
Proceedings of the IJCAI 2005 Workshop on
Planning and Learning in A Priori Unknown
or Dynamic Domains

Vadim Bulitko, Sven Koenig (editors)

Edinburgh, United Kingdom
August 1, 2005

Preface

Many testbeds in Artificial Intelligence are a priori known and static. However, as Artificial Intelligence sys-
tems are applied to more realistic problems, they need to be able to cope with a priori unknown and dynamic
domains. The state of an environment, for instance, can change over time due to the presence of other (coopera-
tive or competitive) agents or exogenous events. In such domains, an agent cannot predict the effects of its actions
with certainty and thus needs to be able to plan under uncertainty with its current domain model as well as learn
improved domain models, often in real time. Example domains include real-time games, mobile robotics, space
applications, supply-chain management, and decision support for crisis management. The following research ar-
eas are important for planning and learning in a priori unknown or dynamic domains:

• finding robust plans and enhancing the robustness of existing plans,

• time-dependent planning,

• trading off planning time and plan quality,

• interleaving planning and plan execution,

• fast replanning and plan adaptation,

• planning when and what to sense,

• multi-agent planning and learning,

• life-long learning of domain models,

• acting robustly in the presence of unknown but important state features or discovering them,

• reinforcement learning, and

• learning with very few training data.
These issues are being explored by researchers from different communities in Artificial Intelligence. They are, for
instance, being studied in search, generative and reactive planning, scheduling, agents, robotics, reasoning and
meta reasoning, and machine learning. This workshop brought together researchers from these communities to
learn about each other’s approaches, form long-term collaborations, and cross-fertilize the different areas to accel-
erate progress towards scaling up to larger and more realistic applications. If you would like to keep informed on
the developments in the area, you can check the webpage of the workshop periodically or subscribe to the mail-
ing list as follows.

Mailing list

To sign up, please send an email to ijcai05-pludd-request@cs.ualberta.ca with the line: `subscribe’ in the body
of the message. This will add you to the mailing list for the workshop. The mailing list is moderated against spam
abuse.

Web page

http://www-rcf.usc.edu/~skoenig/workshop.html

Program Committee

Douglas Aberdeen, The Australian National University (Australia)
Blai Bonet, Universidad Simon Bolivar (Venezuela)
Adi Botea, University of Alberta (Canada)
James Bruce, Carnegie Mellon University (USC)
Greg Calbert, DSTO (Australia)
Alessandro Cimatti, IRST (Italy)
Alan Fern, Oregon State University (USA)
Natalia Gardiol, MIT (USA)
Russ Gayle, University of North Carolina (USA)
Enrico Giunchiglia, Universita di Genova (Italy)
Russ Greiner, University of Alberta (Canada)
Charles Gretton, National ICT Australia (Australia)
Richard Korf, University of California at Los Angeles (USA)
Lihong Li, Rutgers University (USA)
Michael Littman, Rutgers University (USA)
Yaxin Liu, University of Texas (USA)
Frederic Maire, Queensland University of Technology (Australia)
Mausam, University of Washington (USA)
Martin Mueller, University of Alberta (Canada)
Doina Precup, McGill University (Canada)
Ioannis Refanidis, University of Macedonia (Greece)
Matt Rudary, University of Michigan (USA)
Jonathan Schaeffer, University of Alberta (Canada)
Masashi Shimbo, Nara Institute of Science and Technology (Japan)
Bill Smart, Washinton University in St. Louis (USA)
Trey Smith, Carnegie Mellon University (USA)
Finnegan Southey, University of Alberta (Canada)
Peter Stone, University of Texas at Austin (USA)
Nathan Sturtevant, University of Alberta (Canada)
Rich Sutton, University of Alberta (Canada)
Sylvie Thiebaux, The Australian National University (Australia)
Vincent Vidal, CRIL (France)
Eric Wiewiora, University of California in San Diego (USA)
Martin Zinkevich, Brown University (USA)

Chairs

Vadim Bulitko (Canada)
Sven Koenig (USA)

Additional credits

Carlos Guestrin (coordinating IJCAI’05 workshops)
Alex Morrice (cover photograph)

Papers

Learning Planning Rules in Noisy Stochastic Worlds,
Luke Zettlemoyer, Hanna Pasula, Leslie Kaelbling / 1

Adaptive Partitioning of State Spaces using Decision Graphs for Real-Time Modeling and Planning,
Mykel J. Kochenderfer, Gillian Hayes / 9

Modeling and Planning in Large State and Action Spaces,
Mykel J. Kochenderfer, Gillian Hayes / 16

Apprenticeship Learning for Initial Value Functions in Reinforcement Learning,
Frederic Maire, Vadim Bulitko / 23

Fast Reachability Analysis for Uncertain SSPs, Olivier Buffet / 29

Putting Olfaction into Action: Anchoring symbols to sensor data using olfaction and planning,
Amy Loutfi, Silvia Coradeschi, Lars Karlsson and Mathias Broxvall / 35

Using LTL Assumptions to Generate Safe Plans for Partially Known Domains,
Alexandre Albore, Piergiorgio Bertoli / 41

Path planning for unmanned underwater vehicles, Clement Petres and Pedro Patron / 47

Speeding Up Learning in Real-time Search via Automatic State Abstraction,
Vadim Bulitko, Nathan Sturtevant, Maryia Kazakevich / 55

Generating Temporally Contingent Plans, Janae Foss and Nilufer Onder / 62

Improving convergence of LRTA*(k), Carlos Hernandez, Pedro Meseguer / 69

Learning Task Allocation via Multi-level Policy Gradient Algorithm with Dynamic Learning Rate,
Sherief Abdallah, Victor Lesser / 76

An Algorithm better than AO*?, Blai Bonet, Hector Geffner / 83

Hypothetical Planning, Tamara Babaian / 90

Risk-directed Exploration in Reinforcement Learning,
Edith L.M. Law, Melanie Coggan, Doina Precup, Bohdana Ratitch / 97

Best-first Utility-guided Search, Wheeler Ruml, Elisabeth H. Crawford, Minh B. Do / 103

Heuristic Speed-Ups for Learning in Complex Stochastic Environments, Christian J. Darken / 110

Deduction and exploratory assessment of partial plans, Jacek Malec, Sławomir Nowaczyk / 117

Robust and Opportunistic Planning for Planetary Exploration, Daniel M. Gaines, Tara Estlin, Caroline Chouinard,
Forest Fisher Rebecca Castãno, Robert C. Anderson, and Michele Judd / 125

Bayesian Models of Nonstationary Markov Decision Processes, Nick Jong, Peter Stone / 132

Simulation Methods for Uncertain Decision-Theoretic Planning, Douglas Aberdeen and Olivier Buffet / 135

Dynamic Domains in Data Production Planning, Keith Golden, Wanlin Pang / 141

Hedged learning: Regret-minimization with learning experts, Yu-Han Chang, Leslie Pack Kaelbling / 149

Supervised Learning of Options: A Pilot Study, Cosmin Paduraru, Vadim Bulitko / 155

Learning Planning Rules in Noisy Stochastic Worlds

Luke S. Zettlemoyer
MIT CSAIL

lsz@csail.mit.edu

Hanna M. Pasula
MIT CSAIL

pasula@csail.mit.edu

Leslie Pack Kaelbling
MIT CSAIL

lpk@csail.mit.edu

Abstract

We present an algorithm for learning a
model of the effects of actions in noisy
stochastic worlds. We consider learning
in a 3D simulated blocks world with real-
istic physics. To model this world, we de-
velop a planning representation with ex-
plicit mechanisms for expressing object
reference and noise. We then present a
learning algorithm that can create rules
while also learning derived predicates,
and evaluate this algorithm in the blocks
world simulator, demonstrating that we
can learn rules that effectively model the
world dynamics.

1 Introduction
One of the goals of artificial intelligence is to build systems
that can act in complex environments as effectively as humans
do: to perform everyday human tasks, like making break-
fast or unpacking and putting away the contents of an of-
fice. Any robot that hopes to solve these tasks must be an
integrated system that perceives the world, understands it in
an, at least naively, human manner, and commands motors to
effect changes to it. Unfortunately, the current state of the
art in reasoning, planning, learning, perception, locomotion,
and manipulation is so far removed from human-level abil-
ities that we cannot even contemplate working in an actual
domain of interest. Instead, we choose to work in domains
that are its almost ridiculously simplified proxies.

One popular such proxy, used since the beginning of work
in AI planning [Fikes & Nilsson, 1971] is a world of stack-
ing blocks. Thisblocks world is typically formalized in
some version of logic, using predicates such ason(a, b) and
clear(a) to describe the relationships of the blocks to one an-
other. Blocks are always very neatly stacked; they don’t fall
into jumbles. In this paper, we will work in a slightly less
ridiculous version of the blocks world, one constructed using
a three-dimensional rigid-body dynamics simulator[ODE,
2004]. An example domain configuration is shown in Fig-
ure 1. In this simulated blocks world, blocks are not always
in tidy piles; blocks sometimes slip out of the gripper; and

piles sometimes fall over. We would like to learn models that
enable effective action in this world.

Unfortunately, previous approaches to action model learn-
ing cannot solve this problem. The algorithms that learn
deterministic rule descriptions[Shen & Simon, 1989; Gil,
1994; Wang, 1995] have limited applicability in a stochas-
tic world. One approach[Pasula, Zettlemoyer, & Kael-
bling, 2004] has extended those methods to learn probabilis-
tic STRIPS rules, but this representation cannot cope with
the complexity of the simulated blocks world. The work of
Benson (1996), which extends a deterministic ILP[Lavrǎc &
Džeroski, 1994] learning algorithm that is robust to noise in
the training set, would, perhaps, come the closest, but it lacks
the ability to handle complex action effects such as piles of
blocks falling over. We address this challenge by develop-
ing a more flexible algorithm that creates models that include
mechanisms for referring to objects and abstracting away rare
or highly complex action outcomes, and also invents new con-
cepts that help determine when actions will have different ef-
fects.

When learning these models, we assume that the learner
has access to training examples that show how the world
changes when an action is executed. The learning problem
is then one of density estimation. The learner must estimate
the distribution over next states of the world that executing an
action will cause.

In the rest of this paper, we first present our representa-
tion, showing how these extensions are added to probabilistic
STRIPS rules. Then, we develop a learning algorithm for
these rules. Finally, we evaluate these learned rules in the
simulated blocks world.

2 Representation

This section describes representations for the setS of possible
states of the world, the setA of possible actions the agent can
take, and the probabilistic transition dynamicsPr(s′|s, a),
wheres, s′ ∈ S anda ∈ A. In each case, we use a subset
of a relatively standard first-order logic with equality. States
and actions are ground; the rules used to express the transition
dynamics quantify over variables.

We begin by defining a language that includes a set of pred-
icatesΦ and a set of functionsΩ. There are three types
of functions inΩ: traditional functions, which range over

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

1

Figure 1: A screen capture of the simulated blocks world. The
blocks come in various sizes, visible here, and various colors. The
gripper can perform two macro actions:pickup, which centers the
gripper above a block, lowers it until it hits something, closes it,
and raises the gripper; andputon, which centers the gripper above a
block, lowers until it encounters pressure, opens it, and raises it.

objects; discrete-valued functions, which range over a pre-
defined discrete set of values; and integer-valued functions,
which range over a finite subset of the integers.

2.1 State Representation
In this work, we assume that the environment is completely
observable; that is, that the agent is able to perceive an un-
ambiguous and correct description of the current state.1 Each
state consists of a particular configuration of the properties
of and relations between objects for all of the objects in the
world, where those individual objects are denoted using con-
stants. State descriptions are conjunctive sentences that list
the truth values for all of the possible groundings of the pred-
icates and functions with the constants. When writing them
down, we will make the closed world assumption and omit
the negative literals.

As an example, let us consider representing the state of a
simple blocks world, using a language that contains the pred-
icateson, table, clear, inhand, and inhand-nil. The objects
in this world include two blocks,c1 andc2, a tablet, and a
gripper. The sentence

on(c1, c2) ∧ on(c2, t) ∧ inhand-nil∧ clear(c1) ∧ table(t) (1)

represents a blocks world where the gripper holds nothing
and the two blocks are in a single stack on the table.

2.2 Action Representation
Actions are represented as positive literals whose predicates
are drawn from a special set,α, and whose terms are drawn
from the set of constants C associated with the worlds where
the action is to be executed.

For example, in the simulated blocks world,α contains
pickup/1, an action for picking up blocks, andputon/1, an

1This is a very strong, and ultimately indefensible assumption;
one of our highest priorities for future work is to extend this to the
case when the environment is partially observable.

action for putting down blocks. The action literalpickup(c1)
could represent the action where the gripper attempts to
pickup the blockc1 in the state represented in Sentence 1.

2.3 World Dynamics Representation
We begin by defining probabilistic STRIPS rules[Blum &
Langford, 1999]. Next, we describe the changes we have
made to the rules to enable them to model more complex
worlds. Then, we explain how the representation language
is extended to allow for the construction of additional pred-
icates and functions. Finally, we show how to use a set of
rules to provide a model of world dynamics.

Probabilistic STRIPS rules
Each probabilistic STRIPS rule specifies the conditions under
which it applies, as well as a small number of simple action
outcomes—sets of changes that might occur in tandem. More
formally, a rule for actionz has the form

∀x̄.Ψ(x̄) ∧ z(x̄) → •

{
p1 Ψ′

1(x̄)
.
pn Ψ′

n(x̄)
,

wherex̄ is a vector of variables,Ψ is thecontext, a formula
that might hold of them at the current time step,Ψ′1 . . .Ψ′n
areoutcomes, formulas that might hold in the next step, and
p1 . . . pn are positive numbers summing to 1, representing a
probability distribution over the outcomes. Traditionally, the
actionz(x̄) must contain everyxi ∈ x̄. We constrainΨ and
Ψ′ to be conjunctions of literals constructed from the predi-
cates inΦ and the variables̄x as well as equality statements
comparing a function (taken fromΩ) of these variables to a
value in its range. In addition,Ψ is allowed to contain greater-
than and less-than statements.

We say that a rulecoversa stateΓ(C) and actiona(C) if
there exists an action substitutionσ mapping the variables in
x̄ to C (note that there may be fewer variables inx̄ than con-
stants in C) such thatΓ(C) |= Ψ(σ(x̄)) anda(C) = z(σ(x̄)).
That is, if there exists a substitution of constants for variables
that, when applied to antecedent, grounds it so that it is en-
tailed by the state and, when applied to the rule action, makes
it equal the action the rule covers.

Here is an example using the language of Sentence 1:

pickup(X, Y) :

on(X, Y), inhand-nil

→


.80 :

¬on(X, Y), inhand(X),¬inhand-nil,
clear(Y)

.10 : ¬on(X, Y), on(X, t), clear(Y)

.10 : no change

The context of this rule states thatX is on Y, and there is
nothing in the gripper. The rule covers the world of Sen-
tence 1 and actionpickup(c1, c2) under the action substitution
{X → c1, Y→ c2}. The first outcome describes the situation
where the gripper successfully picks up the blockX, and the
second indicates thatX falls onto the table.

Let us now consider what a rule that covers the state and ac-
tion can tell us about the possible subsequent states. Each out-
come directly specifies thatΨ′(σ(x̄)) holds at the next step,
but this may be only an incomplete specification of the state.
We use the frame assumption to fill in the rest; every literal

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

2

that would be needed to make a complete description of the
state that is not included inΨ′(σ(x̄)) is retrieved, with its as-
sociated truth value or equality assignment, fromΓ(C).

Thus, each outcomeΨ′i can be used to construct a new state
s′i, which will occur with probabilitypi. The probability that
a ruler assigns to moving from states to states′ when action
a is taken,P (s′|s, a, r), can be calculated as:

P (s′|s, a, r) =

n∑
i=1

P (s′, Ψ′
i|s, a, r)

=

n∑
i=1

P (s′|Ψ′
i, s, a, r)P (Ψ′

i|s, a, r) (2)

where P (Ψ′i|s, a, r) is pi, and the outcome distribution
P (s′|Ψ′i, s, a, r) is a deterministic distribution that assigns all
of its mass to the relevants′. If P (s′|Ψ′i, s, a, r) = 1.0, that
is, if s′ is the state that would be constructed given that rule
and outcome, we say that the outcomeΨ′i coverss′.

Noisy Deictic Rules
We extend probabilistic STRIPS rules in two ways: by per-
mitting them to refer to objects not mentioned in the action
description, and by adding a noise outcome.

Deictic References
Relational planning representations use a list of action vari-
ables to abstract over the objects in the world. For example,
pickup(X, Y) abstracts the identity of the blockX to be picked
up and the blockY that X will be picked up from. This ab-
straction allows the rules to compactly encode actions that af-
fect many different objects. Part of the challenge of creating
effective rules is to determine what to abstract over. Tradi-
tionally, this is done when defining the set of actions, since
abstraction can occur only in the action argument list.

We have developeddeictic references, an extension of a
mechanism originally introduced by Benson (1996), as a way
of introducing additional variables to the rules. Our rule
learning algorithm uses them to learn useful abstractions that
were not initially included in the action arguments.

We extend probabilistic STRIPS rules as follows. Each
rule is augmented with a list,D, of deictic references. A
reference consists of a variablevi and a restrictionρi, which
is a set of literals that definevi with respect to the variables̄x
in the action and the othervj such thatj < i.

For example, thepickup(X, Y) rule we saw earlier can be
rewritten to use deictic references as follows:

pickup(X) :
{

Y : on(X, Y), Z : table(Z)
}

inhand-nil

→


.80 :

¬on(X, Y), inhand(X),¬inhand-nil,
clear(Y)

.10 : ¬on(X, Y), on(X, Z), clear(Y)

.10 : no change

whereY is now defined as a deictic reference that names that
unique thing thatX is on. In many ways, this is a more natural
encoding because it makes explicit the fact that the only block
thatY should ever name is the one thatX is on. This reduces
the number of arguments to the action, which can greatly in-
crease planning efficiency[Gardiol & Kaelbling, 2003]. Note

also that, in this representation, different rules for the same
action can abstract over different sets of objects.

To use rules with deictic references, we must extend our
procedure for computing rule coverage to ensure that all of
the deictic references can be resolved. The deictic variables
are bound by starting with bindings for̄x and working se-
quentially through the deictic referencesD, using their re-
strictions to determine their unique bindings. If a deictic vari-
able does not have a unique binding—if it has either no pos-
sible bindings, or several—it fails to refer, and the rule fails
to cover the state and action.

The Noise Outcome
Probability models of the type we have seen thus far, ones
with a small set of possible outcomes, are not sufficiently
flexible to handle noisy domains where there may be a large
number of possible action effects that are highly unlikely and
yet hard to model—such as all the configurations that may
result when a tall stack of blocks topples. It would be in-
appropriate to model such effects as impossible, and yet we
don’t have the space or inclination to model each of them as
an individual outcome.

We handle this issue by augmenting each rule with an ad-
ditional noise outcome. This outcome has the probability
pnoise = 1 −

∑n
1 pi, but no associatedΨ′; we are declining

to model in detail what happens to the world in such cases.
As an example, consider the rule

pickup(X) :
{

Y : on(X, Y), Z : table(Z)
}

inhand-nil

→


.80 :

¬on(X, Y), inhand(X),¬inhand-nil,
clear(Y)

.10 : ¬on(X, Y), on(X, Z), clear(Y)

.05 : no change

.05 : noise

where noise can happen with a probability of0.05. Here, the
noise outcome might model the fact that towers sometimes
fall over when you are picking up a block.

Since we are not explicitly modeling the effects of
noise, we can no longer calculate the transition probability
Pr(s′|s, a, r) using Equation 2: we lack the distribution over
next states given the noise outcome,P (s′|noise, s, a, r). In-
stead, we substitute a worst case constant boundpmin ≤
P (s′|noise, s, a, r) everywhere this distribution would be re-
quired, and bound the transition probability as

P̂ (s′|s, a, r) = pnoisepmin +
n∑

i=1

P (s′|Ψ′i, s, a, r)pi

≤ P (s′|s, a, r).

In this way, we create a partial model that allows us to ig-
nore unlikely or overly complex state transitions while still
learning and acting effectively.2

2P (s′|noise, s, a, r) could alternately be any well-defined prob-
ability distribution that models the noise of the world. However, we
would have to ensure that this distribution does not assign probabil-
ity to worlds that are impossible (for example, blocks worlds where
blocks are floating in midair), because this would complicate plan-
ning. We will leave the exploration of this alternative approach to
future work.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

3

2.4 Background knowledge

In the rule semantics as described so far, the same set of prim-
itive predicates has been used to construct all the elements of
the rule. However, it is often useful to divide the predicates
and functions of the language into two sets: a set of primitives
whose values are observed directly, and represented within a
state, and a set of additional predicates and functions that can
be derived from these primitives, and so do not need to be rep-
resented directly. The derived predicates and functions can
then be used in the antecedents, but not in the outcomes—a
good thing, since it can be difficult to describe how the val-
ues of the derived predicates change directly. (The predicate
above, the transitive closure ofon, is an example of a hard-
to-update predicate.) This has been found to be essential for
representing certain advanced planning domains[Edelkamp
& Hoffman, 2004].

We define such background knowledge using aconcept
languagethat includes existential quantification, universal
quantification, transitive closure, and counting. Consider the
situation where the only primitive predicates areonandtable.
Quantification is used for defining predicates such asinhand.
Transitive closure is included in the language via the Kleene
star and plus and defines predicates such asabove. Finally,
counting is included using a special quantifier# which re-
turns the number of objects for which a formula is true. It
is useful for defining integer-valued functions such asheight.
The derived predicates can be used in the context and deictic
reference restrictions.

As an example, here is a deictic noisy rule for attempting
to pick up blockX together with the background knowledge
used by this rule:

pickup(X) :

{
Y : topstack(Y, X),
Z : on(Y, Z),
T : table(T)

}
inhand-nil, height(Y) < 9 (3)

→


.80 : ¬on(Y, Z)
.10 : ¬on(Y, Z), on(Y, T)
.05 : no change
.05 : noise

clear(V1) := ¬∃V2.on(V2, V1)

inhand(V1) := ¬∃V2.on(V1, V2)

inhand-nil := ¬∃V2inhand(V2)

above(V1, V2) := on∗(V1, V2)

topstack(V1, V2) := clear(V1) ∧ above(V1, V2)

height(V1) := #V2.above(V1, V2))

The rule is far more complicated than our running example:
it deals with the situation when the block to be picked up,
X, is in the middle of a stack. It is now useful to abstract
over even more objects: the deictic variableY identifies the
(unique) block on top of the stack, and the deictic variable
Z—the block underY . As might be expected, the gripper
succeeds in liftingY with a high probability.

LearnRuleSet(E)
Inputs:

Training examplesE
Computation:

Initialize rule setR to contain only the default rule
While better rules sets are found

For each search operatorO
Create new rule sets withO, RO = O(R,E)
For each rule setR′ ∈ RO

If the score improves (S(R′) > S(R))
Update the new best rule set,R = R′

Output:
The final rule setR

Figure 2: LearnRuleSetPseudocode. This algorithm performs
greedy search through the space of rule sets. At each step a set
of search operators each propose a set of new rule sets. The highest
scoring rule set is selected and used in the next iteration.

2.5 Action Models
Individual rules define the world dynamics only in specific
situations; a general description is provided by anaction
model, which consists of some background knowledge and
a set of rulesR that, together, define the action dynamics of
a world. Given an actiona and states, the ruler ∈ R that
coverss anda is used to predict the effects ofa in s. When
no such rule exists, we use thedefault rule. This rule has
an empty context and two outcomes: a no-change outcome
(which, in combination with the frame assumption, models
the situations where nothing changes), and, again, a noise out-
come (modeling all other situations). This rule allows noise to
occur in situations where no single non-default rule applies;
the probability assigned to the noise outcome in the default
rule specifies a kind of “background noise” level. The de-
fault rule is also used when more than one rule coverss and
a. However, in general, we hope to learn rule sets where the
rules are mutually exclusive.

3 Learning
In this section, we describe an algorithm for learning action
models from training examples that describe action effects.
More formally, each training exampleE ∈ E is a state, ac-
tion, next state triple(s, a, s′) where states are described in
terms of primitive functions and predicates.

We divide the problem of learning action models into two
parts: learning background knowledge, and learning a rule
setR. First, we describe how to learn a rule set given some
background knowledge. Then, we show how to derive new
useful concepts.

3.1 Learning Rule Sets
The LearnRuleSetalgorithm takes a set of examplesE and
a fixed language of primitive and derived predicates. It then
performs a greedy search through the space of possible rule
sets as described in the pseudocode in Figure 2.

The search starts with a rule set that contains only the noisy
default rule. At every step, we take the current rule set and
apply all our search operators to it to obtain a set of new rule

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

4

sets. We then select the rule setR that maximizes the scoring
metric
S(R) =

∑
(s,a,s′)∈E

log(P̂ (s′|s, a, r(s,a)))− α
∑
r∈R

PEN(r)

wherer(s,a) is the rule that covers(s, a), α is a scaling pa-
rameter, and the penaltyPEN(r) is the number of literals in
the ruler. Ties inS(R) are broken randomly.

As a greedy search through the space of rule sets,Learn-
RuleSetis similar in spirit to previous work[Pasula, Zettle-
moyer, & Kaelbling, 2004]. However, adapting that work to
handle our representation extensions involved substantial re-
design of the algorithm, including changing the initial rule
set, the scoring metric, and the search operators.

Search Operators
Each search operatorO takes as input a rule setR and a set of
training examplesE, and creates a set of new rule setsRO to
be evaluated by the greedy search loop. There are eight search
operators. We first describe the most complex operator,Ex-
plainExamples, and then the most simple one,DropRules. Fi-
nally, we present the remaining six operators which all share
a common computational framework, outlined in Figure 4.
• ExplainExamplestakes as input a training setE and a

rule setR and creates new rule sets that contain addi-
tional rules modeling the training examples that were
covered by the default rule inR. Figure 3 shows the
pseudocode for this algorithm, which considers each
training exampleE that was covered by the default rule
in R, and executes a three-step procedure. The first step
builds a large and specific ruler′ that describes this ex-
ample; the second step attempts to trim this rule, and so
generalize it so as to maximize its score, while still en-
suring that it coversE; and the third step creates a new
rule setR′ by copyingR and integrating the new ruler′

into this new rule set.
As an illustration, let us consider how steps
1 and 2 of ExplainExamples might be ap-
plied to the training example (s, a, s′) =
({on(a, t), on(b, a)}, pickup(b), {on(a, t)}), when
the background knowledge is as defined for Rule 3.
Step 1 builds a ruler. It creates a new variableX to
represent the objectb in the action; then, the action sub-
stitution becomesσ = {X → b}, and the action ofr
is set topickup(X). The context ofr is set to the con-
junction inhand-nil,¬inhand(X), clear(X), height(X) =
2,¬on(X, X),¬above(X, X),¬topstack(X, X) Then, in
Step 1.2,ExplainExamplesattempts to create deictic
references that name the constants whose properties
changed in the example. In this case, the only changed
literal is on(b, a), soC = {a}; a new deictic variable
Y is created and restricted, andσ is extended to be
{X → b, Y → a}. The resulting ruler′ looks as fol-
lows:

pickup(X) :

Y :

¬inhand(Y),¬clear(Y), on(X, Y),
above(X, Y), topstack(X, Y),
¬above(Y, Y),¬topstack(Y, Y),
¬on(Y, Y), height(Y) = 1


inhand-nil,¬inhand(X), clear(X), height(X) = 2,¬on(X, X),
¬above(X, X),¬topstack(X, X)

→
{

1.0 : ¬on(X, Y)

ExplainExamples(R,E)
Inputs:

A rule setR
A training setE

Computation:
For each example(s, a, s′) ∈ E covered by the default

rule inR
Step 1: Create a new ruler

Step 1.1:Create an action and context forr
Create new variables to represent the arguments ofa
Use them to create a new action substitutionσ
Setr’s action to beσ−1(a)
Setr’s context to be the conjunction of boolean

and equality literals that can be formed using the
variables and the available functions and predicates
(primitive and derived) and that are entailed bys

Step 1.2:Create deictic references forr
Collect the set of constantsC whose properties changed

from s to s′, but which are not ina
For eachc ∈ C

Create a new variablev and extendσ to mapv to c
Createρ, the conjunction of literals containingv

that can be formed using the available variables,
functions, and predicates, and that are entailed bys

Create deictic referenced with variablev and
restrictionσ−1(ρ)

If d uniquely refers toc in s, add it tor
Step 2: Trim literals fromr

Create a rule setR′ containingr and the default rule
Greedily trim literals fromr while r still covers(s, a, s′)

andR′’s score improves
Step 3: Create a new rule set containingr

Create a new rule setR′ = R
Add r to R′ and remove any rules inR′ that

cover any examplesr covers
Recompute the set of examples that the default rule inR′

covers and the parameters of this default rule
Add R′ to the return rule setsRO

Output:
A set of rule sets,RO

Figure 3: ExplainExamplesPseudocode. This algorithm attempts
to augment the rule set with new rules covering examples currently
handled by the default rule.

In Step 2,ExplainExamplestrims this rule to remove the
invariably true literals, like¬on(X, X), and the redundant
ones, like¬inhand() and¬clear(Y), to give

pickup(X) :
{

Y : on(X, Y), height(Y) = 0
}

inhand-nil, clear(X), height(X) = 1

→
{

1.0 : ¬on(X, Y)

which is then integrated into the rule set.

• DropRulescycles through all the rules in the current rule
set, and removes each one in turn from the set. It returns
a set of rule sets, each one missing a different rule.

The remaining six operators create new rule sets from the
input rule setR by repeatedly choosing a ruler ∈ R and mak-
ing changes to it to create one or more new rules. These new
rules are then integrated intoR, just as inExplainExamples,
to create a new rule setR′. Figure 4 shows the the gen-
eral pseudocode for how this is done. The operators vary in

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

5

OperatorTemplate(R,E)
Inputs:

Rule setR
Training examplesE

Computation:
Repeatedly select a ruler ∈ R

Create a copy of the input rule setR′ = R
Create a new set of rules,N , by making changes tor
For each new ruler′ ∈ N

Estimate new outcomes forr′ with theInduceOutcomes
algorithm described by Pasula et al (2004)

Add r′ to R′ and remove and rules inR′ that
cover any examplesr′ covers

Recompute the set of examples that the default rule inR′

covers and the parameters of this default rule
Add R′ to the return rule setsRO

Output:
The set of rules sets,RO

Figure 4: OperatorTemplatePseudocode. This algorithm is the
basic framework that is used by six different search operators. Each
operator repeatedly selects a rule, uses it to maken new rules, and
integrates those rules into the original rule set to create a new rule
set.

the way they select rules and the changes they make to them.
These variations are described for each operator below:

• DropLits selects every ruler ∈ R n times, wheren is
the number of literals in the context ofr; in other words,
it selects eachr once for each literal in its context. It
then creates a new ruler′ by removing that literal from
r’s context;N of Figure 4 is simply the set containing
r′.

• DropRefsselects each ruler ∈ R once for each deictic
reference inr. It then creates a new ruler′ by removing
that deictic reference fromr.

• ChangeRangesselects each ruler ∈ R n times for each
equality or inequality literal in the context, wheren is
the total number of values in the range of each literal.
Each time it selectsr it creates a new ruler′ by replac-
ing the numeric value of the chosen (in)equality with
another other possible value from the range. Thus, if
f() ranges over[1 . . . n], ChangeRangewould, when ap-
plied to a rule containing the inequalityf() < i, con-
struct rule sets in whichi is replaced by all other integers
in [1 . . . n].

• SplitOnLitsselects each ruler ∈ R n times, wheren is
the number of literals that are absent from the rule’s con-
text. (The set of absent literals is obtained by applying
the available predicates and functions—both primitive
and derived—to the variables defined in the rule, and re-
moving those already present.) It then constructs a set
of new rules. In the case of predicate and inequality lit-
erals, it creates one rule in which the positive version of
the literal is inserted into the context, and one in which
it is the negative version. In the case of equality literals,
it constructs a rule for every possible value the equality
could take. This time,N contains all these rules.

• AddLitsselects each ruler ∈ R n times, wheren is the
number of predicate-based literals that are absent from
the rule’s antecedent. It constructs a new rule by in-
serting that literal into the earliest place in which the its
variables are all well-defined. If the literal contains no
deictic variables, this will be the context, otherwise this
will be the restriction of the last deictic variable men-
tioned in the literal. (IfV1 andV2 are deictic variables
andV1 appears first,p(V1, V2) would be inserted into the
restriction ofV2.)

• AddRefsselects each ruler ∈ R n times, wheren is the
number of literals that can be constructed from variables
in r and a new variablev. It then creates a new rule
by adding a deictic reference with the variablev and a
restriction defined by one of the literals.

We have found that all of these types of operators are con-
sistently used during learning. While this set of operators is
heuristic, it is complete in the sense that every rule set can
be constructed from the initial rule set—although, of course,
there is no guarantee that the scoring metric will lead the
greedy search to the global maximum.

3.2 Learning Background Knowledge
We learn background knowledge using an algorithm which
iteratively constructs increasingly complex concepts, then
tests their usefulness by runningLearnRuleSetand checking
whether they appear in the learned rules. The first set is cre-
ated by applying the operators in Figure 5 to literals built with
the original language. Subsequent sets of concepts are con-
structed using the literals that proved useful on the latest run;
concepts that have been tried before, or that are always true
or always false across all examples, are discarded. The search
ends when none of the new concepts prove useful.

Since our concept language is quite rich, overfitting (e.g.,
by learning concepts that can be used to identify individual
examples) can be a serious problem. We handle this in the
expected way: by introducing a penalty term,α′c(R), to cre-
ate a new scoring metric

S′(R) = S(R)− α′c(R)

wherec(R) is the number of distinct concepts used in the
rule setR andα′ is a scaling parameter. This new metricS′

is now used byLearnRuleSet; it avoids overfitting by favoring
rule sets that use fewer derived predicates.

4 Evaluation
In this section, we demonstrate that noise outcomes and de-
rived predicates are necessary to learn good action models
for the physics-based blocks world simulator of Figure 1, and
also that our algorithm is capable of discovering the relevant
background knowledge. We accomplish this by learning a va-
riety of action models and then comparing their performance
on a simple planning task.

All the experiments are set in a world containing twenty
blocks. The observed, primitive predicates includeon(X, Y)
(which is true if blockX exerts a downward force onY),
size(X), color(X), and the typing predicatetable(X). There

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

6

p(X) → n := QY.p(Y)

p(X1, X2) → n(Y2) := QY1.p(Y1, Y2)

p(X1, X2) → n(Y1) := QY2.p(Y1, Y2)

p(X1, X2) → n(Y1, Y2) := p
∗
(Y1, Y2)

p(X1, X2) → n(Y1, Y2) := p
+

(Y1, Y2)

p1(X1), p2(X2) → n(Y1) := p1(Y1) ∧ p2(Y1)

p1(X1), p2(X2, X3) → n(Y1, Y2) := p1(Y1) ∧ p2(Y1, Y2)

p1(X1), p2(X2, X3) → n(Y1, Y2) := p1(Y1) ∧ p2(Y2, Y1)

p1(X1, X2), p2(X3, X4) → n(Y1, Y2) := p1(Y1, Y2) ∧ p2(Y1, Y2)

p1(X1, X2), p2(X3, X4) → n(Y1, Y2) := p1(Y1, Y2) ∧ p2(Y2, Y1)

p1(X1, X2), p2(X3, X4) → n(Y1, Y2) := p1(Y1, Y2) ∧ p2(Y1, Y1)

p1(X1, X2), p2(X3, X4) → n(Y1, Y2) := p1(Y1, Y2) ∧ p2(Y2, Y2)

f(X) = c → n() := #Y.f(Y) = c

f(X) ≤ c → n() := #Y.f(Y) ≤ c

f(X) ≥ c → n() := #Y.f(Y) ≥ c

Figure 5:Operators used to invent a new predicaten. Each operator
takes as input one or more literals, listed on the left. Theps represent
old predicates;f represents an old function;Q can refer to∀ or
∃; andc is a numerical constant. Each operator takes a literal and
returns a concept definition. These operators are applied to all of the
literals used in rules in a rule set to create new predicates.

were five sizes and five colors, both uniformly distributed.
The color attribute is a distractor. The sizes complicate the
action dynamics, both because they influence stack stability,
and because the gripper does best with blocks of average size,
and is unable to grasp giant blocks at all. The training data
were generated by repeatedly attempting to perform random
actions in random simulator states and noting the result. The
random starting states were generated by randomly placing
blocks on each other, or on the table. The last block was
sometimes placed in the gripper.

4.1 Planning
Since we have no true model to compare the rule sets to, we
evaluate them by using them to plan. We implemented a sim-
ple planner based on the sparse sampling algorithm[Kearns,
Mansour, & Ng, 2002], which treats the domain as a Markov
Decision Problem (MDP)[Puterman, 1999]. Given a states,
it creates a tree of states (of predefined depth and branching
factor) by sampling forward using a transition model, com-
putes the value of each node using the Bellman equation, and
selects the action that has the highest value. In our implemen-
tation, the transition function is defined using an action model
and the reward function is defined by hand.

We adapt the algorithm to handle noisy outcomes, which
do not predict the next state, by estimating the value of the
unknown next state as a fraction of the value of staying in
the same state: i.e., we sample forward as if we had stayed
in the same state and then scale down the value we obtain.
Our scaling factor was0.75, our depth was three, and our
branching factor was five.

This scaling method is only a guess at what the value of the
unknown next state might be; because noisy rules are partial
models, there is no way to compute the value explicitly. In
the future, we would like to explore methods that learn to

 6

 8

 10

 12

 14

 16

 18

 200 300 400 500 600 700 800 900 1000

T
ot

al
 R

ew
ar

d

Training set size

Learning in the Simulated Blocksworld

learned concepts
hand-engineered concepts

without noise outcomes
with a restricted language

Figure 6: The performance of various action model variants as a
function of the number of training examples. All data points were
averaged over five runs each of three rule sets learned on different
training data sets. For comparison, the average reward for perform-
ing no actions is 9.2, and the reward obtained when a human directed
the gripper averaged 16.2.

associate values with noise outcomes. For example, the value
of the outcome where a tower of blocks falls over is different
if the goal is to build a tall stack of blocks than if the goal is
to put all of the blocks on the table.

4.2 Experiments
We set our planner the task of building tall stacks: our reward
function was the average height of the blocks in the world.
The plans were executed for ten time steps. The scaling pa-
rametersα andα′ (associated respectively with the rule com-
plexity penalty term, and the background knowledge com-
plexity penalty term) were set to1.0 and5.0. The noise prob-
ability boundpmin was set to0.00001.

To evaluate the overall quality of the learned rules, we did
an informal experiment to measure the reward achieved when
a human domain expert directed the robot arm. (Note that
humans have an advantage over the planner, since they can
view the entire 3D world while the planner only has access to
the information encoded in theon, height, andsizerelations.)

Results
We tested four action model variants, varying the training
set size; the results are shown in Figure 6. The curve la-
beled ‘learned concepts’ represents the full algorithm as pre-
sented in this paper. Its performance approaches that ob-
tained by a human expert, and is comparable to that of the
algorithm labeled ‘hand-engineered concepts’ that did not
do concept learning, but was, instead, provided with hand-
coded versions of the conceptsclear, inhand, inhand-nil,
above, topstack, and height. The concept learner discov-
ered all of these, as well as other useful predicates, e.g.,
p(X, Y) := clear(Y) ∧ on(Y, X), which we will call onclear.
This could be why its action models outperformed the hand-
engineered ones slightly on small training sets. In domains
less well-studied than the blocks world, it might be less obvi-

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

7

ous what the useful concepts are; the concept-discovery tech-
nique presented here should prove helpful.

The remaining two model variants obtained rewards com-
parable to the reward for doing nothing at all. (The planner
did attempt to act during these experiments, it just did a poor
job.) In one variant, we used the same full set of predefined
concepts but the rules could not have noise outcomes. The re-
quirement that they explain every action effect led to signifi-
cant overfitting and a decrease in performance. The other rule
set was given the traditional blocks world language, which
does not includeabove, topstack, or height, and allowed to
learn rules with noise outcomes. We also tried a full-language
variant where noise outcomes were allowed, but deictic ref-
erences were not: the resulting rule sets contained only a few
very noisy rules, and the planner did not attempt to act at all.
The poor performance of these ablated versions of our repre-
sentation shows that all three of our extensions are essential
for modeling the simulated blocks world domain.

Example Learned Rules
To get a better feel for the types of rules learned, here are two
interesting rules learned by the full algorithm.

pickup(X) :

{
Y : onclear(X, Y), Z : on(Y, Z),
T : table(T)

}
inhand-nil, size(X) < 2

→

{
.80 : ¬on(Y, Z)
.10 : ¬on(X, Y)
.10 : ¬on(X, Y), on(Y, T),¬on(Y, Z)

This rule applies when the empty gripper is asked to pick
up a small blockX that sits on top of another blockY. The
gripper grabs both with a high probability.

puton(X) :

{
Y : topstack(Y, X), Z : inhand(Z),
T : table(T)

}
size(Y) < 2

→


.62 : on(Z, Y)
.12 : on(Z, T)
.04 : on(Z, T), on(Y, T),¬on(Y, X)
.22 : noise

This rule applies when the gripper is asked to put its contents,
Z, on a blockX which is inside a stack topped by a small block
Y. Because placing things on a small block is chancy, there
is a reasonable probability thatZ will fall to the table, and a
small probability thatY will follow.

5 Discussion and Future Work
In this paper, we developed a probabilistic action model rep-
resentation that is rich enough to be used to learn models for
planning in the simulated blocks world. This is a first step
towards defining representations and algorithms that will en-
able learning in more complex worlds.

There remains much work to be done in the context of
learning probabilistic planning rules. We plan to expand our
approach to handle partial observability, possibly incorporat-
ing some of the techniques from work on deterministic learn-
ing [Amir, 2005]. We also plan to learn probabilistic oper-
ators in an incremental, online manner, similar to the learn-
ing setup in the deterministic case[Shen & Simon, 1989;

Gil, 1994; Wang, 1995], which has the potential to help scale
this approach to larger domains. Finally, we plan to explore
the learning of parallel planning rules.

6 Acknowledgments
This material is based upon work supported in part by
the Defense Advanced Research Projects Agency (DARPA),
through the Department of the Interior, NBC, Acquisition
Services Division, under Contract No. NBCHD030010; and
in part by DARPA Grant No. HR0011-04-1-0012 .

References
[Amir, 2005] Amir, E. 2005. Learning partially observable deter-

ministic action models. InProceedings of the Nineteenth Inter-
national Joint Conference on Artificial Intelligence.

[Benson, 1996] Benson, S. 1996.Learning Action Models for Re-
active Autonomous Agents. Ph.D. Dissertation, Stanford Univer-
sity.

[Blum & Langford, 1999] Blum, A., and Langford, J. 1999. Prob-
abilistic planning in the graphplan framework. InProceedings of
the Fifth European Conference on Planning.

[Edelkamp & Hoffman, 2004] Edelkamp, S., and Hoffman, J.
2004. PDDL2.2: The language for the classical part of the 4th in-
ternational planning competition.Technical Report 195, Albert-
Ludwigs-Universiẗat, Freiburg, Germany.

[Fikes & Nilsson, 1971] Fikes, R. E., and Nilsson, N. J. 1971.
STRIPS: A new approach to the application of theorem proving
to problem solving.Artificial Intelligence2(2).

[Gardiol & Kaelbling, 2003] Gardiol, N., and Kaelbling, L. 2003.
Envelope-based planning in relational MDPs. InAdvances in
Neural Information Processing Systems 16.

[Gil, 1994] Gil, Y. 1994. Learning by experimentation: Incremental
refinement of incomplete planning domains. InProceedings of
the Eleventh International Conference on Machine Learning.

[Kearns, Mansour, & Ng, 2002] Kearns, M.; Mansour, Y.; and Ng,
A. 2002. A sparse sampling algorithm for near-optimal planning
in large Markov decision processes.Machine Learning49(2).

[Lavrǎc & Džeroski, 1994] Lavrǎc, N., and Ďzeroski, S. 1994.In-
ductive Logic Programming Techniques and Applications. Ellis
Horwood.

[ODE, 2004] ODE. 2004. Open dynamics engine toolkit.
http://opende.sourceforge.net.

[Pasula, Zettlemoyer, & Kaelbling, 2004] Pasula, H.; Zettlemoyer,
L.; and Kaelbling, L. 2004. Learning probabilistic relational
planning rules. InProceedings of the Fourteenth International
Conference on Automated Planning and Scheduling.

[Puterman, 1999] Puterman, M. L. 1999.Markov Decision Pro-
cesses. John Wiley and Sons, New York.

[Shen & Simon, 1989] Shen, W.-M., and Simon, H. A. 1989. Rule
creation and rule learning through environmental exploration. In
Proceedings of the Eleventh International Joint Conference on
Artificial Intelligence.

[Wang, 1995] Wang, X. 1995. Learning by observation and prac-
tice: An incremental approach for planning operator acquisition.
In Proceedings of the Twelfth International Conference on Ma-
chine Learning.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

8

Adaptive Partitioning of State Spaces using Decision Graphs
for Real-Time Modeling and Planning

Mykel J. Kochenderfer and Gillian Hayes
Institute of Perception, Action and Behaviour

School of Informatics, University of Edinburgh
Edinburgh, United Kingdom EH9 3JZ

m.kochenderfer@ed.ac.uk, gmh@inf.ed.ac.uk

Abstract

This paper introduces a framework that integrates
incremental model learning and reactive plan con-
struction for real-time control of an agent situated
in a stochastic world. This system is designed to
achieve competent performance in continuous-time
problems involving large or infinite state spaces.
In order to learn and plan in such domains effec-
tively, experience must be generalized over time
and space. This system achieves generalization by
incrementally adapting a discretization of the state
space using a decision graph as the agent gains
experience and refines its plan. In contrast with
other approaches, the framework presented in this
paper makes no assumption about the representa-
tion of the state space, making it broadly applicable
across relational and continuous-valued domains.
The mechanism of this framework is illustrated on
an artificial problem.

1 Introduction
This paper presents a new system that integrates incremental
model learning and reactive plan construction for real-time
control of an agent situated in a stochastic world. This system
is a specialized instance of our more general “Adaptive Mod-
eling and Planning System” (AMPS). Under consideration in
this paper are problems with large or infinite state spaces and
durative actions that operate in continuous time. The agent
has no prior knowledge of the dynamics of the world or its
task. The objective of the agent is to use its experience in
the world to competently maximize its expected discounted
reward.

In order to make problems with large or infinite state spaces
tractable, a decision graph partitions the state space into re-
gions and treats all states in the same region collectively. A
decision graph is a generalization of a decision tree where
nodes may have multiple parents. Associated with every in-
ternal node is a condition, which is a binary test that maps
states to truth values. The leaf nodes represent regions of the
state space. A state is mapped to a region through a series
of tests starting at the root and continuing through the graph
according to the results of these tests until arriving at a leaf.

(north current person)

(north destination current)
(north current destination)

(north person destination)

(incar)

(= current person)

(north person current)

Figure 1: A decision graph constructed by AMPS during
early exploration of the Taxi World domain. Decision nodes
are represented by rectangles and leaf nodes, corresponding
to regions of the state space, are represented by circles. When
the test at a decision node evaluates to true, the solid edge is
followed. Otherwise, the dashed edge is followed.

Figure 1 is an example of a decision graph that was incremen-
tally constructed by AMPS.

AMPS begins with a decision graph consisting of a single
node representing the entire state space. As the agent accu-
mulates experience, AMPS incrementally refines its partition
of the state space by splitting and merging regions, thereby
growing the decision graph, aiming to arrive at a model that
is consistent with its experience and conducive to building a
successful reactive plan.

The primary contribution of this paper is a method for in-
crementally adapting the partition of the state space by split-
ting and merging regions. One of the methods for splitting
regions in AMPS is inspired in part by the work of Uther and
Veloso [1998] where regions of the state space are split when
there are observed differences in expected discounted reward

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

9

Processes

Map Revision
splits, merges

Experience Revision
add and remove observations

Action Selection
choose best action

Plan Revision
choose region to update

Data Structures

Map
state regions

Experience
observations

Model
dynamics, reward, failure

Plan
value, greedy action

Figure 2: A high-level view of AMPS showing the four pro-
cesses and the four data structures.

for different states within the same region. Another method
for splitting regions in AMPS is inspired by the PARTI-GAME
algorithm [Moore and Atkeson, 1995]. In PARTI-GAME and
AMPS, the agent detects when it has become “stuck,” mean-
ing that the repeated application of the same action is not
likely to achieve success in transitioning out of the current
region. Both PARTI-GAME and AMPS use this information
to refine the discretization of the state space. In AMPS this
is known as failure revision. In addition to splitting regions,
AMPS merges regions when possible, which is not typically
done in other discretization algorithms.

AMPS is composed of four processes and four data struc-
tures as illustrated in Figure 2. The Map Revision process
splits and merges regions of the state space. The Experience
Revision process maintains past experience. The Action Se-
lection process makes control decisions. The Plan Revision
process incrementally improves the plan. These processes
read from and modify the Map, Experience, Model, and Plan
data structures.

The next section defines the problem under investigation,
followed by a description of the data structures and processes
involved in AMPS. We then present our experiments and re-
sults. We conclude with comparisons to related work and a
discussion of further research.

2 Problem Statement
The class of problems considered in this research involves
an agent situated in a world. The agent continuously (or at
high frequency) observes and acts in this world. At any point
in time, the agent is in exactly one of potentially infinitely
many states and the agent may execute exactly one of a small
finite number of possible actions. Actions may be durative
meaning that they may be interrupted at any time (e.g. “rotate
left at 1 rad/s”) or ballistic meaning that they return control to
the agent after some amount of time (e.g. “rotate left 1 rad”).

The experience of the agent may be recorded as a sequence

s1, a1, t1, f1, r1, s2, a2, t2, f2, r2, . . .

where sk is the state at the kth sample, ak is the action taken
after the kth sample, tk is the time spent between sample k
and k + 1, fk indicates whether a failure was encountered,

and rk is the reward received after the kth sample. The ob-
jective of the agent after sample k is to maximize its expected
discounted reward,

E

[∞∑
i=0

e−βσk+irk+i

]

where σk =
∑k

i=1 tk and β ∈ (0,∞) is the continuous com-
pound discount rate. Discounting the reward pressures the
agent to aggressively pursue reward.

AMPS is expected to perform well on problems that are
modeled sufficiently well by a semi-Markov decision process
[Puterman, 1994] over a state space that has been partitioned
into a finite set of regions N . Transitions, reward, and failures
are determined by fixed probability distributions:

• P (·|n, a) is the probability distribution over the regions
transitioned to after starting in n and continuously ap-
plying a.

• Pt(·|n, a, n′) is the c.d.f. for the time required to transi-
tion from n to n′ by continuously applying a.

• Pr(·|n, a, n′) is the c.d.f. for the lump sum reward re-
ceived after transitioning from n to n′ by continuously
applying a.1

If N and these probability distributions are known, then the
optimal value function, V ∗, and optimal reactive plan, π∗,
satisfy:

V ∗(n) = max
a

Q(n, a, n′) (1)

π∗(n) = arg max
a

Q(n, a, n′) (2)

where

γ(n, a, n′) ,
∫ ∞

0

e−βtdPt(t|n, a, n′)

R(n, a, n′) , P (n′|n, a)γ(n, a, n′)
∫ ∞

−∞
rdPr(r|n, a, n′)

Q(n, a, n′) , R(n, a, n′) +
∑
n′

P (n′|n, a)γ(n, a, n′)V ∗(n)

The value function V ∗(n) is the expected discounted reward
given that the agent starts in region n and follows an optimal
policy. The expected discounted reward given that the agent
starts with a transition from n to n′ by action a and then fol-
lows an optimal policy is given by Q(n, a, n′)/P (n′|n, a), a
value that will be used in the map revision process described
in Section 4.1.

The agent has no prior knowledge of N , P , Pt, or Pr.
AMPS incrementally adapts its partitioning of the state space
and revises its estimates of P , γ, and R accordingly. As these
estimates are revised, AMPS uses prioritized value iteration
to improve its reactive plan.

1Other SMDP models considered in the literature [Bradtke and
Duff, 1995] involve reward that is accumulated at some constant rate
as opposed to lump sum rewards following transitions. In this paper
we will only consider lump sum rewards, although AMPS can easily
be extended to handle reward rate models.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

10

3 Data Structures
The data structures in AMPS store information about state
regions, observations, world models, and plans. This section
will describe each data structure in turn.

3.1 Map
The Map data structure maps states to regions and allows
these regions to be efficiently split and merged to adapt with
the experience of the agent. The instance of AMPS consid-
ered in this paper performs these operations using a decision
graph.2

Merging regions is straightforward in a decision graph, but
splitting regions requires a mechanism called a separator.
The separator mechanism creates binary tests based on sam-
ple states belonging to different categories, much like a su-
pervised learning classifier [Duda and Hart, 1973]. The tests
that are generated by the separator should be simple. A test
should not be, for example, an entire decision tree, a neural
network, or a lengthy sentence in first order logic. Instead,
simple tests such as x2 < 2.3 or ∃x ON(A, x) should be used.
Simple tests are to be combined using the decision graph.

