higher level responsible of de-
tecting the instantiation of norms; and a lower level in charge of enforcing powers
on agents. Thus, the operational semantics of norms, instances and powers (i.e.,
how they are created, deleted, fulfilled and violated) is explained below.

4 Norm-Enforcing Architecture

The main purpose of the architecture described in this section is to endow the
Magentix platform with a norm enforcing framework that is capable of control-
ling norms in open applications in which unforeseen scenarios may occur. For this
reason, this Norm-Enforcing Architecture has been distributed into two layers.
In particular, the higher layer is formed by Norm Manager (NM) entities that
control all processes related with the creation and elimination of both norms and
instances. The lower layer is formed by Norm Enforcing (NE) entities that are
responsible for controlling the agents’ behaviours. Next, the NM and NE entities
are described in detail.

4.1 Norm Manager

The Norm Manager (NM) is responsible for determining what norms are active
(i.e., have been instantiated) in a given moment. Algorithm 1 illustrates pseu-
docode of the control loop performed by the NM. Each time the NM receives
an event (e), then it handles the event according to the event type. Mainly, the
NM carries out a process that can be divided into two differentiated tasks: norm
management and instance management. Thus, the NM maintains a list (N) that
contains all norms that have been registered in Magentix and a list (I) that
contains all instances that remain active at a given moment.

Norm Management. In order to maintain the norm list, the NM subscribes to
those events sent by the OMS related to the creation and deletion of norms (i.e.,
RegisterNorm and DeregisterNorm events). Thus, any time the NM receives
an event informing about the creation of a new norm, then it adds this norm
into its norm list and subscribes to the event that activates the norm (i.e., it
adds the event template 〈A,−,−〉 to its subscription list Sub).

When a norm is deregistered, then the NM removes it from its norm list.
Moreover, it removes all instances that have been created out of this norm. For
each one of these deleted instances, the NM unsubscribes from the expiration
event (i.e., it removes the template 〈E′,−,−〉 from Sub) and generates an event
for informing about the deletion of the instance (i.e., a NormDeletion event is
sent through the event sending box).



464 N. Criado et al.

Instance Management. Once the activation event of a norm is received (i.e.,
matches(e, A)), then the NM instantiates the norm (i.e., instantiation(e, n)) and
adds it to the instance list. At this moment, the NM subscribes to the expiration
event and informs about the activation of the norm (i.e., the InstanceActivation
event is sent by the NM).

Similarly, when the NM receives the expiration event of any instance (i.e.,
matches(e, E)), then it removes it from the instance list, unsubscribes from
the expiration event and informs about the expiration of this instance (i.e., the
InstanceExpiration is sent by the NM).

Initially, there is a single NM registered in the Magentix platform. However,
the NM is capable of simple adaptation behaviours (i.e., replication and death)
in response to changing situations. For example, before the NM collapses (i.e.,
its event reception box is full), it might replicate itself and remove its subscrip-
tion to the RegisterNorm event. Thus, the new NM would be responsible for
controlling the activation of the new norms. Similarly, if the NM reaches a state
in which it has no norm to control and it is not the last NM subscribed to
the RegisterNorm event, then it removes itself. These replication and death
mechanisms are a simple example that illustrates how the higher layer of the
Norm-Enforcing Architecture can be dynamically distributed into several NMs.
However, the definition of more elaborated procedures for adapting dynamically
to changing environments [22] is a complex issue beyond the scope of this paper.

4.2 Norm Enforcer

The Norm Enforcer (NE) is responsible for controlling agent behaviours. Thus, it
detects violations and fulfilments of norms, and reacts upon it by sanctioning or
rewarding agents. Algorithm 2 illustrates the control loop executed by the NE.
As illustrated by this algorithm, the NE maintains a list (I) with the instances
that hold in a given moment. Thus, it subscribes to the events sent by the NM
that inform about the activation and expiration of instances, and deletion of
norms. Besides that, the NE is also in charge of controlling agents affected by
the instances. Thus, it maintains a list P that contains all powers that have been
created out of the instances. In order to determine what agents are controlled by
these instances, it also maintains a list (RE) containing information about role
enactment (i.e., the set of roles that each agent is playing at a given moment).
In order to update this list, the NE subscribes to the events sent by the OMS
that inform about the fact that an agent has acquired or left a role (AcquireRole
and LeaveRole events). In addition, the NE also subscribes to the Expel event,
which informs about the fact that a particular agent has been forced to leave a
role as a disciplinary measure.