Clearly, the separator mechanism must be engineered ac-
cording to how the state space is represented. It is important
to note that the separator is the only component in AMPS
that interacts with the state space representation directly. This
is intentional. AMPS is designed to be representation inde-
pendent, unlike most other partitioning algorithms,3 enabling
it to be applied across both relational and continuous-valued
domains with only the separator requiring changing.

We implemented a program that generates separators for
any logical domain given the names of the constants, func-
tions, and relations and their associated types. We integrated
the JTP theorem prover [Fikes et al., 2003] to prune unnec-
essary logical sentences from consideration based on a set of
axioms about the domain. The separator selects the sentence
that provides the greatest information gain [Shannon, 1948].

3.2 Experience
The Experience data structure keeps a record of the states and
transitions experienced by the agent and associates them with
the regions, i.e. the leaf nodes of the decision graph, managed
by the Map. When regions are split and merged, the associa-
tion of past observations to regions is updated appropriately.

3.3 Model
The Model data structure models state transition dynam-
ics, failure, and reward. Let Pf (n, a) be the probability of
encountering failure when executing action a from region

2Alternatively, nearest-neighbor [Cover and Hart, 1967] may be
used provided that a distance metric is defined over the state space.

3Other partitioning algorithms in the literature make strong as-
sumptions about how states and actions are represented. For exam-
ple, Chapman and Kaelbling [1991] and Munos and Patinel [1994]
assume that states are represented as fixed-length binary strings, Mc-
Callum [1995] assumes an attribute-value representation, Dean et al.
[1998] assume a factored state and action representation, and Ma-
hadevan and Connell [1992] assume that states are represented as
real-valued vectors.

n. This may be estimated directly from experience as can
P (n′|n, a). Instead of estimating the c.d.f.s Pt and Pr di-
rectly, AMPS estimates γ and R instead. The integrals in γ
and R are approximated as follows (see Kalos and Whitlock
1986, pp. 89–116):
•

∫∞
0

e−βtdPt(t|n, a, n′) is approximated by averaging
e−βτi where τi is the time required to make the ith tran-
sition from n to n′ by action a.
•

∫∞
−∞ rdPr(r|n, a, n′) is approximated by averaging the

reward received while transitioning from n to n′ by ac-
tion a.

These approximations are used by the Plan data structure,
which is described next.

3.4 Plan
The Plan data structure maintains the value function and the
greedy policy. The estimated value function, V (n), is an es-
timate of the expected discounted reward starting in region n
and proceeding with an estimate of optimal behavior. The es-
timated greedy policy, π(n), associates with each state region
an estimate of the greedy action that maximizes the expected
discounted reward.

As can be seen in the equations given in Section 2, the
value and the greedy action associated with each state region
depend upon the value of other state regions. The Plan data
structure supports a function called UPDATE(n) that updates
the value and greedy action of region n using Equation 1 as-
suming that the values of all other regions are correct. The
Plan Revision process is responsible for calling UPDATE on
state regions in response to changes in the Model and Plan.

4 Processes
The four processes in AMPS are responsible for splitting and
merging regions of the state space, recording experience, se-
lecting actions, and constructing plans. All processes are de-
signed to be incremental and perform (relatively) simple op-
erations on the data structures at a frequency dependent on
available computational resources.

4.1 Map Revision
The Map Revision process is responsible for dynamically
splitting and merging state regions in response to changes in
the Model and Plan. If the agent has no prior knowledge of
how the state and action space should be partitioned when
it commences its interaction with the world, the entire state
space is contained within a single region. Over time, this re-
gion is incrementally refined and simplified as experience is
acquired, growing the decision graph. The objective is to find
a partition of the state space that has the following properties:

1. All transitions resulting from a greedy action have ap-
proximately the same estimated value.

2. The expected failure of greedy actions is minimal.
3. The partition is as simple as possible.
Different types of revision can be done to bring the Map

closer to the criteria listed above. Each type of revision is
given a priority at each region that indicates (heuristically) the

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

11

likelihood that performing that particular type of revision will
improve the Map. When the Map Revision process runs, it
will perform the highest priority revision. The Map Revision
process ignores revisions below a certain threshold so as to
not over-fit potentially noisy experience.

The three types of revision used in this system correspond
to the three criteria above, and they are as follows:

Value Revision
This type of revision attempts to separate state observa-
tions that have resulted in transitions with differing esti-
mated value. This separation is done with the separator
mechanism for the decision graph. The priority of perform-
ing this type of revision is proportional to a measure of
variation of estimated value. The experimental implemen-
tation separates states involved in greedy transitions based
on whether Q(n, π(n), n′)/P (n′|n, π(n)) is above or below
the mean. The priority is proportional to the variance of
Q(n, π(n), n′)/P (n′|n, π(n)).

Failure Revision
This type of revision uses the separator mechanism to sepa-
rate states that have led to success from those that have led to
failure. The priority of this type of revision for a state region
is related to the estimated probability of failure in the Model
when taking a greedy action, which is given by Pf (n, π(n)).

Simplification Revision
This type of revision merges state regions when their distinc-
tion seems to be irrelevant to the task. Non-greedy action re-
gions are merged with low priority. State regions are merged
in two situations. The first situation occurs when there exists
an approximately deterministic greedy transition4 from n to
n′ and both nodes have the same greedy action, in which case
n and n′ are merged. The second situation occurs when there
exists approximately deterministic greedy transitions from n
and n′ leading to the same node and π(n) = π(n′), in which
case n and n′ may be merged. These conditions for merg-
ing are related to the SQUISH algorithm described by Nilsson
[2000] for deterministic teleo-reactive trees.

4.2 Experience Revision
The Experience Revision process adds state and transition ob-
servations to the Experience data structure. If the state space
is continuous and it is being sampled at a high frequency, it
is impractical to add each sample. Instead, the agent should
filter out samples that are not likely to be useful. The ex-
act mechanism for determining significance is domain depen-
dent, but one approach to filtering out states is to ignore all
states until the agent has transitioned to a new state that is
outside some threshold distance.

In addition to filtering out insignificant samples, the Expe-
rience Revision process is also responsible for removing old
samples from the Experience data structure. The schedule for
removing old samples depends upon memory and processor
constraints. The removal of old samples also allows the agent
to adapt to slowly changing environments.

4An approximately deterministic greedy transition from n to n′

is one where P (n′|n, π(n)) ≈ 1.

4.3 Action Selection
The Action Selection process is responsible for continuously
selecting a single action to execute. This process must be ex-
tremely efficient because it is typically executed as frequently
as the agent samples the state of the world.

Usually, the agent should execute an action from the greedy
region of the current state region as computed by the policy
revision process. However, as with traditional reinforcement
learning there are issues with balancing exploration of the
world and exploitation of the optimal policy. There have been
many techniques proposed for balancing exploration with ex-
ploitation [Thrun, 1992], any of which may be used in this
system.

As mentioned earlier, the agent is able to sense failures
when they occur. What exactly counts as a failure depends
upon the domain, but failures are generally situations where
executing the same action repeatedly will not lead to success.
In the Taxi World domain described later, a failure might be
trying to drop off a person who is not in the taxi. The Action
Selection mechanism uses information about past failures to
better direct the agent toward a goal.

In our current implementation of AMPS, the agent
will take the greedy action π(n) with probability 1 −
Pf (n, π(n)) − ε, where ε is a small positive value allowing
random exploration even when no failure has been observed.
If π(n) is not taken, then the last action a is followed with
probability 1 − Pf (n, a) − ε. Otherwise, a random action is
selected.

4.4 Plan Revision
The Plan Revision process incrementally builds an optimal
plan with the assumption that the current Model is correct.
This process calls the UPDATE(n) function supplied by the
Plan data structure, which updates the value and greedy action
for n.

One way to arrive at an optimal policy is to repeatedly it-
erate through the state regions calling UPDATE until conver-
gence [cf. Bellman 1957]. However, doing so is not likely to
be feasible in real time since the Model is continually chang-
ing. Instead, it is better to use a method related to prioritized
sweeping [Moore and Atkeson, 1993], which was designed
for solving Markov decision processes (MDPs) but can be
adapted for solving SMDPs. The idea of the algorithm is to
prioritize updates of regions based on observed changes in the
value function from earlier updates. Pseudo-code is given in
Figure 3.

5 Experiments and Results
This section demonstrates AMPS in the Taxi World domain.
In this problem the agent must control a car in a grid world to
pick up people and transport them to their desired destination.
The agent may move up, down, left, and right and pick up and
put down passengers. When the agent moves around in the
world, it will move in a direction orthogonal to the direction
it intended with 5% probability.

The state space is represented by a seven-dimensional vec-
tor containing the x and y coordinates of the car, person, and
desired destination and a Boolean value indicating whether

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

12

PRIORITIZED-SWEEPING

1 while priority queue is not empty
2 do remove region n from the front of the queue
3 v ← V (n)
4 UPDATE(n)
5 ∆← |V (n)− v|
6 for each pair 〈n′, a′〉

s.t. n′ 6= n and P (n|n′, a′) > 0
7 do p← P (n|n′, a′)γ(n′, a′, n)∆
8 if p > ε and n′ is either not in the queue

or p is greater than its current priority
9 then promote the priority of n′ to p

Figure 3: The adapted version of prioritized sweeping used
by the Plan Revision process.

the person is in or out of the car. The separator partitions the
state space using the IN-CAR relation and various directional
relations (e.g. NORTH and DIRECTLY-WEST) that take two
objects as arguments, where the objects may be CURRENT,
PERSON, and DESTINATION, representing the current posi-
tion of the taxi, the person, and the destination respectively.
Failures occur when the agent attempts to pick up or put down
a person when not occupying the same square or when it at-
tempts to move past the border of the world. Goal states are
states where IN-CAR is true and the person is at its destina-
tion. The agent receives zero reward except at goal states
where it receives unit reward. The continuous compound dis-
count rate, β, was set to 0.01.

In our experiments we used a 40×40 grid, which allows for
over 4 billion states. Since the agent has no prior knowledge
about the dynamics of the world or its task, it considers all
states to be equivalent. Hence, the agent must rely upon ran-
dom exploration until it reaches a goal. Random exploration
is not practical in the Taxi World or most other interesting
domains because the state space is so large, and therefore the
agent needs some mechanism to bias it toward the relevant
goal states [Whitehead, 1991]. In our experiments, we used a
teacher to guide the agent to a goal for two training episodes.
These two training episodes allowed AMPS to partition the
state space and distribute the observed reward through the
model. The teacher used in the experiments returned random
actions 5% of the time.

For comparison purposes and to control for the informa-
tion gained from the noisy teacher, we trained a decision tree
based on the same teacher. The decision tree is induced us-
ing the separator to partition the state space according to the
actions taken by the teacher. This sort of supervised learning
of control is known as behavioral cloning and has been suc-
cessfully applied to a variety of domains including aircraft
control [Sammut et al., 1992]. The primary disadvantages of
a behavioral clone is that it is entirely dependent on a good
teacher and it is not able to adapt its behavior based on its
own experience in contrast to AMPS.

In our experiments, we tested seven different agents:
AMPS with all forms of map revision (A), AMPS without
value revision (V), AMPS without failure revision (F), AMPS

Successes Disc. Reward Regions
mean s.d. mean s.d. mean s.d.

A 14.49 4.27 6.05 2.20 66.73 11.78
V 0.97 2.01 0.31 0.99 18.48 8.28
F 0.02 0.14 0.02 0.14 1.00 0.00
S 14.33 3.81 6.11 2.02 84.66 13.12
C 3.49 3.24 1.48 1.82 12.39 2.11
T 20.00 0.00 10.29 0.69 N/A N/A
R 0.02 0.14 0.02 0.14 N/A N/A

Table 1: Experimental results of various agents in the Taxi
World domain. Shown are the means and standard deviations
of the number of successes and discounted reward over 100
runs of 20 episodes each. Shown for each AMPS-based agent
is the mean and standard deviation of the number of regions
at the end of the run.

without simplification revision (S), behavioral clone (C), the
noisy teacher that was used to train the other agents (T), and
random (R). We ran 100 runs of 20 episodes (not including
the two training episodes) each using different random seeds.
For the AMPS agents, no more than one merge or split of the
state space was allowed per time step. Each episode lasts 300
steps or when the agent successfully picks up and drops off
its passenger at the desired destination. The results of 100
repeated experiments are summarized in Table 1.

6 Discussion
As can be seen in the table of results, AMPS quickly learned
how to navigate from a state selected randomly from the
space of over 4 billion possible states to one of the 160 goal
states. The success of AMPS is due to its ability to take ad-
vantage of the structure inherent in the task.

AMPS began with a simple model of the world where all
states are equivalent. After two teaching episodes, AMPS
proceeded on its own with the reactive plan that it developed.
As AMPS encountered evidence indicating that its model and
plan was incorrect, the Map Revision process revised the state
space partition appropriately. The complexity of the agent’s
model increased rapidly as the agent initially explored the
world but then this complexity leveled off. The number of re-
gions commonly used in effective solutions to the Taxi World
problem was typically in the range of 60–80. Figure 6 shows
the connectivity between regions after five episodes.

The results demonstrate that AMPS without value revision
performs extremely poorly and AMPS without failure revi-
sion performs like a random controller. As can be expected,
AMPS without simplification revision is capable of quickly
learning effective behavior. However, without simplification
revision the model consists of about 27% more regions, and
consequently requires more memory and processing power.

Behavioral clones did quite poorly, solving on average only
3.49 of the 20 random problems. This poor performance is
due to the fact that behavioral clones do not adapt their poli-
cies in response to their experience. Because the two training
instances provided such a limited exposure to the state space,
the clones could not consistently generalize the training in-
stances to new situations.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

13

Figure 4: A graph illustrating the connectivity between re-
gions after running AMPS for five episodes.

Although AMPS is unique in the way it decides how and
when to split and merge regions of the state space, there
have been other algorithms proposed, both model-free and
model-based, that use decision trees to partition the state
space [Chapman and Kaelbling, 1991; McCallum, 1995;
Uther and Veloso, 2003; 1998]. Other techniques have been
proposed for solving problems with large or infinite state
spaces that do not involve partitioning the state space into
regions. For example, parameterized function approxima-
tors, such as neural networks, may be used with traditional
reinforcement learning techniques to estimate the value func-
tion [Bertsekas and Tsitsiklis, 1996]. Other work has been
done on problems with durative actions [Benson and Nilsson,
1995]. The way AMPS uses SMDPs to model durative ac-
tions relates to work done in hierarchical reinforcement learn-
ing [surveyed in Barto and Mahadevan 2003].

7 Conclusions and Further Work
This paper has introduced a real-time system that integrates
adaptive partitioning of the state space and incremental plan-
ning over the estimated model to produce goal-directed be-
havior. The system was tested on the Taxi World domain and
was shown to quickly learn successful behavior in the pres-
ence of noise in the environment and the teacher.

AMPS is currently being tested in other more complex do-
mains and compared against other methods such as traditional
reinforcement learning with function approximation. Further
work will investigate the use of different separators that take
into account values of previous observations, making AMPS
potentially applicable to domains where the current state is
only partially observable.

Acknowledgments
The authors would like to thank Nils Nilsson, George
Konidaris, Marc Toussaint, and the anonymous reviewers for
their helpful suggestions on earlier drafts of this paper.

References
[Barto and Mahadevan, 2003] Andrew G. Barto and Srid-

har Mahadevan. Recent advances in hierarchical rein-
forcement learning. Discrete Event Dynamic Systems,
13(4):341–379, October 2003.

[Bellman, 1957] Richard Bellman. Dynamic Programming.
Princeton University Press, 1957.

[Benson and Nilsson, 1995] Scott Benson and Nils J. Nils-
son. Reacting, planning and learning in an autonomous
agent. In K. Furukawa, D. Michie, and S. Muggleton, ed-
itors, Machine Intelligence, volume 14, pages 29–64. Ox-
ford University Press, 1995.

[Bertsekas and Tsitsiklis, 1996] Dimitri P. Bertsekas and
John N. Tsitsiklis. Neuro-Dynamic Programming. Athena
Scientific, 1996.

[Bradtke and Duff, 1995] Steven J. Bradtke and Michael O.
Duff. Reinforcement learning methods for continuous-
time Markov decision problems. In Gerald Tesauro,
David S. Touretzky, and Todd K. Leen, editors, Advances
in Neural Information Processing Systems, volume 7,
pages 393–400. MIT Press, 1995.

[Chapman and Kaelbling, 1991] David Chapman and
Leslie Pack Kaelbling. Input generalization in delayed
reinforcement learning: An algorithm and performance
comparisons. In Proceedings of the Twelfth Interna-
tional Joint Conference on Artificial Intelligence, pages
726–731. Morgan Kaufmann, 1991.

[Cover and Hart, 1967] T. M. Cover and P. E. Hart. Near-
est neighbor pattern classification. IEEE Transactions on
Information Theory, 13(1):21–27, January 1967.

[Dean et al., 1998] Thomas Dean, Robert Givan, and Kee-
Eung Kim. Solving planning problems with large state
and action spaces. In Proceedings of the Fourth Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems, pages 102–110. AAAI Press, 1998.

[Duda and Hart, 1973] Richard O. Duda and Peter E. Hart.
Pattern Classification and Scene Analysis. John Wiley and
Sons, 1973.

[Fikes et al., 2003] Richard Fikes, Jessica Jenkins, and Gleb
Frank. JTP: A system architecture and component li-
brary for hybrid reasoning. Technical Report KSL-03-01,
Knowledge Systems Laboratory, Department of Computer
Science, Stanford University, 2003.

[Kalos and Whitlock, 1986] Malvin H. Kalos and Paula A.
Whitlock. Monte Carlo Methods, volume 1. John Wiley
and Sons, 1986.

[Mahadevan and Connell, 1992] Sridhar Mahadevan and
Jonathan Connell. Automatic programming of behavior-
based robots using reinforcement learning. Artificial
Intelligence, 55(2–3):311–365, June 1992.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

14

[McCallum, 1995] Andrew Kachites McCallum. Reinforce-
ment Learning with Selective Perception and Hidden State.
PhD thesis, Department of Computer Science, University
of Rochester, 1995.

[Moore and Atkeson, 1993] Andrew W. Moore and Christo-
pher G. Atkeson. Prioritized sweeping: Reinforcement
learning with less data and less time. Machine Learning,
13(1):103–130, October 1993.

[Moore and Atkeson, 1995] Andrew W. Moore and Christo-
pher G. Atkeson. The Parti-game algorithm for vari-
able resolution reinforcement learning in multidimen-
sional state-spaces. Machine Learning, 21(3):199–233,
December 1995.

[Munos and Patinel, 1994] Rémi Munos and Jocelyn Patinel.
Reinforcement learning with dynamic covering of state-
action space: Partitioning Q-learning. In Proceedings of
the Third International Conference on Simulation of Adap-
tive Behavior, pages 354–363. MIT Press, 1994.

[Nilsson, 2000] Nils J. Nilsson. Learning strategies for mid-
level robot control: Some preliminary considerations and
results. www.robotics.stanford.edu/users/nilsson/trweb,
2000. Computer Science Department, Stanford University.

[Puterman, 1994] Martin L. Puterman. Markov Decision
Processes: Discrete Stochastic Dynamic Programming.
John Wiley and Sons, 1994.

[Sammut et al., 1992] Claude Sammut, Scott Hurst, Dana
Kedzier, and Donald Michie. Learning to fly. In Pro-
ceedings of the Ninth International Workshop on Machine
Learning, pages 385–393. Morgan Kaufmann, 1992.

[Shannon, 1948] Claude E. Shannon. A mathematical the-
ory of communication. Bell System Technical Journal,
27:379–423 and 623–656, July and October 1948.

[Thrun, 1992] Sebastian B. Thrun. The role of exploration in
learning control. In D. White and D. Sofge, editors, Hand-
book for Intelligent Control: Neural, Fuzzy and Adap-
tive Approaches, pages 527–559. Van Nostrand Reinhold,
1992.

[Uther and Veloso, 1998] William Uther and Manuela
Veloso. Tree based discretization for continuous state
space reinforcement learning. In Proceedings of the
Fifteenth National Conference on Artificial Intelligence,
pages 769–775. AAAI Press, 1998.

[Uther and Veloso, 2003] William Uther and Manuela
Veloso. TTree: Tree-based state generalization with
temporally abstract actions. In Adaptive Agents and
Multi-Agent Systems: Adaptation and Multi-Agent Learn-
ing, volume 2636 of Lecture Notes in Computer Science,
pages 266–296. Springer, 2003.

[Whitehead, 1991] Steven D. Whitehead. A complexity
analysis of cooperative mechanisms in reinforcement
learning. In Proceedings of the Ninth National Conference
on Artificial Intelligence, pages 607–613. AAAI Press,
1991.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

15

Modeling and Planning in Large State and Action Spaces

Mykel J. Kochenderfer and Gillian Hayes
Institute of Perception, Action and Behaviour

School of Informatics, University of Edinburgh
Edinburgh, United Kingdom EH9 3JZ

m.kochenderfer@ed.ac.uk, gmh@inf.ed.ac.uk

Abstract

This paper introduces a general framework that
integrates incremental model learning and reac-
tive plan construction for real-time control of an
agent situated in a stochastic world. This system
is designed to achieve competent performance in
continuous-time problems involving large or infi-
nite state and action spaces. In order to learn
and plan in such domains effectively, experience
must be generalized over time, state, and action.
This system achieves generalization by incremen-
tally adapting a discretization of the state and ac-
tion spaces as the agent gains experience and re-
fines its plan. In contrast with other approaches,
the framework presented in this paper makes no
assumption about the representation of the state
space, making it broadly applicable across rela-
tional and continuous-valued domains. The mecha-
nism of this framework is illustrated on an artificial
problem.

1 Introduction
This paper presents the “Adaptive Modeling and Planning
System” (AMPS), a general framework for integrating incre-
mental model learning and reactive plan construction for real-
time control of an agent situated in a stochastic world. Un-
der consideration are problems with large or infinite state and
action spaces where individual actions operate in continuous
time. The agent has no prior knowledge of the dynamics of
the world or its task. The objective of the agent is to use
the experience it gains through interacting with the world to
maximize its expected discounted reward.

In order to make problems with large or infinite state spaces
tractable, AMPS partitions the state space into regions and
treats all states in the same region collectively. Since the ac-
tion space is also large or infinite, AMPS also partitions the
action space into regions and treats all actions from the same
region identically. AMPS incrementally refines its partition
of the state and action spaces by splitting and merging re-
gions of the state and action spaces to arrive at a model that
is consistent with its experience and conducive to building a
successful reactive plan.

Processes

Map Revision
splits, merges

Experience Revision
add and remove observations

Action Selection
choose best action

Plan Revision
choose region to update

Data Structures

Map
state regions

Experience
observations

Model
dynamics, reward, failure

Plan
value, greedy action

Figure 1: A high-level view of AMPS showing the four pro-
cesses and the four data structures.

The primary contribution of this paper is a method for in-
crementally adapting the partitions of the state and action
spaces by splitting and merging regions. One of the meth-
ods for splitting regions in AMPS is inspired by the work of
Uther and Veloso [1998] where regions of the state space are
split when there are observed differences in utility for dif-
ferent states within the same region. Another method for
splitting regions in AMPS is inspired by the PARTI-GAME
algorithm [Moore and Atkeson, 1995]. In PARTI-GAME and
AMPS, the agent detects when it has become “stuck,” mean-
ing that the repeated application of the same action is not
likely to achieve success in transitioning out of the current
region. Both PARTI-GAME and AMPS use this information
to refine their discretization. In AMPS this is known as fail-
ure revision. In addition to splitting regions, AMPS merges
regions when possible, which is not typically done in other
discretization algorithms.

AMPS is composed of four processes and four data struc-
tures as illustrated in Figure 1. The Map Revision process
splits and merges regions of the state and action spaces. The
Experience Revision process maintains past experience. The
Action Selection process makes control decisions. The Plan
Revision process incrementally improves the plan. These
processes read from and modify the Map, Experience, Model,
and Plan data structures.

The next section defines the problem under investigation,
followed by a description of the data structures and processes

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

16

involved in AMPS. We then present our experiments and re-
sults. We conclude with comparisons to related work and a
discussion of further research.

2 Problem Statement
The class of problems considered in this research involves an
agent situated in a world. The agent continuously (or at high
frequency) observes and acts in this world. At any point in
time, the agent is in exactly one state belonging to a poten-
tially infinite set S and the agent may execute exactly one
action from a potentially infinite set A. Actions may be du-
rative meaning that they may be interrupted at any time (e.g.
“rotate left at 1 rad/s”) or ballistic meaning that they return
control to the agent after some amount of time (e.g. “rotate
left 1 rad”).

The experience of the agent may be recorded as a sequence

s1, a1, t1, f1, r1, s2, a2, t2, f2, r2, . . .

where sk is the state at the kth sample, ak is the action taken
after the kth sample, tk is the time spent between sample k
and k + 1, fk indicates whether a failure was encountered
after the kth sample, and rk is the reward received after the
kth sample. The objective of the agent after sample k is to
maximize its expected discounted reward,

E

[∞∑
k=0

e−βσk+irk+i

]

where σk =
∑k

i=1 tk and β ∈ (0,∞) is the continuous com-
pound discount rate. Discounting the reward pressures the
agent to aggressively pursue reward.

AMPS is expected to perform well on problems that are
modeled sufficiently well by a semi-Markov decision process
[Puterman, 1994]. It is assumed that S may be partitioned
into a finite set of regions N and for each region n ∈ N there
exists a partition of A into regions U(n) such that the transi-
tions, reward, and failures are determined by fixed probability
distributions:
• P (·|n, u) is the probability distribution over the regions

transitioned to after starting in n and continuously ap-
plying actions in u.

• Pt(·|n, u, n′) is the c.d.f. for the time required to tran-
sition from n to n′ by continuously applying actions in
u.

• Pr(·|n, u, n′) is the c.d.f. for the lump sum reward re-
ceived after transitioning from n to n′ by continuously
applying actions in u.1

If N , U , and these probability distributions are known, then
the optimal value function, V ∗, and optimal reactive plan, π∗,
satisfy:

V ∗(n) = max
u

Q(n, u, n′) (1)

1Other SMDP models considered in the literature [Bradtke and
Duff, 1995] involve reward that is accumulated at some constant rate
as opposed to lump sum rewards following transitions. In this paper
we will only consider lump sum rewards, although AMPS can easily
be extended to handle reward rate models.

state
space

action
space

Figure 2: Associated with each region of the state space is a
different partition of the action space.

π∗(n) = arg max
a

Q(n, u, n′) (2)

where

γ(n, u, n′) ,
∫ ∞

0

e−βtdPt(t|n, u, n′)

R(n, u, n′) , P (n′|n, u)γ(n, u, n′)
∫ ∞

−∞
rdPr(r|n, u, n′)

Q(n, u, n′) , R(n, u, n′) +
∑
n′

P (n′|n, u)γ(n, u, n′)V ∗(n)

The value function V ∗(n) is the expected discounted reward
given that the agent starts in region n and follows an optimal
policy. The expected discounted reward given that the agent
starts with a transition from n to n′ by actions in u and then
follows an optimal policy is given by Q(n, u, n′)/P (n′|n, u),
a value that will be used in the map revision process described
in Section 4.1.

The agent has no prior knowledge of N , U , P , Pt, or Pr.
AMPS incrementally adapts its partitioning of the state and
action spaces and revises its estimates of P , γ, and R accord-
ingly. As these estimates are revised, AMPS uses prioritized
value iteration to improve its reactive plan.

3 Data Structures
The four data structures in AMPS store information about
state and action regions, observations, world models, and
plans. These data structures are manipulated by the processes
described in the next section, and changes in one data struc-
ture can result in changes in another data structure. Of the
four data structures, the Map is the most significant and so
most of the following discussion will focus on it.

3.1 Map
The Map data structure maps states and actions to regions and
adapts this mapping by splitting and merging regions. The
map partitions the state space into a finite set of state regions,
N . Associated with every state region is a finite partition
of the action space, as illustrated in Figure 2. Let U be the
set of all action regions defined across all state regions. The
computational mechanism implementing the Map should be
such that mapping from S → N and N×A → U is efficient.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

17

The representation used by the Map must allow the Map
Revision process to split and merge regions. The Map imple-
ments the following functions to support revision:

1. SPLIT(n, S1, . . . , Sm). This function splits the state re-
gion n into some number of new regions such that each
set of states S1, . . . , Sm ⊂ S that were all mapped to
n become mapped as well as possible to separate state
regions.

2. SPLIT(u, A1, . . . , Am). This function splits the action
region u into some number of new regions such that each
set of actions A1, . . . , Am ⊂ A that were all mapped to
u become mapped as well as possible to separate action
regions.

3. MERGE(n1, . . . , nm). This function merges the state re-
gions n1, . . . , nm.

4. MERGE(u1, . . . , um). This function merges the action
regions u1, . . . , um belonging to the same state region.

The Map can be implemented, in principle, using any rep-
resentation that supports these operations. For example, if a
distance metric may be defined between any two states and
any two actions, then a mapping based on nearest-neighbor
[Cover and Hart, 1967] may be used. There have been com-
putationally efficient algorithms and data structures, such as
vantage point trees [Yianilos, 1993], suggested for computing
nearest neighbors without making any additional assumptions
about the representation of the space (e.g. that the space is
Euclidean).

Another representation that can be used is a decision graph.
Decision graphs are extremely well suited because they allow
regions to be split and merged very quickly, and this is the
representation used in the experiments here.

Merging regions is straightforward in a decision graph, but
splitting regions requires a mechanism called a separator that
produces the (typically binary) tests in the decision graph.
The separator produces a test based on sample states belong-
ing to multiple categories, much like a supervised learning
classifier [Duda et al., 2000]. The test returned by the separa-
tor should be simple. The condition should not be, for exam-
ple, an entire decision tree, a neural network, or a lengthy
sentence in first order logic. Instead, simple tests such as
x2 < 2.3 or ∃x ON(A, x) should be used. Simple tests are
to be combined using the decision graph to create more com-
plex boundaries between regions.

The separator function must be engineered according to
how the state and action spaces are represented. It is interest-
ing to note that the separator function is the only component
in the system that interacts with the state space representation
directly, enabling the system to be applied across domains
with only the separator requiring changing.2

2Other partitioning algorithms in the literature make strong as-
sumptions about how states and actions are represented. For exam-
ple, Chapman and Kaelbling [1991] and Munos and Patinel [1994]
assume that states are represented as fixed-length binary strings, Mc-
Callum [1995] assumes an attribute-value representation, Dean et al.
[1998] assume a factored state and action representation, and Ma-
hadevan and Connell [1992] assume that states are represented as
real-valued vectors.

In the experimental domain described later, the state and
action space requires a representation in the form of a vec-
tor of real values. The separator used in the experiments was
designed to run in time linear with respect to the number of
samples. The function returns the condition that best sepa-
rates the points along some axis-parallel hyperplane accord-
ing to information gain [Shannon, 1948].

It should be noted that the mechanism for partitioning the
state space does not have to be the same mechanism for parti-
tioning the action space. For example, the state space may be
partitioned using nearest-neighbor, but the action space as-
sociated with each state region may be partitioned using a
decision graph.

3.2 Experience
The Experience data structure keeps a record of the states and
transitions experienced by the agent and associates them with
the state and action regions managed by the Map. When state
and action regions are split and merged, the association of
past observations to regions is updated appropriately.

3.3 Model
The Model data structure models state transition dynamics,
failure, and reward. Let Pf (n, u) be the probability of en-
countering failure when executing an action in u from region
n. This may be estimated directly from experience as can
P (n′|n, u). Instead of estimating the c.d.f.s Pt and Pr di-
rectly, AMPS estimates γ and R instead. The integrals in γ
and R are approximated as follows [see Kalos and Whitlock
1986, pp. 89–116]:

•
∫∞
0

e−βtdPt(t|n, u, n′) is approximated by averaging
e−βτi where τi is the time required to make the ith tran-
sition from n to n′ by actions in u.

•
∫∞
−∞ rdPr(r|n, u, n′) is approximated by averaging the

reward received while transitioning from n to n′ by ac-
tions in u.

These approximations are used by the Plan data structure,
which is described next.

3.4 Plan
The Plan data structure maintains the value function and the
greedy policy. The estimated value function, V (n), is an es-
timate of the expected discounted reward starting in region n
and proceeding with an estimate of optimal behavior. The es-
timated greedy policy, π(n), associates with each state region
an estimate of the greedy action that maximizes the expected
discounted reward.

As can be seen in the equations given in Section 2, the
value and the greedy action associated with each state region
depend upon the value of other state regions. The Plan data
structure supports a function called UPDATE(n) that updates
the value and greedy action of state region n using Equation 1
assuming that the values of all other regions are correct. The
Plan Revision process is responsible for calling UPDATE on
state regions in response to changes in the Model and Plan.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

18

4 Processes
The four processes in AMPS are responsible for splitting and
merging regions of the state and action space, recording ex-
perience, selecting actions, and constructing plans. All pro-
cesses are designed to be incremental and perform (relatively)
simple operations on the data structures at a frequency depen-
dent on available computational resources.

4.1 Map Revision
The Map Revision process is responsible for dynamically
splitting and merging state and action regions in response to
changes in the Model and Plan. If the agent has no prior
knowledge of how the state and action space should be parti-
tioned when it commences its interaction with the world, the
entire state space is contained within a single region. Over
time, this region is incrementally refined and simplified as
experience is acquired. The objective is to find a partition of
the state and action space that has the following properties:

1. All transitions resulting from a greedy action have ap-
proximately the same estimated value.

2. The expected failure of greedy actions is minimal.
3. The partition is as simple as possible.
Different types of revision can be done to bring the Map

closer to the criteria listed above. Each type of revision is
given a priority at each region that indicates (heuristically) the
likelihood that performing that particular type of revision will
improve the Map. When the Map Revision process runs, it
will perform the highest priority revision. The Map Revision
process ignores revisions below a certain threshold so as to
not over-fit potentially noisy experience.

The three types of revision used in this system correspond
to the three criteria above, and they are are as follows:

Value Revision
This type of revision attempts to separate state-action obser-
vations that have resulted in transitions with differing esti-
mated value. This separation can be done by splitting ac-
tion regions within a state region or by splitting the state
region. Deciding whether to split by state or by action
can be done using information gain.3 The priority of per-
forming this type of revision is proportional to a measure
of variation of estimated value. The experimental imple-
mentation separates samples involved in greedy transitions
based on whether Q(n, π(n), n′)/P (n′|n, u) is above or be-
low the mean. The priority is proportional to the variance of
Q(n, π(n), n′)/P (n′|n, u).

Failure Revision
This type of revision separates states that have led to success
from those that have led to failure. The priority of this type
of revision for a state region is related to the estimated prob-
ability of failure in the Model.

3If the Map is implemented using a nearest-neighbor classifier, it
does not make sense to make splits based on information gain since
nearest neighbor can always separate two different sets (assuming
that the same exact sample does not appear in both sets). Instead,
an approach based on cross-validation or bootstrapping would be
appropriate [Weiss, 1991].

Simplification Revision
This type of revision merges state and action regions when
their distinction seems to be irrelevant to the task. Non-
greedy action regions are merged with low priority. State re-
gions are merged in two situations. The first situation occurs
when P (n′|n, π(n)) ≈ 1 and π(n) ≈ π(n′), in which case n
and n′ are merged. Since action regions are partitioned dif-
ferently in different state regions, it is necessary to define the
equivalence relation u ≈ u′, which means that all the actions
experienced in u can be mapped to action region u′ in the
state region of u′ and vice versa. The second situation when
two state regions are merged is when P (n|n′, π(n′)) ≈ 1 and
P (n|n′′, π(n′′)) ≈ 1 and π(n′) ≈ π(n′′). In this case, n′

and n′′ can be merged. These conditions for merging are re-
lated to the SQUISH algorithm described by Nilsson [2000]
for deterministic teleo-reactive trees.

4.2 Experience Revision
The Experience Revision process adds state and transition ob-
servations to the Experience data structure. If the state-space
is continuous and it is being sampled at a high frequency, it
is impractical to add each sample. Instead, the agent should
filter out samples that are not likely to be useful. The ex-
act mechanism for determining significance is domain depen-
dent, but one approach to filtering out states is to ignore all
states until the agent has transitioned to a new state that is
outside some threshold distance.

In addition to filtering out insignificant samples, the Expe-
rience Revision process is also responsible for removing old
samples from the Experience data structure. The schedule for
removing old samples depends upon memory and processor
constraints. The removal of old samples also allows the agent
to adapt to slowly changing environments.

4.3 Action Selection
The Action Selection process is responsible for continuously
selecting a single action to execute. This process must be ex-
tremely efficient because it is typically executed as frequently
as the agent samples the state of the world.

Usually, the agent should execute an action from the greedy
region of the current state region as computed by the policy
revision process. However, as with traditional reinforcement
learning, there are issues with balancing exploration of the
world and exploitation of the optimal policy. There have been
many techniques proposed for balancing exploration with ex-
ploitation [Thrun, 1992], any of which may be used in this
system.

As mentioned earlier, the agent is able to sense failures
when they occur. What exactly counts as a failure depends
upon the domain, but failures are generally situations where
executing the same action repeatedly will not lead to success.
In the Corner World domain described later, a failure might
be trying to push through a wall. The Action Selection mech-
anism uses information about past failures to better direct the
agent toward a goal.

4.4 Plan Revision
The Plan Revision process incrementally builds an optimal
plan with the assumption that the current Model is correct.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

19

This process calls the UPDATE(n) function supplied by the
Plan data structure, which updates the value and greedy action
region for n.

One way to arrive at an optimal policy is to repeatedly it-
erate through the state regions calling UPDATE until conver-
gence [cf. Bellman 1957]. However, doing so is not likely to
be feasible in real time since the Model changes in response to
the Map Revision and Experience Update processes. Instead,
it is better to use a method related to prioritized sweeping
[Moore and Atkeson, 1993]. Prioritized sweeping was de-
signed for solving Markov decision processes (MDPs) but it
can be easily adapted for solving the class of problems under
consideration here. The idea of the algorithm is to prioritize
updates of regions based on observed changes in the value
function from earlier updates.

5 Experiments and Results
In the Corner World domain the agent starts at a random lo-
cation on the starting line and maneuvers along an L-shaped
track to the finish line. The track is contained within a 10×10
meter square, and the width of the track is 1 m. Each experi-
mental run consists of 20 episodes of this task. The continu-
ous compound discount rate β was set to 0.01.

The state space is represented by the tuple (x, y) corre-
sponding to the agent’s location. The agent may translate in
any direction at 5 m/s. The agent samples the environment
and makes control decisions at 5 Hz. Also at 5 Hz, the po-
sition of the agent is perturbed by an amount selected from a
normal distribution with 5 mm standard deviation.

Since AMPS has no prior knowledge about the dynamics
of the world or its task, it considers all states to be equivalent.
Hence, the agent must rely upon random exploration until it
reaches a goal. Random exploration is not practical in the
Corner World or most other interesting domains because the
state space is so large, and therefore the agent needs some
mechanism to bias it toward the relevant goal states [White-
head, 1991]. In our experiments, we used a teacher to guide
the agent to a goal for two training episodes. These two
training episodes allowed AMPS to partition the state space
and distribute the observed reward through the model. The
teacher used in the experiments returned random actions 5%
of the time.

For comparison purposes and to control for the informa-
tion gained from the noisy teacher, we trained a decision tree
based on the same teacher. The induction of the decision
tree is done by using the separator function to partition the
state space according to the actions taken by the teacher. This
sort of supervised learning of control is known as behavioral
cloning and has been successfully applied to a variety of do-
mains including aircraft control [Sammut et al., 1992]. The
primary disadvantages of a behavioral clone is that it is en-
tirely dependent on a good teacher and it is not able to adapt
its behavior based on its own experience in contrast to AMPS.

In our experiments, AMPS was allowed to perform a merge
or split of the state or action space at 5 Hz. Episodes termi-
nated when the agent reached the finish line or after 100 s
without success. The results of 100 repeated experiments are
summarized in Table 1.

Successes Disc. Reward
mean s.d. mean s.d.

AMPS 16.02 6.04 9.54 4.13
Clone 12.75 5.74 7.87 3.85

Teacher 20.00 0.00 13.00 0.18
Random 0.00 0.00 0.00 0.00

Table 1: Experimental results of various agents in the Cor-
ner World domain. Each experiment was repeated 100 times.
Shown above are the means and standard deviations of the
number of successes and discounted reward in each run of 20
episodes.

6 Related Work
There have been algorithms proposed that assume a discrete
action space but partition a large state space using a decision
graph such as the G-ALGORITHM [Chapman and Kaelbling,
1991] and U-TREE [McCallum, 1995]. Uther and Veloso
extended the work by McCallum to continuous state spaces
[1998] and temporally abstract actions [2003]. None of these
algorithms consider continuous action spaces.

Other techniques have been proposed for solving problems
with large or infinite state spaces that do not involve parti-
tioning the state space into regions. For example, parameter-
ized function approximators, such as neural networks, may
be used with traditional reinforcement learning techniques to
estimate the value function [Bertsekas and Tsitsiklis, 1996].

Doya [2000] developed a reinforcement learning frame-
work for continuous state, action, and time that uses function
approximation. However, it assumes that the dynamics of the
system are deterministic and the state and action spaces are
represented by real-valued vectors. Smith [2002] used self-
organizing maps to handle continuous state and action spaces
represented as vectors of real-values.

Other work has been done on problems with durative
actions in relational domains [Benson and Nilsson, 1995;
Ryan, 2004]. The way AMPS uses SMDPs to model durative
actions connects to work done in hierarchical reinforcement
learning [surveyed in Barto and Mahadevan 2003].

7 Conclusions and Further Work
This paper has introduced a real-time system that integrates
the adaptive partitioning of the state and action space and the
incremental planning over the estimated model to produce
goal-directed behavior. The system was tested on the Cor-
ner World domain and was shown to quickly learn successful
behavior in the presence of noise in the environment.

AMPS has been designed to be broadly applicable across
domains and representations. The state and action space may
be infinite, and actions may have a continuous effect on the
world and may be of variable duration. The Map data struc-
ture has been defined generically so that states and action
spaces may have any representation. The Map may be im-
plemented using a decision graph, in which case a separator
must be defined. Alternatively, the Map may be implemented
using a nearest-neighbor classifier, in which case only a dis-
tance metric must be defined. In either case, the separator or

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

20

the distance metric can be built to exploit the structure inher-
ent in the state and action representation.

AMPS is currently being tested in other more complex do-
mains and compared against other methods such as traditional
reinforcement learning with function approximation. Further
work will investigate the use of different separators and dis-
tance metrics that take into account values of previous ob-
servations, making AMPS potentially applicable to domains
where the current state is only partially observable.

Acknowledgments
The authors would like to thank Nils Nilsson and the anony-
mous reviewers for their helpful suggestions on an earlier
draft of this paper.

References
[Barto and Mahadevan, 2003] Andrew G. Barto and Srid-

har Mahadevan. Recent advances in hierarchical rein-
forcement learning. Discrete Event Dynamic Systems,
13(4):341–379, October 2003.

[Bellman, 1957] Richard Bellman. Dynamic Programming.
Princeton University Press, 1957.

[Benson and Nilsson, 1995] Scott Benson and Nils J. Nils-
son. Reacting, planning and learning in an autonomous
agent. In K. Furukawa, D. Michie, and S. Muggleton, ed-
itors, Machine Intelligence, volume 14, pages 29–64. Ox-
ford University Press, 1995.

[Bertsekas and Tsitsiklis, 1996] Dimitri P. Bertsekas and
John N. Tsitsiklis. Neuro-Dynamic Programming. Athena
Scientific, 1996.

[Bradtke and Duff, 1995] Steven J. Bradtke and Michael O.
Duff. Reinforcement learning methods for continuous-
time Markov decision problems. In Gerald Tesauro,
David S. Touretzky, and Todd K. Leen, editors, Advances
in Neural Information Processing Systems, volume 7,
pages 393–400. MIT Press, 1995.

[Chapman and Kaelbling, 1991] David Chapman and
Leslie Pack Kaelbling. Input generalization in delayed
reinforcement learning: An algorithm and performance
comparisons. In Proceedings of the Twelfth Interna-
tional Joint Conference on Artificial Intelligence, pages
726–731. Morgan Kaufmann, 1991.

[Cover and Hart, 1967] T. M. Cover and P. E. Hart. Near-
est neighbor pattern classification. IEEE Transactions on
Information Theory, 13(1):21–27, January 1967.

[Dean et al., 1998] Thomas Dean, Robert Givan, and Kee-
Eung Kim. Solving planning problems with large state
and action spaces. In Proceedings of the Fourth Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems, pages 102–110. AAAI Press, 1998.

[Doya, 2000] Kenji Doya. Reinforcement learning in contin-
uous time and space. Neural Computation, 12(1):219–245,
January 2000.

[Duda et al., 2000] Richard O. Duda, Peter E. Hart, and
David G. Stork. Pattern Classification. Wiley-
Interscience, 2nd edition, 2000.

[Kalos and Whitlock, 1986] Malvin H. Kalos and Paula A.
Whitlock. Monte Carlo Methods, volume 1. John Wiley
and Sons, 1986.

[Mahadevan and Connell, 1992] Sridhar Mahadevan and
Jonathan Connell. Automatic programming of behavior-
based robots using reinforcement learning. Artificial
Intelligence, 55(2–3):311–365, June 1992.

[McCallum, 1995] Andrew Kachites McCallum. Reinforce-
ment Learning with Selective Perception and Hidden State.
PhD thesis, Department of Computer Science, University
of Rochester, 1995.

[Moore and Atkeson, 1993] Andrew W. Moore and Christo-
pher G. Atkeson. Prioritized sweeping: Reinforcement
learning with less data and less time. Machine Learning,
13(1):103–130, October 1993.

[Moore and Atkeson, 1995] Andrew W. Moore and Christo-
pher G. Atkeson. The Parti-game algorithm for vari-
able resolution reinforcement learning in multidimen-
sional state-spaces. Machine Learning, 21(3):199–233,
December 1995.

[Munos and Patinel, 1994] Rémi Munos and Jocelyn Patinel.
Reinforcement learning with dynamic covering of state-
action space: Partitioning Q-learning. In Proceedings of
the Third International Conference on Simulation of Adap-
tive Behavior, pages 354–363. MIT Press, 1994.

[Nilsson, 2000] Nils J. Nilsson. Learning strategies for mid-
level robot control: Some preliminary considerations and
results. www.robotics.stanford.edu/users/nilsson/trweb,
2000. Computer Science Department, Stanford University.

[Puterman, 1994] Martin L. Puterman. Markov Decision
Processes: Discrete Stochastic Dynamic Programming.
John Wiley and Sons, 1994.

[Ryan, 2004] Malcolm R. K. Ryan. Hierarchical Reinforce-
ment Learning: A Hybrid Approach. PhD thesis, Univer-
sity of New South Wales, 2004.

[Sammut et al., 1992] Claude Sammut, Scott Hurst, Dana
Kedzier, and Donald Michie. Learning to fly. In Pro-
ceedings of the Ninth International Workshop on Machine
Learning, pages 385–393. Morgan Kaufmann, 1992.

[Shannon, 1948] Claude E. Shannon. A mathematical the-
ory of communication. Bell System Technical Journal,
27:379–423 and 623–656, July and October 1948.

[Smith, 2002] Andrew James Smith. Applications of the
self-organising map to reinforcement learning. Neural
Networks, 15(8–9):1107–1124, October–November 2002.

[Thrun, 1992] Sebastian B. Thrun. The role of exploration in
learning control. In D. White and D. Sofge, editors, Hand-
book for Intelligent Control: Neural, Fuzzy and Adap-
tive Approaches, pages 527–559. Van Nostrand Reinhold,
1992.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

21

[Uther and Veloso, 1998] William Uther and Manuela
Veloso. Tree based discretization for continuous state
space reinforcement learning. In Proceedings of the
Fifteenth National Conference on Artificial Intelligence,
pages 769–775. AAAI Press, 1998.

[Uther and Veloso, 2003] William Uther and Manuela
Veloso. TTree: Tree-based state generalization with
temporally abstract actions. In Adaptive Agents and
Multi-Agent Systems: Adaptation and Multi-Agent Learn-
ing, volume 2636 of Lecture Notes in Computer Science,
pages 266–296. Springer, 2003.

[Weiss, 1991] Sholom M. Weiss. Small sample error rate es-
timation for k-NN classifiers. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 13(3):285–289,
March 1991.

[Whitehead, 1991] Steven D. Whitehead. A complexity
analysis of cooperative mechanisms in reinforcement
learning. In Proceedings of the Ninth National Conference
on Artificial Intelligence, pages 607–613. AAAI Press,
1991.

[Yianilos, 1993] Peter N. Yianilos. Data structures and al-
gorithms for nearest neighbor search in general metric
spaces. In Proceedings of the Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 311–321. Soci-
ety for Industrial and Applied Mathematics, 1993.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

22

Apprenticeship Learning for Initial Value Functions in Reinforcement Learning

Frederic Maire
Faculty of Information Technology

Queensland University of Technology
Box 2434, Brisbane Q 4001

Australia
f.maire@qut.edu.au

Vadim Bulitko
Department of Computing Science

University of Alberta
Edmonton, Alberta, T6G 2E8

Canada
bulitko@ualberta.ca

Abstract

Reinforcement Learning has had spectacular suc-
cesses over the last several decades. While meant
to require less human input than supervised learn-
ing, reinforcement learning can be substantially ac-
celerated witha priori available domain expertise.
The ways of providing human knowledge to a re-
inforcement learning agent vary from crafting state
features to initial policy design to initial value func-
tion design. We chose the latter and propose a
novel approach for acquiring a high-quality initial
value function via apprenticeship learning. This ap-
proach works well in domain when a body of expert
data are available. Our apprentice reinforcement
learning (ARL) agent uses dynamic programming
to compute values for the states visited by the ex-
pert. A Laplacian regularizer is then engaged to
extrapolate these onto the entire state space. The
result of this process is a high-quality initial value
function to be further refined by any value-function
based reinforcement learning method. In a grid
world domain, ARL was able to speed up TD(λ)
learning method by a factor of two from a single
observed expert’s trace.

1 Introduction and Related Research

For some application domains of reinforcement learning,
demonstrations by an expert are readily available. For in-
stance, extensive databases of games between strong play-
ers can be easily found for popular board games like chess,
go or hex. The task of learning by observing an expert is
called apprenticeship learning. Most apprenticeship learn-
ing approaches try to mimic the observed experts by apply-
ing a supervised learning algorithm to learn a direct map-
ping from the states to the actions as pioneered by[Sam-
mut et al., 1992]. A recent alternative to this is to assume
a reward-maximizing nature of the expert and then estimate
the unknown reward function employed by the expert as a
linear combination over given state features[Abbeel and Ng,
2004]. The premise of this approach is that the reward func-
tion, rather than the policy or the value function, is the most
succinct, robust, and transferable definition of the task.

Work on reward shapingdemonstrates that a well-chosen
reward function can, indeed, significantly speed reinforce-
ment learning[Laud and DeJong, 2003]. Furthermore,safe
shaping rewards are differentials in a potential function[Ng
et al., 1999]. Therefore, by supplying a non-trivial potential
function, the user can speed the learning process. This is not
surprising since learning with shaping rewards derived from
potential function is equivalent to learning without the shap-
ing rewards but with the initial value function being equal to
potential function [Wiewiora, 2003]. For instance, learning
with the optimal value functionV ∗ as the potential function
is equivalent to learning withV ∗ as the initial value function
– in both cases no further learning is needed.

Over the years, a number of methods for acquiring a non-
trivial initial value function have been proposed. They vary
from hand-engineering[Korf and Taylor, 1996; Nget al.,
1999] and solving abstracted problems[Holte et al., 1994;
Korf and Felner, 2002] to artificial evolution[Ackley and
Littman, 1991].

In this paper, we propose a novel method for deriving high-
quality initial value functions from existing demonstrations
by an expert. Our apprentice learning agent first builds an
auxiliary graph whose vertices are points in the state space
and whose arcs are transitions used by the expert. After es-
timating the state-values of the vertices visited by the expert,
we extrapolate these values onto all other states with a graph
Laplacian operator. This step requires a similarity measure
over the state space. The resulting value function constitutes
a starting point for any value function based reinforcement
learning method. As the initial value function is substantially
more informative than a random or optimistic value func-
tion frequently used with RL methods, the remaining on-line
learning process is substantially accelerated. We evaluate the
effectiveness of deriving an initial value function in a standard
grid-world domain and find that asingleobserved demonstra-
tion by an expert speed up learning as much as 300 additional
TD(λ) episodes. This constitutes a two-fold speed-up.

The rest of the paper is organized as follows. In section 2
we detail our method. Section 3 sets up the experimental en-
vironment and presents results of the empirical evaluation. A
discussion of future research follows.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

23

2 ARL: The Proposed Approach
The presentation will be tailored to non-discounted episodic
reinforcement learning tasks with a single absorbing state
(called thegoal statehenceforth). While this setting covers
a number of planning tasks[Bonetet al., 1997; Aberdeenet
al., 2004], combinatorial puzzles[Korf, 1997; Korf and Fel-
ner, 2002], games[Tesauro, 1995; Schaefferet al., 2001],
path-finding [Ng et al., 1999; Shimbo and Ishida, 2003;
Koenig, 2004] and other applications[Kohl and Stone, 2004],
our approach can be extended to handle multiple goal states
as well as non-episodic tasks.

The agent operates on a directed weighted graph whose
vertices are agent’s states. A single state is designated as
the goal state. Edges correspond to actions available to the
agent. By traversing an edge, the agent incurs a negative re-
ward equal to the edge’s weight. Arriving at the goal state
ends the episode and does not deliver any additional reward.
The learning task is to learn a state value function such that
following this function greedily from any state will maximize
the collected reward. This is equivalent to following a short-
est path from any start state to the goal.

Notationally, the sum of negative rewards (i.e., the costs)
incurred along a pathP between statesa and b is denoted
asdistP (a, b). As usual, the valueVπ(s) of a states with
respect to the policyπ is the expectation of the cumulative
cost incurred by the agent when following the policyπ from
the states.

2.1 Step 1: Collecting Observations
The observed demonstrations by an expert are encoded in the
form of trajectories in the state space. The premise of our
approach is that an expert agent will follow trajectories that
are close to optimal. On this premise, we induce a partial
order over the states visited by the expert. The training set
(i.e., the set of state trajectories) therefore induces a directed
subgraph on the set of visited states. If a sequence of states
from an expert agent has a state repeated, we prune out all
states between the two occurrences. That is, the sequence
(. . . , st−1, st, st+1, . . . , st+m, st+m+1, . . .) with statest =
st+m will become(. . . , st−1, st, st+m+1, . . .).

Once all cycles have been eliminated, we label each state
in each sequence with its distance from the goal state. We
then merge multiple sequences labeled with their distances
into one directed labeled graph. If several sequences pass
through the same state, we use the minimal distance as the fi-
nal label of this state. In other words, we compute the shortest
weighted paths to the goal state in this auxiliary graph using
Disjktra algorithm. At this stage, the value of a state that has
been visited by an expert is approximated byĥ(s), the length
of a shortest path from the goal state tos.

2.2 Step 2: Generalization with a Graph Laplacian
Several approaches in the past generalized high-quality val-
ues of sample states onto the entire space. In[Levner and
Bulitko, 2004], the researchers applied reinforcement learn-
ing methods to acquire a computer vision policy in the do-
main of tree canopy recognition. A training set of aerial im-
ages was used as the starting states of an RL-agent. Since the

“ground truth” was provided for each training image, a roll-
out (i.e., full subtree expansion) technique allowed to com-
pute the exact values of each input and subsequent states. The
resulting very sparse samples were generalized onto the en-
tire abstracted state space using Artificial Neural Networks
and hand-crafted state features.

In [Bulitko and Wilkins, 2003], Artificial Neural Networks
were used to generalize the values of damage control status
(i.e., state) of a naval vessel computed from past scenarios
onto the entire state space. Again, hand-built state features
were used to reduce the dimensionality of the state space.

Our setting is different from the first approach mentioned
above as we assume having access to traces of expert behavior
as opposed to the final state that the expert arrived at. An ad-
ditional difference from this and the second approach is that
we take an advantage of the similarity between states by us-
ing a Graph Laplacian. This allows us to induce high-quality
value functions from a single expert trajectory whereas both
aforementioned systems required large bodies of labeled im-
ages or damage control scenarios.

We will now present the details of Step 2 of the ARL ap-
proach. The training set{[s, ĥ(s)]} computed in Step 1 is
now fed into a Graph Laplacian regularizer[Chung-Graham,
1997] to generalize the data onto all other states. To illustrate
the role of the graph Laplacian, consider the toy-sized graph
of Figure 1 where vertex5 represents the goal state. Given
the values of the vertices on the path(7, 4, 2, 1, 5), traversed
by the expert, we would like to generalize the values of these
vertices to non-visited vertices. That is, we are looking for
reasonable values for vertex3 and vertex6. The valuev3

should be related to the valuesv2 andv7 of its neighbours.
Similarly, the valuev6 should be related tov1, v4 andv7. We
determine the valuesv3 andv6 by minimizing the Laplacian
cost function:

(v3 − 2)2 + (v3 − 4)2 + (v6 − 1)2 + (v6 − 3)2 + (v6 − 4)2.

From here the optimal values are computed asv3 = 3 (which
happens to be its correct value) andv6 = 2.667 (which ex-
ceeds its correct value of2). If there were an edge between
vertex3 and vertex6, we would add the term(v3−v6)2 to this
cost function. In general, the cost function to be minimized is
of the form:

1
2
ṽT Hṽ − fT ṽ

whereṽ represents the vector of the values of the states not
visited by the experts. The solution forṽ is H+f , whereH+

is the pseudo-inverse ofH. Alternatively, we can formulate
the optimization problem as a quadratic program onv (the full
vector) with equality constraints for the visited states. The
values of the states visited by the experts are clamped to the
values found in Step 1. The pseudo-code of Step 2 is found
in Algorithm 1.

The use of a set of non-visited states is motivated by the
fact we may have access to valuable information on the en-
tire state space. For instance, in game playing, such infor-
mation is in the form of a database of games where some
games were played by experts and other games by non-expert
players. The board positions reached by non-expert players
are still relevant to learning a strong program for this game as

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

24

5

1 2 3

4

6 7
4

3

21

0

5

1 2 3

4

6 7
4

3

21

0

3

2.667

Figure 1: Top: a hand-traceable micro-graph used to illus-
trate the first two steps of our ARL algorithm. The vertex la-
bels are inside the nodes (1 through6). The expert path from
vertex7 to vertex5 (the goal) is shown by the solid arrows.
The numbers next to vertices of the path are the values of the
verticeŝh computed in Step 1.Bottom: the values estimated
for vertices3 and6 in Step 2 are shown.

they correspond to states likely to be visited. If we have a rea-
sonable quality similarity measure between board positions,
then we can derive a weighted graph similar to the graph of
Figure 1. The weights of the egdes are the similarity mea-
sures between states and the Laplacian will be defined for the
weighted graph. Then we can induced some initial values
of the board positions for the games of non-expert players.
Despite not having seen expert behavior in these states, the
initial values can still be expected to be of a higher quality
than a random initial values.

As usually done within the semi-supervised learning
framework [Zhu et al., 2005], the machine learning mod-
ule is not only given a labeled data set consisting of input-
output pairs{(x1, v1), . . . , (xl, vl)}, but also a (typically

Algorithm 1 V = InitializeValueFunction(T)
Require: T , a collection of experts’ trajectories in a discrete

state space.
Ensure: V is an initial value function.

- Build auxiliary digraph by inserting an arc between state
si andsj wheneversj is a successor state ofsi in a expert
trajectory ofT .
- Compute the distance to a goal of each visited state vertex
in the auxiliary digraph.
- Clamping the computing value of visited states, deter-
mine the vectorV of values of the other states by minimiz-
ing the Laplacian subject to the clamping constraint.

much larger) unlabeled data set{xl+1, ..., xm}where thexi’s
are in some general input space and thevi’s are real values.
In addition to this training setT , we are given a graph of
similarity on the input state space. That is, two vertices are
connected by an edge if they are deemed similar. From the
adjacency relation of the graph, the Laplacian operatorL is
defined as the matrix whose entries satisfy:

Li,j =

{ 1 if i ∼ j
−di if i = j
0 otherwise

wheredi represents the degree of vertexi, andi ∼ j means
that vertexi is adjacent to vertexj. It is easy to check that:

vT Lv = −1
2

∑
i∼j

(vi − vj)2.

The scalarvT Lv quantifies how muchv varies locally, or how
smoothv is over the vertex set.

In [Smola and Kondor, 2003], graph Laplacians are put
into the principled framework of Regularization Theory and
a family of regularization operators (equivalently, kernels)
on graphs that include Diffusion Kernels is proposed. It is
worth mentioning that the approach we propose herein can
be extended to any of these regularization operators. For in-
stance, consider the diffusion kernelK and the training set
T as above. Then we would be maximizingvT Lv subject to
vi = ĥ(xi) for i ∈ [1 : l].

2.3 Step 3: On-line Refinement via RL

The result of Step 2 is the initial value functionV0(s) =
−h(s). This function is then refined during the on-line re-
inforcement learning with a value-function based algorithm
such as the simple value iteration or TD(λ) [Sutton and Barto,
1998]. The initial value function computed during Steps 1
and 2 captures certain expert knowledge induced from the
recorded experiences. We believe that our approach is su-
perior to the learning by value iteration by replaying the ob-
served state trajectories of the experts. Indeed, assume we
have two expertsA andB such thatA makes a good deci-
sion in the statea and a lower quality decision in the stateb.
On the other hand, the expertB is strong in the stateb and
less optimal in the statea. The value of the statea obtained
by value iteration on the trajectories ofA andB will depend
on which expert trajectory was presented last. IfB was used
last, then the result will not be as accurate as ifA was used
last. Our approach does not suffer from this ordering problem
because of the way we determine the values of the states in
the auxiliary graph.

3 Empirical Evaluation
To assess the benefits of the proposed approach, we have
tested the performance of the ARL in a classical maze-like
grid world such as the one in Figure 2. The primary objective
of the empirical studies was to measure the acceleration in re-
inforcement learning with respect to the amount and quality
of observed expert trajectories.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

25

Goal

Figure 2: A sample grid-world used for empirical evaluation.

We used a heuristically guided full-width fixed-lookahead
search with the user-specified lookaheadd as the domain ex-
pert and recorded the trajectories it traversed. In the states,
the expert agent with the lookaheadd computes the frontier
S(s, d) of all states reachable froms in exactlyd moves. For
each of the states′ on the frontierS(s, d), its heuristic value
h(s′) is computed. As commonly done, we used the Manhat-
tan distance between the state and the goal state as the heuris-
tic. The agent then takesd moves from states to the frontier
state with the most promising heuristic:

arg min
s′∈S(s,d)

h(s′).

Note that in this example, the distance froms to s′ is ignored
in the selection as all moves have uniform cost. Upon reach-
ing a dead end, the agent backtracks. The backtracking causes
re-visits of states but such loops are removed in Step 1 of the
ARL method. As our expert agent remembers its trajectory
during each trial, we do not need to adjust the heuristich
as done in real-time search algorithms such as RTA*[Korf,
1990] to avoid infinite cycles.

As we real-time search agents, deeper lookahead leads (on
average) to more optimal paths. Thus, by varyingd, we were
able to adjust the degree of expertise from being a perfect
agent (e.g., when the goal state is within the lookahead ra-
dius) to the uninformed search (e.g.,d = 0). In Step 2 of
ARL, the heuristic estimates derived from the recorded trajec-
tories were extrapolated onto the entire maze using the Graph
Laplacian approach. In Step 3, the initial value function pro-
duced was further refined by a temporal difference (TD) al-
gorithm withλ = 0.7, ε = 0, γ = 1.0 and a learing rateα of
0.1 [Sutton and Barto, 1998, Figure 7.7, p. 174]. The initial
state for the TD agents was chosen randomly while the goal
state and the maze were fixed.

In order to evaluate the quality of a value functionV , we
computed the average expected return of a policy greedy with
respect toV :

V π =
1
|S|

∑
s∈S

Eπ

{∑
i

ri|sstart = s

}
.

A policy greedy with respect toV always selects the ac-
tion that is expected to lead to the state with the highestV -

1
2

3
4

5
6

7
8

9
10

1

2

3

4

5

6

7

8

9

10

0

5

10

15

20

V*

Figure 3: The optimal value function of the maze in Figure 2.
The valueV π∗

of the optimal policyπ∗ is −12.82. To make
the plot easier to read, we are showing the negative policy
value as positive numbers. Hence, visually lower values are
better.

value. While it is computationally less expensive to assess
the quality of a value function as the mean squared devia-
tion from the optimal value functionV ∗, [Li et al., 2004b;
2004a] demonstrates that such measure does not lead to maxi-
mizing reward collected by the agent. The value of the greedy
policy with the zero value function is−27.69. The value of
the optimal policy is−12.83.

To evaluate the benefits of the apprenticeship-based value
function initialization, we compared the policy values from
the ARL-initialized policies with TD-learned policy with the
initial value function of zero. Initializing the value function
with the Manhattan distance immediately yielded a greedy
policy whose performance is−18.20. This initial heuristic is
equivalent to the one obtained by approximately100 episodes
of zero-initialized TD-learning as seen in Figure 4.

Figure 6 shows the induced value function from the sin-
gle trajectory in Figure 5. It is remarkable that the Laplacian
operator allows the capture of a rough landscape of the opti-
mal value function from merely a single trajectory: as seen
by comparing Figure 3 and Figure 6.

Table 1:Top: value of the greedy policy over the value func-
tion derived by ARL. A single trajectory of the expert with
the shown lookahead was used as the input to ARL.Bottom:
the number of TD-learning episodes required to learn a value
function of the quality produced by ARL from a single ex-
pert’s trajectory.

Expert’s lookahead 1 5 10 30
Policy valueV π -19.31 -19.28 -16.39 -13.47

Expert’s lookahead 1 5 10 30
Equivalent number of TD episodes95 95 140 300

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

26

0 100 200 300 400 500 600 700 800 900 1000
10

15

20

25

30

35
Average performance of TD(!) agents (over 30 runs)

Number of episodes

Pe
rfo

rm
an

ce

Figure 4: Learning curve of TD(λ = 0.7, α = 0.1, γ = 1.0)
initialized with a zero value function. Each point is averaged
over 30 independent TD-learning runs starting from random
initial states. To make the plot easier to read, we are showing
the negative policy value as positive numbers. Hence, visu-
ally lower values are better.

1
2

3
4

5
6

7
8

9
10

1
2

3
4

5
6

7
8

9
10

0

0.2

0.4

0.6

0.8

1

Training trajectories, h=5, nt=1

Figure 5: Values of states computed in Step 1 from a single a
trajectory of our expert search agent with the lookahead of5.

1
2

3
4

5
6

7
8

9
10

1
2

3
4

5
6

7
8

9
10

0

0.2

0.4

0.6

0.8

1

Induced V, h=5, nt=1

Figure 6: The results of Step 1 (Figure 5) are generalized onto
the entire space with the Laplacian in Step 2.

The top portion of Table 1 shows how the quality of the
initial value functions produced by ARL from a single ex-
pert’s trajectory depends on the expert’s lookahead depth.
The bottom portion demonstrates the number of TD learn-
ing episodes required to produce a value function of the same
quality as those produced by ARL.

We have experimented with the number of trajectories used
as the input to ARL. In this micro-maze, the gains in per-
formance are negligible. We expect that in larger and more
complex state spaces leading to sparser sampling with each
trajectory, ARL will be able to benefit substantially from a
collection of recorded expert problem-solving traces.

4 Future Work and Conclusions

The promising initial results encourage several follow-up re-
search directions. First, we would like to extend the approach
to non-episodic tasks. Second, it is of interest to investigate
the extent to which this novel method applies to approxi-
mated (as opposed to tabular) value function. Third, we are
presently working on scaling up this approach to challeng-
ing real-world tasks such as the game of Hex wherein hu-
man players are presently far superior to computer players
and massive amounts of past games are available for appren-
ticeship learning.

In summary, we have proposed a novel effective approach
for generalizing problem-solving traces from expert agents
into high-quality initial value functions. Practical evalua-
tion in a standard grid world micro-domain demonstrated that
even as few as a single recorded expert trajectory speeds up
temporal differences with eligibility traces TD(λ) by as many
as 300 learning episodes. That is equivalent to halving the
convergence process.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

27

References
[Abbeel and Ng, 2004] Pieter Abbeel and Andrew Y. Ng.

Apprenticeship learning via inverse reinforcement learn-
ing. In Proceedings of the Twenty-first International Con-
ference on Machine Learning, 2004.

[Aberdeenet al., 2004] Douglas Aberdeen, Sylvie
Thiebaux, and Lin Zhang. Decision-theoretic mili-
tary operations planning. InProceedings of International
Conference on Automated Planning and Scheduling,
3–13, Whistler, Canada, 2004.

[Ackley and Littman, 1991] David H. Ackley and
Michael L. Littman. Interactions between learning
and evolution. InArtificial Life II , volume 10, 487–509.
AddisonWesley, Redwood City, CA, Santa Fe Institute
Studies in the Sciences of Complexity, 1991.

[Bonetet al., 1997] Blai Bonet, Gabor Loerincs, and Hector
Geffner. A fast and robust action selection mechanism
for planning. InProceedings of the Fourteenth National
Conference on Artificial Intelligence (AAAI-97), 714–719,
1997. AAAI Press / The MIT Press.

[Bulitko and Wilkins, 2003] V. Bulitko and D.C. Wilkins.
Qualitative simulation of temporal concurrent processes
using Time Interval Petri Nets. Artificial Intelligence,
144(1-2):95 – 124, 2003.

[Chung-Graham, 1997] F. Chung-Graham.Spectral Graph
Theory. Spectral Graph Theory. Number 92 in CBMS Re-
gional Conference Series in Mathematics. AMS, 1997.

[Holteet al., 1994] R.C. Holte, C. Drummond, M.B. Perez,
R.M. Zimmer, and A.J. MacDonald. Searching with
abstractions: A unifying framework and new high-
performance algorithm. InProceedings of the Canadian
Artificial Intelligence Conference, 263–270, 1994.

[Koenig, 2004] Sven Koenig. A comparison of fast search
methods for real-time situated agents. InProceedings of
the Third International Joint Conference on Autonomous
Agents and Multiagent Systems - Volume 2 (AAMAS’04),
864 – 871, 2004.

[Kohl and Stone, 2004] Nate Kohl and Peter Stone. Machine
learning for fast quadrupedal locomotion. InThe Nine-
teenth National Conference on Artificial Intelligence, 611–
616, July 2004.

[Korf and Felner, 2002] R. Korf and A. Felner. Disjoint pat-
tern database heuristics.Artificial Intelligence, 134(1-
2):9–22, 2002.

[Korf and Taylor, 1996] R. E. Korf and L. A. Taylor. Finding
optimal solutions to the twenty-four puzzle. InProceed-
ings of the Thirteenth National Conference on Artificial In-
telligence (AAAI-96), 1202–1207, Portland, Oregon, USA,
1996. AAAI Press / The MIT Press.

[Korf, 1990] R.E. Korf. Real-time heuristic search.Artificial
Intelligence, 42(2-3):189–211, 1990.

[Korf, 1997] R. Korf. Finding optimal solutions to Rubik’s
cube using pattern databases. InProceedings of the Work-
shop on Computer Games (W31) at IJCAI-97, 21–26,
Nagoya, Japan, 1997.

[Laud and DeJong, 2003] Adam Laud and Gerald DeJong.
The influence of reward on the speed of reinforcement
learning:an analysis of shaping. In Tom Fawcett and Nina
Mishra, editors,Machine Learning, Proceedings of the
Twentieth International Conference (ICML 2003), August
21-24, 2003, Washington, DC, USA. AAAI Press, 2003.

[Levner and Bulitko, 2004] Ilya Levner and Vadim Bulitko.
Machine learning for adaptive image interpretation. In
Proceedings of the National Conference on Artificial In-
telligence (AAAI) and Sixteenth Innovative Applications of
Artificial Intelligence Conference (IAAI), 870 – 876, San
Jose, California, 2004.

[Li et al., 2004a] Lihong Li, Vadim Bulitko, and Russell
Greiner. Batch reinforcement learning with state impor-
tance. InProceedings of European Conference on Ma-
chine Learning, Poster Section, 566–568, Pisa, Italy, 2004.

[Li et al., 2004b] Lihong Li, Vadim Bulitko, and Russell
Greiner. Focus of attention in sequential decision making.
In Proceedings of National Conference on Artificial Intel-
ligence (AAAI), Workshop on Learning and Planning in
Markov Processes - Advances and Challenges, San Jose,
California, 2004.

[Ng et al., 1999] Andrew Y. Ng, Daishi Harada, and Stuart
Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. InProceedings
of of ICML, 1999.

[Sammutet al., 1992] C. Sammut, S. Hurst, D. Kedzier, and
D. Michie. Learning to fly. InProceedings of ICML, Ab-
erdeen, 1992. Morgan Kaufmann.

[Schaefferet al., 2001] Jonathan Schaeffer, Markian
Hlynka, and Vili Jussila. Temporal difference learning
applied to a high-performance game-playing program. In
Proceedings of IJCAI, 529–534, 2001.

[Shimbo and Ishida, 2003] Masashi Shimbo and Toru Ishida.
Controlling the learning process of real-time heuristic
search.Artificial Intelligence, 146(1):1–41, 2003.

[Smola and Kondor, 2003] A. Smola and R. Kondor. Kernels
and regularization on graphs, 2003.

[Sutton and Barto, 1998] R.S. Sutton and A.G. Barto.Rein-
forcement Learning: An Introduction. MIT Press, 1998.

[Tesauro, 1995] Gerald Tesauro. Temporal difference learn-
ing and TD-Gammon. Communications of the ACM,
38(3), March 1995.

[Wiewiora, 2003] Eric Wiewiora. Potential-based shaping
and Q-value initialization are equivalent.Journal of Ar-
tificial Intelligence Research, 19:205–208, 2003.

[Zhuet al., 2005] Xiaojin Zhu, Jaz Kandola, Zoubin
Ghahramani, and John Lafferty. Semi-supervised kernels
via convex optimization with order constraints. In
Advances in Neural Information Processing Systems 17.
MIT Press, Cambridge, MA, 2005.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

28

Fast Reachability Analysis for Uncertain SSPs

Olivier Buffet
National ICT Australia &

The Australian National University
olivier.buffet@nicta.com.au

Abstract

Stochastic Shortest Path problems (SSPs) can be ef-
ficiently dealt with by theReal-Time Dynamic Pro-
grammingalgorithm (RTDP). Yet, RTDP requires
that a goal state is always reachable, what can be
checked easily for a certain SSP, and with a more
complex algorithm for anuncertainSSP, i.e. where
only a possible interval is known for each transition
probability. This paper makes a simplified descrip-
tion of these two processes, and demonstrates how
the time consuming uncertain analysis can be dra-
matically speeded up. The main improvement still
needed is to turn to a symbolic analysis in order to
avoid a complete state-space enumeration.

1 Introduction
In decision-theoretic planning, Markov Decision Problems
[Bertsekas and Tsitsiklis, 1996] are of major interest when
a probabilistic model of the domain is available. A range of
algorithms make it possible to find plans (policies) optimiz-
ing the expected long-term utility. Yet, optimal policy con-
vergence results all depend on the assumption that the proba-
bilistic model of the domain is accurate.

Unfortunately, a large number of MDP models are based
on uncertain probabilities (and rewards). Many rely on statis-
tical models of physical or natural systems, may they be toy
problems such as the mountain-car or the inverted-pendulum,
or real problems such as plant control or animal behavior
analysis. These statistical models are based on simulations
(themselves being mathematical models), observations of a
real system or human expertise.

Working with uncertain models first requires answering
two closely related questions: 1- how to model this uncer-
tainty, and 2- how to use the resulting model. Existing work
shows that uncertainty is sometimes represented as a set of
possible models, each assigned a model probability[Munos,
2001]. The simplest example is sets of possible models
that are assumed equally probable[Bagnell et al., 2001;
Nilim and Ghaoui, 2004]. Rather than construct a possibly
infinite set of models we represent model uncertainty by al-
lowing each probability in a single model to lie in an interval
[Givanet al., 2000; Hosakaet al., 2001].

Uncertain probabilities have been investigated in resource
allocation problems[Munos, 2001] — investigating efficient
exploration[Strehl and Littman, 2004] and state aggregation
[Givanet al., 2000] — and policy robustness[Bagnellet al.,
2001; Hosakaet al., 2001; Nilim and Ghaoui, 2004]. We fo-
cus on the later, considering a two-player game where the op-
ponent chooses from the possible models to reduce the long-
term utility.

Our principal aim is to develop an efficient planner for a
common sub-class of MDPs for which optimal policies are
guaranteed to eventually terminate in a goal state: Stochas-
tic Shortest Path (SSP) problems. A greedy version ofReal-
Time Dynamic Programming algorithm(RTDP)[Bartoet al.,
1995] is particularly suitable for SSPs, as it finds good poli-
cies quickly and does not require complete exploration of the
state space. Yet, if it can be made robust[Buffet and Ab-
erdeen, 2004; 2005], it also requires that a goal state is reach-
able from any visited state, which can be checked through a
reachability analysis.

This paper makes a simple description of the reachability
analysis for certain and uncertain SSPs[Buffet, 2004], and
shows how the time consuming uncertain analysis can be dra-
matically speeded up. In Section 2 we present SSPs, RTDP
and robustness. We then explain the algorithms for reacha-
bility analysis in the certain and uncertain case. Finally, the
fast uncertain reachability analysis is depicted and practical
experiments are presented before a conclusion.

2 Background
2.1 Stochastic Shortest Path Problems
A Stochastic Shortest Path Markov Decision Problem[Bert-
sekas and Tsitsiklis, 1996] is defined here as a tuple
〈S, s0, G,A, T, c〉. It describes a control problem whereS
is the finite set ofstatesof the system considered,s0 ∈ S is
a starting state, andG ⊆ S is a set of goal states.A is the
finite set of possibleactions a. Actions control transitions
from one states to another states′ according to the system’s
probabilistic dynamics, described by thetransition function
T defined asT (s, a, s′) = Pr(st+1 = s′|st = s, at = a).
The aim is to optimize a performance measure based on the
cost function c : S ×A× S → R+.1

1As the model is not sufficiently known, we do not make the
usual assumptionc(s, a) = Es′ [c(s, a, s′)].

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

29

SSPs assume a goal state is reachable from any state inS,
at least for the optimal policy, so that one cannot get stuck in
a looping subset of states. An algorithm solving an SSP has
to find apolicy that maps states to probability distributions
over actionsπ : S → Π(A) which optimizes the chosen per-
formance measure, here thevalue V defined as the expected
sum ofcoststo a goal state.

In this paper, we only consider SSPs for planning purposes,
with only inaccurate knowledge of the transition functionT .
In this framework, well-known stochastic dynamic program-
ming algorithms such asvalue iteration(VI) make it possible
to find a deterministic policy that corresponds to the minimal
expected long-term costV . Value iterationworks by comput-
ing the value functionV ∗(s) that gives the expected reward
of the optimal policies. It is the unique solution of the fixed
point equation[Bellman, 1957]:

V (s) = min
a∈A

∑
s′∈S

T (s, a, s′) [c(s, a, s′) + V (s′)] . (1)

Updating V with this formula leads to the optimal value
function. For convenience, we also introduce theQ-
value:Q(s, a) =

∑
s′∈S T (s, a, s′)[c(s, a, s′) + V (s′)].

This kind of problem can easily be viewed as a shortest
path problem where choosing a path only probabilistically
leads you to the expected destination. SSPs can represent a
useful subset of MDPs. They are essentially a finite-horizon
MDP with no discount factor.

2.2 RTDP
A first algorithm making use of the structure of SSPs is a
version of theReal-Time Dynamic Programmingalgorithm
(RTDP) [Barto et al., 1995]. It uses the fact that the SSP
cost function is positive and the additional assumption that
every trial will reach a goal state with probability 1. Thus,
with a zero initialization of theJ , both theJ andQ-values
monotonically increase during their iterative computation.

The idea behind RTDP (Algorithm 1) is to follow paths
from the start states0, always greedily choosing actions of
low value and updatingQ(s, a) as statess are encountered. In
other words, the action chosen is the one expected to lead to
the lowest future costs, until the iterative computations show
that another action may do better.

Algorithm 1 RTDP algorithm for SSPs
RTDP(s:state)// s = s0

repeat
RTDPTRIAL (s)

until // no termination condition
. .
RTDPTRIAL (s:state)
while ¬GOAL(s) do

a =GREEDYACTION(s)
J(s) =QVALUE (s, a)
s =PICKNEXTSTATE(s, a)

end while

RTDP has the advantage of quickly avoiding plans that lead
to high costs. Thus, the exploration looks mainly at a promis-
ing subset of the state space. Because it follows paths by

simulating the system’s dynamics, common transitions are fa-
vored, so that good policies are obtained early. Yet, the bad
update frequency of rare transitions slows the convergence.

2.3 Robust Value Iteration
We now turn to the problem of taking the model’s uncertainty
into account when looking for a “best” policy. The (possibly
infinite) set of alternative models is denotedM.

We follow the approach described in[Bagnellet al., 2001],
that consists of finding a policy that behaves well under the
worst possible model. This amounts to considering a two-
player zero-sum game where a player’s gain is its opponent’s
loss. The player chooses a policy while its “disturber” oppo-
nent simultaneously chooses a model. A simple process may
be used to compute the value function while looking simul-
taneously for the worst model. It requires the hypothesis that
state-distributionsT (s, a, ·) are independent from one state-
action pair(s, a) to another. Under this assumption, the worst
model can be chosen locally whenQ is updated for a given
state-action pair. If this assumption does not always actually
hold, it induces a larger set of possible models, what results
in a worst-case assumption in the pessimistic approach.

Problem — We are particularly interested in handling
uncertain SSPs(USSP), where only intervals of pos-
sible transition probabilities are known:T (s, a, s′) ∈
[Prmin(s′|s, a), P rmax(s′|s, a)]. Yet, to use (robust) RTDP,
this theorem is of major interest:

Theorem 1. [Bertsekas and Tsitsiklis, 1996] If the goal is
reachable with positive probability from every state, RTDP
unlike the greedy policy cannot be trapped into loops forever
and must eventually reach the goal in every trial. That is,
every RTDP trial terminates in a finite number of steps.

The purpose of this paper is to determine from which states
a goal state is still reachable in SSPs. The uncertain case
could be brought back to the certain case by finding an ap-
propriate pessimistic model. To that end, our policy should
be fixed to one that chooses all actions with equal probabil-
ity and the opponent could then learn a model to prevent goal
states from being reached. Yet, the opponent’s problem is no
SSP, what would imply coming back from RTDP toValue It-
eration. Moreover, we prefer performing a graph analysis, as
it gives more practical information and would be a first step
toward a symbolic analysis avoiding the enumeration of the
complete state-space.

3 Reachability Analyses
When applying algorithms such as RTDP on an SSP hav-
ing no proper policy, the main problem is to detect if cur-
rent states still has a positive probability of reaching the goal
set, in which cases is said to be “reaching ”. If s is non-
reaching , RTDP should stop and a specific process be ap-
plied, such as associating this state to an infinite cost.

Non-reaching states constitute looping sub-sets of
states which we will refer to as “dead-ends”. The process
just described results in dead-ends avoidance. Yet some states
may bereaching but also have a positive probability to

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

30

lead to a dead-end whatever the policy. If non-reaching
states incur infinite costs, these “dangerous ” states will
necessarily have an infinite long-term cost to the goal. It
would thus be of interest to also identify thesedangerous
states.

Note that what to do when in a non-reaching state may
depend on the user’s preferences. But in all cases the first step
is to perform a “reachability analysis” through a graph traver-
sal beginning with goal states. Then, if required, a “danger
analysis” can be performed through another (simpler) graph
traversal beginning with non-reaching states. This paper
mainly focuses on the “reachability analysis”, as this process
is necessary and somewhat subtle in the case of USSPs.

3.1 Certain SSP
In a certain SSP, ifs′ is reaching , any states such that
T (s, a, s′) > 0 for some actiona is also reaching. This re-
sults in a straightforward analysis by making a graph traversal
starting with goal states.

Let Parents(s) be the set of statess′ for which there ex-
ists a transition(s′, a) → s: Parents(s) = {s′ ∈ S s.t.∃a ∈
APr(s|s′, a) > 0}. Alg. 2 uses this information to perform
the reachability analysis. Then states which have not been
marked asreaching are dead-ends, and a second graph
traversal starting with these states will identifydangerous
states (see Alg. 3).2

Algorithm 2 PROPAGATEREACHABILITY SSP (Parents)
PUSHALL(G, st) {st: stack of goal states}
while st 6= ∅ do

POP(s, st)
if ¬reaching(s) then

MARK(s, reaching)
PUSHALL(Parents(s), st)

end if
end while

Algorithm 3 PROPAGATEDANGER(Parents)
for all s ∈ S s.t.¬reaching(s) do

PUSH(s, st)
end for
while st 6= ∅ do

POP(s, st)
if ¬dangerous(s) and∀ a ∈ A :
∃ s′ ∈ S s.t.Pr(s′|s, a) > 0 & dangerous(s′) then

MARK(s, dangerous)
PUSHALL(Parents(s), st)

end if
end while

3.2 Uncertain SSP
In an uncertain SSP, the reachability analysis depends on the
fact that the opponent can forbid a transition(s, a) → s′ if

2Alg. 3 can be implemented efficiently by remembering which
state-action pairs are known to be dangerous.

Prmin(s′|s, a) = 0. A difficulty is that Prmin(s′1|s, a) = 0
andPrmin(s′2|s, a) = 0 are not sufficient to tell ifs′1 and
s′2 may be forbidden simultaneously in some possible model.
Fig. 1 shows an example where the 3 potentially reachable
states cannot be forbidden simultaneously (there is no possi-
ble model s.t.∀j ∈ {1, 2, 3} T (so, a0, s

′
j) = 0). With upper

probabilities of1, any 2 states could be forbidden.

(c=1) (c=1)
[0,.6] [0,.6]

(c=1)[0,.6]

s0 a0

s
′

1
s

′

2
s

′

3

Figure 1: USSP where only 1 of the 3 reachable states can be
forbidden (goal states in bold circles).

Let us define the set of all lists of states which cannot be
forbidden simultaneously (from(s, a)):3

L�
(s,a) =


l ⊆ S s.t. s′ ∈ l ⇒ Prmax

(s′|s,a) > 0,

and
∃s′ ∈ l s.t.Prmin

(s′|s,a) > 0
or

∑
s′∈S\l Prmax

(s′|s,a) < 1

 .

To know if a given actiona can lead to a goal state from
current states, one has to find at least one such list where
all states arereaching . In this case, the opponent cannot
prevent the planner having some chance of terminating. The
reachability analysis only needs to work with the subset of
minimal lists:

Lmin�
(s,a) =

{
l ∈ L�

(s,a) s.t.∀l′ ∈ L�
(s,a) :

l ∩ l′ = l or (l ∩ l′) 6∈ L�
(s,a)

}
.

In other words, removing any state of such a list makes it
possible for the opponent to forbid all states in the list. On
Fig. 1: Lmin�

(so,ao) = {{s′1, s′2}, {s′1, s′3}, {s′2, s′3}}.
From this basic idea, two problems arise:

• How to perform the reachability analysis ?

• How to obtain these lists ?

We now just give a brief idea of the answers to these two
questions (details in Sections 3.2 and 3.3 of[Buffet, 2004]).

Performing the Reachability Analysis – The minimal lists
we have just described are defined with respect to a given
state-action pair(s, a). They are used to obtain a new set
Lmin�

(s) of minimal lists relative to the states, since the precise
action chosen is of no interest when just checking whether a
state could reach the goal or not.

From there, determining which states can reach a goal state
is again done through a propagation starting from these goal

3� ∼ “statescannotbe forbidden simultaneously”

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

31

states. This “back”-propagation takes place in anAND-OR
graph where nodes are states and their minimal lists, as il-
lustrated by Fig. 2. This is anAND-ORgraph because a
list is “reaching ” if all its children states arereaching
(AND), and a state isreaching if oneof its children lists is
reaching (OR).

...

......

s0

s1 s2

s3

l1

l2

Figure 2: Example ofAND-ORgraph in which the reachabil-
ity analysis is done (starting with goal states ass2 here). If
s3 is reaching , then so isl1 (the opponent cannot forbids2

ands3), and therefores1.

After this reachability analysis for uncertain SSPs, the dan-
ger analysis from Alg. 3 can be performed with no modifica-
tion, using the most probable model for example. Indeed in
this second phase the opponent has no need to prevent some
transitions from happening (by assigning them a zero proba-
bility mass). On the contrary, its aim should be to allow all
possible transitions in a view to give more ways of getting to
a dead-end.

How to Obtain the Lists — Previous section has shown
how to use minimal lists of states which cannot be forbidden
simultaneously so as to perform the reachability analysis. An
essential question that we still have to answer is how to obtain
these lists. This is an indirect process as it consists in 1- look-
ing for maximallists of states whichcanbe forbidden simul-
taneously, then in 2- adding a state to turn them intominimal
lists of states whichcannotbe forbidden simultaneously.

As we have defined the notion of “list of states whichcan-
notbe forbidden simultaneously”, we define the opposite no-
tion of “list of states whichcanbe forbidden simultaneously”:

L�
(s,a) =

{
l ⊆ S s.t.

∑
s′∈S\l Prmax

(s′|s,a) ≥ 1 and
s′ ∈ l ⇒ Prmin

(s′|s,a) = 0 & Prmax
(s′|s,a) > 0

}
.

But we only need to consider the subset of these lists which
are “maximal”:

Lmax�
(s,a) =

{
l ∈ L�

(s,a) s.t.∀l′ ∈ L�
(s,a) :

l ∪ l′ = l or l ∪ l′ 6∈ L�
(s,a)

}
.

Indeed, adding any reachable state to such a list turns it into a
list from L�

(s,a). Obtaining the minimal lists required for the
reachability analysis requires then two algorithms:
• one to createLmax�

(s,a) (∀(s, a) ∈ S ×A), and

• one to turn any setLmax�
(s,a) in the corresponding set

Lmin�
(s,a) .

Experiments — The various algorithms developped to per-
form the reachability and danger analyses have been devel-
opped and tested on several problems (see[Buffet, 2004]).
The three main remarks coming from these experiments are
the following:

1. In some problems,Pr(s′|s, a) = ε can be sufficient to
consider that transition(s, a) → s′ can be forbidden
(because of “attracting” parts of the state space which
nearly behave like dead-ends).

2. The analyses require enumerating the whole state-space,
whereas this is often not feasible. This is all the more
unfortunate that one of (L)RTDP’s main advantage is to
avoid visiting the complete state-space.

3. The reachability analysis for uncertain SSPs can be very
time consuming.

The second point is a major subject for future work, with
the idea that we should turn our algorithms into a symbolic
analysis. Next section shows how to easily address the third
point through a simple preprocessing phase.

4 Improved Reachability Analysis
The improved algorithm we propose here is based on the idea
that, if the reachability analysis for uncertain SSPs is time
consuming, in many cases only a small part of the model re-
quires a special treatment. A lot of information can already be
obtained through analyses performed on chosen certain SSPs.

More precisely, we apply the certain reachability and dan-
ger analyses on an optimistic and a pessimistic model first,
to quickly classify most states. Then, the uncertain algo-
rithms only need to be run on states which remain unclassi-
fied. As detailed below, this process can be viewed as lower-
and upper-bouding a solution with simple technics before us-
ing an exact –but costly– computation.

4.1 Upper- and Lower-Bounding Reachability
Graphs

The precomputation phases work on two reachability graphs
obtained from the original uncertain SSP:

• the lower-bounding reachability graph Glo: in which
s′ is reachable froms if and only if there exists an action
a such thatPrmin(s′|s, a) > 0, and

• the upper-bounding reachability graph Gup: in
which s′ is reachable froms if and only if there exists
an actiona such thatPrmax(s′|s, a) > 0.

Glo represents all transitions which are certainly valid, and
Gup represents all transitions which could be valid. Yet,
these graphs should not be seen as an “optimistic” and a “pes-
simistic” graph, as the point of view may differ depending on
which analysis is being performed.

4.2 Principle
The optimistic, pessimistic and exact-computation phases are
the following:

1. optimistic:

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

32

(a) useGup to perform a certain reachability analysis
and get states whichmay bereaching (and sub-
sequently those certainly not-reaching), and

(b) useGlo to perform a danger analysis and get states
whichare certainlydangerous .

2. pessimistic:

(a) useGlo to perform a certain reachability analysis
and get states whichare certainlyreaching , and

(b) useGup to performadangeranalysisandgetstates
whichmay bedangerous . (useless step)

3. exact-computation: To complete the analyses, two
graphs must be designed which embed states not yet
certainlyreaching (or dangerous) and their direct
children. Then can be performed:

(a) the construction of the required AND-OR graph,
(b) the reachability analysis (starting with states known

to potentially reach a goal), and
(c) the danger analysis (starting with states known to

be trapped).

Here, one could say that the planner is optimistic when the
opponent is pessimistic (and conversely), what explains the
inverted use ofGlo andGup with the reachability and danger
analyses. The former tells whether the planner has some hope
to reach a goal state, and the later tells if the opponent has
some hope to definitely avoid a goal state.

A useful implementation detail is that this complete pro-
cess requires a three-state logic telling if aproperty is true,
false or unknown.

4.3 Algorithms’ Complexities
Here is a list of the most important parameters with respect to
the algorithmic complexities of the various algorithms:

• |S|: number of states,

• |A|: maximum number of actions (maxs∈S |A(s)|),
• ba: maximum branching-factor for a state-action pair,

• bp: maximum “reverse” branching-factor for a state (i.e.
maximum number of parents for a state).

With this, we have the following worst-case complexities:

• constructing Parents(·) for a certain SSP:
O(|S|.|A|.ba),

• certain reachability analysis (Alg. 2):O(|S|.bp), and

• danger analysis (Alg. 3):O(|S|.bp).
While these three algorithms remain reasonable, the un-

certain reachability analysis creates many lists of states (of-
ten singletons) and performs various manipulations on them.
This easily leads to a high increase in complexity. Due to
the number of independent steps in the uncertain reachability
analysis, it is a difficult task to give its algorithmic complex-
ity through a formula. A good intuition can be obtained by
computing the complexity of the various steps of this com-
plex algorithm, as done in[Buffet, 2004], Appendix A.

The preprocessing quickly determines for most states if
they arereaching or dangerous . This results in largely

reducing the number of unidentified states which require an
uncertain reachability analysis, therefore cutting down the
complexity of this last algorithm.

5 Experiments
Problems — Experiments have been conducted on two dif-
ferent problems:
•One is themountain-car problem as defined in[Sutton and
Barto, 1998]: starting from the bottom of a valley, a car has
to get enough momentum to reach the top of a mountain (see
Fig. 3). The same dynamics as described in the mountain car
software4 have been employed, with the only difference that
the left boundary has been moved from−1.2 to−2.0, creat-
ing a valley in which the car can be trapped. The objective is
to minimize the number of time steps to reach goal.

−1.2 0.6position

acceleration
road reaction

gravity

dead−end

−2.0

goal

Figure 3: The mountain-car problem with a dead-end.

The continuous state-space is discretized (32 × 32 grid)
and the corresponding uncertain model of transitions is ob-
tained by sampling1000 transitions from each state-action
pair (s, a). For each transition, we computed intervals in
which the true model lies with95% confidence (cf.[Buffet
and Aberdeen, 2004] Appendix B.1).
• The other is asailing problem sharing some similarities
with the mountain-car task. It’s complete description can be
found in [Vanderbei, 1996]. Here, the space is discretized
to a10× 10 grid,×8 wind angles and×8 possible headings.
The system’s stochasticity is due to the random changes in the
wind’s direction. If there is here no true dead-end, rLRTDP is
easily trapped in some parts of the state-space, forcing us to
consider that a transition with probabilityPrmin(s′|s, a) <
0.01 can be forbidden. The uncertain model is also learned
by drawing1000 samples for each state-action pair, using the
sameα = 0.05.

Results — As we have just seen, branching factors play a
noticeable role. This, and the important number of available
actions, may explain the dramatic increase in observed com-
putation time in the sailing problem, as shown on Table 1, col-
umn “sailing”-“raw”. Yet, the preprocessing obviously helps
quickly determining for most states if they arereaching or
not, hence the huge speed-up observed for each problem’s
reachability analysis (columns “help”). In both problems,

4http://www.cs.ualberta.ca/˜sutton/ · · ·
MountainCar/MountainCar.html

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

33

most of the state space is effectively handled through the cer-
tain analyses, only a small part depending on “uncertain” dy-
namics.

mountain-car sailing
|S| 1024 6400
|A| 2 8

raw help raw help
Init 0.7780 0.7801 5.8647 5.8670

Reachability 0.2810 0.0277 167.7658 0.4468
rLRTDP 10.6862 10.6447 1.4320 0.5442

Table 1: Average performance (duration in seconds) ob-
tained with 100 executions for the 3 phases: 1- model
Init ialization (including the statistical modeling), 2-
Reachability analysis and 3-rLRTDP itself.
(“raw”= “no preprocessing”, “help”= “with preprocessing”)

A surprising observation is that rLRTDP is much faster on
the sailing problem when a preprocessing phase is used. This
may be linked to the fact that the computer has no problem
handling memory in this case, what may slow down rLRTDP
if used after the expensive reachability analysis on a complete
uncertain graph. The same experiment on a lake of4 × 4
instead of10×10 shows little difference between both cases:
without (0.0161s) and with (0.0197s) preprocessing.

6 Conclusion
The goal reachability checked through the algorithm pre-
sented here is an essential tool for robust RTDP[Buffet and
Aberdeen, 2004; 2005]. This paper briefly describes how
to perform reachability and danger analyses in certain and
uncertain SSPs, and explains how the analyses for uncer-
tain SSPs can be speeded up through a simple preprocessing
phase.

An open question is how to use the information obtained
through the reachability analysis. If one does not want to for-
bid states which arereaching anddangerous , the cost
function is not sufficient for decision-making and a new (non-
classical ?) preference criterion has to be introduced.

The main remaining issue is then how to avoid enumerat-
ing the complete state-space. In a structured domain, as in
temporal planning, it would be of great interest to conduct a
symbolic analysis, as it has been done for other purposes for
Finite State Automata[Coudertet al., 1990] by using BDDs
[Bryant, 1985]. The major problem should be the algorithm
producing the minimal lists inLmin�

(s,a) , what would enable a
symbolic characterization of the AND-OR graph.

Finally, it is important to notice that the core of the algo-
rithms presented in this document is not specific to decision-
making, but rather to certain and uncertain Markov chains
(with end states). It would be simple to rewrite the various
procedures to that end, as Markov chains could be described
as SSPs with no costs and a single available action per state.

Acknowledgments
National ICT Australia is funded by the Australian Govern-
ment. This work was also supported by the Australian De-
fence Science and Technology Organisation.

References
[Bagnellet al., 2001] J.A. Bagnell, A. Y. Ng, and J. Schnei-

der. Solving uncertain markov decision problems.
Technical Report CMU-RI-TR-01-25, Robotics Institute,
Carnegie Mellon U., 2001.

[Bartoet al., 1995] A.G. Barto, S. Bradtke, and S. Singh.
Learning to act using real-time dynamic programming.Ar-
tificial Intelligence, 72, 1995.

[Bellman, 1957] R. Bellman. Dynamic Programming.
Princeton U. Press, Princeton, New-Jersey, 1957.

[Bertsekas and Tsitsiklis, 1996] D.P. Bertsekas and J.N.
Tsitsiklis. Neurodynamic Programming. Athena Scien-
tific, 1996.

[Bryant, 1985] R.E. Bryant. Symbolic manipulation of
boolean functions using a graphical representation. In
ACM/IEEE Design Automation, pages 688–694, 1985.

[Buffet and Aberdeen, 2004] O. Buffet and D. Aberdeen.
Planning with robust (l)rtdp. Technical report, National
ICT Australia, 2004.

[Buffet and Aberdeen, 2005] O. Buffet and D. Aberdeen.
Robust planning with (l)rtdp. InProc. of the 19th Int. Joint
Conf. on Artificial Intelligence (IJCAI’05), 2005.

[Buffet, 2004] O. Buffet. Robust (l)rtdp: Reachability anal-
ysis. Technical report, National ICT Australia, 2004.

[Coudertet al., 1990] O. Coudert, J.-C. Madre, and
C. Berthet. Verifying temporal properties of sequential
machines without building their state diagrams. InProc.
of the Workshop on Computer-Aided Verification, 1990.

[Givanet al., 2000] R. Givan, S. Leach, and T. Dean.
Bounded parameter markov decision processes.Artificial
Intelligence, 122(1-2):71–109, 2000.

[Hosakaet al., 2001] M. Hosaka, M. Horiguchi, and M. Ku-
rano. Controlled markov set-chains under average cri-
teria. Applied Mathematics and Computation, 120(1-
3):195–209, 2001.

[Munos, 2001] R. Munos. Efficient resources allocation for
markov decision processes. InAdvances in Neural Infor-
mation Processing Systems 13 (NIPS’01), 2001.

[Nilim and Ghaoui, 2004] A. Nilim and L. El Ghaoui. Ro-
bustness in markov decision problems with uncertain tran-
sition matrices. InAdvances in Neural Information Pro-
cessing Systems 16 (NIPS’03), 2004.

[Strehl and Littman, 2004] A. L. Strehl and M. L. Littman.
An empirical evaluation of interval estimation for markov
decision processes. InProc. of the 16th Int. Conf. on Tools
with Artificial Intelligence (ICTAI’04), 2004.

[Sutton and Barto, 1998] R. Sutton and G. Barto.Reinforce-
ment Learning: an introduction. Bradford Book, MIT
Press, Cambridge, MA, 1998.

[Vanderbei, 1996] Robert J. Vanderbei. Opti-
mal sailing strategies, statistics and operations
research program, 1996. U. of Princeton,
http://www.sor.princeton.edu/˜rvdb/sail/sail.html.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

34

Putting Olfaction into Action:
Anchoring Symbols to Sensor Data Using Olfaction and Planning

Amy Loutfi, Silvia Coradeschi, Lars Karlsson and Mathias Broxvall
Center for Applied Autonomous Sensor Systems

Örebro University
Örebro, Sweden 701-82

www.aass.oru.se

Abstract

Olfaction is a challenging new sensing
modality for intelligent systems. With
the emergence of electronic noses (e-
noses) it is now possible to train a system
to detect and recognise a range of differ-
ent odours. In this work, we integrate the
electronic nose on a multi-sensing mo-
bile robotic platform. We plan for per-
ceptual actions and examine when, how
and where the e-nose should be activated.
Finally, experiments are performed on a
mobile robot equipped with an e-nose to-
gether with a variety of sensors and used
for object detection.

1 Introduction
Mobile robots are becoming equipped with more diverse and
numerous sensing modalities. Still, however, many of these
modalities focus on obtaining the structural properties of an
environment using for example, cameras, sonars and lasers.
In object detection applications, objects may be discriminated
more than just on their structural properties. One example is
the property of smell. With the development of electronic
olfaction and small electronic noses, gas sensors can be ef-
fectively integrated on mobile platforms. Furthermore such
an integration could be of benefit to a number of robotics re-
lated applications for rescue robots, home-care robots and ex-
ploratory robots.

Electronic noses (e-noses) offer the potential to systemat-
ically quantify odours and this ability is attractive to many
research and industrial applications. E-noses have also be-
come commercially available, facilitating the integration of
artificial olfaction in the AI community. Over the past two
decades e-noses have been used in the detection of substances
in the context of quality control in the food industry, detection
of toxins, and discrimination of odours[Persaud and Dodd,
1982]. In this work we present a new kind of application
where e-noses are added in the context of a larger sensing sys-
tem, including vision, and planning. The e-nose is used for
detecting objects where the odour characteristic is considered
in a symbolic context as an additional property of the object.

We focus in particular on the use of planning to determine the
sensory actions needed to correctly collect the olfactory data.

Using an electronic nose in the context of object detection
has several benefits. Firstly, descriptions of objects can in-
clude an odour and the respective recognition can be based on
smell. For example, in the detection of “a cup of ethanol”, vi-
sion may serve to detect certain properties of the cup or even
the colour of the substance but the actual substance of ethanol
is best determined through chemical analysis. Another ben-
efit emerges when two similar objects create an ambiguous
case for the decision-making system. The property of smell
can be used to disambiguate and distinguish between these
objects. Even in non-ambiguous cases, acquiring the odour
characteristic can be used to confirm the belief that the de-
sired object has in fact been found. Finally, in the case of
reacquiring an object, the odour property can be determined,
stored, and reused in order to find the same object again.

A näıve approach to implementing odour recognition in the
experiments mentioned above, may be to use an electronic
nose as a passive sensor i.e., constantly smelling the environ-
ment and associating the odour characteristic to the object in
focus. There are however, several problems to passive sens-
ing in this case. First, there is the conceptual problem that
questions the validity of associating a dispersed odour in the
air to an object physically located at a distance from the ac-
tual point of detection. There is also the practical problems of
the sensing mechanism that include long sampling time (2-5
minutes), high power consumption (pumps and heaters), and
long processing time for the multivariate sensor data. In a real
time application that considers a mobile platform with mul-
tiple sensing modalities, the electronic nose is an expensive
sensor. For these reasons, the electronic nose in this work is
used instead as an active sensor that is explicitly called upon
inside a complex decision making system.

The work in this paper presents an overview of a system
that receives as input a symbolic description of an object and
locates that object in a complex environment. The system has
different sensing modalities available (in this case olfaction
and vision) and should determine when to use these modal-
ities in order to most effectively reach the goal. The system
also reasons about its perceptions on a symbolic level. For
this reason, a planner and an anchoring module are included
within the system architecture. The purpose of the planner is
to treat ambiguities, generate plans, call the execution of ap-

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

35

propriate behaviours (that may include the command to smell
an object) and determine when the goal has been reached.
The anchoring component is important since it creates and
maintains the connection between the symbols denoting ob-
jects at the symbolic level and the perceived physical objects
[Coradeschi and Saffiotti, 2000].