As in case of the NM, the NE starts by retrieving an event from its event
reception box. Then, different operations are performed according to the type
of the event that has been received. In concrete, the NE carries out a process
that can be divided into three different activities: role enactment management,
instance management and observation of behaviours.



A Distributed Architecture for Enforcing Norms in Open MAS 465

Algorithm 1. Norm Manager Control Loop

Require: Event reception box EIn

Require: Event sending box EOut

Require: Subscription list Sub
Require: 〈RegisterNorm,OMS,−〉 in Sub
Require: 〈DeregisterNorm,OMS,−〉 in Sub
Require: Norm list N
Require: Instance list I
1: while EIn is not empty do
2: Retrieve e from head of EIn// e = 〈Type,T ime,Origin,Data〉

//Norm Management
3: if Type = RegisterNorm then // Data = id : 〈D, T,A,E,C, S,R〉
4: Add Data to N
5: Add 〈A,−,−〉 to Sub
6: end if
7: if Type = DeregisterNorm and Data in N then // Data = id :

〈D, T,A,E,C, S,R〉
8: Remove Data from N
9: Remove 〈A,−,−〉 from Sub
10: for all i in I do // i = id′ : 〈D′, T ′, E′, C′, S′, R′〉
11: if id′ = id then
12: Remove i from I
13: Remove 〈E′,−,−〉 from Sub
14: Add 〈NormDeletion,NM, id : 〈D′, T ′, E′, C′, S′, R′〉〉 to EOut

15: end if
16: end for
17: end if

//Instance Management
18: for all n in N do // n = id : 〈D,T,A,E,C, S,R〉
19: if matches(e,A) then // the norm is active
20: i = instantiation(e, n) // i is an instance
21: if i not in I then
22: Add i to I
23: Add 〈InstanceActivation,NM, i〉 to EOut

24: Add 〈A,−,−〉 to Sub
25: end if
26: end if
27: end for
28: for all i in I do // i = id : 〈D,T,E,C, S,R〉
29: if matches(e,E) then
30: Remove i from I
31: Remove 〈E,−,−〉 from Sub
32: Add 〈InstanceExpiration,NM, i〉 to EOut

33: end if
34: end for
35: end while



466 N. Criado et al.

Algorithm 2. Norm Enforcer Control Loop

Require: Event reception box EIn

Require: Event sending box EOut

Require: Subscription list Sub
Require: 〈NormDeletion,NM,−〉 in Sub
Require: 〈InstanceActivation,NM,−〉 in Sub
Require: 〈InstanceExpiration,NM,−〉 in Sub
Require: 〈AcquireRole,OMS,−〉 in Sub
Require: 〈LeaveRole,OMS,−〉 in Sub
Require: 〈Expel,OMS,−〉 in Sub
Require: Instance list I
Require: Power list P
Require: Role enactment list RE
1: while EIn is not empty do
2: Retrieve e from EIn// e = 〈Type,T ime,Origin,Data〉

... // Role enactment management

... // Instance management

... // Observation of Behaviour
66: end while

Role Enactment Management. Algorithm 3 illustrates pseudocode corre-
sponding to the role enactment management process. Specifically, if the OMS
informs that an agent (AgentID) has acquired a new role (RoleID), then the
NE updates the role enactment list. Moreover, the list of instances is also checked
for determining what of the instances affect the RoleID. For each one of these
instances, the NE creates a new power addressed to the agent identified by
AgentID. In addition, the NE subscribes to the event expressed in the norm
condition in order to be aware of the fulfilment or violation of this norm (i.e., it
adds the event template 〈C,AgentID,−〉 to the subscription list Sub).

On the contrary, if the OMS informs that an agent is not longer playing a
role, then the role enactment list is updated . Similarly, all powers that affect
the AgentID as a consequence of being playing RoleID are removed. Therefore,
the NE does not have to observe the norm condition and unsubscribes from this
event. Finally, if any agent leaves a role voluntarily (i.e., the LeaveRole event
is received) before fulfilling its pending obligations, then it will be sanctioned
(i.e., the NE would perform the sanctioning action S). Moreover, the NE would
inform about the fact that an agent has been sanctioned for non-compliance
with an obligation (i.e., the Sanction event is sent through the EOut box).

Instance Management. This process is contained in Algorithm 4. If the NE is
informed by the NM the creation of a new instance (i.e., the InstanceActivation
event is received), then the NE updates its instance list and creates new powers
for controlling all agents that are playing the target role at this moment. The
watch condition (W ) of the new powers is initially set to false. Thus, for each
one of the new powers the NE starts to observe indirectly norm compliance by
subscribing to the event C.