The paper begins with a description of related works in
Section 2. In Section 3, an overview of the system and its
components is given. In Section 4, different scenarios such
as disambiguating between objects and reacquiring objects
are tested using vision together with olfaction on a robotic
platform.

2 Related Work
To the knowledge of the authors, very little if not any at-
tempts have been made to integrate an electronic nose on
a multi-sensing mobile platform that specifically executes
object recognition tasks. Although significant contributions
have been made in the areas on odour source localization us-
ing mobile robots, it should be emphasized that this topic is
outside the focus of this paper. Despite the absence of similar
works however, there is well-developed research from both
the electronic nose community and the AI community that
facilitates the integration of odour recognition into intelligent
systems.

In [Gardner and Bartlett, 1999] a general definition of an
electronic nose includes both an array of gas sensors of par-
tial selectivity and a respective pattern recognition process to
detect simple or complex odours. Both a variety of sensing
technologies (metal oxide semiconductor, conducting poly-
mers, acoustic wave devices and fibre-optic sensors) as well
as pattern recognition techniques have been applied in re-
search, industrial and commercial domains. The most com-
mon of the pattern recognition used has been artificial neural
networks, which are trained on odour categories. Although
ANN’s have provided good results in applications with lim-
ited amount of odours categories as shown in[Keller et al.,
1996], using black-box classification fails to address the prob-
lem of representing the knowledge of odour categories in or-
der to classify a larger spectrum of odours. A study on the
meaning of categorisation by Dubois[2000] has attributed the
absence of fixed standards in odour classification to the lack
of correlation between the chemical composition of an odour
and the common name that refers to it. Consequently, chem-
ical models such as Dravniek’s[2000] character profiles or
Amoore’s[1965] primary odour tables, have not adequately
represented in a generally accepted manner odour categori-
sations due to the large possibility of odour categories and
descriptions. Thus, in recent years, there has been a move-
ment to treat e-nose data in a more human-like manner by ei-
ther relying on expert knowledge using fuzzy-based logic in
tailored applications[Lazzeriniet al., 2001] or using explicit
symbolic descriptions in order to relate odours categories to
one another[?].

Aside from performing navigation by smell[Lilienthal et
al., 2001], little work has explored the possibility of using an
electronic nose together with other sensors on robotic plat-
forms. Some studies such as[Sundic et al., 2000] have

Planner (top-level & recovery)

Plan executor & monitor

User goals & tasks

Interface

Plan Problem (state & goal)

Anchoring Navigation
Planner

Odour
Processing

Vision
Processing

Fuzzy Control

E-Nose CCD Camera
Robot,control,
odometry etc..

Anchors,StatusRequest Destination Status

Commands Classes Percepts Behaviours Status

Commands Data Images
StatusCommands

Figure 1: Overview of the robotic complete system which
uses an anchoring module. On the left side of the arrows
information is flowing downward and on the right side infor-
mation is flowing upward.

integrated e-noses on multi-sensing stationary platforms for
the purpose of sensor fusion, but have not considered an
application with intelligent or autonomous systems. Con-
versely, many intelligent or autonomous systems that con-
sider planning for perceptual actions[Barrouil et al., 1998;
Kovacicet al., 1998; Wassonet al., 1998] and perceptual an-
choring[Coradeschi and Saffiotti, 2003], have focussed pri-
marily on vision-based sensors.

3 An overview of the complete system
The components of the complete system used in our experi-
ments and their interrelations are shown in Figure 1. Signif-
icant attention is placed on the olfactory module with a de-
scription of the sensor operation and data processing. Further
details regarding the other components of the system can be
found in their respective references.

3.1 Planner
The planner, PTLplan, is a conditional progressive planner
[Karlsson, 2001]. It has the capacity to:

• reason about incomplete and uncertain information: it
might be unknown whether a cup contains ethanol or
some other substance.

• reason about informative actions: by smelling the cup,
one might determine whether it contains ethanol or
something else.

• generate plans that contain conditional branches: if the
cup contains ethanol, pick it up; otherwise, check the
other cup.

PTLplan is used on two different levels: for constructing the
plan for achieving the current main goal, and for constructing
repair plans in case problems occur while the main plan is ex-
ecuted. The repair planning facility mainly deals with actions
and plans for disambiguating an ambiguous situation, e.g. by
finding out which of the two cups is the one that contains
ethanol[?].

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

36

The planner functions by searching in a space of belief
states. A belief state represents the agent’s incomplete and
uncertain knowledge about the world at some point in time.
A belief state can be considered to represent a set of hypothe-
ses about the actual state of the world. The planner can reason
about perceptive actions and these actions have the effect that
the agents makes observations that may help it to distinguish
between different hypotheses. Each different observation will
result in a separate new and typically smaller belief state, and
in each belief state the robot will know more than before. To
summarize, the planner searches for plans that maximize the
probability of success, as well as mimimize the cost. Cost
can be defined simply in terms of the number of steps, or by
associating each action with a numerical cost.

3.2 Plan executor
The plan executor takes the individual actions of the plan and
translates them into tasks that can be executed by the control
system (the Thinking Cap). These tasks typically consist of
navigation from one locality or object to another. Planning
actions might also be translated into requests to the anchoring
system to find or reacquire an object that is relevant to the
plan, either in order to act on that object (e.g. moving towards
it) or simply to acquire more information about the object.

The plan executor also reacts when the execution of an ac-
tion fails, e.g. due to ambiguities when it tries to anchor an
object. In such cases, the repair planning facility is invoked.

3.3 Anchoring Module
The anchoring module creates and maintains the connection
between symbols referring to physical objects and sensor data
provided by the vision and olfaction sensors. The symbol-
data correspondence is represented by a data structure called
an anchor, that includes pointers to both the symbol and the
sensor data connected to it. The anchors also maintain a set of
properties that are useful to re-identify an object e.g., colour
and position. These properties can also be used as input to
the control routines. Different functionalities are included in
the anchoring modules. In this work, two functionalities in
particular are used.

Find is used to link the symbol e.g., “cup-22” to a percept
such as a region in an image that matches the description
“red cup containing ethanol”. The output of Find is an
anchor that contains properties such as the(x,y)position
or the odour of the cup.

Reacquire is used to update the properties of an existing an-
chor. This may be useful if the object goes out of view or
a period of time elapses resulting in a change of object
properties (e.g., chemical characteristic).

The anchoring functionalities are typically called by the
planner via the plan executor. To be able to execute actions
referring to an object, the planner interacts with the anchoring
module by referring to objects using a symbolic name and a
description expressed in terms of predicates. For instance, we
can execute the command “move-near cup-25” where “cup-
25” is described as a “green cup”.

Since all properties of an object are not always accessible,
the anchoring module also considers cases ofpartial match-

ings. We consider a matching between a description and the
perceptual properties of an object partial when all perceived
properties of the object match the description, but there still
remains properties in the description that have not been per-
ceived. This is a typical case for olfaction that requires that
the sensors are close to the odour source for detection.

The anchoring module is also able to determine whether
objects have been previously perceived, so as to not create
new anchors for existing objects. Ambiguous cases such as
when two objects partially match a given description, and
failure to find an object are detected by the module and dealt
with at the planner level.

A more detailed description of the anchoring module and
its functionalities can be found in[Coradeschi and Saffiotti,
2000].

3.4 Thinking Cap

In this system, execution monitoring on a mobile robot is con-
trolled by a hybrid architecture evolved from[Saffiotti et al.,
1995] called the Thinking Cap. The Thinking Cap (TC) con-
sists of a fuzzy behaviour-based controller, and a navigation
planner. In order to achieve a goal the planner selects a num-
ber of behaviours to be executed in different situations. De-
pending on the current situation, the different behaviours are
activated to different degrees.

3.5 Vision Module

In addition to the sonars used by Thinking Cap to navigate
and detect obstacles, the system also uses vision to perceive
objects. This is done by continuously receiving images from
a CCD camera connected to the robot and using standard im-
age recognition techniques for image segmentation. The seg-
mented images are used for recognising a number of predeter-
mined classes of objects and properties such as shape, colour
and relative position. The resulting classified objects are de-
livered to the rest of the system at approximately 1fps.

The result of these classifications are collected over time
and presented to the planning and anchoring system. The sys-
tem tries to represent objects so that they are persistent over
time but due to uncertainties in our sensing this is not always
possible and ambiguities which has to be dealt with at the
planning level may arise.

In order to maintain and predict sensed object currently
outside the camera’s viewpoint an odometry based localisa-
tion is used. As long as our movements are limited this
makes it easy for the system to reacquire objects based on
their stored position, if however the objects move or if accu-
mulation of odometry errors is large this might lead to reac-
quisition ambiguities which can only be resolved using other
sensors.

3.6 Olfactory Module

The olfactory module consists of a commercially available
electronic nose. This e-nose contains 32 thin-film carbon-
black conducting polymer sensors of variable selectivity.
Each sensor consists of two electrical leads on an aluminium
substrate. Thin films are deposited across the leads creating

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

37

Figure 2: A scenario where the robot discriminates four visu-
ally similar green cup objects based on their smell property

a chemiresistor. Upon exposure to an analyte, a polymer ma-
trix absorbs the analyte and increases in volume. This in-
crease in volume is reflected in a increase in resistance across
the sensor. Each polymer in the array is unique and designed
to absorb gases to different degrees, creating a pattern of re-
sponses across the array. The array of sensors are contained
in a portable unit also consisting of pumps, valves and filters
that are required to expose the sensor array to a vapour gas.

The sampling of an odour occurs in three different phases.
The first phase is a baseline purge, where the sensors are ex-
posed to a steady state condition, for example the air in the
room. The duration of the purge is 180 seconds. The second
phase is a sampling cycle where a valve is switched to al-
low vapours from a sampling inlet to come into contact with
the sensing array. The duration of this cycle is 60 seconds.
Finally, a sequence of purging cycles is used to remove the
sampled odour from the unit and restore the sensor response
to the baseline values. A total of 30 seconds are dedicated
to purging the unit however the time for full recovery of the
sensors may vary according to the odour being sampled.

The signals are gathered in a response vector where each
sensor’s reaction is represented by the fractional response of
the reaction phase to the baseline. The response vectors are
then normalised using a simple weighting method and au-
toscaled. Classification of new odours is performed by first
collecting a series of training data. With this type of data, the
authors have used an unsupervised technique based on fuzzy
clustering such as that presented in[?]. However, for the the
experiments described below and in order to optimise compu-
tation time in a real-time environment, a minimum distance
classifier was implemented. The result from this classifier
provides a linguistic name which refers to the class to which
the unknown odour belongs. Later work intends to explore
the ability to output not only the class name but also a degree
of membership, which could then be used in the planning pro-
cess.

4 Experiments
The experimental setup consists of a Magellan Pro Research
robot, called Pippi, equipped with a CCD camera, sonars, in-
frared sensors, compass and a Cyranose 320 electronic nose.

Figure 3: A closer view of the Pippi and the electronic nose.

Figure 4: The local perceptual space of Pippi given 4 similar
cups and obstacles. Pippi is located in the center of the space.

A snout protrudes from the robot so that sampling of an ob-
ject can be done easily see Figure 3. The nose has been pre-
viously trained on a number of different substances including
those used in the first experiment.

4.1 Disambiguiting Objects
In this scenario, we consider a situation where Pippi is in
a room where there are several different objects present as
shown in Figure 4. On the floor of the room are visually iden-
tical green cups. Given the request to identify an object such
as cup of ethanol, the planner in this case activates a Find
functionality creating anchors for the matching objects. An
example of the call to Find may look like:

(find c1 ((shape = cup) (smell = ethanol)))

The anchoring module examines the percepts sent from the
vision module, and finds several percepts that match the in-
dicated shape of c1. The percepts are considered as partially
matching the description as the smell still remains to be per-
ceived. The anchoring module classifies this as an ambiguous
situation and creates several candidate anchors, one for each
cup.

The repair planner is invoked, and considers the properties
of the requested cup c1 and of the new percepts. It finds that

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

38

c1 is expected to smell ethanol, but that there is no smell as-
sociated with either anchor (the case of two identical cups).
It then automatically generates an initial state consisting of
three hypotheses: that only anchor-1 smells ethanol and is
the target for anchoring c1; the corresponding for the other
anchors; and finally that no anchors smell ethanol. This initial
state, and the goal to either have c1 anchored or to determine
it cannot be anchored, is given as input to the planning algo-
rithm, which then produces the following conditional plan:

((move-near anchor-1) (smell-obj anchor-1)
(cond

((smell anchor-1 = ethanol) (anchor c1 anchor-1) :success)
((smell anchor-1 = not-ethanol) (move-near anchor-2)
(smell-obj anchor-2)
(cond

((smell anchor-2 = ethanol)
(anchor c1 anchor-2) :success)

((smell anchor-2 = not-ethanol)
(anchor c1 :fail) :success)))))

Note that each conditional branch ends with a decision to
anchor c1 to one of the candidates, or to none (:fail).

The plan is executed and Pippi moves close enough to the
object denoted by anchor-1 so that the snout of the nose is
within reasonable sampling proximity (see Figure 4). The
planner sends to the anchoring module a request to smell the
object. The anchoring module receives the command and re-
quests the sensing data from the e-nose. Now the e-nose in-
vokes a 4-minute sampling procedure where the result is a
classification based on the comparison with the trained val-
ues. The classification is sent and anchor-1 is updated. An
indication that the smelling process has finished sampling is
sent to the planner from the anchoring module. If the smell
was found to be ethanol, the planner decides to associate the
symbol c1 to anchor-1. If the object denoted by anchor-1 did
not smell like ethanol then the planner would proceed to ap-
proach the second object. If neither of the objects denoted
by the anchors return the desired classification, the planner
registers that no anchors for c1 have been found.

A number of configurations of the above scenario were
tested, where the number of cups were 2, 3, 4 or 5, each
cup with a different content. The contents of the cups were
one of the following: Ethanol, Hexanal, 3-Hexanol, Octanol,
or Linalool. These substances are part of an ASTM atlas of
odour descriptions[Dravnieks, 2000] whose characters are
best described as alcoholic, sour, woody, oily and fragrant
respectively.

Table 1 summarizes the results from different configura-
tions involving different numbers of candidate objects. Note
that in order to execute the smell action Pippi needs to move
close to the objects. As a result, errors may arise from either
the olfaction module (misclassification of odours) and/or the
vision module (accumulated odometry errors cause the an-
choring module to lose track of an object). The table also
provides information regarding the source of failures in the
unsuccessful cases.

Analysis of the results shows that visual failures provoke
olfactory failures. This is due to the fact that the e-nose per-
forms best when close to an object. Depending on the odour
(rate of vapourization), the distance to accurately recognize

Table 1: Experimental results from Disambiguating visually
similar objects

No.of Odours Trials
Olfactory
Failures
(Vision,
Odometry)

Olfactory
Failures
(Classifica-
tion)

2 11 18% 0 %

3 15 20% 0 %

4 21 19% 4.7%

5 25 16% 8%

the odour range is between 5 cm and 23 cm. Most visual fail-
ures are due to the odometry and as the number of candidate
objects increase, Pippi needs to move a longer distance and
a larger odometry error is accumulated. There are cases in
which the e-nose misclassifies the odour independently of vi-
sual failures. These misclassification errors slightly increase
when the number of different odours increase. The source of
this error can be the e-nose’s inability to discriminate between
classes of odours. However, in our case the error was actually
due to the sensing parameters given in the sampling process.
In particular, when two cups were separated by a short dis-
tance there was an inadequate recovery time between “sniffs”
and this resulted in a misclassification of samples. This re-
covery time depends on the type of odour being sampled.

4.2 Reacquiring Objects

The purpose with this experiment is to show a different ap-
plication of an electronic nose in which the e-nose is used to
acquire the specific odour of an object. Assuming that the
odour characteristic is a unique property of that object, this
information can be used to reacquire the object again. In this
scenario, the robot is in a room and a cup is located on the
floor. Pippi is first given the task to find the cup and then to
acquire its odour. Pippi first looks for the cup, finds it, and
moves close to it. It then requests the e-nose to start sam-
pling. In this case, however, the objective is not to recognise
the smell but instead acquire it in order to use it for identify-
ing the cup at future occasions. The e-nose samples the odour
and stores the sensor signals as a new pattern within the train-
ing depository. A new name is generated for the odour. Fi-
nally, the anchoring module stores the information that this
particular cup has the acquired smell.

The robot then wanders throughout the room. Meanwhile,
an additional cup of similar shape and colour is added and
the original cup is displaced so that it cannot be recognised
by its position. The planner then requests the anchoring mod-
ule to reacquire the original cup. Two possible candidates are
found, the original cup and the new cup, and the planner is in-
formed that there is an ambiguous situation. A plan is created
consisting of first going to one of the cups and smelling it, if
the classification of the odour matches the one that was stored
during the first acquire then the plan succeeds. Otherwise, the
second cup is checked. In our experiment, Pippi successfully
reacquired the cup.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

39

5 Conclusions
Olfaction is a valued sense in humans, and robotic systems,
which interact with humans, and/or execute human-like tasks
also benefit from the ability to perceive and recognise odours.
While previously gas sensors were difficult to use and needed
certain expertise to successfully implement odour recogni-
tion, commercial products have now made it possible to suc-
cessfully employ electronic olfaction in new domains. One
such domain is intelligent systems that rely on multi-sensing
processes to perform autonomous tasks. The integration of
electronic olfaction presents interesting challenges with re-
spect to the use of AI techniques in robotic platforms. Some
of these challenges are due to the properties of the sensing
mechanism, such as long sampling time, and close proximity
required for smelling an object.

In this work, we show how an electronic nose could be
successfully used as a tool for the recognition of objects. We
also show that successful integration requires that the e-nose
is explicitly called within the system at the appropriate occa-
sion. Planning is essential for this task. The result is a system
capable of using odour recognition to disambiguate between
visually similar objects of different odour property and reac-
quire them at a later time.

Acknowledgments This work has been supported by:
Vetenskapsr̊adet, and by ETRI (Electronics and Telecom-
munications Research Institute, Korea) through the project
”Embedded Component Technology and Standardization for
URC(2004-2008)”.

References
[Amoore, 1965] J. Amoore. Psychophysics of odor. InCold

Spring Harbor Symposia in Quantitative Biology, vol-
ume 30, pages 623–637, 1965.

[Barrouilet al., 1998] C. Barrouil, C. Castel, P. Fabiani,
R. Mampey, P. Secchi, and C. Tessier. Perception strat-
egy for a surveillance system. InProc. of ECAI, pages
627–631, 1998.

[Coradeschi and Saffiotti, 2000] S. Coradeschi and A. Saf-
fiotti. Anchoring symbols to sensor data: preliminary re-
port. InProc. of the 17th American Association for Artifi-
cial Intelligence Conf. (AAAI), pages 129–135, 2000.

[Coradeschi and Saffiotti, 2003] S. Coradeschi and A. Saf-
fiotti. An introduction to the anchoring problem.Robotics
and Autonomous Systems, 43(2-3):85–96, 2003.

[Dravnieks, 2000] A. Dravnieks. Atlas of Odor Character
profiles (ASTM Data Series Publication DS 61). American
Society for Testing, USA, 2000.

[Dubois, 2000] D. Dubois. Categories as acts of meaning:
The case of categories in olfaction and audition.Cognitive
Science Quaterly, 1:35–68, 2000.

[Gardner and Bartlett, 1999] J. Gardner and P. Bartlett.Elec-
tronic Noses, Principles and Applications. Oxford Univer-
sity Press, New York, NY, USA, 1999.

[Karlsson, 2001] L. Karlsson. Conditional progressive plan-
ning under uncertainty. InProc. of the 17th Int. Joint Con-
ferences on Artificial Intelligence (IJCAI), pages 431–438,
2001.

[Keller et al., 1996] P. Keller, L. Kangas, L. Liden,
S. Hashem, and R. Kouzes. Electronic noses and their
applications. InWorld Congress on Neural Networks
(WCNN), pages 928–931, San Diego, CA, USA, 1996.

[Kovacicet al., 1998] S. Kovacic, A. Leonardis, and F. Per-
nus. Planning sequences of views for 3-D object recog-
nition and pose determination. Pattern Recognition,
31:1407–1417, 1998.

[Lazzeriniet al., 2001] B. Lazzerini, A. Maggiore, and
F. Marcelloni. Fros: a fuzzy logic-based recogniser of ol-
factory signals.Pattern Recognition, 34(11):2215–2226,
2001.

[Lilienthal et al., 2001] A. Lilienthal, A. Zell, M. Wandel,
and U. Weimar. Sensing odour sources in indoor envi-
ronments without a constant airflow by a mobile robot. In
Proc. of the IEEE Int. Conf. on Robotics and Automation
(ICRA), pages 4005–4010, Seoul, South Korea, 2001.

[Persaud and Dodd, 1982] K. Persaud and G. Dodd. Anal-
ysis of discrimination mechanisms of the mammalian ol-
factory system using a model nose.Nature, 299:352–355,
1982.

[Saffiottiet al., 1995] A. Saffiotti, K. Konolige, and E. H.
Ruspini. A multivalued-logic approach to integrating plan-
ning and control.Artificial Intelligence, 76(1-2):481–526,
1995.

[Sundicet al., 2000] T. Sundic, S. Marco, A. Perera,
A. Pardo, J. Samitier, and P.Wide. Potato creams recog-
nition from electronic nose and tongue signals: feature ex-
traction/selection and r.b.f neural networks classifiers. In
Proc. of the IEEE 5th Seminar on Neural Network Appli-
cations in Electrical Engineering (NEUREL), pages 69–
74, 2000.

[Wassonet al., 1998] G. Wasson, D. Kortenkamp, and
E. Huber. Integrating active perception with an au-
tonomous robot architecture. InProc. of the 2nd Int. Conf.
on Autonomous Agents (Agents), pages 325–331, 1998.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

40

Using LTL Assumptions to Generate Safe Plans for Partially Known Domains

Alexandre Albore, Piergiorgio Bertoli
ITC-IRST

Via Sommarive 18, 38050 Povo, Trento, Italy
{albore,bertoli}@irst.itc.it

Abstract
Planning for partially known domains is an extremely
demanding task. However, it is often possible to for-
mulate assumptions over the expected dynamics of the
domain; these can be used to effectively cut the search,
dramatically improving plan generation. In turn, the ex-
ecution of assumption-based plans must be monitored
to prevent run-time failures that may happen if assump-
tions turn out to be untrue, and to replan in that case.
In this paper, we use an expressive temporal logics,
LTL ([Emerson, 1990]), to describe assumptions, and
we provide two main contributions. First, we describe
an effective, symbolic forward-chaining mechanism to
build (conditional) assumption-based plans for partially
known domains. Second, we constrain the algorithm to
generate safe plans, i.e. plans guaranteeing that, during
their execution, the monitor will be able to unambigu-
ously distinguish whether the domain behavior is one of
those planned for or not. This is crucial to inhibit any
chance of useless replanning episodes. We experimen-
tally show that exploiting LTL assumptions highly im-
proves the efficiency of plan generation, and that enforc-
ing safety improves plan execution, inhibiting useless,
expensive replanning episodes without significantly af-
fecting plan generation.

1 Introduction
Many realistic scenarios require the ability to generate plans
for domains whose behavior is not completely known a pri-
ori; on top of this, the internal status of these domains is of-
ten only partially observable. Planning under these premises
is an extremely challenging task: only rarely, in this situa-
tion, strong solutions that guarantee reaching a given goal
exist, and finding them requires traversing a huge search
space. However, in many cases, it is possible to express rea-
sonable assumptions over the expected dynamics of the do-
main, e.g. by identifying “nominal” behaviors; using these
assumptions to constrain the search may greatly ease the plan-
ning task, allowing the efficient construction of assumption-
based solutions. Of course, assumptions taken when gen-
erating a plan may turn out to be incorrect when executing
it. For this reason, assumption-based plans must be executed
within reactive architectures such as [Muscettola et al., 1998;
Myers and Wilkins, 1998], where a monitoring component

traces the status of the domain, in order to replan when an un-
expected behavior has compromised the success of the plan.
However, due to the incomplete run-time knowledge on the
domain state, it may not be possible for a monitor to estab-
lish unambiguously whether the domain status is evolving as
expected or not; then, replanning must occur whenever a dan-
gerous state may have been reached. But if the actual domain
state is one of those planned for, replanning is unnecessary
and undesired. These situations can only be avoided if states
not planned for can unambiguously be identified at plan exe-
cution time; in turn, whether this is possible crucially depends
on the actions performed by the plan. In this paper, we model
partially known domains as partially observable, nondeter-
ministic finite state machines, and we consider an expressive
language that provides us with the key ability to specify as-
sumptions over the domain dynamics, called linear tempo-
ral logics (LTL, [Emerson, 1990]). In this framework, we
provide two main contributions. First, we provide an effec-
tive, symbolic mechanism to constrain forward and-or search
to generate (conditional) LTL assumption-based solutions for
nondeterministic, partially observable domains. Second, we
further constrain the search to obtain safe LTL assumption-
based solutions, i.e. plans that not only guarantee that the goal
is reached when the given assumption holds, but also guaran-
tee that, during their execution, the monitor will be able to
unambiguously distinguish whether the current domain sta-
tus has been planned for or not. In this way, no unneeded
plan abortion (and consequent replanning) may be triggered
by the monitor. We experimentally show that generating LTL
assumption-based solutions can be dramatically more effec-
tive than generating strong plans, and that enforcing safety
can highly improve plan execution, since it inhibits costly
and useless replanning episodes without significantly affect-
ing plan generation.

The paper is organized as follows. Section 2 provides
the basic background notions. Section 3 introduces LTL as-
sumptions, and defines LTL assumption-based solutions for a
planning problem. Section 4 provides the key notion of safe
(LTL) assumption-based plan. Section 5 describes a forward-
chaining procedure to generate LTL assumption-based solu-
tions, and in particular safe ones, using symbolic representa-
tion techniques. Section 6 provides an experimental evalua-
tion of the approach. Section 7 draws conclusions and illus-
trates future work directions.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

41

2 Domain, Goals, Plans
To represent uncertainty over the nature and dynamics of a
planning domain, we model it as a nondeterministic, partially
observable finite state machine. Following [Bertoli et al.,
2001], we allow for initial state uncertainty, non-deterministic
action outcomes, and partial observability with noisy sensing:
Definition 1 (Planning domain). A non-deterministic plan-
ning domain with partial observability is a 6-tuple D =
〈S ,A ,U,I ,T ,X 〉, where:
• S is the set of states.
• A is the set of actions.
• U is the set of observations.
• I ⊆ S is the set of initial states; we require I 6= /0.
• T : S ×A → 2S is the transition function; it associates with

each current state s ∈ S and with each action a ∈ A the set
T (s,a) ⊆ S of next states.

• X : S → 2U is the observation function; it associates with
each state s the set of possible observations X (s) ⊆ U.
Some observation must be possible for any given state:
X (s) 6= /0.
We indicate with [[o]] the set of states compatible with the

observation o: [[o]] = {s ∈ S : o ∈ X (s)}. We say that ac-
tion α is executable on state s iff T (s,α) 6= /0, and we denote
with α(s) = {s′ : s′ ∈ T (s,α)} its execution. An action is
executable on a set of states B (also called a belief) iff it is
executable on every state of the set; its execution is denoted
α(B) = {s′ : s′ ∈ T (s,α), s ∈ B}.

Moreover, we assume the existence of a set of basic propo-
sitions P , and of a labeling of states with the set of propo-
sitions holding on them. We denote with P rop the proposi-
tional formulæ over P , and with [[ϕ]] the states satisfying a
formula ϕ ∈ P rop.

A planning problem is a pair 〈D,G〉, where G ⊆ S is a set
of goal states. We solve such problems considering condi-
tional plans that may branch on the basis of observations:
Definition 2 (Conditional Plan). The set of conditional
plans Π for a domain D = 〈S ,A ,U,I ,T ,X 〉 is the minimal
set such that:
• ε ∈ Π;
• if α ∈ A and π ∈ Π , then α◦π ∈ Π;
• if o ∈ U, and π1,π2 ∈ Π, then if o then π1 else π2 ∈ Π.

Intuitively, ε is the empty plan, α ◦π indicates that action
α has to be executed before plan π, and i f o then π1 else π2
indicates that either π1 or π2 must be executed, depending on
whether the observation o holds. A plan is a finite state ma-
chine that controls the domain by executing synchronously
with it: at each step, the plan evolves on the basis of the cur-
rent observation and of its internal state, producing an action
which, in turn, makes the domain evolve and produce a new
observation.

An execution of a conditional plan can be described as a
trace, i.e. a sequence1 of traversed domain states and associ-
ated observations, connected by the actions of the plan.

1We use the standard notation x̄ = [x1
. . .xn] for a sequence of n

elements, whose i-th element is indicated with xi. Concatenations
of two sequences x̄1 and x̄2 is denoted x̄1 ◦ x̄2. The length of x̄ is
denoted |x̄|, and bxcL is its prefix of length L.

Since a plan may attempt a non-executable action, we have
to distinguish failure traces from non failure traces:
Definition 3 (Traces of a plan). A trace of a plan is a se-
quence [s0

,o0
,α0

, . . . ,sn
,on

,End], where si
,oi are the domain

state and observation at step i of plan execution (i.e., s0 ∈ I),
and αi is the action produced by the plan on the basis of oi

(and of the plan’s internal state). End can either be Stop,
indicating that the plan has terminated, or Fail(αn), indi-
cating execution failure of action αn on sn. We also write
a trace 〈s̄, ō, ᾱ〉, splitting it into sequences of states, observa-
tions, and actions, respectively, and omitting the final symbol.

A trace t is a goal trace for problem 〈D,G〉 iff t is not a
failure trace, and its final state, denoted f inal(t), belongs to
G . We indicate with Trs(π,D), the set of traces associated
to plan π in domain D . TrsFail(π,D) and TrsG(π,D,G)
are, respectively, the subsets of the failure and goal traces in
Trs(π,D).

A plan is called a strong solution for a planning problem
〈D,G〉 iff every execution does not fail, and ends in G :
Definition 4 (Strong solution). A plan π is a strong solution
for a problem 〈D,G〉 iff Trs(π,D) = TrsG(π,D,G)

3 Assumptions, Assumption-based solutions
To express assumptions over the behavior of D , we adopt
Linear Temporal Logic (LTL) [Emerson, 1990], whose un-
derlying ordered structure of time naturally models the dy-
namic evolution of domain states. LTL expresses properties
over sequences of states, by introducing the temporal opera-
tors X (next) and U (until):
Definition 5 (LTL syntax). The language L of the LTL
formulæ ϕ on P is defined by the following grammar, where
q ∈ P :

ϕ := q |¬ϕ |ϕ∧ϕ |Xϕ |ϕUϕ
The derived operators F (future) and G (globally) are de-

fined on the basis of U: Fϕ = >Uϕ, and Gϕ = ¬F¬ϕ.
The semantics of LTL are given inductively on state se-

quences, see [Manna and Pnueli, 1992].
Definition 6 (LTL semantics). Given an infinite state se-
quence σ = [s0

, . . . ,sn
, . . .], an LTL formula ϕ holds at a po-

sition i ≥ 0 in σ, denoted by (σ, i) |= ϕ, iff

ϕ ∈ P rop and si |= ϕ , or
ϕ = ¬ψ and (σ, i) 6|= ψ , or

ϕ = ψ∧ γ and (σ, i) |= ψ∧ (σ, i) |= γ , or
ϕ = Xψ and (σ, i+1) |= ψ , or

ϕ = ψUγ and ∃i,(σ, i) |= γ ∧ ∀ j s.t. j ≤ i, (σ, j) |= ψ.

We say that an LTL formula ϕ is satisfiable over a plan
trace 〈s̄, ō, ᾱ〉 ∈ Trs(π,D) iff it holds at position 0 for
some prolongation of s̄. Thus, given an LTL assumption
H , the traces Trs(π,D) of a plan π can be partitioned
into those traces for which H is satisfiable, and those for
which it is not, denoted TrsH (π,D) and TrsH̄ (π,D) re-
spectively. The failure traces TrsFail(π,D) are partitioned
analogously into TrsFailH (π,D) and TrsFailH̄ (π,D), and
so for TrsG(π,D,G), partitioned into TrsGH (π,D,G) and
TrsGH̄ (π,D,G).

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

42

If every possible execution for which H is satisfiable suc-
ceeds, then the plan is a solution under assumption H :
Definition 7 (Solution under Assumption). A plan π is a
solution for the problem 〈D,G〉 under the assumption H iff

TrsH (π,D) = TrsGH (π,D,G)

Example 1. We introduce a simple navigation domain for
explanatory purposes, see Fig. 1. A mobile robot, initially
placed in room I, must reach room K3. The shaded cells
K1,K2,K3 are kitchens, while the other ones are normal
rooms. The robot is only equipped with a smell sensor K,
that allows to detect whether it is in a kitchen room. The
robot moves at each step in one of the four compass direc-
tions (n,e,s,o); moving onto a wall is not possible.

We do not know the speed of the robot: a movement might
terminate in any of the rooms in the movement direction (for
instance, moving north from I may end up in K1,R2 or in R3).

���

���

����������
������ ����������

������

����������
������

R 2

K 1

R 4

R 1

R 3 K 3R 5
W E

N

S
K 2

I

Figure 1: An example domain.

A strong solution for this problem does not exist, as it
is easy to see. However, solutions exists if we assume
that the robot steps of one room at a time, at least until
it reaches the goal. The considered assumption formula is
H0 = (X(δ = 1)U K3), where δ models the Manhattan dis-
tance between two successive cells. The simple plan π1 =
n ◦ n ◦ n ◦ e ◦ e ◦ ε is a solution under H0. This plan has the
following possible traces Trs(π1,D):

t1 : [I,K,n,K1,K,n,R2,K,n,R3,K,e,R5,K,e,K3,K,Stop.]

t2 : [I,K,n,K1,K,n,R3,K,Fail(n)]

t3 : [I,K,n,R2,K,n,R3,K,Fail(n)]

t4 : [I,K,n,R3,K,Fail(n)]

t5 : [I,K,n,K1,K,n,R2,K,n,R3,K,e,K3,K,Fail(e)]

Indeed TrsH0
(π1,D) = TrsGH0

(π1,D,G) = {t1}.

4 Safe assumption-based plans
Assumptions may not hold at run-time; for this reason,
assumption-based plans are usually executed within a reactive
framework (see e.g. [Bertoli et al., 2001; Muscettola et al.,
1998]), where an external beholder of the execution (called
monitor) observes the responses of the domain to the actions
coming from the plan, and triggers replanning when such ob-
servations are not compatible with some expected behavior.

However, the monitor may not always be able to decide
whether the domain is reacting as expected or not to the
stimuli of a plan π. This happens when, given a sequence
of actions ᾱ, the domain produces a sequence of observa-
tions ō compatible both with some assumed domain behav-
ior, and with some behavior falsifying the assumption, i.e.

∃s̄, t : 〈s̄, ō, ᾱ〉 ◦ t ∈ TrsH (π,D) and ∃s̄′, t ′ : 〈s̄′, ō, ᾱ〉 ◦ t ′ ∈
TrsH̄ (π,D). In this case, if f inal(〈s̄′, ō, ᾱ〉) is a state for
which the next plan action is not applicable, the monitor will
trigger replanning, in order to rule out any chance of run-time
failures. This is undesirable: the assumption might actually
hold, in which case plan execution should proceed.
Example 2. Consider the plan π1 from example 1. Trace
t2 produces the same observations (namely [K̄,K, K̄]) of the
successful trace t1, in response to the same actions (n ◦ n),
up to its failure. Thus, after the first n move, the monitor
knows the robot is in K1; after the second, the monitor cannot
distinguish if the robot is in R2 or R3. In case it is in R3,
the next north action is inapplicable, so the plan execution
has to be stopped. This makes π1 practically useless, since
its execution is always halted after two actions, even if the
assumption under which it guarantees success actually holds.

Similarly, an assumption-based solution plan may termi-
nate without the monitor being able to distinguish whether
the goal has been reached or not, therefore triggering replan-
ning at the end of plan execution.

Whether such situations occur depend on the nature of the
problem and, crucially, of the plan chosen as an assumption-
based solution. We are interested in characterizing and gen-
erating assumption-based solutions such that these situations
do not occur, i.e. every execution that causes action inappli-
cability, or ends up outside the goal, must be distinguishable
from every successful execution.

Thus we define safe LTL assumption-based plans as those
plans that (a) achieve the goal whenever the assumption
holds, and (b) guarantee that each execution where an as-
sumption failure compromises the success of the plan is ob-
servationally distinguishable (from the monitor’s point of
view) from any successful execution.
Definition 8 (Distinguishable traces). Let t and t ′ be two
traces; let L = min(|t|, |t ′|), btcL = 〈s̄, ō, ᾱ〉 and bt ′cL =
〈s̄′, ō′, ᾱ′〉. Then t, t ′ are distinguishable, denoted Dist(t, t ′),
iff (ō 6= ō′)∨ (ᾱ 6= ᾱ′).
Definition 9 (Safe LTL assumptions-based solution). A
plan π is a safe assumption-based solution for LTL assump-
tion H iff the conditions below are met:

a) TrsH (π,D) = TrsGH (π,D,G)

b) ∀t ∈ TrsH̄ (π,D)\TrsGH̄ (π,D,G),

∀t ′ ∈ TrsH (π,D)∪TrsGH̄ (π,D,G) : Dist(t, t ′)

Example 3. Consider the plan π2 = n ◦ e ◦ e ◦ n ◦ n ◦ ε. This
is a safe assumption-based solution for the problem of exam-
ple 1, as it is easy to see. The traces Trs(π2,D) are:

t ′1 : [I,K,n,K1,K,e,R1,K,e,K2,K,n,R4,K,n,K3,K,Stop]

t ′2 : [I,K,n,K1,K,e,R1,K,e,K2,K,n,K3,K,Fail(n)]

t ′3 : [I,K,n,K1,K,e,K2,K,Fail(e)]

t ′4 : [I,K,n,R2,K,Fail(e)]

t ′5 : [I,K,n,R3,K,e,R5,K,e,K3,K,Fail(n)]

t ′6 : [I,K,n,R3,K,e,K3,Fail(e)]

We have TrsGH0
(π2,D,G) = TrsH0

(π2,D) = {t ′1}, and eve-
ry trace t ′2, t

′
3, t

′
4, t

′
5, t

′
6 is distinguishable from t ′1.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

43

5 Generating safe LTL assumption-based
plans

We intend to efficiently generate safe LTL assumption-based
plans for partially observable, nondeterministic domains. For
this purpose, we take as a starting point the plan generation
approach presented in [Bertoli et al., 2001], where an and-
or graph representing an acyclic prefix of the search space
of beliefs is iteratively expanded: at each step, observations
and actions are applied to a fringe node of the prefix, remov-
ing loops. Each node in the graph is associated with a belief
in the search space, and to the path of actions and observa-
tions that is traversed to reach it. When a node is marked
success, by goal entailment or by propagation on the graph,
its associated path is eligible as a branch of a solution plan.
The implementation of this approach by symbolic techniques
has proved very effective in dealing with complex problems,
where uncertainty results in manipulating large beliefs.

To generate plans under an LTL assumption H , using this
approach, we have to adapt this schema so that the beliefs
generated during the search only contain states that can be
reached if H is satisfiable. Moreover, in order to constrain
the algorithm to produce safe plans, success marking of a leaf
node n must require the safety conditions of def.9 (recast to
those traces in TrsH and TrsH̄ that can be traversed to reach
n). We now describe in detail these adaptations, and the way
they are efficiently realized by means of symbolic represen-
tation techniques.

5.1 Assumption-induced pruning
In order to prune states that may only be reached if the as-
sumption is falsified, we annotate each state s in a (belief
associated to a) search node with an LTL formula ϕ, repre-
senting the current assumption on how s will evolve, and we
evolve the pair 〈s,ϕ〉 in a way conceptually similar to [Ka-
banza et al., 1997]. Thus, a graph node will now be associated
to a set {〈s,ϕ〉 : s ∈ S ,ϕ ∈ L} called annotated belief. For-
mulæ will be expressed by unrolling top-level Us according
to the tableau expansion rules [Somenzi and Bloem, 2000],
so that they can be evaluated on the current state:

Unroll(ψ) = ψ if ψ ∈ {>,⊥}∪P rop
Unroll(¬ϕ) = ¬Unroll(ϕ)

Unroll(ϕ?ψ) = Unroll(ϕ)?Unroll(ψ) if ? ∈ {∨,∧}

Unroll(Xϕ) = Xϕ
Unroll(ϕ U ψ) = Unroll(ψ)∨ (Unroll(ϕ)∧X(ϕ U ψ))

Thus, the initial graph node will be

BI =
{

〈s,Unroll(H)|s〉 : s ∈ I , Unroll(H)|s 6= ⊥
}

where ϕ|s denotes the formula resulting from ϕ by replacing
its subformulaæ outside the scope of temporal operators with
their evaluation over state s. Notice that the formulæ associ-
ated to states have the form

V

Xϕi∧
V

¬Xψ j, with ϕi,ψ j ∈ L .
When a fringe node in the graph is expanded, its associated
annotated belief B is progressed as follows:

• if an observation o is applied, B is restricted to

EO(B ,o) = {〈s,ϕ〉 ∈ B : s ∈ [[o]]}

• if an (applicable) action α is applied, each pair 〈s,ϕ〉 ∈ B is
progressed by rewriting ϕ to refer to the new time instant,
expanding untils, and evaluating it on every state in α(s):

EA(B,α)= {〈s′,X−(ϕ)|s′〉 : 〈s,ϕ〉 ∈B, s′ ∈α(s),X−(ϕ)|s′ 6=⊥}

where X−(ϕ) is defined as follows:

X−(ψ) = ψ if ψ ∈ {>,⊥}

X−(¬ψ) = ¬X−(ψ)

X−(ϕ?ψ) = X−(ϕ)?X−(ψ) if ? ∈ {∨,∧}

X−(Xϕ) = Unroll(ϕ)

An annotated belief associated to a graph node contains the
final states of the traces TrsH (p,D) which traverse the path
p associated to the node.

5.2 Enforcing safety
Def. 9.a is easily expressed as an entailment between the
states of the current annotated belief and the goal. To effi-
ciently compute the distinguishability (requirement 9.b), we
associate to a search node the sets of undistinguishable final
states of TrsH (p,D) and TrsH̄ (p,D), storing them within a
couple of annotated beliefs 〈BH ,BH̄ 〉. When BH and BH̄
only contain goal states, this indicates that the only undis-
tinguishable behaviors lead to success, so the path satisfies
requirement 9.b (in particular, if BH and BH̄ are empty, this
indicates that the monitor will be able to distinguish any as-
sumption failure along p).

During the search, BH and BH̄ are progressed similarly
as the annotated belief representing the search node; but on
top of this, they are pruned from the states where the success
or failure of the assumption can be distinguished by obser-
vations. While progressing 〈BH ,BH̄ 〉, we detect situations
where undistinguishable assumption failures may compro-
mise action executability. These situations inhibit the safety
of the plan, and as such we cut the search on these branches
of the graph.

Initially, we compute 〈BH ,BH̄ 〉 by considering those states
of I for which H (resp. H̄) is satisfiable, and by eliminating
from the resulting couple the states distinguishable with the
initial observation, i.e.
〈BH ,BH̄ 〉 =

〈

prune
(

B0
H ,B0

H̄

)

, prune
(

B0
H̄

,B0
H

)〉

, where

B0
H =

{

〈s,Unroll(H)|s〉 : s ∈ I , Unroll(H)|s 6= ⊥
}

B0
H̄

=
{

〈s,Unroll(H̄)|s〉 : s ∈ I , Unroll(H̄)|s 6= ⊥
}

prune(B,B ′) =
{

〈s,ϕ〉 ∈ B : ∃〈s′,ϕ′〉 ∈ B ′ : X (s)∩X (s′) 6= /0
}

When a node is expanded, its associated pair is expanded
as follows:
• if an observation o is applied, BH and BH̄ are simply

pruned from the states not compatible with o:

EO(〈BH ,BH̄ 〉,o) = 〈EO(BH ,o),EO(BH̄ ,o)〉

• if the node is expanded by an action α, and α is not ap-
plicable on some state of BH̄ , then a “dangerous” action
is attempted on a state that can be reached by an undistin-
guishable assumption failure. This makes the plan unsafe:
as such, we mark the search node resulting from this ex-
pansion as failure.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

44

 0.01

 0.1

 1

 10

 100

 5 10 15 20 25

C
P

U
 S

ea
rc

h
tim

e
(s

)

Size

Grid (assumption: no obstacle ever met)

unsafe
safe; reactive safe (ok)

Figure 2: Tests for grid.

• If the node is expanded by an action α, and α is applicable
on every state of BH and BH̄ , then
EA(〈BH ,BH̄ 〉,α) = 〈prune(B ′

H ,B ′
H̄

), prune(B ′
H̄

,B ′
H)〉

where B ′
H = EA(BH ,α) and B ′

H̄
= EA(BH̄ ,α).

5.3 Symbolic annotated beliefs

Progressing annotated belief states by explicitly enumerat-
ing each state becomes soon unfeasible when beliefs contain
large sets of states. To scale up on significant problems, we
exploit symbolic techniques based on BDDs ([Bryant, 1986])
that allow efficiently manipulating sets of states; such tech-
niques are indeed the key behind the effectiveness of ap-
proaches such as [Bertoli et al., 2001]. To leverage on
BDD primitives, we group together states associated with the
same formula, and represent annotated beliefs as sets of pairs
〈B,ϕ〉, where B is a set of states (a belief). Inside a symbolic
annotated belief, we do not impose that two beliefs are dis-
joint. A state belonging to two pairs 〈B1,ϕ1〉 and 〈B2,ϕ2〉 is
in fact associated to ϕ1 ∨ϕ2. Then, to progress a symbolic
annotated belief, we observe that, given a belief B and an
LTL formula ϕ, ϕ induces a coverage of B, where each ele-
ment (a subset of B) collects the states for which a disjunct t
in the disjunctive normal form of ϕ is satisfiable. If we de-
note with Prop(t) the propositional part of a disjunt t (i.e.
the conjunction of its literals that appear outside any tempo-
ral modality), and Time(t) the complementary temporal part,
the coverage is {B∩ Prop(t) : t ∈ Dn f (Unroll(t))}, where
Prop(t) and Time(t) identify the propositional and temporal
portion of a disjunct respectively. Applying this idea, the ini-
tialization and progression of search nodes given in Sec. 5.1
are represented as follows:

BI = {〈I ∩Prop(t),Time(t)〉 :

t ∈ Dn f (Unroll(H)),I ∩Prop(t) 6= /0}
EO(B ,o) = {〈B∩ [[o]],ϕ〉 : 〈B,ϕ〉 ∈ B ,B∩ [[o]] 6= /0}
EA(B ,α) = {〈α(B)∩Prop(t),Time(t)〉 :

〈B,ϕ〉 ∈ B , t ∈ Dn f (X−(ϕ)),α(B)∩Prop(t) 6= ⊥}

The initialization and progression of the undistinguishability
sets are expressed similarly; we omit them for lack of space.

6 Experimental evaluation
Our experiments intend to evaluate the impact of exploit-
ing LTL assumptions, and of enforcing safety, when gen-
erating plans and executing them in a reactive framework.
For these purposes, the MBP planner inside SYPEM reac-
tive platform [Bertoli et al., 2001] has been modified so that
it generates safe LTL assumption-based plans. We name
SLAM (Safe LTL Assumption-based MBP) our extension of
MBP; SLAM can also be run with the safety check disabled,
thus performing unsafe LTL assumption-based planning.

We also adapted the monitoring component of SYPEM to
detect the failure of LTL assumptions; we will name
SALPEM the reactive platform including SLAM and the
adapted monitor. Basically, the monitor of SALPEM pro-
gresses the symbolic annotated belief associated to the as-
sumption via the EA function, and prunes away states in-
consistent with the actual observations, signaling assumption
failure when such annotated belief is empty.

We tested SALPEM on a set of problems, using a Linux
equipped 2GHz Pentium 4 with 224MB of RAM memory.

We first consider a navigation problem where a robot must
traverse a square grid, from the south-west corner to the
north-east one. There can be obstacles (persons) in the grid,
and of course the robot cannot step over them; the number
and positions of these obstacles is unknown. The robot can
move of one cell at a time in the four compass directions,
and it can interrogate its proximity sensors to detect obstacles
around him. A strong plan does not exist; however, if we as-
sume that no obstacle is ever met by the robot, a plan can be
found rather easily. Fig. 2 reports the timings for safe and un-
safe planning. Enforcing safety in this case causes a pruning
of the search that reflects on an improved search time. More-
over, when the assumption holds, safe plans reach the goal
without replanning, while unsafe plans cause infinite replan-
ning episodes. This is because, while safe plans exploit sens-
ing at every step to allow monitoring the assumption, unsafe
plans do not; but then, the monitor cannot establish whether
moving is actually possible and, to avoid a possible run-time
failure, replans, possibly even before any progress is made by
the plan. We also experimented with a more relaxed assump-
tion, namely that the persons are “fair” and always leave at
least one free direction for the robot to get closer to its goal.
While unsafe and safe plans become more complex, we ob-
tained qualitatively similar results: enforcing safety imposes
a very minor overhead, but prevents useless and infinite re-
planning episodes. We omit the results for reasons of space.

To evaluate the convenience of using assumptions, even
when strong plans exist, let us consider the following exam-
ple. A production chain must transform an initially raw item
by applying a sequence of manufacture phases to get the item
in a final, refined form. Each phase, modeled as an action,
prepares the item for the next one, but may also fail once,
in which case the item is ruined and we have to “undo” the
phase by performing an ad-hoc operation. An item inspec-
tion operation can be commanded, which allows detecting
whether the item is ruined. Fig. 3 shows that strong plan-
ning becomes very hard but for small domain instances, due
to the high number of branches to be considered; if we con-
sider the assumption that no failure ever occurs, safe and un-

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

45

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

C
P

U
 S

ea
rc

h
tim

e
(s

)

Length of chain

Reversible production chain

strong
unsafe

safe; reactive safe (ok)
reactive safe/unsafe (ko)

reactive unsafe (ok)

Figure 3: Tests for production chain.

safe assumption-based plan generation scale up much better,
exhibiting similar performances. Once more, when the as-
sumption holds, the execution of safe solutions achieves the
goal without replanning, while unsafe solutions may (and in
our experiments do) cause infinite sequences of replannings,
due to the attempt of performing manufacturing phases prior
to checking the status of the item. To prevent infinite replan-
nings when safety is not enforced, we also experimented with
an ad-hoc heuristic that forces initial inspections; but also in
this case, useless replanning episodes do take place, degrad-
ing the overall plan-execution loop performance: basically,
then, the performance of the plan-execution is independent
on whether the assumption actually holds.

The results of our experiments clearly show the advantages
of exploiting LTL assumptions, and of enforcing safety for
LTL assumption-based plans. In particular, we observe that,
at plan generation time, the safety-induced search pruning
appears to balance the cost of computing safety conditions;
thus the overhead of imposing safety is very limited, if at
all present, and is more than compensated by the highly im-
proved run-time behavior of the obtained solutions.

7 Conclusions
In this paper, we tackled the problem of efficiently building
assumption-based solutions for partially observable and par-
tially known domains, using an expressive logics, LTL, to de-
scribe assumptions over the domain dynamics. Moreover, we
constrained the search to generate safe solutions, which allow
a monitor to unambiguously identify, at run-time, domain be-
haviors unplanned for. Both of our contributions are, to the
best of our knowledge, novel, and substantially extend exist-
ing works on related research lines.

In particular, LTL has been used as a means to describe
search strategies (and goals) in ([Bacchus and Kabanza,
2000]). While also that work exploits LTL to restrict the
search, it focuses on the much simpler framework of fully
deterministic and observable planning. This greatly simpli-
fies the problem: no ambiguous monitoring result is possible
(thus safety is guaranteed), and since the nodes of the search
space are single states, it is possible to simply evaluate the
progression of formulæ over states, without recurring to sym-
bolic representation techniques to progress beliefs.

A first, less general notion of safety is first presented in

[Albore and Bertoli, 2004], considering the limited setting of
propositional assumptions over the initial state. The ability
of representing assumptions over the dynamics of the domain
is crucial to the applicability of assumption-based planning;
none of the examples presented here could have been handled
within such a setting. At the same time, using temporal logic
assumptions implies a much more complex treatment of how
beliefs are progressed during the search.

Several future directions of work are open. First, in our
work, assumptions are an explicit input to the planning pro-
cess; e.g. they could be provided by a user with a knowledge
of the domain. While it is often practically feasible to for-
mulate assumptions (e.g. on nominal behaviors), it would
be extremely useful to be able to (semi-)automatically extract
and formulate assumptions from the domain description, pos-
sibly learning by previous domain behaviors. Second, in cer-
tain cases a more qualitative notion of safety can be useful to
practically tune the search to accept ’almost safe’ plans, or
score the quality of plans depending on a degree of safety.

References
[Albore and Bertoli, 2004] A. Albore and P. Bertoli. Gener-

ating Safe Assumption-Based Plans for Partially Observ-
able, Nondeterministic Domains. In Proc. of AAAI04,
2004.

[Bacchus and Kabanza, 2000] F. Bacchus and F. Kabanza.
Using Temporal Logic to Express Search Control Knowl-
edge for Planning. Artificial Intelligence, 116(1-2):123–
191, 2000.

[Bertoli et al., 2001] P. Bertoli, A. Cimatti, and M. Roveri.
Conditional Planning under Partial Observability as
Heuristic-Symbolic Search in Belief Space. In Proc. of
ECP’01, 2001.

[Bryant, 1986] R. E. Bryant. Graph-Based Algorithms for
Boolean Function Manipulation. IEEE Transactions on
Computers, C-35(8):677–691, August 1986.

[Emerson, 1990] E. A. Emerson. Temporal and modal logic.
In Handbook of Theoretical Computer Science. 1990.

[Kabanza et al., 1997] F. Kabanza, M. Barbeau, and R. St-
Denis. Planning Control Rules for Reactive Agents. Arti-
ficial Intelligence, 95(1):67–113, 1997.

[Manna and Pnueli, 1992] Z. Manna and A. Pnueli. The
Temporal Logic of Reactive and Concurrent Systems.
Printer-Verlag, 1992.

[Muscettola et al., 1998] N. Muscettola, P. P. Nayak, B. Pell,
and B. C. Williams. Remote agent: To boldly go where no
AI system has gone before. Artificial Intelligence, 103(1-
2):5–47, 1998.

[Myers and Wilkins, 1998] Karen L. Myers and David E.
Wilkins. Reasoning about locations in theory and practice.
Computational Intelligence, 14(2):151–187, 1998.

[Somenzi and Bloem, 2000] Fabio Somenzi and Roderick
Bloem. Efficient B uchi Automata from LTL Formulæ.
Computed-Aided Verification, 1855(LNCS), 2000.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

46

Path planning for Unmanned Underwater Vehicles

Clément Pêtrès and Pedro Patrón
Heriot Watt University

School of Engineering and Physical Sciences
Edinburgh, EH14 4AS

{cp23, P.Patron}@hw.ac.uk

Abstract

Efficient path planning algorithms for embedded
systems are a crucial issue for modern unmanned
underwater vehicles. This paper proposes a method
which is able to find paths from continuous en-
vironments prone to fields of force in a reliable
and efficient manner. Classical path planning al-
gorithms in artificial intelligence have limited per-
formance and they are not designed to cope with
real-time constraints of systems moving in a hos-
tile underwater environment. We present a novel
approach based on an advanced numerical tech-
nique called the Fast Marching algorithm to solve
the following three issues. First, we extract a con-
tinuous path in an environment evenly mapped to
a discrete grid. Secondly, the vehicle kinematics
is introduced as a constraint on the optimal path
curvature, and thirdly we take underwater currents
into account thanks to an efficient extension of the
original Fast Marching algorithm. Finally, a mul-
tiresolution scheme based on adaptive mesh gener-
ation is compared to incremental search techniques
to speed up the overall process. A flexible platform
is eventually presented to simulate path searching
behaviors in real-time.

1 Introduction

National security is a priority for governments all over the
world. The increasing political importance of human losses
and the current state of technologies allow us to move for-
ward in the development of unmanned vehicles prototypes
for battlefield access. Huge investments in time and money
are currently being dedicated to this field of research.

One of the environments that is most promising is the un-
derwater world. High stealth levels combined with high mo-
bility allow access to places that were inaccessible before
without risking human lives. In this environment, impact or
entrapment could produce the loss of an expensive vehicle
and, maybe more importantly, the failure of the mission. It is
very important to have a reliable deliberative obstacle avoid-
ance system.

1.1 Underwater environment
In mobile robotics path planning, research has focussed on
wheeled robots moving on 2D surfaces fitted out with high
rate communication modules. The underwater environment
is much more demanding: it is difficult to communicate; it is
prone to currents; and the set of possible paths is a 3D space.
Moreover, underwater torpedo like vehicles are strongly non-
holonomic, whereas wheeled robots are easily capable of
stopping and rotating.

Although theoretical studies have been carried out, little
work has been done in the underwater field on systems that
actually implement real obstacle avoidance systems. Most of
the approaches suffer from a lack of efficiency when they are
moved to the real-time frame.

1.2 Current approaches
Several studies have been realized in the Ocean System Labo-
ratory (OSL) over the last few years for real time applications
[Petillot et al., 2001; D.M.Laneet al., 2001; Y. Wang, 1999].
They were developed as a safety module for projects not di-
rectly related with obstacle avoidance. They used potential
field algorithms with constructive solid geometry (CSG) data
structures coming from the sensor fusion that allows them to
run embedded in real vehicles.

Modern deliberative solutions of high-level obstacle avoid-
ance and path planning systems use some form of local map-
ping system. There are few references to works in more than
two spatial dimensions. One of the reasons for this could be
the lack of resources to collect three-dimensional information
from the local environment of the vehicle[CodaOctopus Ltd.,
2004][Zimmerman, 2004].

1.3 Main contributions
Previous research suggests that methods such as potential
field or roadmap methods are useful for path planning. We
will briefly review these methods. However, they have proved
to be inefficient when embedded in real vehicles moving in
complex and dynamic environments.

We propose to rate another direction in path planning
which uses cell decomposition. Cell decomposition ap-
proaches are widely used in mobile robotics because the are
suitable for sensor images mapped to a grid of pixels. The
key issue is then to use an efficient grid-search algorithm to
find an acceptable path.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

47

Breadth-first, depth-first and hybrid search algorithms are
extensively used in artificial intelligence (AI) because of their
low complexity. But these discrete graph-search algorithms
are not consistent in the continuous domain, they assimilate
the vehicle as a static point and they do not deal with direc-
tional constraints.

The main contribution of the authors is to present the
Sethian’s Fast Marching algorithm (FM) as an advanced tool
for path planning. With the same low complexity of the above
classical grid-search algorithms FM converges to the right
continuous path when it is implemented on a discrete grid.
This specificity is crucial for the following two properties of
our method.

First, the precision of Fast Marching allows the curvature
of the final path to be constrained. This property enables us
to take the vehicle kinematics into account.

Secondly, we show that Fast Marching based path planners
are able to deal with smooth fields of force. We show an
application with underwater currents but the concept can be
generalized for any kind of directional constraints.

Finally we propose a multiresolution scheme to speed up
the overall method. This is achieved by coupling an octree
decomposition with an adaptive mesh generation.

The methods proposed are validated using a complete sim-
ulator developed over the last few years in OSL. It uses same
interfaces as the real prototype and has been demonstrated to
be a reliable tool for ‘hardware in the loop’ simulations.

2 Path planning overview
Many methods were proposed in the literature to address the
path planning problem. We give here an overview of the most
popular ones.

2.1 Potential field methods

Potential field methods use the physics of electrical poten-
tials as an heuristic to guide the search for a path[Latombe,
1991]. Movements of the robot (represented as a particle)
are governed by a potential field which is usually comprised
of two components, an attractive potential drawing the robot
towards the goal and a repulsive potential pushing the robot
away from obstacles. The main drawback with these methods
is their susceptibility to local minima.

2.2 Roadmap methods

The idea behind roadmap approaches is to reduce the map
to a network of one dimensional curves. If start and goal
points are linked to this network then path planning becomes
a graph searching problem. The key issue is the method used
to construct the roadmap.

Visibility graphs
A visibility graph is constructed by considering all the ver-
tices of the obstacles and the start and goal points as the graph
nodes[Liu and Arimoto, 1992]. The graph links are the line
segments which connect two nodes without intersecting any
obstacle. This method becomes complex in more than two
dimensions.

Voronoi diagrams
A Voronoi diagram is the set of points that are equidistant
from two or more obstacles (see for example[Takahashi and
Schilling, 1989]. The result is a roadmap where the edges
(and therefore the generated path) stay away from the obsta-
cles. This method was extended for path planning in arbitrary
dimensions (the silhouette methods[Canny, 1988]). It has not
been widely used as a practical solution but has been a tool
for analyzing the complexity of motion planning.

Probabilistic Path Planning
Probabilistic Path Planning (PPP) is a general planning
scheme which includes probabilistic roadmap methods
(PRM) (see[Svestka and Overmars, 1998] for a survey) and
rapidly exploring random trees (RRT) developped by Lavalle
[LaValle, 2005]. Both methods share the same idea. A reach-
ability graph is incrementally built between the start and the
goal positions based on randomized intermediate positions.
A local operator is used to locally link positions in a feasi-
ble way for the the robot (avoiding obstacles and respecting
kinematic constraints for example). PPP is probabilistically
complete and allows one to deal with high dimensional con-
figuration spaces. Nonetheless this method may fail to find
a solution when the environment presents singularities (the
’narrow passage’ problem) and it is heavy to implement for
real-time applications in dynamic environments.

2.3 Classical grid-search algorithms
In this section we assume that the environment is sampled on
a uniform grid. The key issue is then to use a suitable search
algorithm to find an optimal path for a particular criterion,
usually defined by a metric.

Metric definition
The metricρ which we will refer to from now on, is defined
as:

ρ(x, x′) =
∫

C

τ(C(s))ds (1)

whereC is a path between two pointsx andx′, andτ is a
strictly positive cost function.

This metric defines the distance to be the cost-to-go for a
specific robot moving in an environment described in the cost
functionτ .

Grid-search principle
The next three types of graph-search algorithms (called grid-
search algorithm when they are implemented on a grid) are
very popular in AI for planning paths. Their principle is al-
ways to build a ‘minimum cost-to-go’ mapU defined as fol-
lows:

U(x) = inf
Ax0,x

ρ(x0, x) (2)

whereAx0,x is the set of all paths between the sourcex0 and
the current pointx.

The mapU can be seen as a distance map weighted by the
costs of the features of the image.

All grid-search algorithms (including the Fast Marching al-
gorithm described in the next section) share the necessary
backtracking step. Once the distance map is built until the

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

48

goal point the optimal path is the one which follows the steep-
est descent from the goal to the start point. It is equivalent
to say that we solve a functional minimization problem. The
overall method is robust as no local minima are exhibited dur-
ing the exploration process.

Breadth-first search
Breadth-first (BF) algorithm explores the grid points in order
of their distance from the start point[Korf, 1998]. At each
step, the next pointp to be computed is one whose distance
U(p) is the lowest. This algorithm is also known as Dijkstra’s
single source shortest-path algorithm, and one can show that
its complexity is inO(n log(n)), wheren is the number of
grid points (or pixels in an image).

The set of points between the points already computed and
the points not yet explored is an interface which can be seen
as a front propagating outward the start point (like a flame in
a landscape).

Depth-first search
Depth-first (DF) algorithm is very similar to BF search. The
only difference is in the choice of the next point to compute.
In a depth-first algorithm the priority of the pointp is given
heuristically by a distance functionh(p) which is an esti-
mate of the residual distance between the pointp and the goal
point. Instead of developing a front around the start point, this
method tends to focus the search directly to the goal point.

Hybrid search
The A* algorithm is probably the most popular hybrid search
algorithm in artificial intelligence. It combines features of BF
and DF to efficiently compute acceptable solutions. A* is an
algorithm in which the priority for a pointp to be computed
is given by a mixed distance functionf(p) = U(p) + h(p),
where U(p) and h(p) are the distance functions defined
above.

All these grid-search algorithms areresolution complete
but they suffer from ‘metrication errors’. Results from these
discrete search algorithms can be improved by taking a larger
neighborhood as a structuring element, giving better approx-
imations ofρ in some directions like

√
2 · τ for the diagonals.

However, there will always be an error in some direction that
will be invariant to the grid resolution. It is not the case with
the Sethian’s Fast Marching algorithm[Sethian, 1999].

3 Fast Marching based path planning
The FM algorithm is also a Dijkstra’s like graph-search algo-
rithm but is consistent in the continuous domain. The idea
behind the FM algorithm is to improve the update of com-
puted points by approximating the first derivative of the dis-
tance functionU . For the sameO(n log(n)) complexity, this
algorithm provides a better approximation as we can see on
the figure 1.

3.1 Fast Marching algorithm (FM)
Sethian proposed using the Godunov Hamiltonian[Rouy and
Tourin, 1992] which is a one-sided derivative. It looks to the
up-wind direction of the moving front, and thereby avoids the

Figure 1: In these examples the cost functionτ is constant
on the entire image, so theρ metric can be seen as the Eu-
clidean distance. On the left, a 4-connexity breadth-first al-
gorithm gives square level sets. On the right, the distance is
computed with a 4-connexity FM, giving circles. Therefore
optimal paths are different for the same criterion.

classical over-shooting of finite differences schemes. At each
pixel (i, j), the unknownu satisfies:

(max{u− Ui−1,j , u− Ui+1,j , 0})2 +

(max{u− Ui,j−1, u− Ui,j+1, 0})2 = τ2
i,j (3)

yielding the correct viscosity solutionu for Ui,j . See figure 2
for an illustration of the expansion of FM.

Figure 2: On the left, an example of a new expanded point
only surrounded (in 4-connexity) by one other computed
point. On the right, a new expanded point surrounded by at
least two other computed points.

Curvature constraints
It has been shown[Cohen and Kimmel, 1997] that the cur-
vature radiusr along the geodesic given by performing a FM
which minimizes the functional

∫
D

τ(C(s))ds on the image
domainD is explicitly bounded by:

r ≥ infD {τ}
supD {‖∇τ‖} (4)

This result gives us a nice interpretation of the connection
between the cost functionτ and the curvature along the re-
sulting path. It is useful because we can knowa priori if the
path will be reachable or not by the vehicle. We just have to
compare the turning radiusR of the vehicle with the lower
boundrlim of the optimal path curvature radius:

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

49

• if R < rlim, it is certain that the path will be reachable.

• if R ≥ rlim there is a risk of collision. In that case we
just have to smoothτ to increase the curvature limit until
rlim > R (see figure 3).

Figure 3: On the top, from left to right, cost functions cor-
responding respectively torlim = 14, 34, 140 (in arbitrary
unit). On the bottom, the related optimal paths.

Directional constraints
Classical grid-search algorithms and the original FM algo-
rithm are based on an implicit isotropic assumption of the
free space. However, as FM explicitly estimates the gradient
of the distance map, which can be interpreted as the moving
direction, it is possible to take directional constraints such as
winds or currents into account.

The theory of anisotropic Fast Marching was first devel-
oped by Vladimirsky[Vladimirsky, 2003]. The principle
is to make the cost functionτ dependent not only from
scalar representation of obstacles but also dependent on
vectorial forces. Vladimirsky formally demonstrates how
the characteristic of the distance map can be used for this
purpose.

In this section we propose a simplified implementation of
his method by considering the gradient ofU as an approxi-
mation of the characteristic. This is equivalent to assume that
the field of force~F is smooth. Figure 4 shows an example of
the influence of currents on our path planner.

Figure 4: On the left, an isotropic Fast Marching. On the right
our anisotropic version with currents symbolized by arrows.

Original Sethian’s FM rapidity relies on the resolution of
the simple quadratic equation 3 foru. Sinceτ appears as a

square in this equation our idea is to build a new cost function
τ̃ linearly dependent onu. We split the cost functionτ in two
parts:τ̃ = τobst + τvect. τobst remains linked to obstacles as
previously andτvect is defined as follows:

τvect(i, j) = α

(
1− 〈∇ui,j · ~Fi,j〉

Qi,j

)
≥ 0 (5)

whereα is a positive gain andQ is a normalization term so

that∀(i, j) ∈ D
∥∥∥ 〈∇ui,j · ~Fi,j〉

Qi,j

∥∥∥ ≤ 1.

It is equivalent to say that a force favors the vehicle when
both force and vehicle are pointing in the same direction (see
figure 5).

Figure 5: On the left, positive and negative actions of force
applied to a mobile vehicle. On the right, appearance ofτvect.

With our new cost functioñτ we show in[Pêtrèset al.,
2005] that the path curvature radius is bounded by:

r ≥ infD{τobst}
supD {‖∇τobst‖}+ 2α

infD{Q}‖JF ‖∞
(6)

whereJF is the Jacobian of~F on D and‖ · ‖∞ is theL∞
norm.

Similarly to the isotropic case we have two main choices
to increase the curvature radiusr:
• Smoothingτobst to decreasesupD

{ ‖∇τobst‖
}

.

• Smoothing the field of force~F to decrease‖JF ‖∞.

Heuristic
Similarly to the A*, which is a BF algorithm speeded up
by an heuristic, we can easily implement an isotropic or
anisotropic FM*. Nevertheless we loose the nice curvature
property of the resulting path.

Classical grid-search algorithms and Fast Marching share
the sameO(n log(n)) complexity, wheren is the number of
pixels. Sincen grows exponentially with the number of di-
mensions, these methods are limited by their memory require-
ment.

3.2 Real-time path planning
After a brief overview of incremental and multiresolution
methods, we describe our novel approach to speed up graph-
search algorithms. We then discuss the novel results.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

50

Incremental search
Incremental search reuses information from previous
searches to find solutions to a series of similar search prob-
lems. Incremental methods are potentially faster than solving
each search problem from scratch. This is important in our
underwater path planning application since our system may
have to adapt its plans continuously to changes in (its knowl-
edge of) the world.

Focussed Dynamic A* (D*)[Stentz, 1994] and the new and
simpler Lifelong Planning A* (LPA*)[Koenig et al., 2004]
are probably the two most popular solutions used with real
robots. The closer the changes are to the goal point, the larger
the advantage of the LPA* because modifications take place
in the lower levels of the search tree.

In our robotic application, newly detected objects are usu-
ally observed close to the robot location. This leads us to
launch the LPA* algorithm from the fixed goal point towards
the moving vehicle position. To minimize the number of ex-
pensive initial iterations a scrolling map can be implemented
which only moves when the robot-agent is close to the bound-
aries.

These incremental methods are indeed efficient but the ini-
tial computations may be unacceptable for uniformly high
resolution complex maps.

Multiresolution path planning
Multiresolution methods start with the idea that it is not nec-
essary to represent the entire grid with a high uniform resolu-
tion.

• Grid decomposition
The octree decomposition (or quadtree decomposition
in 2D) is one of the most popular multiresolution ap-
proach. It is a recursive decomposition of a uniform grid
into blocks. The size of blocks can depend either on
the information into them (classical octree decomposi-
tion [Kambhampati and Davis, 1986]) or on their dis-
tance from the robot[Behnke, 2004].
Octrees allow efficient partitionning of the environment
since single blocks can be used to encode large empty
regions. However, two main drawbacks remain. First,
since the initial space (or image) is transformed in a tree
data structure it is not easy to define the spatial neigh-
borhood of each block. Secondly, paths generated by
octrees are suboptimal because they are constrained to
segments between the centers of blocks. The framed-
quadtree technique[Yahja et al., 1998] improves this
problem but it is only applicable for sparse environ-
ments.

• BF and FM on adaptive meshes
The method proposed by the authors is to couple the
quadtree decomposition with an adaptive mesh gener-
ation. The Delaunay triangulation is a good candidate as
fast and robust implementations exist.
The input of this mesh generation is the set of nodesq
with their costτ(q) given by the quadtree decomposi-
tion, and the output is a net of vertices linked to their
neighbors by edges. We implemented versions of BF
and FM algorithms on this kind of unstructured meshes

[Sethian and Vladimirsky, 2000]. We partially overcome
the problem of suboptimal paths by interpolating the dis-
tance function (computed on vertices) to the entire grid
and performing a gradient descent backtracking.

• Results
A first interesting result shows the much better behavior
of the BF on meshes than on uniforms grids, see figures
1 and 6 to compare the results. The accuracy gap be-
tween BF and FM is not so wide any more.

Figure 6: BF (on the left) and FM (on the right) implementa-
tions on meshes look similar (contrarily to those depicted in
figure 1).

The second interesting feature of both BF and FM on
adaptive meshes compared to their implementation on
uniform grids is their computation time, which is ap-
proximately divided by 1000 for similar looking paths
(see figure 7).

Figure 7: On the top, the original 1000x1000 image (left),
optimal paths found with BF (middle) and FM (right) based
methods over the entire grid of pixels take about 100 seconds.
On the bottom, the adaptive mesh with only 1400 vertices
(left), optimal paths found with BF (middle) and FM (right)
based methods over the mesh take about 0.1 second. Compu-
tation time is divided by 1000 for similar looking paths.

At this stage we need to compare results from what we
think to be among the best solutions for underwater vehicles,
that is to say incremental search or BF like search methods

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

51

on meshes. For this purpose analytical tools have still to be
designed in order to compare the quality of paths generated
by these advanced methods.

4 Application
As an attempt to compare results between the different ap-
proaches in a real world situation, a general COAE (Collision
Obstacle Avoidance and Escape) module is being developed
in the OSL laboratory. Its communication protocol and its
transparent interface have been designed in a flexible way.
Consequently this platform allows us to interchange different
path planning methods and switch between the simulator and
the real vehicle without the need of any tedious migration.

4.1 Control architecture
The COAE module can be viewed as a trajectory verification
system. The higher-level mission planner sends a desired tra-
jectory via a waypoint request to COAE. The deliberative part
of the COAE module attempts to verify this trajectory against
its local representation. If the route is clear, the trajectory is
calculated and sent to the vehicle’s control system. However,
if the route is obstructed, or the route becomes obstructed dur-
ing the manoeuvre, a course of avoidance is calculated and
transmitted to the vehicle as an updated trajectory.

4.2 Communication protocol
The modules within the COAE use a communication protocol
that provides transparent access so that the interface remains
the same for both the simulator and the real vehicle. An illus-
tration is depicted in figure 8 (taken from[Lane, 1998]). Data
are generated in a common format for either real or simulated
sensors and actuators of the vehicle. This data is then sent to
the internal systems, which may be simulated or real devices.
This architecture allows combinations of simulations to take
place as new systems are built and integrated.

Simulation

Environment

Real

Environment

Internal

Subsystems

Sensor

Data
 Commands

Real Sensor Data

Environment State
 Effects

Constants

Environment State

Observer Interactions
 Constants

Effects

Acuators

Sensors

Figure 8: Using a communication protocol that provides
transparent access, the interface of the system remains the
same for both simulator and real vehicle.

4.3 Environment representation
A scrolling local map is used to compute the path in real-
time. When new objects are detected in the vicinity of the

robot they are inserted into the map following the occupancy
grid schema. Their probability (or grey levels) are based on
the number of times they have been sensed.

Figure 9: On the left, the OSL vehicle simulator following a
trajectory designated by the deliberative obstacle avoidance
module. On the right, a scrolling local map representation of
the environment

4.4 Path planning algorithms
Due to the availability of the sensors, we have initially re-
duced the complexity of the underwater environment to a
depth dependent horizontal scrolling map that moves locally
with the vehicle (seen as an agent) inside the environment.

Path planning algorithms are applied to the planes gener-
ated through this mapping technique. The implementation of
our approach on the 3D domain representation is straight for-
ward as soon as more sophisticated sensors become available.

This application is used to test and verify algorithms and
new theoretical approaches in a real situation. This can be
easily done by using the transparency provided by the inter-
face oriented architecture.

Additionally, when environmental features, like water cur-
rents or levels of terrain, are sensed they can be modelled into
the system by weighting the input space and representing the
estimated difficulty of traversing them. In this way, we can
prioritize certain places in the map and penalize others by
playing with the inputs of the algorithms.

Finally, by computing the lower bound of the path curva-
ture radius, we can smooth the input space accordingly until
the trajectory is reliable for a specific underwater vehicle.

5 Conclusion
The underwater world is a very demanding environment for
path planning algorithms. However,a great effort is currently
being made to develop autonomous systems as underwater
technology becomes more mature. Several key issues for un-
derwater path planning are improved on in this paper.

Reliability of path planners is improved by introducing an
efficient algorithm called Fast Marching. We present a solu-
tion to take the vehicle kinematics into account by smoothing
the map of the environment. A practical implementation of
anisotropic Fast Marching is proposed to make our path plan-
ning method robust to underwater currents.

Incremental search algorithms are efficient in comput-
ing environmental modifications without recalculating from

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

52

scratch. However, in this case, because we process all the
information, it is necessary to deal with a high number of
states. A mesh conversion of the input data can drastically
reduce the computation time by reducing the input data set of
the path search algorithm. However, this reduction produces a
loss of information that can affect the optimality of the result-
ing path. This discussion highlights the need for future work
to find an analytical tool to measure the path acceptability.

A flexible real-time simulator architecture based on trans-
parency with vehicle interfaces has been demonstrated to be
an excellent platform for testing path planning algorithms be-
fore moving onto the real vehicle.

6 Future work
Off shore trials for BAUUV project are planned for the end of
year 2005. The OSL experimental vehicle RAUVER[Hamil-
ton, 2005] will be used as the platform during these trials. Al-
though RAUVER is a hovering vehicle, it has been adapted
to react as a torpedo. This will allow us to demonstrate the
path planning algorithms in a real vehicle situation.

Figure 10: RAUVER, the autonomous underwater prototype
of Ocean Systems Laboratory.

Acknowledgments
This research was sponsored by MoD, under contracts
"Battlespace Access for Unmanned Underwater Vehicles"
(BAUUV), inside the workpackage Strategies for Collision
Obstacle Avoidance and Escape (contract number WP220304
CCMM2, monitored by SEA (Group) Ltd.).

References
[Behnke, 2004] Sven Behnke. Local multiresolution path

planning. InProceedings of 7th RoboCup International
Symposium, Padua, Italy, 2004.

[Canny, 1988] J. F. Canny.The complexity of Robot Motion
Planning. MIT Press, 1988.

[CodaOctopus Ltd., 2004] Echosounder, 2004.
"http://www.codaoctopus.com/3d_ac_im/".

[Cohen and Kimmel, 1997] L.D. Cohen and R. Kimmel.
Global minimum for active contour models: A minimal
path approach.Internationnal Journal of Computer Vi-
sion, 24(1):57–78, 1997.

[D.M.Laneet al., 2001] D.M.Lane, J. Falconer G, and
G. Randall. Interoperability and synchronisation of dis-
tributed hardware-in-the-loop simulation for underwater

robot development: Issues and experiments. InIEEE
International Conference on Robotics and Automation,
Seoul, Corea, May 2001.

[Hamilton, 2005] K. Hamilton. Rauver mkii - autonomous
hover-capable intervention and close inspection vehicle,
2005. http://www.ece.eps.hw.ac.uk/oceans/.

[Kambhampati and Davis, 1986] S. Kambhampati and L. S.
Davis. Multiresolution path planning for mobile robots.
IEEE journal of Robotics and Automation, RA-2(3):135–
145, September 1986.

[Koeniget al., 2004] S. Koenig, M. Likhachev, and
D. Furcy. Lifelong planning a*. Artificial Intelligence,
155(1-2):93–146, May 2004.

[Korf, 1998] Richard E. Korf. Artificial intelligence search
algorithms.CRC Handbook of Algorithms and Theory of
Computation, pages 36–1–36–20, 1998.

[Lane, 1998] D.M. Lane. Mixing simulations and real sub-
systems for subsea robot development. 1998.

[Latombe, 1991] Jean-Claude Latombe.Robot Motion Plan-
ning. Kluwer Academic Publisher, 1991.

[LaValle, 2005] Steven M. LaValle. Planning
Algorithms. [Online], 2005. Available at
http://msl.cs.uiuc.edu/planning/.

[Liu and Arimoto, 1992] Y. Liu and S. Arimoto. Path plan-
ning using a tangent graph for mobile robots among polyg-
onal and curved obstacles.The International Journal of
Robotics Research, pages 312–317, 1992.

[Petillotet al., 2001] Y. Petillot, I. Tena Ruiz, and D.M.
Lane. Underwater vehicle obstacle avoidance and path
planning using a multi-beam forward looking sonar.IEEE
J. of Oceanic Engineering, 26:240–251, 2001.

[Pêtrèset al., 2005] C. Pêtrès, Y. Pailhas, J. Evans, Y. Petil-
lot, and D. Lane. Underwater path planning using fast
marching algorithms. InProceedings of Oceans 2005
Conference, Brest, France, June 21 2005. In press.

[Rouy and Tourin, 1992] E. Rouy and A. Tourin. A viscosity
solution approach to shape-from-shading.SIAM Journal
of Numerical Analyzis, 29:867–884, 1992.

[Sethian and Vladimirsky, 2000] J.A. Sethian and
A. Vladimirsky. Fast methods for the eikonal and
related hamilton-jacobi equations on ustructured meshes.
Applied Mathematics, 97(11):5699–5703, May 23 2000.

[Sethian, 1999] J.A. Sethian. Level Set Methods and Fast
Marching Methods. Cambridge University Press, Cam-
bridge, Massachusetts, 1999.

[Stentz, 1994] Anthony Stentz. Optimal and efficient path
planning for partially-known environment. IEEE Inter-
national Conference on Robotics and Automation, May
1994.

[Svestka and Overmars, 1998] P. Svestka and M.H. Over-
mars. Probabilistic path planning. InLecture Notes in
Control and Information Sciences 229. Springer, 1998.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

53

[Takahashi and Schilling, 1989] O. Takahashi and R.J.
Schilling. Motion planning in a plane using generalized
voronoi diagrams. pages 143–150. IEEE International
Conference on Robotics and Automation, 1989.

[Vladimirsky, 2003] A. Vladimirsky. Ordered upwind meth-
ods for static hamilton-jacobi equation: Theory and algo-
rithms. SIAM Journal of Numerical Analysis, 41(1):325–
363, 2003.

[Y. Wang, 1999] D.M. Lane Y. Wang. An adaptive con-
strained optimisation approach for robot path planning in
n-dimensions.International Journal of Systems Science,
1999.

[Yahjaet al., 1998] Alex Yahja, Anthony Stentz, Sanjiv
Singh, and Barry Brumitt. Framed-quadtree path planning
for mobile robots operating in sparse environments. In
Proceedings IEEE Conference on Robotics and Automa-
tion (ICRA ’98), Leuven, Belgium, May 1998.

[Zimmerman, 2004] Matthew J. Zimmerman. A 3d,
forward looking, phased array, obstacle avoid-
ance sonar for autonomous underwater vehicles.
http://www.farsounder.com/products/FS-3/index.php,
Farsounder Inc, 2004.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

54

Speeding Up Learning in Real-time Search via Automatic State Abstraction

Vadim Bulitko and Nathan Sturtevant and Maryia Kazakevich
Department of Computing Science, University of Alberta

Edmonton, Alberta, T6G 2E8, Canada
{bulitko|nathanst|maryia}@cs.ualberta.ca

Abstract

Situated agents which use learning real-time search
are well poised to address challenges of real-time
path-finding in robotic and computer game appli-
cations. They interleave a local lookahead search
with movement execution, explore an initially un-
known map, and converge to better paths over re-
peated experiences. In this paper, we first investi-
gate how three known extensions of the most pop-
ular learning real-time search algorithm (LRTA*)
influence its performance in a path-finding domain.
Then, we combine automatic state abstraction with
learning real-time search. Our scheme of dynami-
cally building a state abstraction allows us to gen-
eralize updates to the heuristic function, thereby
speeding up learning. The novel algorithm con-
verges up to 80 times faster than LRTA* with only
one fifth of the response time of A*.

1 Introduction
In this paper, we consider a simultaneous planning and learn-
ing problem. More specifically, we require an agent to navi-
gate on an initially unknown map under real-time constraints.
As an example, consider a robot driving to work every morn-
ing. Imagine the robot to be a newcomer to the town. The
first route the robot finds may not be optimal because the
traffic jams, road conditions, and other factors are initially un-
known. With a passage of time, the robot continues to learn
and eventually converges to a nearly optimal commute. Note
that planning and learning happen while the robot is driving
and therefore are subject to time constraints.

Present-day mobile robots are often plagued by localiza-
tion problems and power limitations, but simulation counter-
parts already allow researchers to focus on the planning and
learning problem. For instance, the RoboCup Rescue simu-
lation [Kitano et al., 1999] requires real-time planning and
learning with multiple agents mapping out unknown terrain.

Similarly, many current-generation real-time strategy
games employ a priori known maps. Full knowledge of the
maps enables complete search methods such as A*. Prior
availability of the maps allows path-finding engines to pre-
compute data (e.g., visibility maps) to speed up on-line nav-
igation. Neither technique will be applicable in forthcom-
ing generations of commercial and academic games [Buro,

2002] which will require the agent to cope with the initially
unknown maps via exploration and learning during the game.

To compound the problem, the dynamic A* (D*) [Stenz,
1995] and D* Lite [Koenig & Likhachev, 2002], frequently
used in robotics, work well when the robot’s movements are
slow with respect to its planning speed. In real-time strat-
egy games, however, the AI engine can be responsible for
hundreds to thousands of agents traversing the map simulta-
neously and the planning cost becomes a major factor. We
thus discuss the following three questions.

First, how planning time per move and, particularly the
first-move delay, can be minimized so that each agent moves
smoothly and responds to user requests nearly instantly. Sec-
ond, given the local nature of the agent’s reasoning and the
initially unknown terrain, how the agent can learn a better
global path. Third, how learning can be accelerated so that
only a few repeated path-finding experiences are needed be-
fore converging to a near-optimal path.

In the rest of the paper, we first make the problem settings
concrete and derive specific performance metrics based on the
questions above. Then we discuss the challenges that incre-
mental heuristic search faces when applied to real-time path-
finding. As an alternative, we will review a family of learn-
ing real-time search algorithms which are well poised for use
by situated agents. Starting with the most popular real-time
search algorithm, LRTA*, we make our initial contribution
by evaluating three known complementary extensions in the
context of real-time path-finding. The resulting algorithm,
LRTS, exhibits a 46-fold speed-up in the travel until conver-
gence while having one sixth of the first-move delay of an
A* agent. Despite the improvements, the learning and search
still happen on a large ground-level map. Thus, all states are
considered distinct and no generalization is used in learning.
We then make the primary contribution by introducing an ef-
fective mechanism for building and repairing a hierarchical
abstraction of the map. This allows us to constrain the search
space, reduce the amount of learning required for conver-
gence, and generalize learning in each individual state onto
neighboring states. The novel algorithm, PR-LRTS, is then
empirically evaluated.

2 Problem Formulation
In this paper, we focus on a particular real-time path-finding
task. Specifically, we will assume that the agent is tasked to
travel from the start state (xs, ys) to the goal state (xg, yg).

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

55

The coordinates are on a two-dimensional rectangular grid.
In each state, up to eight moves are available leading to the
eight immediate neighbors. Each straight move (i.e., north,
south, west, east) has the travel cost of 1 while each diagonal
move has the travel cost of

√
2. Each state on the map can be

passable or occupied by a wall. In the latter case, the agent
is unable to move into it. Initially, the map in its entirety is
unknown to the agent. In each state (x, y) the agent can see
the status (occupied/free) of the neighborhood of the visibility
radius v: {(x′, y′) | |x′ − x| ≤ v & |y′ − y| ≤ v}. The
agent can choose to remember the observed parts of the map
and use that information in subsequent planning.

A trial is defined as a finite sequence of moves the agent
takes to travel from the start to the goal state. Once the goal
state is reached, the agent is reset to the start state and the
next trial begins. A convergence run is defined as the first
sequence of trials such that the agent does not learn or explore
anything new on the subsequent trials.

Each problem instance is fully specified by the map and
start and goal coordinates. We then run the agent until con-
vergence and measure the cumulative travel cost of all moves
(convergence travel), the average delay before the first move
(first-move lag), and the length of the path found on the final
trial (final solution length). The last measure is used to com-
pute the amount of suboptimality defined as percentage of the
length excess.

3 Incremental Search
Classical A* search is inapplicable due to an initially un-
known map. Specifically, it is impossible for the agent to
plan its path through state (x, y) unless it is either positioned
within the visibility radius of the state or has visited this state
on a prior trial.

A simple solution to this problem is to generate the ini-
tial path under the assumption that the unknown areas of
the map contain no occupied states (the free space assump-
tion [Koenig, Tovey, & Y., 2003]). With the octile distance1

as the heuristic, the initial path is close to the straight line
since the map is assumed empty. The agent follows the ex-
isting path until it runs into an occupied state. During the
travel, it updates the explored portion of the map in its mem-
ory. Once the current path is blocked, A* is invoked again to
generate a new complete path from the current position to the
goal. The process repeats until the agent arrives at the goal.
It is then reset to the start state and a new trial begins. The
convergence run ends when no new states are seen.

To increase efficiency, several methods of re-using infor-
mation over subsequent planning episodes have been sug-
gested. The two popular versions are D* [Stenz, 1995] and
D* Lite [Koenig & Likhachev, 2002]. Unfortunately, these
enhancements do not reduce the first-move lag time. Specif-
ically, after the agent is given the destination coordinates, it
has to conduct an A* search from its position to the desti-
nation before it can move. Even on small maps, this de-
lay can be substantial. Consider, for instance, a map from

1Octile distance is a natural adaptation of Euclidian distance to
the case of the eight discrete moves and can be computed in a closed
form.

goal state

start state

Figure 1: A sample map from a BioWare’s game.

BioWare’s game “Baldur’s Gate” shown in Figure 1. Before
an A*-controlled agent can make its first move, a complete
path from start to goal state has to be generated. This is in
contrast to LRTA* [Korf, 1990], which only performs a small
local search to select the first move. As a result, several or-
ders of magnitude more agents can calculate and make their
first move in the time it takes one A* agent.

A thorough comparison between D* Lite and an extended
version of LRTA* is found in [Koenig, 2004]. It investigates
the conditions under which real-time search outperform in-
cremental search. Since our paper focuses on real-time search
and uses incremental search only as a reference point and be-
cause D*/D* Lite does not reduce the first-move lag on the
final trial, we use the simpler incremental A* in our experi-
ments.

4 Real-time Search
Real-time search was pioneered by [Korf, 1990] with the pre-
sentation of RTA* and LRTA* algorithms. Unlike A*, which
can freely traverse its open list, each RTA*/LRTA* search as-
sumes the agent to be in a single current state that can be
changed only by taking moves and, thereby, incurring travel
cost. From its state, the agent conducts a full-width fixed-
depth local forward search (called lookahead) and, similarly
to minimax game-playing agents, uses its heuristic h to eval-
uate the frontier states (Figure 2). It then takes the first move
towards the most promising frontier state (i.e., the state with
the lowest g + h value where g is the cost of traveling from
the current state to the frontier state) and repeats the cycle.
The initial heuristic is set to the octile distance. On every
move, the heuristic value of the current state is increased to
the g + h value of the most promising state.2 As discussed
in [Barto, Bradtke, & Singh, 1995], this operation is analo-
gous to the “backup” step used in value iteration reinforce-
ment learning agents with the learning rate α = 1 and no
discounting. LRTA* will refine an initial admissible heuristic
to the perfect heuristic along a shortest path. This constitutes
a convergence run. The updates to the heuristic also guar-
antee that LRTA* will not get trapped in infinite cycles. We

2As [Shimbo & Ishida, 2003], we do not decrement h of any
state. Convergence to optimal paths is still possible as the initial
heuristic is admissible but the convergence is accelerated.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

56

LRTA*
1 initialize the heuristic: h← h0

2 reset the current state: s← sstart
3 while s 6= sgoal do
4 expand children one move away
5 find the state s′ with the lowest f = g + h
6 update h(s) to f(s′)
7 execute the action to get to s′

8 end while

Figure 2: LRTA* algorithm with the lookahead of one.

Table 1: Top: Effects of the lookahead depth d on deliberation time
per unit of distance and average travel per trial in LRTA*. Middle:
Effects of the optimality weight γ on suboptimality of the final solu-
tion and total travel in LRTA* (d = 1). Bottom: Effects of learning
quota T on amount of first trial and total travel.

d Deliberation per move (ms) Travel per trial
1 0.0087 661.5
3 0.0215 241.8
5 0.0360 193.3
7 0.0514 114.9
9 0.0715 105.8

γ Suboptimality Convergence travel
0.1 6.19% 9,300
0.3 4.92% 8,751
0.5 2.41% 9,435
0.7 1.23% 13,862
0.9 0.20% 25,507
1.0 0.00% 31,336

T First trial travel Convergence travel
0 434 457
10 413 487
50 398 592

1,000 390 810
5,000 235 935

now make the first contribution of this paper by evaluating
the effects of three known complementary extensions in the
context of real-time path-finding.

First, increasing lookahead depth increases the amount of
deliberation per move but, on average, causes the agent to
take better moves, thereby finding shorter paths. This effect
is demonstrated in Table 1 with averages of 50 convergence
runs over 10 different maps. Hence, the lookahead depth can
be selected dynamically depending on the amount of CPU
time available per move and the ratio between the planning
and moving speeds [Koenig, 2004].

Second, the distance from the current state to the state on
the frontier (the g-function) can be weighted by the γ ∈ (0, 1].
This allows us to trade-off the quality of the final solution and
the convergence travel. This extension of LRTA* is equiv-
alent to scaling the initial heuristic by the constant factor of
1+ε = 1/γ [Shimbo & Ishida, 2003]. Bulitko [2004] proved
that γ-weighted LRTA* will converge to a solution no worse
than 1/γ of optimal. In practice, much better paths are found
(Table 1). A similar effect is observed in weighted A*: in-
creasing the weight of h (i.e., decreasing the relative weight

LRTS(d, γ, T)
1 initialize: h← h0, s← sstart, u← 0
2 while s 6= sgoal do
3 expand children i moves away, i = 1 . . . d
4 on level i, find state si with the lowest f = γ · g + h
5 update h(s)← max1≤i≤d f(si)
6 increase amount of learning u by |∆h|
7 if u ≤ T then
8 execute d moves to get to sd

9 else
10 execute d moves to backtrack to previous s, set u = T
11 end if
12 end while

Figure 3: LRTS algorithm unifies LRTA*, ε-LRTA*, and SLA*T.

of g) dramatically reduces the number of states generated, at
the cost of longer solutions [Korf, 1993].

Third, backtracking within LRTA* was first proposed
in [Shue & Zamani, 1993]. Their SLA* algorithm used the
lookahead of one and the same update rule as LRTA*. How-
ever, upon updating (i.e., increasing) the heuristic value in a
state, the agent moved (i.e., backtracked) to its previous state.
Backtracking increases travel on the first trial but reduces the
convergence travel (Table 1). Note that backtracking does
not need to happen after every update to the heuristic func-
tion. SLA*T, introduced in [Shue, Li, & Zamani, 2001],
backtracks only after the cumulative amount of updates to
the heuristic function made on a trial exceeds the learning
quota (T). We will use an adjusted implementation of this
idea which enables us to bound the length of the path found
on the first trial by (h∗(sstart) + T)/γ where h∗(sstart) is the
actual shortest distance between the start and goal.

An algorithm combining all three extensions (lookahead
d, optimality weight γ, and backtracking control T) operates
as follows. In the current state s, it conducts a lookahead
search of depth d (line 3 in Figure 3). At each ply, it finds
the most promising state (line 4). Assuming that the initial
heuristic h0 is admissible, we can safely increase h(s) to the
maximum among the f -values of promising states for all plies
(line 5). If the total learning amount u exceeds the learning
quota T , the agent backtracks to the previous state (lines 7,
10). Otherwise, it executes d moves forward towards the most
promising frontier state (line 8). In the rest of the paper, we
will refer to this combination of three extensions as LRTS
(learning real-time search).

LRTS with domain-tuned parameters converges two orders
of magnitude faster than LRTA* while finding paths within
3% of optimal. At the same time, LRTS is about five times
faster on the first move than incremental A* as shown in Ta-
ble 2. Despite the improvements, LRTS takes hundreds of
moves before convergence is achieved, even on smaller maps
with only a few thousand states.

5 Novel Method: Path-refinement LRTS
The problem with LRTA* and LRTS described in the previ-
ous section stems from the fact that the heuristic is learnt in a
tabular form. Each entry in the table corresponds to a single
state and no generalization is attempted. Consequently, thou-
sands of heuristic values have to be incrementally computed

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

57

A B

KC

J

H

E

F

G

D

I

Group 1 Group 2

Group 4

1

4

2

3

Group 3

Figure 4: The process of abstracting a graph.

via individual updates – one per move of the agent. Thus, sig-
nificant traveling costs are incurred before the heuristic func-
tion converges. This is not the way humans and animals ap-
pear to learn a map. We do not learn at the micro-level of
individual states but rather reason over areas of the map as if
they were single entities. Thus, the primary contribution of
this paper is extension of learning real-time heuristic search
with a state abstraction mechanism.

5.1 Building a State Abstraction
State abstraction has been studied extensively in reinforce-
ment learning [Barto & Mahadevan, 2003]. While our
approach is fully automatic, many algorithms, such as
MAXQ [Dietterich, 1998], rely on manually engineered hi-
erarchical representation of the space.

Automatic state abstraction has precedents in heuristic
search and path-finding. For instance, Hierarchical A* [Holte
et al., 1995] and AltO [Holte et al., 1996] used abstraction to
speed up classical search algorithms. Our approach to auto-
matically building abstractions from the underlying state rep-
resentation is similar to Hierarchical A*.

We demonstrate the abstraction procedure on a hand-
traceable micro-example in Figure 4. Shown on the left is the
original graph of 11 states. In general, we can use a variety of
techniques to abstract the map, and we can also process the
states in any order. Some methods and orderings may, how-
ever, work better in specific domains. In this paper, we look
for cliques in the graph.

For this example, we begin with the state labeled A, adding
it and its neighbors, B and C, to abstract group 1, because
they are fully connected. Their group becomes a single state
in the abstract graph. Next we consider state D, adding its
neighbor, E, to group 2. We do not add H because it is not
connected to D. We continue to state F, adding its neighbor,
G, to group 3. States H, I, and J are fully connected, so they
become group 4. Because state K can only be reached via
state H, we add it to group 4 with H. If all neighbors of a
state have already been abstracted, that state will become a

Table 2: Incremental A*, LRTA*, LRTS averaged over 50 runs on
10 maps. The average solution length is 59.5. LRTA* is with the
lookahead of 1. LRTS is with d = 10, γ = 0.5, T = 0. All timings
are taken on a dual G5, 2.0GHz with gcc 3.3.

Algorithm 1st move time Conv. travel Suboptimality
A* 5.01 ms 186 0.0%

LRTA* 0.02 ms 25,868 0.0%
LRTS 0.93 ms 555 2.07%

single state in the abstract graph. As states are abstracted, we
add edges between existing groups. Since there is an edge
between B and E, and they are in different groups, we add
an edge between groups 1 and 2 in the abstract graph. We
proceed similarly for the remaining inter-group edges. The
resulting abstracted graph of 4 states is shown in the right
portion of the figure.

We repeat the process iteratively, building an abstraction
hierarchy until there are no edges left in the graph. If the orig-
inal graph is connected, we will end up with a single state at
the highest abstraction level, otherwise we will have multiple
disconnected states. Assuming a sparse graph of V vertices,
the size of all abstractions is at most O(V), because we are
reducing the size of each abstraction level by at least a factor
of two. The cost of building the abstractions is O(V). Fig-
ure 5 shows a micro example.

Because the graph is sparse, we represent it with a list of
states and edges as opposed to an adjacency matrix. When
abstracting an entire map, we first build its connectivity graph
and then abstract this graph in two passes. Our abstractions
are most uniform if we remove 4-cliques in a first pass, and
then abstract the remaining states in a second pass.

5.2 Repairing Abstraction During Exploration
A new map is initially unknown to the agent. Under the free
space assumption, the unknown areas are assumed empty and
connected. As the map is explored, obstacles are found and
the initial abstraction hierarchy needs to be repaired to reflect
these changes. This is done with four operations: remove-
node, remove-edge, add-node, and add-edge. We describe
the first two in detail here.

In the abstraction, each edge either abstracts into another
edge in the parent graph, or becomes internal to a state in
the parent graph. Thus, each abstract edge must maintain
a count of how many edges it is abstracting from the lower
level. When remove-edge removes an edge, it decrements
the count of edges abstracted by the parent edge, and recur-
sively removes the parent if the count falls to zero. If an edge
is abstracted into a state in the parent graph, we add that state
to a repair queue to be handled later. The remove-node oper-
ation is similar. It decrements the number of states abstracted
by the parent, removing the parent recursively if needed, and

Figure 5: Abstraction levels 0, 1, and 2 of a toy map. The number
of states is 206, 57, and 23 correspondingly.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

58

K

J

H F

G
I

Group 4
Group 3

K

J

H F

G
I

Group 4
Group 3

4 3
(2) -> (1)

4 3

Figure 6: Repairing abstractions.

then adds the parent state to a repair queue. This operation
also removes any edges incident to the state.

When updating larger areas of the map in one pass, us-
ing a repair queue allows us to share the cost of the addi-
tional steps required to perform further repairs in the graph.
Namely, there is no need to completely repair the abstraction
if we know we are going to make other changes. The repair
queue is sorted by abstraction level in the graph to ensure that
repairs do not conflict.

In a graph with n states, the remove-node and remove-edge
operations can, in the worst case, take O(log n) time. How-
ever, their time is directly linked to how many states are af-
fected by the operation. If there is one edge that cuts the entire
graph, then removing it will take O(log n) time. However,
in practice, most removal operations have a local influence
and take time O(1). Handling states in the repair queue is
an O(log n) time operation in the worst case, but again, we
only pay this cost when we are making changes that affect
the connectivity of the entire map. In practice, there will be
many states for which we only need to verify their internal
connectivity.

Figure 6 illustrates the repair process. Shown on the left is
a subgraph of the 11-state graph from Figure 4. When in the
process of exploration it is found that state H is not reachable
from G, the edge (H,G) will be removed (hence shown with
a dashed line). Thus, the abstraction hierarchy needs to be
repaired. The corresponding abstracted edge (4,3) represents
two edges: (G,H) and (G,I). When (G,H) is removed, the edge
count of (4,3) is decremented from 2 to 1.

Suppose it is subsequently discovered that edge (F,G) is
also blocked. This edge is internal to the states abstracted by
group 3 and so we add group 3 to the repair queue. When
we handle the repair queue, we see that states abstracted by
group 3 are no longer connected. Because state G has only
a single neighbor, we can merge it into group 4, and leave
F as the only state in group 3. When we merge state G into
group 4, we also delete the edge between groups 3 and 4 in
the abstract graph (right part of Figure 6).

5.3 Abstraction in Learning Real-time Search
Given the efficient on-line mechanism for building state ab-
straction, we propose, implement, and evaluate a new algo-
rithm called PR-LRTS (Path-Refining Learning Real-Time
Search). A PR-LRTS agent operates at several levels of ab-
straction. Each level from 0 (the ground level) to N ≥ 0 is

PR LRTS
1 assign A*/LRTS to abstraction levels 0, . . . , N
2 initialize the heuristic for all LRTS-levels
3 reset the current state: s← sstart
4 reset abstraction level ` = 0
5 while s 6= sgoal do
6 if algorithm at level ` reached the end of corridor c` then
7 if we are at the top level ` = N then
8 run algorithm at level N
9 generate path pN and corridor cN−1

10 go down abstraction level: ` = `− 1
11 else
12 go up abstraction level: ` = ` + 1
13 end if
14 else
15 run algorithm at level ` within corridor c`

16 generate path p` and corridor c`−1

17 if ` = 0 then execute path p0

18 else continue refinement: ` = `− 1
19 end if
20 end while

Figure 8: Path refinement learning real-time search.

“populated” with A* or LRTS. At higher abstract levels, the
heuristic distance between any two states is Euclidian dis-
tance between them, where the location of a state is the av-
erage location of the states it abstracts. This heuristic is not
admissible with respect to the actual map. Octile distance is
used as the heuristic at level 0.

At the beginning of each trial, no path has been constructed
at any level. Thus, the algorithm at level N is invoked. It
works at the level N and produces the path pN . In the case
of A*, pN is a complete path from the N -level parent of the
current state to the N -level parent of the goal state. In the
case of LRTS, pN is the first d steps towards the abstracted
goal state at level N . The process now repeats at level N − 1
resulting in path pN−1. But, when we repeat the process,
we restrict any planning process at level N − 1 to a corri-
dor induced by the abstract path at level N . Formally, the
corridor cN−1 is the set of all states which are abstracted by
states in pN . To give more leeway for movement and learn-
ing, the corridor can also be expanded to include any states
abstracted by the k–step neighbors of pN . In this paper, we
choose k = 1. While executing p0, new areas of the map
may be seen. The state abstraction hierarchy will be repaired
as previously described. This path-refining approach, sum-
marized in Figure 8, benefits path-finding in three ways.

First, algorithms running at the higher levels of abstraction
reason over a much smaller (abstracted) search space (e.g.,
Figure 5). Consequently, the number of states expanded by
A* is smaller and the execution is faster.

Second, when LRTS learns at a higher abstraction level,
it maintains the heuristic at that level. Thus, a single update
to the heuristic function effectively influences the agent’s be-
havior on a set of ground-level states. Such a generalization
via state abstraction reduces the convergence time.

Third, algorithms operating at lower levels are restricted to
the corridors ci. This focuses their operation on more promis-
ing areas of the state space and speeds up search (in the case
of A*) and convergence (in the case of LRTS).

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

59

0 20 40 60 80
0

2

4

6

8

Solution Length

Fi
rs

t M
ov

e
La

g
(m

s) A*
LRTA*
LRTS
PR−LRTS

0 20 40 60 80
0

1

2

3

4
x 104

Solution Length

Co
nv

er
ge

nc
e

Tr
av

el

0 20 40 60 80
0

1

2

3

Solution Length

Su
bo

pt
im

al
ity

 (%
)

Figure 7: First-move lag, convergence travel, and final solution suboptimality over the optimal solution length.