A Distributed Architecture for Enforcing Norms in Open MAS 467

Algorithm 3. Role Enactment Management

3: if Type = AcquireRole then // Data is a pair (AgentID,RoleID)
4: Add Data to RE
5: for all i in I do // i = id : 〈D,T,E,C, S,R〉
6: if T = RoleID then
7: Add id : 〈D, T,AgentID,C, S, R, false〉 to P
8: Add 〈C,AgentID,−〉 to Sub
9: end if
10: end for
11: end if
12: if Type = LeaveRole or Type = Expel then // Data is a pair

(AgentID,RoleID)
13: Remove Data from RE
14: for all p in P do // p = id : 〈D, T,A,C, S,R,W 〉
15: if T = RoleID and A = AgentID then
16: Remove p from P
17: Remove 〈C,AgentID,−〉 from Sub
18: if D = O and W = False and Type = LeaveRole then
19: Perform S// against AgentID
20: Add 〈Sanction,NE, V iolated(id, AgentID)〉 to EOut

21: end if
22: end if
23: end for
24: end if

If an instance has no longer effect (i.e., the InstanceExpiration or NormDe-
letion events is perceived), then the NE updates the instance list and removes all
powers created out of this instance. An instance becomes ineffective whenever
the expiration condition hold or the norm that has given rise to it has been
abolished. In the first case (i.e., the InstanceExpiration event is received), the
agent is responsible for fulfilling the norm. Thus, if the instance obliges an agent
to reach some state of affairs (e.g., the agent is obliged to perform an action)
and this state has not been observed yet (i.e., the watch condition W is false),
then the agent will be sanctioned. On the contrary, if the agent is prohibited to
reach some situation and the forbidden state has not been observed (i.e., W is
false) then the agent will be rewarded. Finally, if an instance becomes ineffective
due to the deletion of a norm, then the agent is not responsible for the fulfilment
of the norm and enforcement actions are not performed.

Observation of Behaviours. This functionality is implemented by Algorithm
5. The NE checks for each one of the powers if the C event has been detected (i.e.,
matches(e, C)). If it is the case, then the power is updated. The watch condition
is registered as true indicating that the norm condition has been perceived.
Next, enforcement actions are performed according to the deontic modality of the
power. For example, if the power is an obligation then the obligation is considered
as fulfilled (i.e., the power is deleted from P ) and the agent is rewarded. Similarly,
if it is a prohibition then the agent will be sanctioned.



468 N. Criado et al.

Algorithm 4. Instance Management

25: if Type = InstanceActivation then // Data = id : 〈D,T,E,C, S,R〉
26: Add Data to I
27: for all (AgentID,RoleID) in RE do
28: if RoleID = T then
29: Add id : 〈D,T, AgentID,C, S,R, false〉 to P
30: Add 〈C,AgentID,−〉 to Sub
31: end if
32: end for
33: end if
34: if (Type = InstanceExpiration or Type = NormDeletion) and Data in I then

// Data = id : 〈D,T, E,C, S,R〉
35: Delete Data from I
36: for all p in P do // p = id′ : 〈D,T,AgentID,C, S,R,W 〉
37: if id = id′ then
38: Remove p from P
39: Remove 〈C,AgentID,−〉 from Sub
40: if Type = InstanceExpiration then // The agent is responsible for norm

fulfilment
41: if W = false and D = O then // The obligation had not been fulfilled

before it has expired
42: Perform S// against AgentID
43: Add 〈Sanction,NE, V iolated(id, AgentID)〉 to EOut

44: end if
45: if W = false and D = F then // The prohibition had been observed
46: Perform R// in favour of AgentID
47: Add 〈Reward,NE,Fulfilled(id, AgentID)〉 to EOut

48: end if
49: end if
50: end if
51: end for
52: end if



A Distributed Architecture for Enforcing Norms in Open MAS 469

As in case of the NM, the lower level of the Norm-Enforcing Architecture
has been described as it was formed by a single entity. However, this layer may
be formed by a set of specialized NEs. For example, the set of instances can be
distributed among NEs according to the target role. Thus, each NE is responsible
for controlling actions in which a specific set of roles is involved. It is also possible
to specialize NE for controlling a specific group of agents independently of the
roles that they play. Finally, it is also possible the dynamic adaptation of the
amount of NEs by performing cloning and self-deletion operations.