6 Empirical Evaluation
We evaluated the benefits of state abstraction in learning real-
time heuristic search by running PR-LRTS against the incre-
mental A* search, LRTA*, and LRTS for path-finding on
9 maps from Bioware’s “Baulder’s Gate” game. The maps
ranged in size from 64 × 60 to 144 × 148 cells, averaging
3212 passable states. Each state had up to 8 passable neigh-
bors and the agent’s visibility radius was set to 10. LRTS and
PR-LRTS have been run with a number of parameters and a
representative example is found in Table 3. Starting from the
top entry in the table: incremental A* shows an impressive
convergence travel (only three times longer than the shortest
path) but has a substantial first-move lag of 5.01 ms. LRTA*
with the lookahead of 1 is about 250 times faster but travels
140 times more before convergence. LRTS(d = 10, γ = 0.5,
T = 0) has less than 20% of A*’s first-move lag and does
only 2% of LRTA*’s travel. State abstraction in PR-LRTS
(with A* at level 0 and LRTS(5,0.5,0.0) at level 1) reduces
the convergence travel by an additional 40% while preserv-
ing the lag time of LRTS. The trade-offs are summarized in
Table 4. Figure 7 plots the performance measures over the
optimal solution length. PR-LRTS appears to scale well and
its advantages over the other algorithms become more pro-
nounced on more difficult problems.

PR-LRTS exhibits approximately the same level of subop-
timality and first-move lag as LRTS but converges up to 3.6
times faster. Compared to incremental A*, PR-LRTS has up
to six times shorter first-move lag. Compared to LRTA*, PR-
LRTS converges up to 10 times faster.

7 Conclusions and Future Work
We have considered some of the challenges imposed by real-
time path-finding as faced by mobile robots in unknown ter-
rain and characters in computer games. Such situated agents
must react quickly to the commands of the user while at the
same time exhibiting reasonable behavior. As the first result,
combining three complementary extensions of the most pop-
ular real-time search algorithm, LRTA*, yielded substantially
faster convergence for path-finding tasks. We then introduced

Table 3: Typical results averaged over 50 convergence runs on 10
maps. The average shortest path length is 59.6.

Algorithm 1st move time Conv. travel Suboptimality
A* 5.01 ms 186 0.0%

LRTA* 0.02 ms 25,868 0.0%
LRTS 0.93 ms 555 2.07%

PR-LRTS 0.95 ms 345 2.19%

Table 4: Summary of the trade-offs.
Algorithm compared to PR-LRTS

A* slower per move, converges faster, optimal
LRTA* converges slower, faster per move, optimal

LRTS converges slower

state abstraction for learning real-time search. The dynami-
cally built abstraction levels of the map increase performance
by: (i) constraining the search space, (ii) reducing the amount
of updates made to the heuristic function, thereby accelerat-
ing convergence, and (iii) generalizing the results of learning
over neighboring states.

Future research will investigate if the savings in memory
gained by learning at a higher abstraction level will afford
application of PR-LRTS to moving target search. The previ-
ously suggested MTS algorithm [Ishida & Korf, 1991] re-
quires learning O(n2) heuristic values which can be pro-
hibitive even for present-day commercial maps. Additionally,
we are planning to investigate how the A* component of PR-
LRTS compares with the incremental updates to the routing
table in Trailblazer search [Chimura & Tokoro, 1994] and its
hierarchical abstract map sequel [Sasaki, Chimura, & Tokoro,
1995]. Finally, we will investigate sensitivity of PR-LRTS
to the control parameters as well as the different abstraction
schemes in path-finding and other domains.

Acknowledgments
The funding was provided by the National Science and Engi-
neering Research Council, Alberta Ingenuity Centre for Ma-
chine Learning, iCORE, and the University of Alberta.

References
[Barto & Mahadevan, 2003] Barto, A. G., and Mahadevan,

S. 2003. Recent advances in hierarchical reinforcement
learning. DEDS 13:341 – 379.

[Barto, Bradtke, & Singh, 1995] Barto, A. G.; Bradtke, S. J.;
and Singh, S. P. 1995. Learning to act using real-time
dynamic programming. AIJ 72(1):81–138.

[Bulitko, 2004] Bulitko, V. 2004. Learning for
adaptive real-time search. Technical Report
http://arxiv.org/abs/cs.AI/0407016, Computer Science
Research Repository (CoRR).

[Buro, 2002] Buro, M. 2002. ORTS: A hack-free RTS game
environment. In Proceedings of Int. Comp. and Games
Conf., 12.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

60

[Chimura & Tokoro, 1994] Chimura, F., and Tokoro, M.
1994. The Trailblazer search: A new method for search-
ing and capturing moving targets. In Proceedings of AAAI,
1347–1352.

[Dietterich, 1998] Dietterich, T. G. 1998. The MAXQ
method for hierarchical reinforcement learning. In Pro-
ceedings of ICML, 118–126.

[Holte et al., 1995] Holte, R.; Perez, M.; Zimmer, R.; and
MacDonald, A. 1995. Hierarchical A*: Searching abstrac-
tion hierarchies efficiently. Technical Report tr-95-18, U.
of Ottawa.

[Holte et al., 1996] Holte, R.; Mkadmi, T.; Zimmer, R. M.;
and MacDonald, A. J. 1996. Speeding up problem solv-
ing by abstraction: A graph oriented approach. AIJ 85(1-
2):321–361.

[Ishida & Korf, 1991] Ishida, T., and Korf, R. 1991. Moving
target search. In Proceedings of IJCAI, 204–210.

[Kitano et al., 1999] Kitano, H.; Tadokoro, S.; Noda, I.;
Matsubara, H.; Takahashi, T.; Shinjou, A.; and Shimada,
S. 1999. Robocup rescue: Search and rescue in large-scale
disasters as a domain for autonomous agents research. In
IEEE Conf. on Man, Systems, and Cybernetics.

[Koenig & Likhachev, 2002] Koenig, S., and Likhachev, M.
2002. D* Lite. In Proceedings of the National Conference
on Artificial Intelligence, 476–483.

[Koenig, Tovey, & Y., 2003] Koenig, S.; Tovey, C.; and Y.,
S. 2003. Performance bounds for planning in unknown
terrain. Artificial Intelligence 147:253–279.

[Koenig, 2004] Koenig, S. 2004. A comparison of fast
search methods for real-time situated agents. In Proceed-
ings of the 3rd Int. Joint Conf. on Autonomous Agents and
Multiagent Systems - vol. 2, 864 – 871.

[Korf, 1990] Korf, R. 1990. Real-time heuristic search. AIJ
42(2-3):189–211.

[Korf, 1993] Korf, R. 1993. Linear-space best-first search.
AIJ 62:41–78.

[Sasaki, Chimura, & Tokoro, 1995] Sasaki, T.; Chimura, F.;
and Tokoro, M. 1995. The Trailblazer search with a hier-
archical abstract map. In Proceedings of IJCAI, 259–265.

[Shimbo & Ishida, 2003] Shimbo, M., and Ishida, T. 2003.
Controlling the learning process of real-time heuristic
search. AIJ 146(1):1–41.

[Shue & Zamani, 1993] Shue, L.-Y., and Zamani, R. 1993.
An admissible heuristic search algorithm. In Proceedings
of the 7th Int. Symp. on Methodologies for Intel. Systems
(ISMIS-93), volume 689 of LNAI, 69–75.

[Shue, Li, & Zamani, 2001] Shue, L.-Y.; Li, S.-T.; and Za-
mani, R. 2001. An intelligent heuristic algorithm for
project scheduling problems. In Proceedings of the 32nd
Annual Meeting of the Decision Sciences Institute.

[Stenz, 1995] Stenz, A. 1995. The focussed D* algorithm
for real-time replanning. In Proceed. of the Int. Conf. on
Artificial Intel., 1652–1659.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

61

Generating Temporally Contingent Plans

Janae N. Foss Nilufer Onder
Department of Computer Science

Michigan Technological University
1400 Townsend Drive
Houghton, MI 49931

{jnfoss,nilufer}@mtu.edu

Abstract

Uncertainty applies to many aspects of planning
problems. Much research has been done to deal
with problems where actions have uncertain effects.
In reality, many planning problems also involve ac-
tions with uncertain durations, but this type of un-
certainty has not been widely studied in planning
until the recent development of several planners
which incorporate durational uncertainty. Addi-
tionally, theoretical work has been done on charac-
terizing the level of controllability in plans involv-
ing actions with uncertain durations. We have de-
veloped an approach for finding temporally contin-
gent plans, i.e., plans with branches that are based
on the duration of an action at execution time. More
specifically, the problems we are studying satisfy
the following criteria: (1) there is more than one so-
lution plan, (2) solution plans are ranked by a met-
ric that is not fully based on makespan, (3) actions
have uncertain durations, (4) the start and/or end
times of some actions are constrained, and (5) as
actions require more time to complete, plans that
are judged highly by the metric become invalid.
We describe our approach for determining the time
points that cause an unsafe situation and for insert-
ing temporal contingency branches. Experimental
results with both sequential and parallel plans are
discussed.

1 Introduction
Uncertainty applies to many aspects of planning problems.
Much research has been done to deal with problems where ac-
tions have uncertain effects. A classification of planners that
can handle this kind of uncertainty is given in [Dearden et al.,
2003]. In reality, many planning problems also involve ac-
tions with uncertain durations, but this type of uncertainty has
not been widely studied in planning until the recent develop-
ment of several planners which incorporate durational uncer-
tainty [Younes and Simmons, 2004; Mausam and Weld, 2005;
Little et al., 2005]. Additionally, there has been theoretical
work on characterizing the level of controllability in plans in-
volving actions with uncertain durations [Vidal and Fargier,
1999]. Conservative planning (i.e., finding plans that are

likely to be safe regardless of action duration) is one way to
handle durational uncertainty. The advantage to this approach
is that the resulting plans are robust. However, conservative
planning often results in missed opportunities. To take advan-
tage of available opportunities while still having a robust plan,
we have developed an approach for finding temporally con-
tingent plans (TCPs), i.e., plans with branches that are based
on the duration of an action at execution time. Specifically,
the problems we are studying satisfy the following criteria:
(1) there is more than one solution plan, (2) solution plans
are ranked by a metric that is not fully based on makespan1,
(3) actions have uncertain durations, (4) the start and/or end
times of some actions are constrained, and (5) as actions re-
quire more time to complete, plans that are judged highly by
the metric become invalid. We take an optimistic approach
by first finding a plan that is valid when all actions complete
quickly. We then use the methods described in [Dechter et
al., 1991] to determine when the plan may fail. At time points
that cause an unsafe situation, temporal contingency branches
are inserted.

As an example, consider the problem of traveling from
home to a conference. One solution plan is to drive to the
airport, fly to the destination city, take a shuttle to the confer-
ence venue, and finally register for the conference. Another
solution plan could involve taking a taxi instead of a shuttle to
the venue. Assuming the metric is to minimize money spent,
the plan with the shuttle action would be preferred. How-
ever, the taxi may be faster than the shuttle and since there
are constraints on the time one can register for the confer-
ence, depending on how long the flight takes, there may only
be enough time for the more expensive taxi option. To always
have a safe plan, and be able to save money when possible,
our approach would generate a TCP to drive to the airport,
fly to the destination, take the shuttle if there is enough time,
otherwise take the taxi, and register for the conference. In
this way, our approach ensures enough time for the worst
case while making use of better options when time allows.
Throughout this paper our running example will be the con-
ference domain.

Our contributions are threefold: (1) we introduce the no-

1As we define it, a metric may either combine makespan with
some nontemporal measure or simply be stated as a nontemporal
measure.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

62

tion of TCPs, (2) we provide a greedy iterative algorithm that
inserts branches based on time rather than world conditions,
(3) we show that viable plans can be generated in this frame-
work. In the remainder of this paper we first define temporal
uncertainty and explain our algorithm for creating TCPs. We
then give a theoretical framework for characterizing solution
plans. This is followed by preliminary experiments, general
remarks, and a description of future work.

2 Planning with Temporal Uncertainty
Temporal planning and reasoning activities involve actions
that have a temporal extent, such as an action duration, and
general temporal constraints, such as a deadline for when an
action must begin. Problems with temporal aspects may have
actions with uncertainty present in one of the following three
ways. First, the temporal aspects are certain while the effects
on the world are uncertain. For example, eating a meal may
take 30 minutes, but it is uncertain if hunger will be satisfied.
Second, the changes in the world are certain, but the temporal
aspects are uncertain. For example, hunger will be satisfied
after eating a meal, but the duration of the meal is uncertain.
Third, both the temporal aspects and changes in the world are
uncertain. For example, a meal will be eaten but it is uncertain
how long it will take and whether hunger will be satisfied. For
simplicity, our current work is concerned with only the first
type of uncertainty. We plan to deal the other two types of
uncertainty in future work.

In our framework, uncertainty in action duration is rep-
resented with the interval [min-d, max-d], where min-d and
max-d are minimum and maximum reasonable durations2, re-
spectively (min-d > 0 and max-d < ∞). We have extended
PDDL2.2 [Edelkamp and Hoffman, 2004] to represent inter-
val durative actions as opposed to single point durative ac-
tions. In temporal reasoning literature when an interval dura-
tion is assigned to an action, it is generally assumed that the
user can select any value from the interval. In our work we
build on the model described in [Vidal and Fargier, 1999] and
assume that some action durations will be known only at exe-
cution time and thus are uncertain. Hence we define two types
of interval durative actions. If the duration is assignable, the
executing agent (user) can choose a duration between min-d
and max-d. If the duration is uncertain the action will con-
sume some time between min-d and max-d, but the exact du-
ration is beyond the control of the agent. In the conference
domain, the duration of a flight is uncertain, but the duration
of eating a meal is assignable.

In Figure 1 our coding of the conference domain is given.
Note that the eat-meal action has an assignable duration but
the other actions have unassignable (i.e., uncertain) durations.
As defined, fly airport2 airport1 has a duration between
45 and 90 time units, starting at time 30 and conference reg-
istration has a duration between 5 and 10 time units, starting
between times 84 and 141, exclusive. These two actions show

2These durations may be determined using a probabilistic distri-
bution. The 95th percentile has been used to produce conservative
plans (e.g. [Fox and Long, 2002]) and may be a good selection for
max-d. Experimental work must be done to determine a reasonable
percentile for min-d.

the syntax we have added for associating actions with their
execution time constraints. In our framework we assume that
there is no penalty involved with waiting to begin execution of
an action. The addition of assignable and unassignable inter-
val durations is a conceptual extension to PDDL2.2, whereas
the execution-time syntax provides convenience in coding
but can be represented indirectly by the timed initial literals
of PDDL2.2 which are used to define temporal windows.

Domain description

(define (domain conference-travel)
(:requirements :fluents :equality
:interval-durative-actions :execution-times)

(:predicates (at_airport1) (at_airport2) (at_hotel)
(not_hungry) (attending_conference))

(:functions (money_spent))

(:interval-durative-action fly_airport2_airport1
:unassignable-interval-duration

(and (min ?duration 45) (max ?duration 90))
:condition (at start (at_airport1))
:effect (and (at end (at_airport2))
(at start (not (at_airport1)))
(at start (increase (money_spent) 200)))
:execution-time (start at 30))

(:interval-durative-action taxi_hotel_airport2
:unassignable-interval-duration

(and (min ?duration 15) (max ?duration 20))
:condition (at start (at_airport2))
:effect (and (at end (at_hotel))
(at start (not (at_airport2)))
(at start (increase (money_spent) 120))))

(:interval-durative-action shuttle_hotel_airport2
:unassignable-interval-duration

(and (min ?duration 30) (max ?duration 60))
:condition (at start (at_airport2))
:effect (and (at end (at_hotel))
(at start (not (at_airport2)))
(at start (increase (money_spent) 20))))

(:interval-durative-action eat_meal
:assignable-interval-duration

(and (min ?duration 20) (max ?duration 60))
:condition (at start (attending_conference))
:effect (at end (not_hungry))
(at start (increase (money_spent) 20))))

(:interval-durative-action register_for_conference
:unassignable-interval-duration

(and (min ?duration 5) (max ?duration 10))
:condition (over all (at_hotel))
:effect (at end (attending_conference))
:execution-time (and (start after 84) (start before 141))))

Problem description

(define (problem conference-travel-1)
(:domain conference-travel)
(:init (at_airport1)

(= (money-spent) 0))
(:goal (attending_conference))
(:metric minimize (money-spent)))

Figure 1: Conference travel domain and problem.

3 Creating Temporal Contingency Plans
When creating a TCP it is important to find a plan that is both
safe and ranked highly by the plan metric. Intuitively, a plan

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

63

is safe if its validity is guaranteed, even when all of its un-
certain actions require their maximum duration to complete.
One approach to building safe plans in this context is to as-
sume that all actions always require their maximum duration.
Though the result is a robust plan, in our framework this pes-
simistic assumption leads to a plan that is not ranked well
by the metric. We take an optimistic approach and assume
that actions require only their minimum duration. Since this
assumption may yield an unsafe plan, we build temporally
contingent branches into it using a general Just-In-Case style
algorithm [Drummond et al., 1994] where we generate a seed
plan, find points where it is likely to fail, and then insert con-
tingency branches at those points. Our algorithm is given in
Figure 2. To generate the seed plan, we make the optimistic

TCP Algorithm

(1.1) Generate a seed plan, P with n actions, assuming all actions require only
their minimum duration

(1.2) Construct the distance graph D of P

(1.3) TCP←MakeSafePlan(P, D)
MakeSafePlan(Plan P, DistanceGraph D)

(2.1) Create TCP with P as main branch

(2.2) For each action i = n to 1 in P

(2.3) maxAllowedDuration← shortestPathDistance(si , ei, D)

(2.4) While maxAllowedDuration < maxDuration(i)

(2.5) newMinDuration← maxAllowedDuration + 1
(2.6) TCB← GetContingencyBranch(i, newMinDuration)
(2.7) Insert TCB into TCP to be executed when i requires more time

than newMinDuration
(2.8) maxAllowedDuration← shortestPathDistance(si , ei, DB)

(2.9) Modify D so that i is constrained to start at the latest time i can
safely start

(2.10) return TCP
GetContingencyBranch(Action i, Duration newMinDuration)

(3.1) Modify domain to assume i requires newMinDuration

(3.2) Modify initial conditions of problem to reflect state of world at start of i

(3.3) earliestStartTime← -1 × shortestPathDistance(si , s0, D)

(3.4) Modify problem to constrain i to start at earliestStartTime

(3.5) Using the modified domain and problem, generate a branch B

(3.6) Construct the distance graph DB of B

(3.7) TCB←MakeSafePlan(B, DB)

(3.8) return TCB, DB

Figure 2: Algorithm for creating TCPs.

assumption, i.e., for each action assign min-d as the duration.
This yields a plan that is ranked highly by the metric (step
1.1). Next, we analyze the seed plan to find out, temporally
speaking, when it becomes unsafe (steps 1.2 and 1.3). At any
time point where the seed plan becomes unsafe, we generate
and insert a branch that is safe. This technique creates a plan
that includes a path that can be safely executed when all of
its actions require their maximum duration, but also includes
branches yielding a more desirable result that are executed
when actions require less time.

As stated above, when generating the seed plan (and sub-
sequent branches), the duration of each action is set at min-d,
removing all uncertainty at planning time. (For the remain-
der of this section, the term plan is used to refer to either a
seed plan or branch plan.) This allows expression of the prob-

lem and domain in PDDL2.2 and plans can be generated with
any planner that understands PDDL2.2. A plan P returned
by such a planner will be temporally deterministic. Our al-
gorithm factors in temporal uncertainty by converting P to a
directed, edge-weighted graph called a distance graph, thus
expressing P as a simple temporal network (STN) [Dechter et
al., 1991]. STNs are widely used in temporal reasoning and
include nodes representing time points and edges between
pairs of nodes representing temporal constraints between time
points. Figure 3 shows (a) the seed plan that would be gen-
erated for the problem in Figure 1 and (b) the corresponding
distance graph. An in-depth description of how to perform
step 1.2 of the algorithm is given next.

Execution Time Action
30 fly airport2 airport1
76 shuttle hotel airport2
107 register for conference

(a)

(b)

Figure 3: (a) A seed plan for the problem in Figure 1. Note
that the times given by the seed plan assume actions require
their minimum durations. (b) The distance graph for the seed
plan in (a), incorporating temporal uncertainty. For clarity,
only the most important edges are shown.

Since the execution times in P are based on a deterministic
temporal assumption, they are ignored during the construc-
tion of the distance graph D. Only the actions of P are con-
sidered. In construction of D, each action is dealt with indi-
vidually to allow any possible concurrency in P to be present
in D. The first step in constructing D is to add two nodes for
each action i, one for its start time si and one for its end time
ei, and a node s0 representing time 0. Edges are then added in
pairs representing temporal relations and weighted with tem-
poral distances. For each action i, a pair of edges is added
between si and ei. The edge si → ei is weighted with max-
d of i and the edge ei → si is weighted with -1 × (min-d
of i). Next, pairs of edges are added between s0 and each si
node. (Pairs of edges can also be added from s0 to each ei,
but are not necessary and add no new temporal information.)
If an action i has a constrained start time, the edge s0→ si is
weighted with the latest start time of i and the edge si → s0
is weighted with -1 × (earliest start time of i). This is shown
with the fly and register actions in Figure 3(b). When an ac-
tion does not have a constrained start time, the edge s0 → si
is weighted with ∞ and the edge si→ s0 is weighted with 0,
signifying that the start of action i comes after time 0, but

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

64

there are no other constraints. For clarity, these edges are not
included in Figure 3(b).

The final step in constructing the distance graph is to insert
edges that represent relationships between actions. Though P
contains a sequence of steps, some concurrency may be pos-
sible. To properly discover and encode this in D, causal links
and threats in P must be identified. This is done using an
algorithm similar to the one described by [R-Moreno et al.,
2002]. For every condition c of each action i, a causal link is
added to the closest action j in the plan that appears before i
and produces c as an effect. The causal link forces the pro-
ducer action to occur before the consumer. A threat link is
added between an action i and an action j when an effect of j
negates a condition of i.3 This algorithm discovers no knowl-
edge about temporal distance, so pairs of edges labeled with
0 and ∞ are added to the graph simply expressing that one ac-
tion must occur before the other. There is no concurrency in
the plan of Figure 3, so edges are added from the start of each
action to the end of the previous action, representing causal
links. There are no threats in this example.

Since D contains all temporal constraints given in the do-
main, it can be used to determine when P becomes unsafe.
This procedure is given by the MakeSafePlan function of Fig-
ure 2. In [Dechter et al., 1991] it is proved that the abso-
lute bounds on the temporal distance between any two time
points represented by nodes a and b (assuming a ≺ b) in D,
is given by the interval [-1 × (weight of shortest path from
b to a), weight of shortest path from a to b]. The shortest
path can be found using an algorithm such as the Bellman-
Ford single source shortest path algorithm with a runtime of
O(|V ||E|). In Figure 3(b) we see that the duration of the fly
action is expressed by the interval [45, 90]. However, using
the shortest path method (step 2.3 in Figure 2), it is found
that the absolute bounds on the duration of the fly action are
expressed by the interval [45, 80]. This indicates that if the
fly action takes more than 80 time units, the rest of the plan
becomes unsafe. To have a safe solution, a contingency must
be generated that can reach the goal safely when the fly ac-
tion takes more than 80 time units, so the loop in step 2.4
will be entered. Currently, the loop considers actions in re-
verse order. We plan to experiment with different orderings
in the future. This loop allows multiple contingency branches
to be generated for the same time point. The GetContingen-
cyBranch function modifies the domain and problem to re-
flect the state of the world when the branch occurs and then
generates a branch plan which is verified in the same way
as the seed plan. Hence, branches may themselves contain
branches. After a safe contingency branch has been gener-
ated, it is inserted into the seed plan (step 2.7). For the exam-
ple problem, the contingency branch that will be generated is
taxi hotel airport2, register for conference. After
leaving the loop of 2.4, it is known that action i can safely
execute, even if it requires its maximum duration. In step 2.9,
D is modified to ensure that actions occurring before i com-
plete early enough so that i has enough time to consume its

3In the future, we plan to extend this algorithm to discover threats
that may be caused by actions consuming the same resource. Cur-
rently, actions of this sort are disallowed.

maximum duration if necessary. Once all actions have been
verified, the TCP is safe. The TCP of the example problem is
given in Figure 4(a). In the next section, we formally explain
a data structure that can be used to represent TCPs.

At time 30: fly_airport2_airport1
IF (time < 85)

Before time 85: shuttle_hotel_airport2
Before time 140: register_for_conference

ELSE
Before time 120: taxi_hotel_airport2
Before time 140: register_for_conference

(a)

(b)

Figure 4: (a) A TCP for the problem in Figure 1. (b) The
TCN for the plan in (a).

4 Temporal Contingency Networks
We represent TCPs using a new data structure called a Tem-
poral Contingency Network (TCN). TCNs are an extension of
STNs and are inspired by the STPU model defined in [Vidal
and Fargier, 1999]. TCNs extend STNs in two dimensions.
First, interval durations are labeled as user assignable or not;
second, some nodes represent decisions based on observa-
tions of time. The second aspect enables the representation
of TCPs. Part (b) of Figure 4 depicts a TCN for the TCP in
part (a).

Formally, a TCN is a quadruple <T, O, E, B>. T is a set
of nodes representing start and end times of actions. A node
representing the absolute start time is also included in T. Each
node in T is referred to as a time point. Nodes in T that are not
included in all paths of execution contain a context label [Peot
and Smith, 1992] identifying the branch of execution they be-
long to. Oval nodes in the figure belong to T. The shuttle and
taxi nodes contain context labels because these actions do not
belong to all paths of execution. O is a (possibly empty) set
of observation nodes representing decisions about which sub-
sequent actions to execute. Observations of time are assumed
to be executable at any time (no preconditions) and instanta-
neous; and should be executed immediately after the preced-
ing time point. A TCN with observation nodes is safe if all the
possible paths are safe. In the figure, the diamond represents
an observation node. E is a set of interval labeled edges rep-
resenting constraints between time points. Edges in E can be
marked as uncertain, assignable, or unmarked. The non-bold

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

65

edges in the figure belong to E. Edges representing assignable
durations are marked with a and those representing uncertain
durations are marked with u. Edges with intervals represent-
ing an exact amount of time (such as Time 0 → start: fly)
are unmarked. B is a set of temporally labeled edges leaving
observation nodes. The bold edges in the figure belong to B.
As shown, these edges are given a label indicating when each
branch can safely be taken. This data structure provides a rich
context for reasoning about TCPs.

5 Experiments and Discussion
In this section we provide preliminary experimental results.
To the best of our knowledge, there are no planners that pre-
pare contingency branches based on time. We therefore de-
signed our experiments to show that our algorithm works and
to help identify the ways in which it can be improved. LPG-
TD [Gerevini et al., 2004] was the planner that we used for
generating seed plans and branches. We choose LPG-TD be-
cause it can handle the timed initial literals of PDDL2.2 and
can optimize for temporal and nontemporal metrics. All ex-
periments were performed on a machine with a 3.0GHz Pen-
tium 4 CPU and 1GB of RAM.

The domain used in the experiments is another version of
the domain in Figure 1. The experimental domain has no
meal action, but three new actions are added. First, there is
a drive action that must occur in order to arrive at airport1.
Next, actions are added to include the possibility of taking
a flight from airport1 to a new airport, airport3, and from
airport3 to airport2. The direct flight is more costly than
flying through airport3. Finally, an action is added to the
domain for taking public transportation as the least costly way
to get to the hotel from airport2. The domain was created
in this way to allow many different possible solutions when
registering for the conference is the only goal.

The first set of experiments involved plans with no possi-
ble parallelism. These experiments were done to compare the
runtime as more conditional branches were added to the seed
plan. The domain was modified for each run to force different
numbers and combinations of branches. The same seed plan
was generated every time. Table 1 shows the results of these
experiments. In the first run, the seed plan was always safe
and thus no branches were created. In successive runs, the
number of created branches ranged from 1 to 4. There were
2 different runs that each produced 3 branches. In general,
as more branches were created, the runtime increased. How-
ever, one of the runs with 3 branches took much longer than
the other, and even longer than the run with 4 branches. There
are two reasons for this. First, as is clear in the table, gener-
ation of the seed plan and branches by LPG-TD accounts for
nearly all of the runtime. Due to the conditions in this ex-
periment, LPG-TD required extra time to create one of the
branches. Second, this run contained longer branches than
the other run with 3 branches, thus requiring more time for
verification time by our algorithm.

The second set of experiments involved parallel plans. In
our algorithm, no dependencies are assumed between actions
in the plan. As described previously, dependencies are dis-
covered when the distance graph is built. In this way, our

branches created LPG-T D runtime total runtime
0 260 260.1
1 520 527.0
2 780 788.5
3 1040 1054.0
3 1290 1302.6
4 1130 1144.9

Table 1: Run times in milliseconds of experiments with prob-
lems requiring different numbers of conditional branches.

algorithm inherently allows parallel plans. To test this aspect,
three new actions were added to the domain. The first was
an action for grading exams that had to be completed before
arriving at the hotel. The other two actions were for reading
papers (one for a long paper and one for a short paper) which
had to be completed after grading the exams and before ar-
riving at the hotel. More knowledge was gained by reading
the long paper. The problem was then modified by adding
two goals to read some paper (either or both) and grade the
exams. The metric was modified to rank plans higher when
more knowledge was gained while still trying to minimize
the money spent. The sequential experiments were re-run
with the new modified domain and problem. The addition
of the parallel actions caused no significant change in run-
time among these tests. But, when the domain was modified
so that a branch had to be inserted to read the short paper
when the exams took a long time to grade, there was a spike
in runtime. The reason for this is that our algorithm does not
currently identify parallel paths of execution and treat them
separately. In the plan that LPG-TD created, grading the ex-
ams was the first action, reading the paper was the second
action, and the rest of the plan followed. In creating a branch
to insert after the grading action, our algorithm had to re-
discover the entire rest of the plan, though the grading action
only directly affected reading the paper. Our algorithm pro-
duces a valid result, but it is inefficient. We plan to research
this topic in the future.

6 Related work
The main framework of our algorithm is very close to Just-
In-Case (JIC) scheduling [Drummond et al., 1994]. The
JIC scheduler analyzes a seed schedule, finds possible fail-
ure points, and inserts contingency branches so that valuable
equipment time is not lost when an experiment fails. Our
work extends this framework to multiple planner goals, par-
allel plans, and nontemporal metrics, but does not consider
probability of failure. Presently we insert contingent branches
for every action that might not have sufficient time. We plan
to improve our algorithm by systematically evaluating and
selecting branch insertions points as in [Onder and Pollack,
1999; Dearden et al., 2003]. Dearden et al’s [2003] approach
involves generating a seed plan and adding contingent plans
based on a rich utility metric involving goal values and con-
tinuous resources.

There are a number of domain independent planners that
can handle durative actions. We used LPG-TD because it
can optimize based on a nontemporal metric. Other plan-

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

66

ners include TGP [Smith and Weld, 1999], a planner that
uses mutual exclusion reasoning in a temporal context, SAPA
[Do and Kambhampati, 2002], a heuristic forward chaining
planner; HSP [Haslum and Geffner, 2002] a heuristic planner
with time and resources; and CPT an optimal temporal POCL
planner based on constraint programming [Vidal and Geffner,
2004].

Vidal and Fargier [1999] present an analysis of three lev-
els of controllability given a plan. The plans analyzed have
actions with uncertain durations and temporal constraints but
the start times of actions and the durations of assignable in-
tervals have not been assigned yet. A control sequence is an
assignment of times to time points and durations to assignable
intervals such that all the constraints are respected regardless
of the actual durations of the uncertain intervals. A control
sequence is strong if it can be determined prior to execution.
A control sequence is weak if (parts of) it can only be de-
termined during execution right after some actual action du-
rations have been observed. Finally, a control sequence is
dynamic if the completion of an action is too late to make an
assignment of start times to the remainder of the actions but
there exists a time point t such that if an actual duration is
learned in advance at time t safe assignments can be made. In
our work we are concerned with generating plans with strong
control sequences.

Tsamardinos et al. describe an algorithm for merging ex-
isting plans with assignable durations and nontemporal con-
ditional branches [2000]. We plan to extend our algorithm
by using their plan merging framework. In particular, we
will be generating two plans, one with the minimum dura-
tion and one with the maximum duration for each uncertain
interval and merging those two plans into a conditional plan
such that common actions are executed unconditionally and
actions that differ are executed under appropriate contexts.

Tempastic [Younes and Simmons, 2004] is a planner that
models continuous time, probabilistic effects, probabilistic
exogenous events and both achievement and maintenance
goals. It uses a “generate-test-debug” algorithm that gener-
ates an initial policy and fixes the policy after analyzing the
failure paths. In producing a better plan, the objective is to
decrease the probability of failure. Nontemporal resources
are not modeled.

Mausam and Weld [2005] describe a planner that can han-
dle actions that are concurrent, durative and probabilistic.
They use novel heuristics with sampled real-time dynamic
programming in this framework to generate policies that are
highly optimal. The quality metric includes makespan but
nontemporal resources are not modeled in the planning prob-
lem.

Prottle [Little et al., 2005] is a planner that allows con-
current actions that have probabilistic effects and probabilis-
tic effect times. Prottle uses effective planning graph based
heuristics to search a probabilistic AND/OR graph consisting
of advancement and placement nodes. Prottle’s plan metric
includes probability of failure but not makespan. Prottle does
not model metric resources.

Finally, we would like to mention work from the field of
microarchitecture where the objective is to analyze a bottle-
neck situation which consists of parallel events and deter-

mine which events are worthwhile to optimize so that the total
makespan of the bottleneck decreases [Fields et al., 2003]. In
our future work we will employ techniques from this work to
identify portions of a plan that can be optimized rather than
to prepare contingent plans as a response to suboptimal exe-
cution times.

7 Conclusions and Future Work
We have presented a framework for characterizing and di-
rectly dealing with temporal uncertainty. We define temporal
uncertainty by assigning actions an interval duration, rather
than a single point duration. Our approach is to make an opti-
mistic assumption that all actions complete as quickly as pos-
sible. We then generate a plan with inexpensive actions that
may become invalid at some point when the optimistic as-
sumption proves wrong. We create more costly contingency
plans to be executed only when actions in the inexpensive
plan run long enough that an unsafe situation occurs.

Our algorithm is greedy and thus it can return locally op-
timal solutions which are not globally optimal. In the future,
we plan to develop several heuristics to help avoid this prob-
lem. One idea is to re-generate the entire plan when a tem-
porally unsafe situation is found. This new plan could be
compared to the current plan to determine whether a contin-
gency branch should be added to the current plan or if the
new plan should replace the seed plan. In addition to avoid-
ing locally optimal solutions, this approach would generate
an appropriate solution in the case that no valid contingency
branch existed. The main drawback to this approach is that re-
generating the entire plan can be very time consuming. An-
other way to avoid locally optimal solutions would be to take
an MDP based approach where every state in the world con-
tains a time stamp. The naive approach of creating a state
representing every possible time point would not be efficient,
but improvements could be gained by using states represent-
ing intervals of time.

As we continue this work, we plan to extend it in several
ways. Our algorithm improves on a strictly conservative ap-
proach, but the safe TCPs that it generates may still include
missed opportunities. We plan to develop algorithms that can
find idle time in a TCP and then insert opportunities as de-
fined by [Fox and Long, 2002]. We would also like to extend
our work to be able to handle actions with uncertain effects,
including uncertain consumption of nontemporal resources.
Finally, we will develop a test bed of problems involving not
only our conference domain, but other domains that may ben-
efit from our approach, such as the Rover and Satellite do-
mains.

Acknowledgements
We thank anonymous reviewers for their helpful comments
and discussion. Janae N. Foss’ research was supported by
the Harriett G. Jenkins Predoctoral Fellowship Program and
a grant from the Michigan Council of Women in Technology.

References
[Dearden et al., 2003] Richard Dearden, Nicolas Meuleau, Sailesh

Ramakrishnan, David Smith, and Richard Washington. Incre-

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

67

mental contingency planning. In ICAPS-03 Workshop on Plan-
ning Under Uncertainty, June 2003.

[Dechter et al., 1991] Rina Dechter, Itay Meiri, and Judea Pearl.
Temporal constraint networks. Artificial Intelligence, 49:61–95,
1991.

[Do and Kambhampati, 2002] Minh B. Do and Subbarao Kamb-
hampati. Planning graph-based heuristics for cost-sensitive tem-
poral planning. In Proc. 6th Int. Conf. on AI Planning & Schedul-
ing, 2002.

[Drummond et al., 1994] M. Drummond, J. Bresina, and K. Swan-
son. Just-incase scheduling. In Proc. 12th National Conf. on
Artificial Intelligence, pages 1098–1104, 1994.

[Edelkamp and Hoffman, 2004] Stefan Edelkamp and Jörg Hoff-
man. PDDL2.2: The language for the classical part of the 4th
international planning competition. Technical Report 195, Com-
puter Science Department, University of Freiburg, January 2004.

[Fields et al., 2003] Brian A. Fields, Rastislav Bodik, Mark D. Hill,
and Chris J. Newburn. Using interaction costs for microarchitec-
ture bottleneck analysis. In Proc. 36th international Symposium
on Microarchitecture (MICRO-36’03), 2003.

[Fox and Long, 2002] Maria Fox and Derek Long. Single-
trajectory opportunistic planning under uncertainty. In Proceed-
ings of the 21st Workshop of the UK Planning and Scheduling
Special Interest Group, November 2002.

[Gerevini et al., 2004] Alfonso Gerevini, Alessandro Saetti, Ivan
Serina, and Paolo Toninelli. Planning in PDDL2.2 domains
with LPG-TD. In International Planning Competition booklet
(ICAPS-04), 2004.

[Haslum and Geffner, 2002] Patrik Haslum and Hector Geffner.
Heuristic planning with time and resources. In Proc. 6th Eu-
ropean Conf. on Planning, 2002.

[Little et al., 2005] Iain Little, Douglas Aberdeen, and Sylvie
Thiebaux. Prottle: A probabilistic temporal planner. In Proc.
20th National Conf. on Artificial Intelligence (AAAI-05), 2005.

[Mausam and Weld, 2005] Mausam and Daniel S. Weld. Concur-
rent probabilistic temporal planning. In Proc. 15th International
Conf. on Automated Planning and Scheduling (ICAPS-05), 2005.

[Onder and Pollack, 1999] Nilufer Onder and Martha E. Pollack.
Conditional, probabilistic planning: A unifying algorithm and ef-
fective search control mechanisms. In Proc. 16th National Conf.
on Artificial Intelligence, pages 577–584, 1999.

[Peot and Smith, 1992] Mark A. Peot and David E. Smith. Con-
ditional nonlinear planning. In Proc. 1st International Conf. on
Artificial Intelligence Planning Systems, pages 189–197, 1992.

[R-Moreno et al., 2002] M Dolores R-Moreno, Angelo Oddi,
Daniel Borrajo, Amedeo Cesta, and Daniel Meziat. Integrating
hybrid reasoners for planning and scheduling. In The Twenty-
First Workshop of the UK Planning and Scheduling Special In-
terest Group, pages 179–189, 2002.

[Smith and Weld, 1999] David E. Smith and Daniel Weld. Tem-
poral planning with mutual exclusion reasoning. In Proc. 16th
International Joint Conf. on Artificial Intelligence, 1999.

[Tsamardinos et al., 2000] Ioannis Tsamardinos, Martha E. Pol-
lack, and John F. Horty. Merging plans with quantitative tem-
poral constraints, temporally extended actions, and conditional
branches. In Proc. 5th International Conf. on Artificial Intelli-
gence Planning and Scheduling, pages 264–272, 2000.

[Vidal and Fargier, 1999] Thierry Vidal and Helene Fargier. Han-
dling contingency in temporal constraint networks: from consis-
tency to controllabilities. Journal of Experimental and Theoreti-
cal Artificial Intelligence (JETAI), 11(1):23–45, 1 1999.

[Vidal and Geffner, 2004] Vincent Vidal and Hector Geffner.
Branching and pruning: An optimal temporal POCL planner
based on constraint programming. In Proc. 19th National Conf.
on Artificial Intelligence, pages 570–577, 2004.

[Younes and Simmons, 2004] Hakan L.S. Younes and Reid G. Sim-
mons. Solving generalized semi-markov decision processes us-
ing continuous phase-type distributions. In Proc. 19th National
Conf. on Artificial Intelligence (AAAI-04), 2004.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

68

Improving Convergence of LRTA*(k) ∗

Carlos Hernández and Pedro Meseguer
Institut d’Investigació en Intel.ligència Artificial, CSIC

Campus UAB, 08193 Bellaterra, Spain
{chernan,pedro}@iiia.csic.es

Abstract

LRTA* is a real-time heuristic search algorithm
widely used. In each iteration it updates the heuris-
tic estimate of the current state. In this paper, we
present three versions of LRTA*(k), a new LRTA*-
based algorithm that is able to update the heuristic
estimates of up to k states, not necessarily distinct.
Based on bounded propagation, this updating strat-
egy maintains heuristic admissibility, so LRTA*(k)
keeps the good theoretical properties of LRTA*.
The new algorithm produces better solutions in the
first trial and converges faster when compared with
other state-of-the-art algorithms on classical bench-
marks for real-time search. We provide experimen-
tal evidence of the improvement in performance of
these versions, at the extra cost of longer planning
steps.

1 Introduction

LRTA* [Korf, 1990] is a real-time heuristic search algorithm
that interleaves planning and action execution in an on-line
manner. It improves its performance over successive trials on
the same problem instance, by recording better heuristic esti-
mates. This algorithm works on a search space where every
state x has a heuristic estimate h(x) of the cost from x to a
goal. It is complete under a set of reasonable assumptions. If
h(x) is admissible, after a number of trials h(x) converges to
their exact values along every optimal path.

In this paper we present three versions of LRTA*(k) [Her-
nandez and Meseguer, 2005], an algorithm based on LRTA*
that updates the heuristic estimate of up to k –not necessarily
distinct– states per iteration, following a bounded propaga-
tion strategy. This updating maintains heuristic admissibility,
so LRTA*(k) converges to exact heuristic values in optimal
paths. In fact, LRTA* is a particular case of LRTA*(k) with
k = 1. Bounded propagation causes significant benefits in the
first solution, convergence and solution stability, at the cost of
extra computation per planning step. In our experiments on
classical real-time benchmarks, with small to medium k the

∗Partially supported by the Spanish REPLI project TIN2002-
04470-C03-03.

time per planning step has remained reasonable when com-
pared with LRTA*.

The three versions presented are denoted with the
subindexes 0, 1 and 2. They differ in the extra condition that
a state, selected by bounded propagation, has to satisfy to be
considered for updating. In LRTA∗

0(k), a state involved in
the propagation process is considered for updating only if it
has already been expanded in the current trial. In LRTA∗

1(k),
this condition is relaxed to have been expanded in the the cur-
rent or previous trials. In LRTA∗

2(k), no extra condition is
imposed, so any state involved in the propagation is consid-
ered for updating. Relaxing the condition for state updating
causes to improve convergence, at the extra cost of increasing
the duration of the average planning step.

This paper is organized as follows. In Section 2, we
summarize the main search concepts used for the LRTA*
algorithm. In Section 3, we describe the new algorithm
LRTA*(k), and present its three versions. We provide exper-
imental results in Section 4 on four classical real-time bench-
marks. Comparison with existing work appears in Section 5.
Finally, Section 6 contains some conclusions.

2 LRTA*
The state space is defined as (X, A, c, s, G), where (X, A)
is a finite graph, c : A 7→ [0,∞) is a cost function that as-
sociates each arc with a finite cost, s is the start state, and
G ⊂ X is the set of goal states. X is a finite set of states, and
A ⊂ X × X − {(x, x)|x ∈ X} is a finite set of arcs. Each
arc (v, w) represents an action whose execution causes the
agent to move from v to w. The state space is undirected: for
any action (x, y) ∈ A there exists its inverse (y, x) ∈ A with
the same cost c(x, y) = c(y, x). The successors of a state x
are Succ(x) = {y|(x, y) ∈ A}. A path (x0, x1, x2, . . .) is a
sequence of states such that every pair (xi, xi+1) ∈ A. The
cost of a path is the sum of costs of the actions in that path. A
heuristic function h : X 7→ [0,∞) associates with each state
x an approximation h(x) of the cost of a path from x to a
goal. The exact cost h∗(x) is the minimum cost to go from x
to a goal. h is admissible iff ∀x ∈ X , h(x) ≤ h∗(x). A path
(x0, x1, . . . , xn) with h(xi) = h∗(xi), 0 ≤ i ≤ n is optimal.

The LRTA* algorithm works as follows. From the cur-
rent state x, it performs lookahead at depth d, and updates
h(x) to the max {h(x), min [k(x, v) + h(v)]}, where v is
a frontier state and k(x, v) is the cost of going from x to v.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

69

Then, it moves to a state y, successor of x, with minimum
c(x, y) + h(y). This state become the current state and the
process iterates, until finding a goal state. This process is
called a trial. If the final heuristic estimates of a trial are
used to solve the same problem instance, LRTA* improves
its performance. Repeating this strategy, LRTA* eventually
converges to optimal paths if h is admissible.

The LRTA* algorithm with lookahead at depth 1 (the case
considered in this paper) and converging to optimal paths
(with h admissible) appears in Figure 1. Like in [Korf, 1990],
we assume the existence of Succ and h0 functions, which
when applied to a state x generate its set of successors and
its initial heuristic estimate, respectively. Procedure LRTA*
initializes the heuristic estimate of every state using the func-
tion h0, and repeats the execution of LRTA*-trial until
convergence (h does not change). At this point, an optimal
path has been found. Procedure LRTA*-trial performs a
solving trial on the problem instance. It initializes the cur-
rent state x with the start s, and executes the following loop
until finding a goal. First, it performs lookahead fromx at
depth 1, updating its heuristic estimate accordingly (call to
function LookaheadUpdate1). Second, it selects state y
of Succ(x) with minimum value of c(x, y) + h(y) as next
state (breaking ties randomly). Third, it executes an action
that passes from x to y. At this point, y is the new current
state and the loop iterates. Note that the heuristic estimators
computed in a trial are used as initial values in the next trial.

Function LookaheadUpdate1 performs lookahead
from x at depth 1, and updates h(x) if it is lower than the min-
imum cost of moving from x to one of its successors y plus
its heuristic estimate h(y). It returns true if h(x) changes,
otherwise it returns false.

In a state space like the one assumed here (finite, positive
costs, finite heuristic estimates) where from every state there
is a path to a goal it has been proved that LRTA* is complete.
In addition, if h is admissible, over repeated trials the heuris-
tic estimates eventually converge to their exact values along
every optimal path [Korf, 1990].

3 LRTA*(k)

LRTA*(k) is a LRTA*-based algorithm that propagates the
changes of heuristic estimates up to k states per iteration. Let
x be the current state. After lookahead, LRTA* updates h(x).
If it changes, this change is propagated on Succ(x) with the
same strategy, lookahead plus update. Let y ∈ Succ(x) be
a state that changes h(y). This change is again propagated
on Succ(y) and so on. This process would iterate until no
further changes, which could be very long and act on regions
quite far from the current state. To make it acceptable for
real-time search, we limit the updating capacity to k states
per iteration. This allows to make movements in bounded
time (up to k updates) [Koenig, 2001][Koenig, 2004] and to
limit actions to the vicinity [Shimbo and Ishida, 2003]. We
call this strategy bounded propagation.

If we limit bounded propagation to states already visited,
we can use the notion of support to avoid checking states that
will not change. State y is the support of h(x), written y =
supp(x), iff y = argminv∈Succ(x)(c(x, v) + h(v)). If h(y)

procedure LRTA*(X, A, c, s, G)
for each x ∈ X do h(x)← h0(x); /* initialization */
repeat
LRTA*-trial(X, A, c, s, G);
until h does not change;

procedure LRTA*-trial(X, A, c, s, G)
x← s;
while x /∈ G do

dummy ← LookaheadUpdate1(x); /* look+upt */
y ← argminw∈Succ(x)[c(x, w) + h(w)]; /* next state */
execute(a ∈ A such that a = (x, y)); /* action exec */
x← y;

function LookaheadUpdate1(x): boolean;
y ← argminv∈Succ(x)[c(x, v) + h(v)]; /* lookahead */
if h(x) < c(x, y) + h(y) then

h(x)← c(x, y) + h(y);
return true;

else
return false;

Figure 1: The LRTA* algorithm.

changes, only those states x successors of y such that y is
their support could change. If z is a previously visited state,
z ∈ Succ(y) but y 6= supp(z), no matter h(y) change h(z)
will not change because supp(z) is the state with minimum
value of c(z, w) + h(w) with w ∈ Succ(z).

With these ideas, bounded propagation and the use of sup-
ports, we have developed three versions of LRTA*(k) that dif-
fer in the extra condition that a state, involved in the bounded
propagation process, must satisfy to be considered for updat-
ing. They are explained in the following.

3.1 Original Version
The original version of LRTA*(k) [Hernandez and Meseguer,
2005], from now on LRTA∗

0(k), limits heuristic updating to
states previously visited in the current trial. To do this, it
keeps the sequence of expanded states in the current trial.

The LRTA∗

0(k) algorithm appears in Figure 2. Procedure
LRTA*(k) performs heuristic initialization and executes
LRTA*(k)-trial until convergence (h does not change).
Procedure LRTA*(k)-trial differs from LRTA*-trial
in three points: it initializes the support of every state to
null, it records the sequence of expanded states in path, and
it executes LookaheadUpdateK (that performs bounded
propagation) instead of LookaheadUpdate1. Procedure
LookaheadUpdateK performs bounded propagation as
follows. It maintains a sequence Q of states candidates to
update their heuristic estimates. Q is initialized with the cur-
rent state. At most, k states will be entered in Q. This is
controlled by the counter cont, initialized to k − 1. Then,
the following loop is executed until Q contains no states.
The first statev in Q is extracted, from which lookahead is
performed and it is updated accordingly. If h(v) changes
(LookaheadUpdate1 returns true), this is propagated
over its successors as follows. Any w successor of v that be-
longs to path enters Q in the last position, provided that there
is still room in Q (the limit of k states has not been exhausted
during the current execution of the procedure). If h(v) does

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

70

procedure LRTA*(k)(X, A, c, s, G, k)
for each x ∈ X do h(x)← h0(x);
repeat
LRTA*(k)-trial(X, A, c, s, G, k);
until h does not change;

procedure LRTA*(k)-trial(X, A, c, s, G, k)
for each x ∈ X do supp(x)← null;
x← s;
path← 〈s〉;
while x /∈ G do
LookaheadUpdateK(x, k, path);
y ← argminw∈Succ(x)[c(x, w) + h(w)];
execute(a ∈ A such that a = (x, y));
path← add-last(path, y);
x← y;

procedure LookaheadUpdateK(x, k, path)
Q← 〈x〉;
cont← k − 1;
while Q 6= ∅ do

v ← extract-first(Q);
if LookaheadUpdate1(v) then

for each w ∈ Succ(v) do
if w ∈ path ∧ cont > 0 ∧ v = supp(w) then

Q← add-last(Q, w);
cont← cont− 1;

function LookaheadUpdate1(x): boolean;
y ← argminv∈Succ(x)[c(x, v) + h(v)];
supp(x)← y;
if h(x) < c(x, y) + h(y) then

h(x)← c(x, y) + h(y);
return true;

else
return false;

Figure 2: LRTA∗

0(k): Original LRTA*(k) algorithm.

not change, the loop iterates processing the next state of Q.
After bounded propagation h remains admissible (Lemma 2
of [Edelkamp and Eckerle, 1997]). Therefore, convergence of
LRTA*(k) to optimal paths is guaranteed, because Theorem
3 of [Korf, 1990] is also valid for LRTA*(k).

3.2 First Version

The next version of LRTA*(k), that we call LRTA∗

1(k), lim-
its heuristic updating to states already visited in the current or
previous trials. To do this, it keeps the sequence of expanded
states of the current or previous trials. We also maintain the
table of supports between trials, because they are valid sup-
ports for visited states.

This version increases the effect of propagation after the
first trial. From the second trial on, the agent have a higher
possibility of making updates, because there are states in path
from the first step.

The LRTA∗

1(k) algorithm appears in Figure 3. Differences
with LRTA∗

0(k) are located in procedure LRTA*(k), which
initializes the table of supports and path at the very begin-
ning, instead of being initialized at each trial (as was made by
procedure LRTA*(k)-trial in the original version).

procedure LRTA*(k)(X, A, c, s, G, k)
for each x ∈ X do

h(x)← h0(x);
supp(x)← null;

path← 〈s〉;
repeat
LRTA*(k)-trial(X, A, c, s, G, k);
until h does not change;

procedure LRTA*(k)-trial(X, A, c, s, G, k)
x← s;
while x /∈ G do
LookaheadUpdateK(x, k, path);
y ← argminw∈Succ(x)[c(x, w) + h(w)];
execute(a ∈ A such that a = (x, y));
path← add-last(path, y);
x← y;

Figure 3: LRTA∗

1(k): First version of LRTA*(k). Only pro-
cedures that change with respect to LRTA∗

0(k) are shown.

3.3 Second Version

In the second version of LRTA*(k), we give up the condi-
tion of updating on previously expanded states only. If x is
the current state and h(x) changes, this change can be propa-
gated to any state y ∈ Succ(x). We call this second version
LRTA∗

2(k), and the algorithm appears in Figure 4.
Variable path is no longer needed. Supports are defined for

states previously visited. Now, since any state (visited or not)
can be updated, the use of supports has to be limited to visited
states. This is done in the procedure LookaheadUpdateK,
which differentiates between successors with support (vis-

procedure LRTA*(k)(X, A, c, s, G, k)
for each x ∈ X do

h(x)← h0(x);
supp(x)← null;

repeat
LRTA*(k)-trial(X, A, c, s, G, k);
until h does not change;

procedure LRTA*(k)-trial(X, A, c, s, G, k)
x← s;
while x /∈ G do
LookaheadUpdateK(x, k, path);
y ← argminw∈Succ(x)[c(x, w) + h(w)];
execute(a ∈ A such that a = (x, y));
x← y;

procedure LookaheadUpdateK(x, k, path)
Q← 〈x〉;
cont← k − 1;
while Q 6= ∅ do

v ← extract-first(Q);
if LookaheadUpdate1(v) then

for each w ∈ Succ(v) do
if cont > 0 ∧ (supp(w) = v ∨ supp(w) = null) then

Q← add-last(Q, w);
cont← cont− 1;

Figure 4: LRTA∗

2(k): Second version of LRTA*(k). Only
procedures that change with respect to LRTA∗

0(k) are shown.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

71

ited) and without (not visited). A visited successor is entered
in Q if it is support of the state currently processed. A non
visited successor is always entered in Q.

4 Experimental Results
In this Section we compare the performance of the three
LRTA∗(k) versions in the first trial, convergence and stabil-
ity, for different values of k. The experimental analysis is
centered in the comparison of the three versions, although we
include results for RTA* and FALCONS for reference pur-
poses 1. As benchmarks we use four-connected grids where
an agent can move one cell north, south, east or west, plus the
popular 8-puzzle.

We use the following grids as benchmarks:

1. Grid35. Grids of size 301×301 with a 35% of obstacles
placed randomly. In this type of grid heuristics tend to
be only slightly misleading.

2. Grid70. Grids of size 301 × 301 with a 70% obstacles
placed randomly. In this type of grid heuristics could be
misleading.

3. Maze. Acyclic mazes of size 181 × 181 whose corridor
structure was generated with depth-first search. In this
type of grid heuristics could be very misleading.

In each case, results are averaged over 1000 different in-
stances. In grids of size 301 × 301 the start and goal state
are chosen randomly with the restriction that there is a path
from the start state to the goal state. In mazes, the start state
is (0,0), and the goal state is (180,180). In 8-puzzle, the initial
state was chosen randomly. As initial heuristic between two
states in four-connected grids we use the Manhattan distance.
As initial heuristic in 8-puzzle we use the Manhattan distance
defined as the sum, for all tiles, of their horizontal and vertical
distances from their respective goal positions.

Results for Grid35, Grid70, Maze and 8-puzzle appear in
Table 1, Table 2, Table 3 and Table 4, respectively. The results
are presented in terms of solution cost (×103) , number of
expanded states or memory (×103) and time per step (×10−6

seconds), for the first trial, convergence (with the number of
trials ×103 to converge), and stability indexes [Shimbo and
Ishida, 2003].

Regarding the first trial, there is no difference between
LRTA∗

0(k) and LRTA∗

1(k), since they perform the same ex-
ecution (differences between them appear from the second
trial on). Comparing with LRTA∗

2(k), in terms of cost this
version improves over the previous ones for high k (k = 500
in Grid35, k = ∞ in Grid70, k = ∞ in 8-puzzle), although
it exhibits worse performance for small k. LRTA∗

2(k) al-
ways requires more memory and longer planning steps than
LRTA∗

0(k)/LRTA∗

1(k).
Regarding convergence, in the grid benchmarks we

observe that LRTA∗

1(k) (almost) always improves over
LRTA∗

0(k) in number of trials. This improvement is minor
with small k, and becomes substantial with large k. The same

1In [Hernandez and Meseguer, 2005], it can be found an analysis
of LRTA∗(k) performance compared with RTA* and FALCONS.

effect can be observed in the total solution cost. This im-
provement does not always causes a higher memory usage,
but it requires longer planning steps (moderate increments
for small k, substantial increments for large k). In the 8-
puzzle, LRTA∗

1(k) moderately improves over LRTA∗

0(k) in
terms of trials and cost, requiring a slightly longer planning
step. Considering LRTA∗

2(k), both gridworlds and 8-puzzle,
it get worse than LRTA∗

1(k) for small k and only for large
k it achieves some improvement. LRTA∗

2(k) always requires
more memory and the planning step becomes longer (very
long with high k).

Regarding solution stability, we computed the indices IAE,
ISE, ITAE, ITSE, and SOD [Shimbo and Ishida, 2003]. IAE
provides the sum of the error in the convergence. ISE pro-
vides the square of the sum of the error in the convergence,
it penalizes large overshoots. ITAE and ITSE are two time-
weighted versions of IAE and ISE, that impose large penalties
on sustained errors. SOD sums up the difference in solution
costs between two consecutive trials when the solution wors-
ens. If SOD is equal to 0 convergence is monotonic.

In Grid35, LRTA∗

1(k) shows better stability indexes than
LRTA∗

0(k) and LRTA∗

2(k). In Grid70, LRTA∗

1(k) is better
than LRTA∗

0(k) and LRTA∗

2(k) only in SOD index for all
values of k. For the other indexes there is no clear winner.
Something similar happens in Maze, where there is no clear
winner (except for k = ∞, where the winner is LRTA∗

2(k)).
In 8-puzzle, results are very close. LRTA∗

2(k) has the best
results by a small margin.

In summary, we observe that for the four benchmarks
tested, LRTA∗

1(k) improves consistently over LRTA∗

0(k),
at the extra cost of more memory (in some cases) and a
moderate-to-substantial increment in the planning step time.
LRTA∗

2(k) performance tends to decrease with small k, get-
ting some moderate gains with a very high k, but it requires
much longer planning steps. We consider that its benefits are
small compared with the extra cost in planning time. There-
fore, LRTA∗

1(k) seems to be the algorithm of choice for these
benchmarks. Other domains may require further experimen-
tation.

5 Related Work
In his seminal work, Korf proposed LRTA* and RTA* (an
algorithm with a different updating strategy, able to find bet-
ter solutions in the first trial but without converging to optimal
routes) [Korf, 1990]. After that, several approaches have been
made to to improve LRTA* on the quality of the first solu-
tion, convergence and stability. LCM [Pemberton and Korf,
1992] keeps expanded states locally consistent (a state x is
locally consistent iff h(x) = minv∈Succ(x)[c(x, v) + h(v)]),
by propagating changes in the heuristic estimates. HLRTA*
[Thorpe, 1994] is a hybrid between RTA* and LRTA*. It
finds better solutions than LRTA* in the first trial and con-
verges to optimal paths. As RTA*, it avoids the ping-pong
effect [Edelkamp and Eckerle, 1997] but requires more mem-
ory. The weighted and bounded versions of LRTA* [Shimbo
and Ishida, 2003] speed up convergence and improve solu-
tion stability, but sacrifice optimality. FALCONS[Furcy and
Koenig, 2000] accelerates convergence and keeps optimality

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

72

Grid35
LRTA∗

0(k)
k Cost% Memory% Time/Step% Cost% Trials% Memory% Time/Step% IAE ISE ITAE ITSE SOD

68.7=100% 4.8=100% 0.34=100% 6493.8=100% 2.5=100% 44.9=100% 0.36=100% ×106
×109

×108
×1011

×105

1 (LRTA*) 100% 100% 100% 100% 100% 100% 100% 5.2 56.5 38.1 130.9 15.9
6 24% 72% 202% 48% 63% 89% 163% 2.3 10.6 11.7 26.3 6.8
15 17% 76% 263% 36% 48% 100% 189% 1.7 7.6 6.5 14.2 5.1
500 15% 120% 579% 26% 42% 133% 216% 1.2 4.3 3.9 6.5 3.6
∞ 14% 126% 782% 25% 42% 136% 223% 1.1 3.7 3.8 6.2 3.4

LRTA∗

1(k)
1 (LRTA*) 100% 100% 100% 100% 100% 100% 100% 5.2 56.5 38.1 130.9 15.9
6 24% 72% 202% 46% 67% 100% 182% 2.2 9.3 11.7 24.5 6.5
15 17% 76% 263% 28% 41% 100% 231% 1.3 5.1 4.4 8.8 3.9
500 15% 120% 579% 5% 6% 100% 685% 0.3 1.3 0.1 0.3 0.8
∞ 14% 126% 782% 1.3% 1.2% 93% 2220% 0.07 0.5 0.006 0.02 0.2

LRTA∗

2(k)
1 (LRTA*) 100% 100% 100% 100% 100% 100% 100% 5.2 56.5 38.1 130.9 15.9
6 30% 112% 191% 52% 76% 153% 170% 2.4 10.7 14.6 30.5 7.3
15 20% 117% 256% 32% 47% 154% 222% 1.5 6.5 5.7 11.8 4.5
500 9% 181% 894% 6% 8% 153% 736% 1.1 3.7 3.8 6.2 3.4
∞ 7% 206% 1762% 0.7% 0.9% 145% 4306% 0.3 1.1 0.2 0.4 0.9
RTA* 45% 66% 91% - - - - - - - - -
FALCONS 1402% 183% 126% 62% 26% 245% 122% 3.7 3898.1 6.3 88.3 10.6

Table 1: Grid35 results for the first trial (left), convergence (middle) and stability (right) for LRTA∗

0(k), LRTA∗

1(k) and LRTA∗

2(k). Average
over 1000 instances.

Grid70
LRTA∗

0(k)
k Cost% Memory% Time/Step% Cost% Trials% Memory% Time/Step% IAE ISE ITAE ITSE SOD

146.3=100% 1.4=100% 0.34=100% 790.0=100% 0.3=100% 1.6=100% 0.37=100% ×103
×106

×104
×107

×102

1 (LRTA*) 100% 100% 100% 100% 100% 100% 100% 509.1 24227.7 2029.2 9145.2 1174.8
6 34% 99% 182% 44% 57% 100% 148% 188.4 2931.4 702.6 1265.5 592.0
15 18% 100% 240% 27% 37% 103% 179% 112.9 950.8 301.7 501.4 379.7
500 4% 104% 769% 10% 17% 107% 302% 26.5 75.2 25.0 26.8 65.3
∞ 2% 108% 5236% 2% 5% 111% 906% 4.0 5.9 2.7 1.1 5.8

LRTA∗

1(k)
1 (LRTA*) 100% 100% 100% 100% 100% 100% 100% 509.1 24227.7 2029.2 9145.2 1174.8
6 34% 99% 182% 45% 56% 100% 158% 200.0 3110.0 600.0 1520.0 533.0
15 18% 100% 240% 26% 33% 100% 195% 100.0 1110.0 231.0 501.0 327.0
500 4% 104% 769% 4% 6% 100% 557% 20.0 64.0 8.1 16.4 51.2
∞ 2% 108% 5236% 0.8% 1.2% 100% 2715% 2.0 4.7 0.3 0.5 0.2

LRTA∗

2(k)
1 (LRTA*) 100% 100% 100% 100% 100% 100% 100% 509.1 24227.7 2029.2 9145.2 1174.8
6 42% 178% 184% 53% 67% 185% 157% 231.1 4480.0 791.6 2070.5 618.0
15 25% 178% 247% 32% 41% 187% 199% 139.5 1670.8 333.2 732.1 383.8
500 4% 182% 882% 5% 7% 187% 646% 22.4 88.8 11.4 23.4 64.7
∞ 1.1% 175% 4279% 0.7% 1.2% 186% 3666% 1.6 1.7 0.2 0.2 0.4
RTA* 29% 101% 97% - - - - - - - - -
FALCONS 53% 103% 105% 81% 55% 104% 103% 480.9 17268.5 4088.3 46665.2 1244.5

Table 2: Grid70 results for the first trial (left), convergence (middle) and stability (right) for LRTA∗

0(k), LRTA∗

1(k) and LRTA∗

2(k). Average
over 1000 instances.

Maze
LRTA∗

0(k)
k Cost% Memory% Time/Step% Cost% Trials% Memory% Time/Step% IAE ISE ITAE ITSE SOD

588.0=100% 8.2=100% 0.35=100% 27767.1=100% 1.5=100% 13.8=100% 0.35=100% ×105
×109

×106
×1010

×104

1 (LRTA*) 100% 100% 100% 100% 100% 100% 100% 221.6 5338.3 6952.1 120297.1 1331.1
6 29% 92% 186% 39% 48% 120% 169% 82.0 403.8 2109.0 4490.6 412.4
15 16% 89% 252% 23% 24% 128% 232% 50.7 200.3 659.2 1242.9 188.8
500 4% 89% 1116% 5% 7% 120% 663% 9.6 28.4 34.8 66.6 48.6
∞ 2% 90% 8513% 2% 6% 116% 1792% 1.5 1.6 4.2 1.6 7.0

LRTA∗

1(k)
1 (LRTA*) 100% 100% 100% 100% 100% 100% 100% 221.6 5338.3 6952.1 120297.1 1331.1
6 29% 92% 186% 41% 47% 107% 180% 87.3 1100.0 1580.0 15000.0 531.0
15 16% 89% 252% 23% 25% 111% 237% 50.5 485.0 556.0 4010.0 301.8
500 4% 89% 1116% 4% 3% 112% 881% 8.0 43.1 14.3 57.6 42.6
∞ 2% 90% 8513% 0.1% 0.2% 112% 20541% 0.3 0.4 0.05 0.08 1.1

LRTA∗

2(k)
1 (LRTA*) 100% 100% 100% 100% 100% 100% 100% 221.6 5338.3 6952.1 120297.1 1331.1
6 53% 198% 190% 52% 65% 199% 176% 107.0 1460.0 2720.0 27600.0 671.0
15 36% 201% 259% 31% 35% 199% 238% 66.8 736.0 1010.0 8260.0 402.0
500 9% 211% 1082% 5% 5% 200% 998% 10.4 60.7 24.4 106.0 54.3
∞ 2% 198% 13662% 0.1% 0.2% 212% 28549% 0.2 0.3 0.05 0.06 0.8
RTA* 6% 88% 96% - - - - - - - - -
FALCONS 15% 129% 106% 78% 50% 134% 105% 189.4 1136.2 7072.6 43695.6 680.8

Table 3: Maze results for the first trial (left), convergence (middle) and stability (right) for LRTA∗

0(k), LRTA∗

1(k) and LRTA∗

2(k). Average
over 1000 instances.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

73

8-puzzle
LRTA∗

0(k)
k Cost% Memory% Time/Step% Cost% Trials% Memory% Time/Step% IAE ISE ITAE ITSE SOD

0.361=100% 0.208=100% 0.57=100% 87.1=100% 0.272=100% 33.8=100% 0.53=100% ×104
×107

×107
×109

×104

1 (LRTA*) 100% 100% 100% 100% 100% 100% 100% 8.0 4.7 1.8 9.2 4.3
4 61% 93% 101% 55% 81% 84% 104% 4.3 1.6 0.8 2.7 2.4
16 66% 102% 102% 43% 62% 71% 105% 3.3 1.3 0.5 1.7 1.8
32 65% 101% 105% 43% 62% 71% 105% 3.3 1.3 0.5 1.6 1.7
128 63% 98% 104% 43% 62% 72% 105% 3.3 1.3 0.5 1.6 1.7
∞ 68% 106% 102% 43% 62% 72% 105% 3.3 1.3 0.5 1.7 1.7

LRTA∗

1(k)
1 (LRTA*) 100% 100% 100% 100% 100% 100% 100% 8.0 4.7 1.8 9.2 4.3
4 61% 93% 101% 57% 85% 89% 104% 4.4 1.7 0.9 2.9 2.5
16 66% 102% 102% 39% 54% 77% 107% 3.1 1.3 0.4 1.5 1.7
32 65% 101% 105% 38% 51% 76% 108% 3.0 1.3 0.4 1.4 1.6
128 63% 98% 104% 38% 50% 75% 109% 3.0 1.2 0.4 1.4 1.5
∞ 68% 106% 102% 38% 50% 75% 109% 3.0 1.2 0.3 1.4 1.5

LRTA∗

2(k)
1 (LRTA*) 100% 100% 100% 100% 100% 100 100% 8.0 4.7 1.8 9.2 4.3
4 78% 127% 104% 58% 86% 92% 105% 4.4 1.7 0.9 2.8 2.5
16 62% 193% 115% 36% 62% 103% 113% 2.7 0.9 0.4 1.1 1.5
32 63% 266% 116% 30% 55% 111% 118% 2.3 0.7 0.3 0.7 1.2
128 62% 325% 123% 26% 49% 124% 126% 1.9 0.6 0.2 0.5 1.0
∞ 60% 317% 123% 26% 48% 127% 128% 1.9 0.6 0.2 0.5 1.0
RTA* 63% 97% 99% - - - - - - - - -
FALCONS 250% 258% 102% 41% 30% 48% 103% 3.4 3.4 2.8 1.9 1.6

Table 4: 8-puzzle results for the first trial (left), convergence (middle) and stability (right) for LRTA∗

0(k), LRTA∗

1(k) and LRTA∗

2(k). Average
over 1000 instances.

by using g(x) + h(x) as heuristic function, where g(x) is
the cost from the start state to x. FALCONS improves con-
vergence but it may perform a large amount of exploration
in earlier trials. eFALCONS [Furcy and Koenig, 2001] is
a hybrid between HLRTA* and FALCONS. It converges as
FALCONS, performing a smaller amount of actions in ear-
lier trials, although it may be greater than LRTA*. A new
version of LRTA* [Koenig, 2004] improves convergence by
increasing lookahead depth, causing to increase the planning
time per step.γ−Trap [Bulitko, 2004] uses adaptive looka-
head depth and offers control on the exploration vs. exploita-
tion trade-off, but sacrifices optimality. Other approaches
consider search with moving target [Ishida and Korf, 1991]
and cooperative agents [Knight, 1993], [Goldenberg et al.,
2003].

The idea that motivated LRTA*(k), bounded propagation
of changes in heuristic estimates, is clearly related with the
LCM algorithm, which performs an unbounded propagation
of those changes. In fact, LCM can be seen as an LRTA∗

0(k =
∞) without using supports. In addition, LCM is able to
switch to a shortest path approach in case unbounded prop-
agation exceeds some limit of updates (see [Pemberton and
Korf, 1992] for further details).

6 Conclusions
LRTA*(k) is a real-time search algorithm that converges to
optimal routes. Based on LRTA*, it performs bounded propa-
gation of heuristic changes up to k states, which causes longer
planning steps. Experimentally, LRTA*(k) shows a substan-
tial performance improvement with respect to LRTA* and
FALCONS, in terms of first trial, convergence and solution
stability. Improvements depend on the k value: the higher k,
the better results at the cost of longer planning steps.

We have presented three versions of LRTA*(k), that dif-
fer in the extra condition for a state to be considered for up-
dating. LRTA∗

0(k) limits heuristic updating to states previ-

ously visited in the current trial, LRTA∗

1(k) to states previ-
ously visited in the current or previous trials, and LRTA∗

2(k)
requires no extra condition. Experimentally, we show that
LRTA∗

1(k) solves benchmarks better than LRTA∗

0(k), at the
cost of longer planning steps. When comparing LRTA∗

2(k)
against LRTA∗

1(k), the former does not solve benchmarks
better than the later, although LRTA∗

2(k) always uses more
memory and time per planning step. We think these versions
could be very useful for applications with different require-
ments on the time available between execution of consecutive
actions.

Acknowledgements
We thank the anonymous reviewers, whose comments greatly
improved the paper. They pointed out the LCM algorithm
[Pemberton and Korf, 1992], initially overlooked by us.

References
[Bulitko, 2004] V. Bulitko. Learning for adaptive real-

time search. The Computing Research Rep. (CoRR):
cs.DC/0407017, 2004.

[Edelkamp and Eckerle, 1997] S. Edelkamp and J. Eckerle.
New strategies in learning real time heuristic search. In
Proc. AAAI Workshop on On-Line Search, pages 30–35,
1997.

[Furcy and Koenig, 2000] D. Furcy and S. Koenig. Speeding
up the convergence of real-time search. In Proc. AAAI,
2000.

[Furcy and Koenig, 2001] D. Furcy and S. Koenig. Com-
bining two fast-learning real-time search algorithms yields
even faster learning. In Proc. 6th European Conference on
Planning, 2001.

[Goldenberg et al., 2003] M. Goldenberg, A. Kovarksy,
X. Wu, and J. Schaeffer. Multiple agents moving target
search. In Proc. 18th IJCAI, 2003.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

74

[Hernandez and Meseguer, 2005] C. Hernandez and
P. Meseguer. Lrta*(k). In Proc. IJCAI, 2005.

[Ishida and Korf, 1991] T. Ishida and R. E. Korf. Moving
target search. In Proc 12th IJCAI, 1991.

[Knight, 1993] K. Knight. Are many reactive agents better
than a few deliberative ones? In Proc. 13th IJCAI, 1993.

[Koenig, 2001] S. Koenig. Agent-centered search. Artificial
Intelligence Magazine, 22(4):109–131, 2001.

[Koenig, 2004] S. Koenig. A comparison of fast search
methods for real-time situated agents. In Proc. 3rd AA-
MAS, 2004.

[Korf, 1990] R. E. Korf. Real-time heuristic search. Artificial
Intelligence, 42(2-3):189–211, 1990.

[Pemberton and Korf, 1992] J. Pemberton and R. E. Korf.
Making locally optimal decisions on graphs with cycles.
Technical Report 920004, Computer Science Dep. UCLA,
1992.

[Shimbo and Ishida, 2003] M. Shimbo and T. Ishida. Con-
trolling the learning process of real-time heuristic search.
Artificial Intelligence, 146(1):1–41, 2003.

[Thorpe, 1994] P. E. Thorpe. A hybrid learning real-time
search algorithm. Master’s thesis, Computer Science Dep.,
UCLA, 1994.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

75

Learning Task Allocation via Multi-level Policy Gradient Algorithm with Dynamic
Learning Rate

Sherief Abdallah and Victor Lesser
Department of Computer Science

University of Massachusetts
Amherst, Massachusetts 01003
{shario,lesser}@cs.umass.edu

Abstract

Task allocation is the process of assign-
ing tasks to appropriate resources. To
achieve scalability, it is common to use
a network of agents (also called media-
tors) that handles task allocation. This
work proposes a novel multi-level policy
gradient algorithm to solve the local de-
cision problem at each mediator agent.
The higher level policy stochastically
chooses a task decomposition. The lower
level policy assigns subtasks to neigh-
boring agents also stochastically. Agents
learn autonomously, cooperatively, and
concurrently to increase system perfor-
mance. No state information is used ex-
cept for the task being allocated. Fur-
thermore, the algorithm dynamically ad-
justs the learning rate, to speed up con-
vergence, using the ratio of action val-
ues. Experimental results show how our
proposed solution outperforms other de-
terministic approaches by balancing the
load over resources and converging faster
to better policies.

1 Introduction
Task allocation is the process of assigning tasks to appro-
priate resources. The problem appears in many real appli-
cations like the Grid, web services, sensor nets and other
domains[Czajkowski and et al, 2001]. Consider the web ser-
vices as an example. In that domain there are servers dis-
tributed over the web. Each server provides a set of services
for applications. Users may appear anywhere in the web ask-
ing for a composition of services (also called a task) that re-
quires more than one server. Any server can work on more
than one task at a time. However, the cost of executing a task
increases in proportion to the total number of tasks being ser-
viced by the server. Since users usually do not know where
servers are, a network of agents (also called mediators) that
know about different servers is used. Such agents take re-
quests from users and reply to users with the appropriate set
of servers.

This work illustrates how agents in such a network can
learn to work cooperatively in order to optimize the task al-
location problem. In particular, this work proposes a novel
multi-level policy gradient algorithm to optimize the local de-
cision of each agent in the network. The higher level policy
stochastically chooses a task decomposition. The lower level
policy stochastically assigns subtasks to neighboring agents.
Agents learn autonomously, cooperatively, and concurrently
to minimize the cost of executing tasks. The algorithm does
not use any state information except the type of the task be-
ing allocated and estimates of the cost for assigning task types
to neighbors. Furthermore, to speed up convergence, our pro-
posed algorithm dynamically changes the learning rate in pro-
portion to the cost of choosing an action (whether this action
is choosing a decomposition or assigning a task to a neigh-
bor).

Two factors make the problem both interesting and chal-
lenging: the limited local view of each agent and the need
for load balancing. In large distributed systems, having a
global view of the system’s state is impossible from practi-
cal point of view. Agents usually rely on their limited local
view and use communication to augment this view. This is
a trade-off between optimality and scalability. In our sys-
tem, the only a priori knowledge known by an agent (as will
be described shortly) is the addresses of its direct neighbors.
Furthermore, agents do not communicate their states, but rely
solely on the statistical outcomes of interacting with neigh-
boring agents. In other words, agent A’s knowledge about its
neighbor agent B is summarized via a statistical average of
previous outcomes when A tried assigning a task to B.

What makes load balancing needed in many real systems
is the nonlinear increase of task execution cost with respect
to the increase in load. Cost here is a signal of the system’s
performance. For example, cost may increase due to an in-
crease in task waiting time to indicate a reduction in users’
satisfaction. Therefore, in real systems, it is almost always
better to divide the load as fairly as possible among servers
and resources. The algorithm presented in this paper aims
at balancing the load over servers/resources. Experimental
results show how our algorithm significantly outperforms de-
terministic approaches that ignore load balancing.

The paper is organized as follows. The rest of this section
presents a motivating example. Then a formal problem def-
inition is presented, followed by a description of local agent

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

76

decision problem. Next a description of our algorithm that
optimizes the local agent decision is given. Experimental re-
sults are then presented and discussed, showing how our al-
gorithm outperforms other deterministic approaches. Then a
discussion of related work is given. We finally conclude and
lay out our future directions.

1.1 Motivating Example
To get a better insight into the complexity of the decision
making of each agent, consider the example in Figure 1. This
system consists of three agents, MA, MD, and MF . Each
agent is connected to two resources. There are two main types
of resources, A and B. Resource Ai is of type A and can
undertake only task type TA. Similarly, resource Bi is of
type B and can only undertake task type TB. Resources Af

and Bf are of types A and B respectively but they are fast
resources that need half the time of other resources to fin-
ish their tasks. Task TAB is a more complex task that has
three alternative decompositions: {TA, TA}, {TB, TB} and
{TA, TB}. However, only agent MD knows how to decom-
pose task TAB.

Suppose agent MA receives many tasks of type TA. If
MA always chooses A1 to assign TA to (i.e. determinis-
tic policy), then A1 will be overloaded and its cost rapidly
increases. After several trials, MA will not see A1 as ap-
pealing and will switch its policy to another neighbor. As the
other neighbor gets overloaded MA will switch again and so
on. This means that MA will not converge on a determinis-
tic policy and will keep oscillating after spikes of high costs
due to overloading. One would expect a stochastic policy,
where MA chooses each neighbor with a certain probability,
would perform better. Similarly, suppose agent MD receives
a task of type TAB. MD then needs to choose among the
three possible decompositions of TAB. Each decomposition
imposes certain load patterns on the system. For example,
always choosing the decomposition {TA, TB} means there
will be equal load on both resource types A and B.

Figure 1: A network of agents that are responsible for assigning
resources to incoming tasks.

2 Problem Definition
Let T = {T1, ..., T|T |} be the set of task types. Different
instances of tasks types appear randomly at different agents.
Each task instance Ij is defined by an arrival time tIj

, a task

type TIj
∈ T , and a payoff OIj

. A decomposition function
D(Ti) = {d1, ..., d|D(Ti)|} associates with each task a set of
decompositions, where di ⊆ T (hence D(Ti) provides alter-
native ways to do task Ti). The system has a set of resources
R = {R1, ..., R|R|}. A resource Ri can undertake a set of
task types HRi

⊆ T . ∀Tj ∈ HRi
: FRi

(Tj) > 0 is the time
resource Ri needs to finish a task of type Tj . The cost of ex-
ecuting a task Tj at resource Ri at time t is C

t(Tj , Ri). The
cost is time-dependent because it depends on the total load
on resource Ri at that time. The goal is to optimize the al-
location of tasks to appropriate resources such that net profit
(which is payoff reduced by total cost) over period of time
∆ is maximized. More formally, the global system goal is to
maximize the objective function Γ defined as follows.

Γ =
∑

I:tI∈∆

OI −
∑

〈Ti,Rj〉∈A

C
tI (Ti, Rj)

where A = {a1, ..., a|A|} is a set of task-resource assign-
ments, where ai = 〈Ti, Ri〉. However, because there is not
any centralized entity that has a global view of the whole sys-
tem, evaluating and optimizing Γ is practically impossible.
Instead, one needs a local objective function ΓMx

that each
agent Mx attempts to optimize. Let M = {M1, ...,M|M |}
be the set of agents interconnecting the set of resources R.
Each agent Mx has a set of neighbors N(Mx) ⊆ M ∪ R.
Each agent knows of a set of decompositions DMx

, where
DMx

(Tj) ⊆ D(Tj). The goal of each agent Mx is to allo-
cate incoming task instance I = 〈tI , TI , OI〉 to neighboring
agents such that ΓMx

(I) is maximized, where

ΓMx
(I) = OI −

∑

〈Ti,nj〉∈AMx (I,d)

C
tI (Ti, nj)

where AMx
(I, d) = {ak : ak = 〈Ti, nj〉} is a set of task-

neighbor assignments, where nj ∈ N(Mx) and Ti ∈ d ∈
DMx

(TI). C
tI (Ti, nj) is the cost of assigning task Ti to

neighbor nj . In other words, agent Mi needs to find both
a decomposition d and an assignment of neighbors to each
of the subtask types in d such that the total estimated cost of
executing I is maximized (note that cost is negative). The
cost C

tI (Ti, nj) is only an estimation because it depends on
how agent nj will conduct the allocation of Ti. For exam-
ple, if nj is still learning then it is likely that the cost will
be higher than the real cost (e.g. because nj is allocating Ti

poorly). As agents interact with each other, one would hope
that the local agent policies converge to good (if not optimal)
collective policy. Therefore, the local objective function at
each agent ΓMi

only approximates the global objective func-
tion Γ. However, as the results in this paper show, using our
algorithm agents successfully converge and learn cooperate
in allocating tasks. The following section presents our algo-
rithm

3 Multi-level policy gradient algorithm
An agent, in a task allocation framework, makes its decision
in a two-step process. First, it chooses a decomposition from
the set of alternative decompositions. Then for each sub-
task in the chosen decomposition the agent chooses one of

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

77

its neighbors to assign. Formally, each agent needs to learn
two policies: πhigh(Ti, dj) and πlow(Ti, nj). πhigh(Ti, dj)
is the probability of choosing decomposition dj ∈ D(Ti),
while πlow(Ti, nj) is the probability of choosing neighbor nj

to assign to task Ti. Any of the two policies (or both) can be
deterministic (e.g. ∀Ti∃nj : π(Ti, nj) = 1). However, one
would expect deterministic policies to be suboptimal as they
can not balance the load as well as stochastic policies.

While πlow could have been conditioned on the chosen
composition (i.e. π

dk

low(Ti, nj), where dk is the chosen de-
composition by πhigh) we opted to make both πhigh and πlow

independent. This speeds up learning, because a single πlow

is shared across decompositions and across tasks, but is not
always optimal. For example, consider again the scenario in
Figure 1. Let agent MA receives task TAB and assume MA

can decompose TAB to {TA, TA}. Now the cost of assign-
ing one task TA to A1 is not independent of the decomposi-
tion. The cost depends on how the other task is assigned (if
both are assigned to the same agent then the cost should be
higher). Nevertheless, in most cases this is a valid approxi-
mation as verified by our results.

Agents communicate with each other using messages.
There are only two types of messages: REQUEST and RE-
SPONSE. A agent Msender sends a REQUEST message
to agent Mreceiver asking it to accomplish certain task.
Mreceiver estimates the cost for accomplishing the requested
task (as will be described shortly) and sends a RESPONSE
message, with the estimated cost, back to Msender. There-
fore, the operation of each agent is driven by received mes-
sages (i.e. event driven) and is divided into two algorithms for
processing each message type. Algorithm 1 is where decision
making occurs (deciding how to decompose a task and assign
subtasks) while Algorithm 2 is where learning takes place.

Algorithm 1: Process REQUEST message
Input: REQUEST from Msender to Mreceiver to do task Ti

begin1.1
Choose a decomposition d∗ uniformly at random1.2
proportional to πhigh(Ti, dj), ∀dj ∈ D(Ti).
for each task Tk ∈ d∗ choose a neighbor nl uniformly at1.3
random proportional to πlow(Tk, nl),
∀nl ∈ N(Mreceiver). Let A = {a1, ..., a|d∗|} be the
chosen set of assignments for each subtask of d∗, where
ak = 〈Tak

, nak
〉.

Send a RESPONSE message to Msender with the1.4
estimated cost of A, CTi

=
∑

〈Ti,nj〉∈A
C(Ti, nj).

Send REQUEST messages to neighbors according to A.1.5

end1.6

3.1 Learning
Learning a stochastic policy is usually slower and more diffi-
cult than learning a deterministic policy (Q-learning [Sutton
and Barto, 1999] is a well known and understood learning al-
gorithm for deterministic policies). Learning a stochastic pol-
icy usually involves some sort of policy gradient algorithms
as described in Algorithm 2. The main unknown variable for
each agent is the cost of assigning a certain task type to a

Algorithm 2: Process RESPONSE message
Input: RESPONSE from neighbor nj regarding task Ti with

estimated cost C
begin2.1

Let n∗ = argmaxnj
C(Ti, nj).2.2

update the cost C(Ti, nj)← (1− α)C(Ti, nj) + αC.2.3
update policy (either deterministically or stochastically as2.4
described shortly)

end2.5

neighbor. This negative value can be learned using a simple
update equation derived from Q-routing [Boyan and Littman,
1994]: C(Ti, nj) ← (1 − α)C(Ti, nj) + αC

new(Ti, nj).
The equation merges previous cost estimate, C(Ti, nj) , with
a newly received cost estimate, C

new(Ti, nj), using a weight
parameter α.

Updating policies πlow and πhigh can be done either de-
terministically using Q-routing-based [Boyan and Littman,
1994] approach or stochastically using policy gradient ap-
proach. Algorithm 3 shows the deterministic approach while
Algorithm 4 shows the policy gradient approach. Experimen-
tal results compares both extremes and hybrids of them.

Algorithm 3: Deterministic Policy Update
Input: task Ti

begin3.1
∀nj : πlow(Ti, nj)← 1 iff nj = argmaxkCnk

(Ti)3.2
otherwise πlow(Ti, nj)← 03.3
∀Tl, dj s.t. Ti ∈ dj and dj ∈ D(Tl) : πhigh(Tl, dj)← 13.4
iff dj = argmaxk

∑
Tu∈dk

maxmCnm(Tu)

otherwise πhigh(Tl, dj)← 03.5

end3.6

Algorithm 4: Policy Gradient Update
Input: task Ti and neighbor nj

begin4.1
πlow(Ti, nj)← πlow(Ti, nj) + δ iff4.2
nj = argmaxkCnk

(Ti)
otherwise πlow(Ti, nj)← π(Ti, nj)− δ4.3
normalize πlow s.t.

∑
nj

π(Ti, nj) = 14.4

∀Tk, dl s.t. dl ∈ D(Tk) and Ti ∈ dl :4.5
πhigh(Tk, dl)← πhigh(Tk, dl) + δ if dl is the best
decomposition for Tk

otherwise πhigh(Tk, dl)← π(Tk, dl)− δ4.74.7
normalize πhigh s.t.

∑
dj

π(Ti, dj) = 14.8

end4.9

The policy gradient algorithm above uses a fixed learning
rate δ. The smaller δ is the more careful our algorithm ex-
plores the policy space, and hence the more likely it will
converge to an optimal policy. However, the smaller the
δ is the slower the convergence. In this work we propose
using dynamic learning rates that are derived from learned
costs. The use of different learning rate of an agent de-
pending on the agent’s performance has been proposed be-
fore [Michael Bowling, 2002]. However, previous work

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

78

only used two fixed values of learning rates. We propose
taking advantage of the consistency of the cost estimates
(all are non positives) and scales δ accordingly. In par-
ticular, line 4.7 is modified to “otherwise πhigh(Tk, dl) ←

π(Tk, dl) − δ
C(Tk,dl)

maxdu C(Tk,du)”, where C(Tk, du) is the maxi-
mum cost of allocating Tk if decomposition du ∈ Tk is cho-
sen; i.e. C(Tk, du) =

∑

Ti∈du
maxnj

C(Ti, nj). To prevent
spikes in learning rate, especially in the beginning of learning,
the learning rate is not allowed to surpass a threshold δmax.

3.2 Cycles
Like any routing algorithm, it is possible to have cyclic poli-
cies. For example, two neighboring agents may send the same
task back and forth between each other. Such a policy is un-
desirable as it wastes system resources without getting any
real work done. This problem has two aspects. The first is
detecting such a cycle. The second is choosing an appropri-
ate reinforcement signal to penalize such behavior.

There are two known methods to detect cycles. The first
method assigns a unique identifier for each task. Each agent
then keeps track of task identifiers it had seen. A cycle is
detected once a task identifier is seen twice. Two problems
make this approach unappealing: ensuring the uniqueness of
task identifiers across the distributed network and deciding
for how long to keep task identifiers. A simpler yet approx-
imate approach is to use the age of a task to detect a cycle.
If a task has been floating in the system for too long, then
it is likely that there is a cycle. What makes this approach
approximate is defining the maximum age. Optimally, max-
imum age should be the diameter of the network. However,
in an open and dynamic system, it is unlikely that any agent
would know the diameter of the network. We use the second
approach in our experiments.

Once a cycle is detected at an agent, the system faces the
credit assignment problem: determining who is/are responsi-
ble and penalizing them. Several factors make this problem
difficult: use of stochastic policies, partial observability, and
using task age for detecting cycles. All these factors add un-
certainty to determining who is/are responsible for the cycle.
For example, the agent that received an old task may not even
be part of the cycle. The work in [Tao et al., 2001] used a
global penalty signal (i.e. all agents are penalized once a cy-
cle is detected). Their approach does not scale to a large open
system. Our work on the other hand uses a local penalty:
the agent who received a too old task sends a high nega-
tive penalty to the sender of that task. Experimental results
show the effectiveness of this approach in conjunction with
our learning algorithm.

4 Experimental Results
The first part of our results evaluate the performance using
the example scenario in Figure 1. This helps in getting better
understanding of how our approach works. The second part
evaluates the scalability of the approach using the scenario
in Figure 2. Both parts aim at evaluating the benefit of both
multi-leveled policies and the dynamic learning rate.

For the small scenario in Figure 1, in each time step a
task of type TAB appear at agent MF with probability 0.5

and at agent MA with probability 0.5. Agent MD, the only
agent who knows how to decompose TAB, does not receive
any task directly. The cost of any task at a resource R is
−10× load(R)2, where load(R) is the number of tasks cur-
rently being serviced at resource R. When a resource fails to
accomplish a task (e.g. when a resource of type A is assigned
a task of type TB), a penalty of -10000 is imposed as a cost.
A task also fails if it reaches age 10 time units. The cost of
communicating a task to a neighbor is -1. Tasks takes 5 time
units to execute on resources of type A or B and only 3 time
units to execute on either Af or Bf .

Figure 3 compares the performance of our algorithm for
three settings of the learning rate δ: dynamic between 0.0001
and 0.01, static at 0.01, and static at 0.0001. The horizontal
axis is the time steps while the vertical axis is the absolute
sum of incurred costs per 100 time steps, averaged over 10
simulation runs (lower is better). The static-at-0.0001 is too
slow and it did not converge even after 10000 times steps.
As expected, a larger static learning rate (0.01) leads to faster
convergence. Using a dynamic learning rate strikes a balance
by converging to a much better policy than static-at-0.01 (less
than 25% of its cost) in much less time than the static-at-
0.0001. Although there might be a static learning rate that
achieves performance similar to that of the dynamic rate, it is
much harder to fine tune the learning rate to a fixed value than
to specify the range of the dynamic rate (we used δ = 0.0001
and δmax = 0.01).

steps
0 2000 4000 6000 8000 10000

co
st

0

200000

400000

600000

800000

1e+06

dynamic

static−0.0001

static−0.01

Figure 3: The effect of the dynamic learning rate.

Figure 4 compares the performance of our algorithm using
four settings of the policies πlow and πhigh: both are deter-
ministic (deterministic), only πlow is stochastic (low), only
πhigh is stochastic (high), and both are stochastic (two-level).
As expected, two-level is the slowest to converge but achieves
the lowest steady cost (about 80% of the second lowest steady
cost, low). On the other hand, and to our surprise, high con-
verges faster than deterministic (and achieves lower steady
cost than deterministic, which is expected). The reason is
that even without any learning, πhigh selects a decomposition
uniformly at random. This slightly balances the load with-
out paying the price of slow convergence due to learning a
stochastic πlow.

Figure 5 illustrates the evolution of stochastic policies in
agents MD and MA during a simulation run. The horizontal
axis represents time steps. The vertical axis represents poli-
cies, i.e. the total 1.0 probability divided over actions (an

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

79

Figure 2: A large scale network of 100 resources and 20 agents.

steps
0 2000 4000 6000 8000 10000

co
st

0

200000

400000

600000

800000

1e+06

two−level

high

low

deterministic

Figure 4: The effect of two level stochastic policies on perfor-
mance.

action is a neighbor in case of πlow and a decomposition in
case of πhigh). Figure 5(a) shows πlow of task TB at agent
MD. There are four possible assignments of TB, to each
neighbor of MD. The probability of assigning A3, which is
a resource of type A, quickly drops to zero as expected. Also
since MA is not directly controlling any resources of type B,
the probability of MD choosing MA also drops to zero but
after a while (about 6000 steps). The reasons are cycles and
indirect links. Initially MD may send a request for a task of
type TB to MA who in turn either sends it to MF or back to
MD. However, using the simple maximum task age mech-
anism, eventually MD learns to stop sending tasks of type
TB to MA. In the end, MD only chooses among two as-
signments for TB: B1 and MF , with more probability of
choosing MF . This what one would expect to balance the
load: faster resources get more tasks.

Figure 5(b) shows πlow(TB, .) for agent MA. After step
6000 we see the policy almost fixed. This is because MA is
not receiving any tasks of type TB from agent MD, there-

fore it stopped learning about it. Figure 5(c) shows how MD

learns πhigh for different decompositions of task TB. Agent
MD quickly learns to drop decomposition {TA, TB}. The
reason is that this decomposition requires equal numbers of
resource types A and B, while the system contains 4 A re-
sources and only 2 B resources. MD converges to an intu-
itive policy that produces more TA tasks than TB tasks.

The second part of the results show the scalability of our
approach using the system in Figure 2. This system consists
of 100 resources (rectangles) and 20 agents (ellipses). With
probability 0.67 the resource is of type A, otherwise it of type
B. Also with probability 0.67 the resource is normal, other-
wise it is fast. Each agent has two neighboring agents picked
randomly from the set of agents. Each resource is connected
randomly to one of the agents. At each time step, tasks of
type TAB appear at 11 agents (light gray) with probability
0.5. The other 9 agents (dark gray) know how to decompose
tasks of type TAB. Other parameters are the same as the
small scenario. Therefore, the average number of TAB tasks
per 100 time steps is 0.5 × 11 × 100 = 550, which requires
(after decomposition) 1100 resources. A lower bound on the
average cost, assuming perfect knowledge and perfect distri-
bution of load, is 11000. The highest average cost (if all tasks
allocated to the same resource) is Figures 6 and 7 show the
performance of the different approaches in the larger system.
We can see significant savings of our approach compared to
the other approaches.

5 Related Work
In [Hannah and Mouaddib, 2002], a mediator serially allo-
cates tasks to agents. That work used a Markov Decision
Process (MDP) model where actions are agent-task assign-
ments and learned a deterministic policy. This differs from
our work where all subtasks are allocated concurrently and

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

80

steps
0 2000 4000 6000 8000 10000

pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1

MF

MA

B1

A3

(a) πlow(TB, .) for agent MD.

steps
0 2000 4000 6000 8000 10000

pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1

MD

MF

A2

A1

(b) πlow(TB, .) for agent MA.

steps
0 2000 4000 6000 8000 10000

pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1

{TA,TB}

{TB,TB}

{TA,TA}

(c) πhigh(TAB, .) for agent MD.

Figure 5: Policies of different agents.

using two-level stochastic policy. That work also assumed
the set of tasks were fixed and arrived in fixed order, while we
assume tasks arrive stochastically in time and location. They
also assumed agents with homogeneous capabilities, while
our model supports heterogeneous agents.

The work in [Dolgov and Durfee, 2004] modeled the re-
source allocation problem as a constrained MDP, or CMDP.
A CMDP is an MDP augmented with a set of (resource) con-
straints. The set of actions were assumed fixed and the pol-
icy was serial and deterministic. They also used an offline
algorithm which solved the problem assuming the transition
probabilities are known. We use an on-line algorithm without
sharing state information among agents.

Task allocation can be viewed as a more complex and more
general form of packet routing. As in routing, each agent acts
as a router, trying to route the packet through the least costly
path. Packets impose little load on the nodes (resources)

steps
0 2000 4000 6000 8000 10000

co
st

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

dynamic

static−0.0001

static−0.01

Figure 6: The effect of dynamic learning rate in the large system
scenario.

steps
0 2000 4000 6000 8000 10000

co
st

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

two−level

high

low

deterministic

Figure 7: The effect of two level policies in the large system sce-
nario.

as opposed to tasks, which raises the issue of load balanc-
ing. Also task allocation involves alternative decompositions
while packets are routed as non-decomposable units. Most
of the previous work in packet routing [Boyan and Littman,
1994; Kumar and Miikkulainen, 1998] maps the routing prob-
lem to a set of local decision problems for each agent. The
work used reinforcement learning techniques to learn a de-
terministic policy for each router. The goal was to minimize
average packet delay. Experimental results showed the ef-
fectiveness of the approach. More recently, a policy gradi-
ent approach was used to solve the packet routing problem
[Tao et al., 2001]. However, the work ignored the load on the
nodes and only focused on the capacity of links. Their policy
gradient also used a fixed learning rate, unlike the algorithm
presented here.

6 Conclusion and Future Work
This paper presents a novel algorithm that allows agents in a
network to learn cooperatively how to allocate a task. The al-
gorithm learns two-level stochastic policies using policy gra-
dient. The high level policy selects a decomposition for an in-
coming task while the low level policy assigns a neighboring
agent to each task in the selected decomposition. Experimen-
tal results show the benefit of introducing each of these levels
with more than four times saving in cost as compared to de-
terministic approaches. Our algorithm also dynamically ad-
justs the learning rate. Experimental results show how using
a dynamic learning rate significantly speeds up convergence

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

81

while outperforming learners with fixed learning rate.
An interesting issue that was not covered in the paper is

how to set up the network connections, i.e. the neighbor-
hood of each agent N . Optimally, the network should reduce
communication overhead by adapting to task arrival patterns.
For example, an agent that receives many tasks asking for
resource Rx should be connected as closely as possible to re-
sources of that type. A related issue is how the system would
perform in the face of changes in the network (e.g. an agent or
a resource leaving the system or another agent or a resource
entering.) Furthermore, this work models resource failures
implicitly using penalties. An explicit model of failure prob-
ability may allow agents to learn better policies (e.g. pre-
ferring an agent with high probability of failure if its cost is
cheap and the task payoff is low, or vice versa).

References
[Boyan and Littman, 1994] Justin A. Boyan and Michael L.

Littman. Packet routing in dynamically changing net-
works: A reinforcement learning approach. In Jack D.
Cowan, Gerald Tesauro, and Joshua Alspector, editors,
Advances in Neural Information Processing Systems, vol-
ume 6, pages 671–678. Morgan Kaufmann Publishers,
Inc., 1994.

[Czajkowski and et al, 2001] K. Czajkowski and et al. Grid
information services for distributed resource sharing. Pro-
ceedings of the 10th IEEE Symp On High Performance
Distributed Computing, 2001.

[Dolgov and Durfee, 2004] Dmitri Dolgov and Edmund
Durfee. Optimal resource allocation and policy formu-
lation in loosely-coupled markov decision processes. In
In Proceedings of the Fourteenth International Conference
on Automated Planning and Scheduling., 2004.

[Hannah and Mouaddib, 2002] Hosam Hannah and Abdel-
Illah Mouaddib. Task selection problem under uncertainty
as decision-making. In Proceedings of the first interna-
tional joint conference on Autonomous agents and multia-
gent systems, 2002.

[Kumar and Miikkulainen, 1998] Shailesh Kumar and Risto
Miikkulainen. Confidence-based q-routing: An on-line
adaptive network routing algorithm. In Proceedings of Ar-
tificial Neural Networks in Engineering, 1998.

[Michael Bowling, 2002] Manuela Veloso Michael Bowling.
Multiagent learning using a variable learning rate. Artifi-
cial Intelligence, 136(2):215–250, 2002.

[Sutton and Barto, 1999] R Sutton and A Barto. Reinforc-
ment Learning: An Introduction. MIT Press, 1999.

[Tao et al., 2001] Nigel Tao, Jonathan Baxter, and Lex
Weaver. A multi-agent, policy-gradient approach to net-
work routing. In Proc. 18th International Conf. on Ma-
chine Learning, pages 553–560. Morgan Kaufmann, San
Francisco, CA, 2001.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

82

An Algorithm Better than AO*?

Blai Bonet
Departamento de Computación

Universidad Siḿon Boĺıvar
Caracas, Venezuela

bonet@ldc.usb.ve

Héctor Geffner
ICREA & Universitat Pompeu Fabra

Paseo de Circunvalación, 8
Barcelona, Spain

hector.geffner@upf.edu

Abstract

Recently there has been a renewed interest in AO*
as planning problems involving uncertainty and
feedback can be naturally formulated as AND/OR
graphs. In this work, we carry out what is prob-
ably the first detailed empirical evaluation of AO*
in relation to other AND/OR search algorithms. We
compare AO* with two other methods: the well-
known Value Iteration (VI) algorithm, and a new
algorithm, Learning in Depth-First Search (LDFS).
We consider instances from four domains, use three
different heuristic functions, and focus on the opti-
mization of cost in the worst case (Max AND/OR
graphs). Roughly we find that while AO* does bet-
ter thanVI in the presence of informed heuristics,
VI does better than recent extensions of AO* in
the presence of cycles in the AND/OR graph. At
the same time,LDFS and its variant BoundedLDFS,
which can be regarded as extensions of IDA*, are
almost never slower than either AO* orVI , and in
many cases, are orders-of-magnitude faster.

1 Introduction
A* and AO* are the two classical heuristic best-first algo-
rithms for searching OR and AND/OR graphs[Hart et al.,
1968; Martelli and Montanari, 1973; Pearl, 1983]. The A*
algorithm is taught in every AI class, and has been studied
thoroughly both theoretically and empirically. The AO* al-
gorithm, on the other hand, has found less uses in AI, and
while prominent in early AI texts[Nilsson, 1980] it has disap-
peared from current ones[Russell and Norvig, 1994]. In the
last few years, however, there has been a renewed interest in
the AO* algorithm in planning research where problems in-
volving uncertainty and feedback can be formulated as search
problems over AND/OR graphs[Bonet and Geffner, 2000].

In this work, we carry out what is probably the first in-
depth empirical evaluation of AO* in relation with other
AND/OR graph search algorithms. We compare AO* with
an old but general algorithm,Value Iteration[Bellman, 1957;
Bertsekas, 1995], and a new algorithm,Learning in Depth-
First Search, and its variant BoundedLDFS [Bonet and
Geffner, 2005]. While VI performs a sequence of Bellman
updates over all states in parallel until convergence,LDFS per-
forms selective Bellman updates on top of successive depth-
first searches, very much as Learning RTA*[Korf, 1990] and

RTDP[Bartoet al., 1995] perform Bellman updates on top of
successive greedy (real-time) searches.

In the absence of accepted benchmarks for evaluating
AND/OR graph search algorithms, we introduce four para-
metric domains, and consider a large number of instances,
some involving millions of states. In all cases we focus on the
computation of solutions with minimum cost in the worst case
using three different and general admissible heuristic func-
tions. We find roughly that while AO* does better thanVI
in the presence of informed heuristics,LDFS, with or without
heuristics, tends to do better than both.