Algorithm 5. Observation of Behaviours

53: for all p in P do // p = id : 〈D, T,AgentID,C, S,R,W 〉
54: if matches(e,C) then
55: Remove p from P
56: if D = F then // The prohibition has been violated
57: Add id : 〈D,T, AgentID,C, S,R, true〉 to P
58: Perform S// against AgentID
59: Add 〈Sanction,NE, V iolated(id, AgentID)〉 to EOut

60: else // The obligation has been fulfilled and it expires
61: Perform R// in favour of AgentID
62: Add 〈Reward,NE,Fulfilled(id, AgentID)〉 to EOut

63: Remove 〈C,AgentID,−〉 from Sub
64: end if
65: end if
66: end for

5 Conclusions and Future Works

In this paper, we have described a Norm-Enforcing Architecture considering
the facilities provided by the Magentix platform. The main aim of this Norm-
Enforcing Architecture is to overcome problems of existing proposals on norm
enforcement. Thus, the requirements taken into account by our proposal are:

– Automatic Enforcement. Our proposal enforces norms providing support
to those agents that are not endowed with normative reasoning capabilities.
In addition, the generation of events for informing about sanctions and re-
wards allows norm-aware agents to use this information for selecting the
most suitable interaction partners.

– Control of general norms. Our definition of norm is based on notion
of event. An event represents an action, message exchange or situation that
has taken place during the execution of any tracing entity (i.e., an agent,
aggregation of agents or an artefact). Thus, norms are defined in terms of
events that can be generated independently by different tracing entities.



470 N. Criado et al.

– Dynamic. Magentix allows the dynamic modification of norms. Moreover,
new event types can be dynamically defined at run time. Accordingly, our
proposal has been designed taking into account the possibility that norms
and events can be created or deleted on-line.

– Efficient, Distributed and Robust. Finally, our Norm-Enforcing Archi-
tecture is build upon a trace event system, which provides support for in-
direct communication in a more efficient way than overhearing approaches.
Besides that, we have provided a preliminary solution to the adaptation of
the architecture in response to situations in which the number of agents or
norms to be controlled dramatically changes.

As future work, we plan to deal with complex scenarios in which there are norms
whose violation cannot be directly observed, since they regulate situations that
take place out of the institution boundaries. Or even more, norms can be in-
terpreted ambiguously. This entails the development of intelligent and proactive
norm-enforcing entities (i.e., agents) [8] endowed with capabilities for applying
techniques such as negotiation or conflict resolution procedures.

Acknowledgments. This paper was partially funded by the Spanish
government under grants CONSOLIDER-INGENIO 2010 CSD2007-00022,
TIN2009-13839-C03-01, TIN2008-06701-C03-03,TIN2008-04446 and by the FPU
grant AP-2007-01256 awarded to N. Criado. This research has also been partially
funded by the Generalitat de Catalunya under the grant 2009-SGR-1434 and Va-
lencian Prometeo project 2008/051.

References

1. Argente, E., Botti, V., Carrascosa, C., Giret, A., Julian, V., Rebollo, M.: An Ab-
stract Architecture for Virtual Organizations: The THOMAS approach. Knowledge
and Information Systems, 1–35 (2011)

2. Artikis, A., Pitt, J.: A formal model of open agent societies. In: Proc. of AAMAS,
pp. 192–193 (2001)

3. Bellver, J., Such, J.M., Espinosa, A., Garćıa-Fornes, A.: Developing Secure Agent
Infrastructures with Open Standards and Open-Source Technologies. In: Proc. of
PAAMS (in Press, 2011)

4. Boella, G., van der Torre, L.: Norm governed multiagent systems: The delegation
of control to autonomous agents. In: Proc. of IAT, pp. 329–335. IEEE (2003)

5. Boella, G., Van Der Torre, L.: Regulative and constitutive norms in normative
multiagent systems. In: Proc. of KR, pp. 255–265 (2004)

6. Burdalo, L., Terrasa, A., Julian, V., Garcia-Fornes, A.: TRAMMAS: A Tracing
Model for Multiagent systems. In: Proc. of ITMAS, pp. 42–49 (2010)

7. Castelfranchi, C.: Formalising the informal? Dynamic social order, bottom-up so-
cial control, and spontaneous normative relations. Journal of Applied Logic 1(1-2),
47–92 (2003)

8. Criado, N., Argente, E., Botti, V.: Towards Norm Enforcer Agents. In: Proc. of
PAAMS (in Press, 2011)



A Distributed Architecture for Enforcing Norms in Open MAS 471

9. Criado, N., Argente, E., Garrido, A., Gimeno, J.A., Igual, F., Botti, V., Nor-
iega, P., Giret, A.: Norm Enforceability in Electronic Institutions? In: De Vos,
M., Fornara, N., Pitt, J.V., Vouros, G. (eds.) COIN 2010. LNCS, vol. 6541, pp.
250–267. Springer, Heidelberg (2011)

10. Criado, N., Julián, V., Botti, V., Argente, E.: A Norm-Based Organization Man-
agement System. In: Padget, J., Artikis, A., Vasconcelos, W., Stathis, K., da Silva,
V.T., Matson, E., Polleres, A. (eds.) COIN@AAMAS 2009. LNCS, vol. 6069, pp.
19–35. Springer, Heidelberg (2010)

11. de Pinninck, A., Sierra, C., Schorlemmer, M.: Friends no more: norm enforcement
in multiagent systems. In: Proc. of AAMAS, p. 92. ACM (2007)

12. Elster, J.: Rationality and the Emotions. The Economic Journal 106(438), 1386–
1397 (1996)

13. Esteva, M., Rosell, B., Rodŕıguez-Aguilar, J.A., Arcos, J.L.: Ameli: An agent-based
middleware for electronic institutions. In: Proc. of AAMAS, pp. 236–243 (2004)

14. Fix, J., von Scheve, C., Moldt, D.: Emotion-based norm enforcement and main-
tenance in multi-agent systems: foundations and petri net modeling. In: Proc. of
AAMAS, pp. 105–107. ACM (2006)

15. Fogués, R.L., Alberola, J.M., Such, J.M., Espinosa, A., Garćıa-Fornes, A.: Towards
Dynamic Agent Interaction Support in Open Multiagent Systems. In: Proc. of
CCIA, vol. 220, pp. 89–98. IOS Press (2010)

16. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable
virtual organizations. International Journal of High Performance Computing Ap-
plications 15(3), 200 (2001)

17. Gaertner, D., Garcia-Camino, A., Noriega, P., Rodriguez-Aguilar, J., Vasconcelos,
W.: Distributed norm management in regulated multiagent systems. In: Proc. of
AAMAS, p. 90. ACM (2007)

18. Grossi, D., Aldewereld, H., Dignum, F.: Ubi Lex, Ibi Poena: Designing Norm
Enforcement in E-Institutions. In: Noriega, P., Vázquez-Salceda, J., Boella, G.,
Boissier, O., Dignum, V., Fornara, N., Matson, E. (eds.) COIN 2006. LNCS (LNAI),
vol. 4386, pp. 101–114. Springer, Heidelberg (2007)

19. Hubner, J., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organisa-
tions with organisational artifacts and agents. Journal of Autonomous Agents and
Multi-Agent Systems 20(3), 369–400 (2010)

20. Minsky, N., Ungureanu, V.: Law-governed interaction: a coordination and control
mechanism for heterogeneous distributed systems. ACM Transactions on Software
Engineering and Methodology (TOSEM) 9(3), 273–305 (2000)

21. Modgil, S., Faci, N., Meneguzzi, F., Oren, N., Miles, S., Luck, M.: A framework
for monitoring agent-based normative systems. In: Proc. of AAMAS, International
Foundation for Autonomous Agents and Multiagent Systems, pp. 153–160 (2009)

22. Nakano, T., Suda, T.: Self-organizing network services with evolutionary adapta-
tion. IEEE Transactions on Neural Networks 16(5), 1269–1278 (2005)

23. Oren, N., Panagiotidi, S., Vázquez-Salceda, J., Modgil, S., Luck, M., Miles, S.:
Towards a Formalisation of Electronic Contracting Environments. In: Hübner, J.F.,
Matson, E., Boissier, O., Dignum, V. (eds.) COIN@AAMAS 2008. LNCS, vol. 5428,
pp. 156–171. Springer, Heidelberg (2009)

24. Sen, S., Airiau, S.: Emergence of norms through social learning. In: Proc. of IJCAI,
pp. 1507–1512 (2007)

25. Sergot, M.: Normative positions. Norms, Logics and Information Systems, 289–308
(1998)

26. Val, E.D., Criado, N., Rebollo, M., Argente, E., Julian, V.: Service-Oriented Frame-
work for Virtual Organizations. In: Proc. of ICAI, vol. 1, pp. 108–114 (2009)


	A Distributed Architecture for Enforcing Norms in Open MAS
	Introduction
	Related Work
	The Magentix Platform
	Tracing Service Support
	Organization Management System (OMS)

	Norm-Enforcing Architecture
	Norm Manager
	Norm Enforcer

	Conclusions and Future Works
	References