AO* is limited to handling AND/OR graphs without cy-
cles. The difficulties arising from cycles can be illustrated
by means of a simple graph with two states and two ac-
tions: an actiona with cost5 maps the initial states0 non-
deterministically into either a goal statesG or s0 itself, and
a second actionb with cost10 mapss0 deterministically into
sG. Clearly, the problem has cost10 andb is the only (opti-
mal) solution, yet the simple cost revision step in AO* does
not yield this result. Thus, for domains where such cycles
appear, we evaluate a recent variant of AO*,CFCrev∗ , intro-
duced in[Jimeńez and Torras, 2000] that is not affected by
this problem. We could have used LAO* as well[Hansen and
Zilberstein, 2001], but this would be an overkill as LAO* is
designed to minimize expected cost in probabilistic AND/OR
graphs (MDPs) wheresolutions themselvescan be cyclic,
something that cannot occur in Additive or Max AND/OR
graphs. Further algorithms for cyclic graphs are discussed in
[Mahantiet al., 2003]. LDFS has no limitations of this type;
unlike AO*, it is not affected by the presence of cycles in the
graph, and unlike Value Iteration, it is not affected either by
the presence of dead-ends in the state space if the problem is
solvable.

The paper is organized as follows: we consider first the
models, then the algorithms, the experimental set up and the
results, and close with a brief discussion.

2 Models
We consider AND/OR graphs that arise from non-
deterministic state models as those used in planning with non-
determinism and full observability, where there are

1. a discrete and finite state spaceS,
2. an initial states0 ∈ S,
3. a non-empty set of terminal statesST ⊆ S,
4. actionsA(s) ⊆ A applicable in each non-terminal state,

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

83

5. a function mapping non-terminal statess and actions
a ∈ A(s) into setsof statesF (a, s) ⊆ S,

6. action costsc(a, s) for non-terminal statess, and
7. terminal costscT (s) for terminal states.

Models where the states are onlypartially observable,can be
described in similar terms, replacing states bysets of statesor
belief states[Bonet and Geffner, 2000].

We assume that bothA(s) andF (a, s) are non-empty, that
action costsc(a, s) are all positive, and terminal costscT (s)
are non-negative. When terminal costs are all zero, terminal
states are calledgoals.

The mapping from non-deterministic state models to
AND/OR graphs is immediate: non-terminal statess become
OR nodes, connected to the AND nodes< s, a > for each
a ∈ A(s), whose children are the statess′ ∈ F (a, s). The
inverse mapping is also direct.

The solutions to this and various other state models can
be expressed in terms of the so-called Bellman equation
that characterizes theoptimal cost function[Bellman, 1957;
Bertsekas, 1995]:

V (s) def=
{

cT (s) if s terminal
mina∈A(s) QV (a, s) otherwise (1)

whereQV (a, s) is an abbreviation of the cost-to-go, which
for Max and Additive AND/OR graphs takes the form:

QV (a, s) :
{

c(a, s) + maxs′∈F (a,s) V (s′) (Max)
c(a, s) +

∑
s′∈F (a,s) V (s′) (Add) (2)

Other models can be handled in this way by choosing
other forms forQV (a, s). For example, for MDPs, it is
the weighted sumc(a, s) +

∑
s′∈F (a,s) V (s′)Pa(s′|s) where

Pa(s′|s) is the probability of going froms to s′ givena.
In the absence of dead-ends, there is a unique (optimal)

value functionV ∗(s) that solves the Bellman equation, and
the optimal solutions can be expressed in terms of the poli-
ciesπ that aregreedywith respect toV ∗(s). A policy π is a
function mapping statess ∈ S into actionsa ∈ A(s), and a
policy πV is greedy with respect to a value functionV (s), or
simply greedy inV , iff πV is the best policy assuming that
the cost-to-go is given byV (s); i.e.

πV (s) = argmin
a∈A(s)

QV (a, s) . (3)

Since the initial states0 is known, it is actually sufficient
to considerclosed (partial) policiesπ that prescribe the ac-
tions to do in all (non-terminal) states reachable froms0 and
π. Any closed policyπ relative to a states has a costV π(s)
that expresses the cost of solving the problem starting from
s. The costsV π(s) are given by the solution of (1) but with
the operatormina∈A(s) removed and the actiona replaced
by π(s). These costs are well-defined when the resulting
equations have a solution over the subset of states reachable
from s0 andπ. For Max and Additive AND/OR graphs, this
happens whenπ is acyclic; elseV π(s0) = ∞. Whenπ is
acyclic, the costsV π(s0) can be defined recursively starting
with the terminal statess′ for which V π(s′) = cT (s′), and
up to the non-terminal statess reachable froms0 andπ for
whichV π(s) = QV π (π(s), s). In all cases, we are interested
in computing a solutionπ that minimizesV π(s0). The result-
ing value is the optimal cost of the problemV ∗(s0).

3 Algorithms
We consider three algorithms for computing such optimal
solutions for AND/OR graphs: Value Iteration, AO*, and
Learning in Depth-First Search.

3.1 Value Iteration
Value iteration is a simple and quite effective algorithm that
computes the fixed pointV ∗(s) of Bellman equation by plug-
ging an estimate value functionVi(s) in the right-hand side
and obtaining a new estimateVi+1(s) on the left-hand side,
iterating until Vi(s) = Vi+1(s) for all s ∈ S [Bellman,
1957]. In our setting, this convergence is guaranteed pro-
vided that there are no dead-end states, i.e., statess for which
V ∗(s) = ∞. Often convergence is accelerated if the same
value function vectorV (s) is used on both left and right. In
such a case, in each iteration, the states values areupdated
sequentially from first to last as:

V (s) := min
a∈A(s)

QV (a, s) . (4)

The iterations continue untilV satisfies the Bellman equation,
and henceV = V ∗. Any policyπ greedy inV ∗ provides then
an optimal solution to the problem.VI can deal with a variety
of models and is very easy to implement.

3.2 AO*
AO* is a best-first algorithm for solving acyclic AND/OR
graphs[Martelli and Montanari, 1973; Nilsson, 1980; Pearl,
1983]. Starting with a partial graphG containing only the
initial states0, two operations are performed iteratively: first,
a best partial policy overG is constructed and a non-terminal
tip states reachable with this policy is expanded; second,
the value function and best policy over the updated graph
are incrementally recomputed. This process continues until
the best partial policy is complete. The second step, called
thecost revision step, exploits the acyclicity of the AND/OR
graph for recomputing the optimal costs and policy over the
partial graphG in a single pass,unlike Value Iteration (yet
see[Hansen and Zilberstein, 2001]). In this computation, the
states outsideG are regarded as terminal states with costs
given by their heuristic values. When the AND/OR graph
contains cycles, however, this basic cost-revision operation is
not adequate. In this paper, we use the AO* variant devel-
oped in[Jimeńez and Torras, 2000], calledCFCrev∗ , which is
based in the cost revision operation from[Chakrabarti, 1994]
and is able to handle cycles.

Unlike VI , AO* can solve AND/OR graphs without having
to consider the entire state space, and exploits lower bounds
for focusing the search. Still, expanding the partial graph one
state at a time, and recomputing the best policy over the graph
after each step, imposes an overhead that, as we will see, does
not always appear to pay off.

3.3 Learning DFS
LDFS is an algorithm akin to IDA* with transposition tables
which applies to a variety of models[Bonet and Geffner,
2005]. While IDA* consists of a sequence of DFS iterations
that backtrack upon encountering states with costs exceeding
a given bound,LDFS consists of a sequence of DFS iterations
that backtrack upon encountering states that areinconsistent:
namely statess whose values are not consistent with the val-
ues of its children; i.e.V (s) 6= mina∈A(s) QV (a, s). The

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

84

LDFS-DRIVER(s0)
begin

repeatsolved := LDFS(s0) until solved
return (V, π)

end

LDFS(s)
begin

if s is SOLVED or terminal then
if s is terminalthen V (s) := cT (s)
Mark s asSOLVED
return true

flag := false
foreacha ∈ A(s) do

if QV (a, s) > V (s) then continue
flag := true
foreachs′ ∈ F (a, s) do

flag := LDFS(s′) & [QV (a, s) ≤ V (s)]
if ¬flag then break

if flag then break

if flag then
π(s) := a
Mark s asSOLVED

else
V (s) := mina∈A(s) QV (a, s)

return flag

end

Algorithm 1: Learning DFS

expressionQV (a, s) encodes the type of model: OR graphs,
Additive or Max AND/OR graphs, MDPs, etc. Upon en-
countering such inconsistent states,LDFS updates their val-
ues (making them consistent) and backtracks, updating along
the way ancestor states as well. In addition, when the DFS
beneath a states does not find an inconsistent state (a con-
dition kept byflag in Fig. 1), s is labeled assolvedand is
not expanded again. The DFS iterations terminate when the
initial states0 is solved. Provided the initial value function is
admissible and monotonic (i.e.,V (s) ≤ mina∈A(s) QV (a, s)
for all s), LDFS returns an optimal policy if one exists. The
code forLDFS is quite simple and similar to IDA*[Reinefeld
and Marsland, 1994]; see Fig. 1.

Bounded LDFS, shown in Fig. 2, is a slight variation
of LDFS that accommodates an explicitbound parameter
for focusing the search further on paths that are ‘critical’
in the presence of Max rather than Additive models. For
Game Trees, BoundedLDFS reduces to the state-of-the-art
MTD(−∞) algorithm: an iterative alpha-beta search proce-
dure with null windows and memory[Plaatet al., 1996]. The
code in Fig. 2, unlike the code in[Bonet and Geffner, 2005] is
for general Max AND/OR graphs and not only trees, and re-
places the booleanSOLVED(s) tag inLDFS by a numerical tag
U(s) that stands for anupper bound; i.e., U(s) ≥ V ∗(s) ≥
V (s). This change is needed because BoundedLDFS, unlike
LDFS, minimizesV π(s0) but not necessarilyV π(s) for all
statess reachable froms0 andπ (in Additive models, the first
condition implies the second). Thus, while theSOLVED(s)
tag in LDFS means that an optimal policy fors has been
found, theU(s) tag in BoundedLDFS means only that a pol-
icy π with cost V π(s) = U(s) has been found. Bounded

B-LDFS-DRIVER(s0)
begin

repeat B-LDFS(s0, V (s0)) until V (s0) ≥ U(s0)
return (V, π)

end

B-LDFS(s, bound)
begin

if s is terminal orV (s) ≥ bound then
if s is terminalthen V (s) := U(s) := cT (s)
return true

flag := false
foreacha ∈ A(s) do

if QV (a, s) > bound then continue
flag := true
foreachs′ ∈ F (a, s) do

nb := bound− c(a, s)
flag := B-LDFS(s′, nb) & [QV (a, s) ≤ bound]
if ¬flag then break

if flag then break

if flag then
π(s) := a
U(s) := bound

else
V (s) := mina∈A(s) QV (a, s)

return flag

end

Algorithm 2: BoundedLDFS for Max AND/OR Graphs

LDFS ends however when the lower and upper bounds for
s0 coincide. The upper boundsU(s) are initialized to∞.
The code in Fig. 2 is for Max AND/OR graphs; for Additive
graphs, the term

∑
s′′ V (s′′) needs to be subtracted from the

right-hand side of linenb := bound−c(a, s) for s′′ in F (a, s)
ands′′ 6= s′. The resulting procedure however is equivalent
to LDFS.

4 Experiments
We implemented all algorithms in C++. Our AO* code is
a careful implementation of the algorithm in[Nilsson, 1980],
while ourCFCrev∗ code is a modification of the code obtained
from the authors[Jimeńez and Torras, 2000] that makes it
roughly an order-of-magnitude faster.

For all algorithms we initialize the values of the terminal
states to their true valuesV (s) = cT (s) and non-terminals
to someheuristic valuesh(s) whereh is an admissible and
monotone heuristic function. We consider three such heuris-
tics: the first, the non-informativeh = 0, and then two func-
tionsh1 andh2 that stand for the value functions that result
from performingn iterations of value iteration, and an equiv-
alent number of ‘random’ state updates respectively,1 starting
with V (s) = 0 at non-terminals. In all the experiments, we
set n to Nvi/2 whereNvi is the number of iterations that
value iteration takes to converge. These heuristics are infor-
mative but expensive to compute, yet we use them for as-

1More precisely, the random updates are done by looping over
the statess ∈ S, selecting and updating statess with probability
1/2 til n× |S| updates are made.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

85

problem |S| V ∗ NVI |A| |F | |π∗|
coins-10 43 3 2 172 3 9
coins-60 1,018 5 2 315K 3 12

mts-5 625 17 14 4 4 156
mts-35 1, 5M 573 322 4 4 220K
mts-40 2, 5M 684 – 4 4 304K

diag-60-10 29,738 6 8 10 2 119
diag-60-28 > 15M 6 – 28 2 119
rules-5000 5,000 156 158 50 50 4,917
rules-20000 20,000 592 594 50 50 19,889

Table 1: Data for smallest and largest instances: number
of (reachable) belief states, optimal cost, number of itera-
tions taken byVI , max branching in OR nodes (|A|) and
AND nodes (|F |), and size of optimal solution (M = 106;
K = 103).

sessing how well the various algorithms are able to exploit
heuristic information. The times for computing the heuris-
tics are common to all algorithms and are not included in the
runtimes.

We are interested inminimizing cost in the worst case(Max
AND/OR graphs). Some relevant features of the instances
considered are summarized in Table 1. A brief description of
the domains follows.

Coins:
There areN coins including a counterfeit coin that is either
lighter or heavier than the others, and a 2-pan balance. A
strategy is needed for identifying the counterfeit coin, and
whether it is heavier or lighter than the others[Pearl, 1983].
We experiment withN = 10, 20, . . . , 60. In order to re-
duce symmetries we use the representation from[Fuxi et al.,
2003] where a (belief) state is a tuple of non-negative inte-
gers(s, ls, hs, u) that add up toN and stand for the number
of coins that are known to be of standard weight (s), standard
or lighter weight (ls), standard or heavier weight (hs), and
completely unknown weight (u). See[Fuxi et al., 2003] for
details.

Diagnosis:
There areN binary tests for finding out the true state of a
system amongM different states[Pattipati and Alexandridis,
1990]. An instance is described by a binary matrixT of size
M ×N such thatTij = 1 iff test j is positive when the state
is i. The goal is to obtain a strategy for identifying the true
state. The search space consists of all non-empty subsets of
states, and the actions are the tests. Solvable instances can
be generated by requiring that no two rows inT are equal,
andN > log2(M) [Garey, 1972]. We performed two classes
of experiments: a first class withN fixed to10 andM vary-
ing in {10, 20, . . . , 60}, and a second class withM fixed to
60 andN varying in{10, 12, . . . , 28}. In each case, we re-
port average runtimes and standard deviations over 5 random
instances.

Rules:
We consider the derivation of atoms in acyclic rule systems
with N atoms, and at mostR rules per atom, andM atoms
per rule body. In the experimentsR = M = 50 andN is in
{5000, 10000, . . . , 20000}. For each value ofN , we report
average times and standard deviations over 5 random solvable
instances.

Moving Target Search:
A predator must catch a prey that moves non-
deterministically to a non-blocked adjacent cell in a
given random maze of sizeN × N . At each time, the
predator and prey move one position. Initially, the predator
is in the upper left position and the prey in the bottom right
position. The task is to obtain an optimal strategy for catch-
ing the prey. In[Ishida and Korf, 1995], a similar problem is
considered in a real-time setting where the predator moves
‘faster’ than the prey, and no optimality requirements are
made. Solvable instances are generated by ensuring that the
undirected graph underlying the maze is connected and loop
free. Such loop-free mazes can be generated by performing
random Depth-First traversals of theN × N empty grid,
inserting ‘walls’ when loops are encountered. We consider
N = 15, 20, . . . , 40, and in each case report average times
and standard deviations over 5 random instances. Since
the resulting AND/OR graphs involve cycles, the algorithm
CFCrev∗ is used instead of AO*.

4.1 Results
The results of the experiments are shown in Fig. 2, along with
a detailed explanation of the data. Each square depicts the
runtimes in seconds for a given domain and heuristic in a log-
arithmic scale. The figure also includes data from another
learning algorithm, a Labeled version of Min-Max LRTA*
[Koenig, 2001]. Min-Max LRTA* is an extension of Korf’s
LRTA* [Korf, 1990] and, at the same time, the Min-Max
variant of RTDP[Bartoet al., 1995]. Labeled RTDP and La-
beled Min-Max LRTA* are extensions of RTDP and Min-
Max LRTA* [Bonet and Geffner, 2003] that speed up con-
vergence and provide a crisp termination condition by keep-
ing track of the states that are solved.

The domains from top to bottom areCOINS, DIAGNOSIS 1
and 2,RULES, andMTS, while the heuristics from left to right
areh = 0, h1, andh2. As mentioned above,MTS involves
cycles, and thus,CFCrev∗ is used instead of AO*. Thus leav-
ing this domain aside for a moment, we can see that with
the two (informed) heuristics, AO* does better thanVI in al-
most all cases, with the exception ofCOINS with h1 where
VI beats all algorithms by a small margin. Indeed, as it can
be seen in Table 1,VI happens to solveCOINS in very few
iterations (this actually has to do with a topological sort done
in our implementation ofVI for finding first the states that
are reachable). InDIAGNOSIS and in COINS with h1, AO*
runs one or more orders of magnitude faster thanVI . With
h = 0, the results are mixed, withVI doing better, and in
certain cases (DIAGNOSIS) much better. Adding nowLDFS
to the picture, we see that it is never worse than either AO*
or VI , except inCOINS with h = 0 andh2, andRULES with
h = 0 where it is slower thanVI and AO* respectively by
a small factor (in the latter case 2). In most cases, how-
ever,LDFS runs faster than both AO* andVI for the different
heuristics, in several of them by one or more orders of mag-
nitude. BoundedLDFS in turn does never worse thanLDFS,
and in a few cases, includingDIAGNOSIS with h = 0, runs
an order of magnitude faster. InMTS, a problem which in-
volves cycles in the AND/OR graph, AO* cannot be used,
CFCrev∗ solves only the smallest problem, andVI solves all
but the largest problem, an order of magnitude slower than
LDFS, which in turn is slower than BoundedLDFS. Finally,
Min-Max LRTA* is never worse than AO*, performs similar

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

86

to LDFS and BoundedLDFS except inDIAGNOSISandCOINS
where BoundedLDFS dominates all algorithms, and inRULES
where Min-Max LRTA* dominates all algorithms.

The difference in performance betweenVI and the other
algorithms forh 6= 0 suggests that the latter make better use
of the initial heuristic values. At the same time, the differ-
ence betweenLDFS and AO* suggests that often the over-
head involved in expanding the partial graph one state at a
time, and recomputing the best policy over the graph after
each step, does not always pay off.2 LDFS makes use of the
heuristic information but makes no such (best-first) commit-
ments. Last, the difference in performance betweenLDFS and
BoundedLDFS can be traced to a theoretical property men-
tioned above and discussed in further detail in[Bonet and
Geffner, 2005]: while LDFS (and AO* andVI) compute poli-
ciesπ that are optimal over all the states reachable froms0

andπ, BoundedLDFS computes policiesπ that are optimal
only where needed; i.e. ins0. For OR and Additive AND/OR
graphs, the latter notion implies the former, but for Max mod-
els does not. BoundedLDFS (and Game Tree algorithms) ex-
ploits this distinction, whileLDFS, AO*, and Value Iteration
do not.

5 Discussion
We have carried an empirical evaluation of AND/OR search
algorithms over a wide variety of instances, using three
heuristics, and focusing in the optimization of cost in the
worst case (Max AND/OR graphs). Over these examples and
with these heuristics, the studied algorithms rank from fastest
to slowest as BoundedLDFS, LDFS, AO*, andVI , with some
small variations.The results for Min-Max LRTA* show that
its performance is similar toLDFS but inferior to Bounded
LDFS except inRULES.

We have considered the solution of Max AND/OR graphs
as it relates well to problems in planning where one aims to
minimize cost in the worst case. Additive AND/OR graphs,
on the other hand, do not provide a meaningful cost criteria
for the problems considered, as in the presence of common
subproblems they count repeated solution subgraphs multi-
ple times. The semantics of Max AND/OR graphs does not
have this problem. Still we have done preliminary tests under
the Additive semantics to find out whether the results change
substantially or not. Interestingly, in some domains like di-
agnosis, the results do not change much, but in others, like
RULES they do,3 making indeed AO* way better thanLDFS
andVI , and suggesting, perhaps not surprisingly, that the ef-
fective solution of Additive and Max AND/OR graphs may
require different ideas in each case. In any case, by making
the various problems and source codes available, we hope to
encourage the necessary experimentation that has been lack-
ing so far in the area.

Acknowledgements
We thank P. Jimenez and C. Torras for making the code of
CFCrev∗ available, and A. Frangi for the use of the Hermes
Computing Resource at the Aragon Inst. of Engr. Research

2A similar observation appears in[Hansen and Zilberstein,
2001].

3Note that due to the common subproblems, the algorithms
wouldnot minimize the number of rules in the derivations.

(I3A), U. of Zaragoza. H. Geffner is partially supported
by grant TIC2002-04470-C03-02 from MCyT/Spain, and B.
Bonet by grant DI-CAI-001-04 USB/Venezuela.

References
[Bartoet al., 1995] A. Barto, S. Bradtke, and S. Singh.

Learning to act using real-time dynamic programming.Ar-
tificial Intelligence, 72:81–138, 1995.

[Bellman, 1957] R. Bellman. Dynamic Programming.
Princeton University Press, 1957.

[Bertsekas, 1995] D. Bertsekas.Dynamic Programming and
Optimal Control, (2 Vols). Athena Scientific, 1995.

[Bonet and Geffner, 2000] B. Bonet and H. Geffner. Plan-
ning with incomplete information as heuristic search in be-
lief space. In S. Chien, S. Kambhampati, and C. Knoblock,
editors,Proc. 6th International Conf. on Artificial Intelli-
gence Planning and Scheduling, pages 52–61, Brecken-
ridge, CO, 2000. AAAI Press.

[Bonet and Geffner, 2003] B. Bonet and H. Geffner. La-
beled RTDP: Improving the convergence of real-time dy-
namic programming. In E. Giunchiglia, N. Muscettola,
and D. Nau, editors,Proc. 13th International Conf. on Au-
tomated Planning and Scheduling, pages 12–21, Trento,
Italy, 2003. AAAI Press.

[Bonet and Geffner, 2005] B. Bonet and H. Geffner. Learn-
ing in DFS: A unified approach to heuristic search in de-
terministic, non-deterministic, probabilistic, and game tree
settings. 2005.

[Chakrabarti, 1994] P. P. Chakrabarti. Algorithms for
searching explicit AND/OR graphs and their applica-
tions to problem reduction search.Artificial Intelligence,
65(2):329–345, 1994.

[Fuxi et al., 2003] Z. Fuxi, T. Ming, and H. Yanxiang. A so-
lution to billiard balls puzzle using AO* algorithm and
its application to product development. In V. Palade,
R. Howlett, and L. Jain, editors,Proc. 7th International
Conf. on Knowledge-Based Intelligent Information & En-
gineering Systems, pages 1015–1022. Springer, 2003.

[Garey, 1972] M. Garey. Optimal binary identification
procedures. SIAM Journal on Applied Mathematics,
23(2):173–186, 1972.

[Hansen and Zilberstein, 2001] E. Hansen and S. Zilber-
stein. LAO*: A heuristic search algorithm that finds solu-
tions with loops.Artificial Intelligence, 129:35–62, 2001.

[Hartet al., 1968] P. Hart, N. Nilsson, and B. Raphael. A
formal basis for the heuristic determination of minimum
cost paths. IEEE Trans. Syst. Sci. Cybern., 4:100–107,
1968.

[Ishida and Korf, 1995] T. Ishida and R. Korf. Moving-
target search: A real-time search for changing goals.
IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, 17:609–619, 1995.

[Jimeńez and Torras, 2000] P. Jimeńez and C. Torras. An ef-
ficient algorithm for searching implicit AND/OR graphs
with cycles.Artificial Intelligence, 124:1–30, 2000.

[Koenig, 2001] S. Koenig. Minimax real-time heuristic
search.Artificial Intelligence, 129:165–197, 2001.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

87

[Korf, 1990] R. Korf. Real-time heuristic search.Artificial
Intelligence, 42(2–3):189–211, 1990.

[Mahantiet al., 2003] A. Mahanti, S. Ghose, and S. K. Sad-
hukhan. A framework for searching AND/OR graphs with
cycles.CoRR, cs.AI/0305001, 2003.

[Martelli and Montanari, 1973] A. Martelli and U. Monta-
nari. Additive AND/OR graphs. In N. Nilsson, editor,
Proc. 3rd International Joint Conf. on Artificial Intelli-
gence, pages 1–11, Palo Alto, CA, 1973. William Kauf-
mann.

[Nilsson, 1980] N. Nilsson. Principles of Artificial Intelli-
gence. Tioga, 1980.

[Pattipati and Alexandridis, 1990] K. Pattipati and
M. Alexandridis. Applications of heuristic search
and information theory to sequential fault diagnosis.IEEE
Trans. System, Man and Cybernetics, 20:872–887, 1990.

[Pearl, 1983] J. Pearl.Heuristics. Morgan Kaufmann, 1983.
[Plaatet al., 1996] A. Plaat, J. Schaeffer, W. Pijls, and

A. de Bruin. Best-first fixed-depth minimax algorithms.
Artificial Intelligence, 87(1-2):255–293, 1996.

[Reinefeld and Marsland, 1994] A. Reinefeld and T. Mars-
land. Enhanced iterative-deepening search.IEEE Trans.
on Pattern Analysis and Machine Intelligence, 16(7):701–
710, 1994.

[Russell and Norvig, 1994] S. Russell and P. Norvig.Arti-
ficial Intelligence: A Modern Approach. Prentice Hall,
1994.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

88

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70

tim
e

in
 s

ec
on

ds

number of coins

coins / h = 0

LDFS / B-LDFS
VI

AO* / LRTA*

Value Iteration
LDFS

Bounded LDFS
AO*

Min-Max LRTA*
 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70

number of coins

coins / h = h1(#vi/2)

LDFS / B-LDFS

VI

AO*

LRTA*

Value Iteration
LDFS

Bounded LDFS
AO*

Min-Max LRTA*
 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70

number of coins

coins / h = h2(#vi/2)

LDFS / B-LDFS
VI

AO* / LRTA*

Value Iteration
LDFS

Bounded LDFS
AO*

Min-Max LRTA*

 0.001

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60 70

tim
e

in
 s

ec
on

ds

number of states

diagnosis / #tests = 10 / h = 0

VI

AO*

LDFS

B-LDFS

LRTA* Value Iteration
LDFS

Bounded LDFS
AO*

Min-Max LRTA*
 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70

number of states

diagnosis / #tests = 10 / h = h1(#vi/2)

VI

AO*

LRTA*

LDFS / B-LDFS

Value Iteration
LDFS

Bounded LDFS
AO*

Min-Max LRTA*
 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 10 20 30 40 50 60 70

number of states

diagnosis / #tests = 10 / h = h2(#vi/2)

VI

AO*

LDFS

B-LDFS

LRTA*

Value Iteration
LDFS

Bounded LDFS
AO*

Min-Max LRTA*

 0.01

 0.1

 1

 10

 100

 1000

 10 15 20 25 30

tim
e

in
 s

ec
on

ds

number of tests

diagnosis / #states = 60 / h = 0

VI

AO*

LDFS

B-LDFS

LRTA*

Value Iteration
LDFS

Bounded LDFS
AO*

Min-Max LRTA*
 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10 15 20 25 30

number of tests

diagnosis / #states = 60 / h = h1(#vi/2)

VI

AO*

LRTA*

LDFS / B-LDFS

Value Iteration
LDFS

Bounded LDFS
AO*

Min-Max LRTA*
 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10 15 20 25 30

number of tests

diagnosis / #states = 60 / h = h2(#vi/2)

VI

AO*
LDFS

B-LDFS

LRTA*

Value Iteration
LDFS

Bounded LDFS
AO*

Min-Max LRTA*

 1

 10

 100

 5000 10000 15000 20000 25000

tim
e

in
 s

ec
on

ds

number of atoms

rules systems / max rules = 50, max body = 50 / h = zero

AO*

VI / LDFS / B-LDFS

LRTA*

Value Iteration
LDFS

Bounded LDFS
AO*

Min-Max LRTA*
 1

 10

 100

 5000 10000 15000 20000 25000

number of atoms

rules systems / max rules = 50, max body = 50 / h = h1(#vi/2)

AO*
VI

LDFS / B-LDFS

LRTA*

Value Iteration
LDFS

Bounded LDFS
AO*

Min-Max LRTA*
 1

 10

 100

 5000 10000 15000 20000 25000

number of atoms

rules systems / max rules = 50, max body = 50 / h = h2(#vi/2)

AO*

VI

LDFS / B-LDFS

LRTA*

Value Iteration
LDFS

Bounded LDFS
AO*

Min-Max LRTA*

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45

tim
e

in
 s

ec
on

ds

size of maze

mts / h = 0

CFC

VI

LDFS

B-LDFS

LRTA*

Value Iteration
LDFS

Bounded LDFS
AO*/CFC

Min-Max LRTA*
 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45

size of maze

mts / h = h1(#vi/2)

CFC

VI

LDFS

B-LDFS

LRTA*

Value Iteration
LDFS

Bounded LDFS
AO*/CFC

Min-Max LRTA*
 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45

size of maze

mts / h = h2(#vi/2)

CFC

VI

LDFS

B-LDFS

LRTA*

Value Iteration
LDFS

Bounded LDFS
AO*/CFC

Min-Max LRTA*

Table 2: Experiments: each square depicts runtimes in seconds for problems with a given domain and heuristic. The domains
are from top to bottom:COINS, DIAGNOSIS 1 and 2,RULES, andMTS, and the heuristics from left to right:h = 0, h1, and
h2. In the first diagnosis domain, the number of states is increased, while in the second, the number of tests. Problems with
more than16 tests are not solved forh1 andh2 as these heuristics could not be computed beyond that point. Such problems are
solved byLDFS and BoundedLDFS with h = 0. All runtimes are shown in logarithmic scales, yet the range of scales vary.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

89

Hypothetical Planning

Tamara Babaian
CIS Department, Bentley College,

Waltham, MA 02452
tbabaian@bentley.edu

Abstract

We present a novel method for interleaving
planning with execution, called iterative deep-
ening in hypotheticals. The method consists of
performing an iterative deepening search in the
space of partially ordered hypothetical plans.
Hypothetical plans are partial plans in which
the achievement of an otherwise unachievable
goal may be conditioned on certain outcomes of
sensing. This approach has been implemented
within the PSIPLAN-S framework and used
in a collaborative bibliography assistant, called
Writer’s Aid.

1 Introduction and Motivation

A planning agent operating in a real world must often
deal with domains in which only incomplete information
about the domain is available and furthermore, the com-
plete information can never be acquired due to the large
number of domain individuals. In such environments, us-
ing sensing actions judiciously and effectively to discover
information that is relevant, but yet unknown, becomes
critical.

Given correct, but incomplete description of the initial
situation, a solution plan that provably achieves the goal
may not exist. However, it may possible to construct the
solution by interleaving the process of planning with exe-
cution of some information gathering steps. The method
that we describe in this paper, called hypothetical plan-
ning, provides a mechanism for enacting such interleaved
planning with execution. It is formulated using entail-
ment and reasoning about knowledge and ignorance and
guarantees non-redundancy of information gathering in
that sensing actions are carried out only when the criti-
cal information is missing.

Hypothetical plans hypothesize on the value of an un-
known subgoal; by verifying a hypothesis via execution
of a sensing action, the planner eventually reduces the
incompleteness of the knowledge so that a solution plan
is found or the goal is proven to be unsatisfiable. For ex-
ample, having no information on the location of a paper,
the planner may adopt a hypothesis that the paper is

available from a certain collection, and verify the infor-
mation by querying the collection. Hypothetical plans
in addition to causal links between a subgoal and an
entailing it effect, contain hypothetical links, which link
knowledge effects to domain subgoals. The idea is as
follows: if neither p, nor ¬p is known to be true prior to
S, and there is a sensing action as whose effect entails
knowing the truth value of p, then by executing as the
planner may find out that p is true. A hypothetical plan
leads to a solution plan, if after verifying the hypothe-
sis, the plan can be successfully completed, which is not
guaranteed even when the hypothesis is confirmed by an
observation.

An alternative approach to planning with incomplete
information is conditional planning, i.e. creating branch-
ing plans based on the possible outcomes of a sensing ac-
tion. Applied to the above scenario, conditional planning
would involve planning ahead for each of the two possi-
ble outcomes of checking if the paper is available from
the searched collection. However, in the environments
with a high degree of incompleteness, planning ahead
for every contingency is computationally prohibitive, es-
pecially when a sensing action involves information on
multiple atoms.

Furthermore, predicting all possible outcomes of sens-
ing in a meaningful way becomes impossible when the
sensing action may discover new objects. In such situ-
ations, the agent needs to proceed with execution and
then complete the plan given the observation. For ex-
ample, consider the goal of removing all fragile objects
from a room. Given no prior information on the contents
of the room, it is impossible to predict which objects are
in it, if any of them are fragile, and therefore need to be
removed. Thus, it does not make sense to create plans
for removing any objects until the information on the
contents of the room becomes available.

Suppose that the agent operating in the room can
perform the sensing action of identifying all objects in
the room, and another one, determining if the object
is marked as fragile. Hypothetical planning would hy-
pothesize that by using the first action the agent may
discover that no objects are inside the room, thus yield-
ing the goal of having no fragile objects satisfied. If
however, upon executing the first action some objects

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

90

are found inside the room, the agent now has a choice
of either creating a plan to move all discovered objects
out, or first identifying which are fragile and only re-
moving those marked as fragile. The first solution can
be obtained without any further information gathering,
the second solution again requires hypothetical planning
and execution.

An approach to interleaving planning with execution
performed by XII [Golden et al., 1994] and PUCCINI
[Golden, 1998] planners (both based on the approach
used in IPEM [Ambros-Ingerson and Steel, 1988]) is the
other alternative to hypothetical planning. This method
treats execution as one of the nondeterministic choices
within the planning algorithm. In hypothetical planning
execution is triggered by the need, thus it is more tightly
constrained, and used only when necessary. The hypo-
thetical planner’s behavior is thus not dependent on the
model of nondeterminism in the planner implementation
and is better suited for an application in which the time
of response is critical and sensing operations may take
considerable time or are otherwise costly.

Hypothetical planning has been implemented in a par-
tial order planning [Russell and Norvig, 1995] algorithm
called PSIPOP-SE and used at the core of a collaborative
bibliography assistant, called Writer’s Aid [Babaian et al.,
2002]. PSIPOP-SE extends a sound and complete open
world planner PSIPOP[Babaian and Schmolze, 2000] to
planning with sensing, knowledge goals and interleaved
execution. It uses PSIPLAN-S representation for reason-
ing and planning with incomplete information, sensing
and knwoeldge goals.

When the set set of agents sensing actions is rich, the
use of hypothetical plans may considerably expand the
search space. To limit the search space, PSIPOP-SE ex-
plores the search space gradually increasing the maxi-
mum allowed plan number of hypotheses made in sup-
porting a subgoal. This parameter is called the hypothet-
ical level of a plan. Hypothetical level of a simple plan
is 0. An example of a plan with hypothetical level two is
a plan that hypothesizes that a paper is available from
the author’s homepage, and then, having no information
about the author’s homepage, hypothesizes that the url
for the homepage can be found from a known index.
Verification of each hypothesis reduces the uncertainty,
therefore the size of subspace of hypothetical plans on
each consecutive level is reduced, while the lower-level
hypothetical subspace is explored. In our experiments
Writer’s Aid was unable to explore the entire space of
plans of hypothetical level up to 2 at once due to the
large size of this space, but was successful at exploring
subspaces gradually, starting from maximum hypotheti-
cal level of 0. We call this approach iterative deepen-
ing in hypotheticals

The rest of the paper is organized as follows. An
overview of the PSIPLAN representation is presented
in the next section. The definition of a hypothetical
link and the partial order planning algorithm interleav-
ing planning with execution PSIPOP-SE are presented in
Section 3.

2 Overview of PSIPLAN

PSIPLAN assumes infinite number of domain constants,
and no other function symbols. PSIPLAN propositions
include ground domain atoms, domain ψ-forms and
knowledge ψ-forms. The general form of a ψ-form is

[Q(~x) except {σ1, . . . , σn}],
and it represents a possibly infinite set of ground propo-
sitions that are obtained by instantiating the formula
Q(~x) called the main form, with all possible ground as-
signments on the variables in ~x, except for the instances
specified by the substitutions σi called the exceptions.
Each σi is a substitution on a subset of variables of ~x.
The main form Q(~x) of a domain ψ-form is a disjunc-
tion of negated literals. In knowledge ψ-forms Q(~x)
has a form KW (P (~x)), where P (~x) is a disjunction of
negated literals. All variables in ~x are implicitly univer-
sally quantified.

The combination of domain atoms and ψ-forms is
necessary to describe situations as the following one, in
which the agent knows that

The only bibliographies preferred by Ed are the
digital library of the ACM, and maybe the Re-
searchIndex database.

In PSIPLAN-S the example statement above is expressed
by stating that

1. ACM’s digital library is a preferred bibliography,
which is represented by a ground atom:

a = PrefBib(ACM) (1)

2. Nothing is a preferred bibliography except for ACM
and the ResearchIndex, which is represented by the
ψ-form:

ψ = [¬PrefBib(b) except {{b = ACM}, {b = RI}}]
(2)

Thus, ψ denotes all ground instances
of the formula ¬PrefBib(b) minus two exceptions:
¬PrefBib(ACM) and ¬PrefBib(RI) and is equiv-
alent to the universally quantified predicate calculus
formula ∀b.¬PrefBib(b) ∨ (b = ACM) ∨ (b = RI)

Formally, we define the set of ground propositions rep-
resented by a ψ-form as follows

1. φ([Q(~x)]) = {Q(~x)σ |Q(~x)σ is ground }
2. φ([Q(~x) except {σ1, . . . , σn}]) =
φ([Q(~x)])− φ([Q(~x)σ1])− . . .− φ([Q(~x)σn])

Note that assuming infinite number of individual do-
main objects, a finite set of PSIPLAN-S domain proposi-
tions can represent an infinite number of ground negated
clauses without the knowledge of all domain objects by
the virtue of implicit universal quantification in ψ-forms.
However, it can represent only finite “positive knowl-
edge”, i. e. finite number of atoms.

The algorithms for reasoning with ψ-formsare not pre-
sented in this paper (see [Babaian, 2000]), however, we

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

91

note that these computations are carried out by manip-
ulations on the main form and exceptions of the ψ-forms
without expanding the ψ-form into the corresponding set
of ground propositions.

Knowledge ψ-forms similarly to domain ψ-forms,
represent a conjunction of all ground instances of the
main form, however each ground instance in this case is
a knowledge proposition. Knowledge propositions have
form KW (p), where p is a ground clause and repre-
sent knowing p or knowing not p, i.e. that the value
of a domain clause p is known without committing to
a particular value. For example, KW (PrefBib(ACM))
represents knowing-whether ACM is a preferred bibli-
ography. Note that KW (p) is semantically equivalent to
KW (¬p). However, in the main form of a ψ-form the
KW-fied formula is always a negated clause, as in the
knowledge ψ-form below that represents knowing the set
of all preferred bibliographies.

ψ̃ = [KW (¬PrefBib(b))] (3)

Knowledge propositions in PSIPLAN-S are used to rea-
son about knowledge and ignorance, represent informa-
tion goals and results of sensing actions. For example,
posted as a goal, ψ̃ requires knowing the value of each
ground instance of PrefBib(b), or in other words, know-
ing the set of preferred bibliographies. The effect of
checking if RI is a preferred bibliography, is a knowl-
edge proposition KW (PrefBib(RI)). A negated kw-
proposition ¬KW (p) represents ignorance about p.

Semantics
A world state is a truth assignment on domain atoms.
w(q) denotes that q is true in the world state w. Let W
denote the set of all world states.

To define a model we use k-states of Baral and Son
[Baral and Son, 2001]. A k-state is a pair (w,W), where
w denotes a world state from W, and W denotes a a set
of world states. A k-state represents a knowledge state of
an agent who actually being in the world state w thinks
it can be in any of the world states of W .

A set of models is denoted by α and defined below. We
are assuming that the agent’s knowledge is correct, hence
we require that for any k-state (w,W) in a model w ∈W .
In what follows, c represents a ground negated domain
clause and q represents a ground domain proposition, i.e.
domain atom or a ground negated clause.

1. α(q) = {(w,W) |w ∈W ∧ ∀w′ ∈W.w′(q)}
2. α(KW (c)) = {(w,W) |w ∈W ∧ ([∀w′ ∈W.w′(c)]∨

[∀w′ ∈W.w′(¬c)])}
3. α(¬KW (c)) = {(w,W) |w ∈W ∧ [∃w′ ∈W.w′(c)]∧

[∃w′′ ∈W.w′′(¬c)]}.
4. α({q1, . . . , qk}) = ∩ki=1α(qk).

A set of ground propositions q1, . . . , qk k-entails (or, for
brevity, entails) another ground proposition q, denoted
q1, . . . , qk |=k q if α({q1, . . . , qk}) ⊆ α(q).

Note that according to this semantics the k-entailment
of ground domain propositions is equivalent to the ordi-
nary entailment. Furthermore,

q |=k KW (q), and,q |=k KW (¬q).
A set of models of a PSIPLAN-S proposition is defined

as the set of models of the set of ground propositions it
represents.

Definition 1 For a PSIPLAN-S proposition p,α(p) is de-
fined as the set of models α(φ(p)).

Definition 2 For a set of PSIPLAN-S propositions
p1, . . . pm, p

p1, . . . pm |=k p if and only if α({p1, . . . , pm}) ⊆ α(p)

2.1 ψ-form Entailment
While we do not have the space to present the details
of the algorithms for computing entailment in PSIPLAN,
we state several key properties underlying those algo-
rithms, and illustrate them with examples. The prop-
erty critical for the efficiency of ψ-form reasoning is for-
mulated in Theorem 1 below: given a set of ψ-forms
Ψ = {ψ1, . . . , ψn}, Ψ |=k ψ only if there is a ψ-form
ψi ∈ Ψ that nearly entails ψ, i.e. main part of ψi entails
the main part of ψ, or [M(ψi)] |=k [M(ψ)].

Theorem 1 Given a set of ψ-forms Ψ = {ψ1, . . . , ψn}
and a ψ-form ψ, Ψ |=k ψ only if there is a ψ-form ψi in
Ψ such that [M(ψi)] |=k [M(ψ)].

E-Difference For any two sets of ground propositions
A and B, e-difference is defined as follows.

B−̇A = {b | b ∈ B ∧ A 6|=k b}
As ψ-forms are compact representations of sets of

ground propositions, we extend the e-difference opera-
tion to ψ-forms. The following example illustrates the
e-difference operation.

Example 1 Let
ψ denote [Kn(¬In(R, z)) except {{z = A}, {z = B}}],
which represents that there are no items in room R
except for possibly A and B. Further, let ψ̃ denote
[KW (¬In(R, x) ∨ ¬Fragile(x))], which can represent a
goal of knowing for all objects (x) if they are inside room
R and also fragile. ψ entails most of ψ̃, indeed, since
¬In(R, z) is true for all values of z except possibly A

and B, then so is the disjunction inside the ψ̃’s KW
clause. Thus, the only parts of ψ̃ that are not entailed
by ψ are

ψ̃1 = [KW (¬In(R,A) ∨ ¬Fragile(A))]
ψ̃2 = [KW (¬In(R,B) ∨ ¬Fragile(B))]

and therefore ψ̃−̇ψ = {ψ̃1, ψ̃2}
The e-difference operator plays a key role in computing

entailment. The next Theorem describes the necessary
and sufficient conditions for entailment of a domain or a
knowledge ψ-form by a set of domain atoms and ψ-forms.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

92

We call a set s of domain propositions saturated, when
there are no possible resolutions between a ground atom
a and a ground negated clause ¬a ∨ ¬a1 ∨ ¬an, repre-
sented by some ψ-form in s. A saturated equivalent of
such a set can be computed in polynomial time in the
number of propositions (ψ-forms and atoms) in s.

Theorem 2 Let s = A ∪ Ψ be a consistent saturated
set of domain atoms (A) and ψ-forms (Ψ), and ψ is any
ψ-form (either domain or knowledge). s |=k ψ if and
only if

1. there exist a1, . . . , an ∈ A, such that ψ =
[KW (¬a1 ∨ . . . ∨ ¬an)], or

2. there exists ψ ∈ Ψ, such that [M(ψk)] |=k [M(ψ)],
and, furthermore, s− ψ |=k (ψ−̇ψk)

PSIPLAN-S SOK
SOK (State Of Knowledge) database is a consistent set
of PSIPLAN-S domain atoms or psiforms. It represents
the knowledge available to the system in the following
way:

1. a domain proposition p is true in the world, if and
only if SOK |=k p,

2. furthermore, we make a Closed Know-Whether As-
sumption (CKWA) and assume that if SOK 6|=k

KW (p) then the truth value of p is not known, i.e.
¬KW (p)

The set of possible worlds corresponding to this repre-
sentation consists of all world states in which everything
known to the agent is true, and only things known to the
agent are guaranteed to be true. Such representation is
sound and complete, due to soundness and completeness
of reasoning about domain and knowledge propositions
from a set of domain propositions in PSIPLAN. Impor-
tantly, the inference procedures also run in polynomial
time and are fast, which bears directly on the speed of
planning with PSIPLAN-S. PSIPLAN-S thus ensures pre-
cise and fast reasoning about knowledge and ignorance.

PSIPLAN-S Actions and SOK update
PSIPLAN-S distinguishes two types of actions: domain
actions that change the world (e.g., an action of down-
loading a paper from a url), and sensing actions that do
not change the world but only return information about
it (e.g., querying a bibliography).

Each domain action has a list of preconditions, P, and
an encoding of the effects of the action as a set of liter-
als, called the assert list , A. The propositions in P can
include literals and quantified ψ-forms, where the term
quantified is used informally to denote a ψ-form that uses
at least one variable, and thus represents infinite num-
ber of ground instances. We assume that an action is
deterministic and can change the truth-value of only a
finite number of atoms, thus assert list contains literals
only, and no quantified ψ-forms.

To update SOK s after executing a domain action
ad all propositions whose truth value1 could have been

1true or false

changed must be removed from s – these are all proposi-
tions entailed by the negation of some effect of ad. The
propositions entailed by effects of ad are also removed,
and then the effects of a are added to the new SOK. The
agent’s SOK after executing a domain action ad in the
SOK s is computed by function update(s, ad) below.

update(s, ad) = ((s−̇A−(ad))−̇A(ad)) ∪ A(ad), (4)

where A−(ad) denotes the set of propositions obtained
by negating each proposition in ad’s, assert list A(ad).

Sensing actions also have preconditions. Effects of the
sensing are given by its knowledge list, denoted K. The
propositions in K are kw-ψ-forms. After a sensing ac-
tion is executed, it returns an observation list of kn-
propositions corresponding to the information that was
learned, denoted ∆.

Download(?p, ?s, ?u)
P : HasPaper(?u, ?s, ?p)
A : Got(?p)

QueryBib(?b, ?kwd)
P : PrefBib(?b)
K: [KW (¬Rel(p, ?kwd) ∨ ¬InCollection(p, ?b))]

Figure 1: Example of Writer’s Aid’s domain and sensing
actions. The variable p is implicitly universally quantified.
Other variables are action schema parameters

Figure 1 provides examples of two PSIPLAN-S actions.
Download(?p, ?s, ?u) is an action of downloading paper
?p from url ?u of source ?s.QueryBib(?b, ?kwd) is a sens-
ing action that identifies all papers, which according to
bibliography ?b are related to keyword ?kwd. The ef-
fect of this action is encoded in the knowledge list that
contains a quantified ψ-form, and states that as a result
of this action the set of all papers in collection of bib-
liography ?b that are related to keyword ?kwd will be
identified.

For example, suppose after executing sensing action
a = QueryBib(ACM,XII)
with effect [KW (¬Rel(p, ?kwd) ∨ ¬InCollection(p, ?b))]
papers Paper1 and Paper2 were found as the only ones
related to keyword XII, i.e. ∆(a) consists of the follow-
ing propositions:

[¬Rel(p,XII) ∨ ¬InCollection(p,ACM)
except{p = Paper1}, {p = Paper2}]
Rel(Paper1, XII), InCollection(Paper1, ACM)
Rel(Paper2, XII), InCollection(Paper2, ACM)

(5)

After the execution of a sensing action as, the set of
observed propositions, denoted below by ∆(as) is added
to the SOK, i.e.

update(s, as) = s ∪∆(as) (6)

After propositions from ∆(a) are added to the SOK,
all possible resolutions from SOK propositions are com-
puted and added to the new SOK – this is a necessary
step that guarantees soundness and completeness of do-
main goal inference in PSIPOP-SE.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

93

3 Planning with Hypotheticals
We assume the reader’s familiarity with Partial Order
Planning (POP) [Russell and Norvig, 1995]. PSIPOP-SE
is a partial order planner that builds on its predecessors:
a sound and complete open world partial order plan-
ning algorithm PSIPOP [Babaian and Schmolze, 2000]
and PSIPOP-S[Babaian, 2000], which is an extension of
PSIPOP to planning with sensing and knowledge goals.
All three algorithms are based on PSIPLAN-S represen-
tation and calculus. PSIPOP-SE extends PSIPOP-S to
planning with execution.

A hypothetical link is a link between an effect of
a sensing action and a domain subgoal, when the truth
value of the subgoal proposition is unknown and it is
possible that the result of sensing will reveal that the
subgoal is true. To define hypothetical links formally, we
first need to define the kwfy() operation for PSIPLAN-S
domain propositions. Intuitively, the purpose of kwfy(p)
is to reflect the existing knowledge regarding all ground
propositions represented by p. kwfy(p) defines the small-
est PSIPLAN-S knowledge proposition implied by p.
Definition 3 kwfy(p) operator.
• For a domain atom a, kwfy(a) = [KW (¬a)].
• For a domain ψ-form [P (~x) except {σ1, . . . , σn}],

kwfy(ψ) = [KW (P (~x)) except {σ1, . . . , σn}].
A hypothetical link is created between an effect k of

a sensing step Ss and a (domain) precondition p on step
Sp if and only if

1. k |=k kwfy(p), i.e. the effect of sensing will result
in knowing the truth value of every ground propo-
sitions denoted by p, and

2. kwfy(p) does not hold immediately prior to step Sp,
i.e. the values of at least some ground propositions
denoted by p are not known prior to Sp.

Hypothetical links are similar in spirit to Golden’s ob-
servational links [Golden, 1998], but observational links
to p do not require agent’s ignorance regarding p and are
formulated using conditional effects rather than knowl-
edge propositions.

In the example, illustrated in Figure 2, the
planner attempts to find support to a precondi-
tion to the Download action. The precondition
HasPaper(P, ?s, ?u) requires that paper P be avail-
able for download from some source ?s at some
url ?u. Suppose, that neither the agent’s current
state of knowledge nor its domain actions can bring
about the achievement of the goal, however there is
a sensing action QuerySourceForPaper(P, ?s) with
effect k = [KW (¬HasPaper(P, ?s, u))]. This ef-
fect entails kwfy(HasPaper(P, ?s, ?u)), which equals
[KW (¬HasPaper(P, ?s, ?u))] . Note that here, as ev-
erywhere else, variables ?u, ?s are implicitly existen-
tially quantified and treated as Skolem constants, while
u in the knowledge effect k is the ψ-form’s univer-
sally quantified variable. To ensure that the sens-
ing would not be redundant, the planner first tries to

prove that given the current partial plan, the value of
HasPaper(P, ?s, ?u), is not already known, by calling
procedure VerifyIgnorance().

Procedure VerifyIgnorance()is passed a partial plan
and a domain subgoal p on step Sp, and tries to find
support to the goal p without adding any new actions.
When it fails to find support for kwfy(p), by the CKWA
we can assume value of p is not known, and the procedure
returns true. Otherwise, it returns false.

VerifyIgnorance(plan, p, Sp)
if exist effects e1, . . . , en of steps in plan
possibly before Sp, such that e1, . . . , en |=k kwfy(p)

return false

else return true

?

£
¤

¢
¡

?

£
¤
¢
¡

Download(P, ?s, ?u)

Got(P)

HasPaper(P,?s, ?u)

Got(P)

SOK

Goal

QuerySourceForPaper(P, ?s)

Source (?s)

[KW(¬HasPaper(P, ?s, u))]

Figure 2: A depiction of a hypothetical plan. (Steps are
represented by boxes containing action operator’s name and
parameters. – with dashed arrows.

The maximum number of consecutive hypotheses
made in supporting any subgoal in a plan is called the
hypothetical level of a plan Hypothetical level of a
regular (also here called simple) partial order plan is 0.
The space of hypothetical plans is explored gradually,
by limiting the maximum allowed hypothetical level of a
plan to avoid too much hypothesizing.

PSIPOP-SE algorithm is outlined in Figure 3.
Note that this formulation is generalized and leaves
out many details of PSIPLAN-S reasoning and associ-
ated goal satisfaction and threat resolution techniques,
which can be found in [Babaian and Schmolze, 2000;
Babaian, 2000], in order to focus on the details of plan-
ning with hypotheticals. PSIPOP-SE is a nondetermin-
istic algorithm that is passed the initial plan encoding
just the current SOK and goal state as its initial and
goal steps, and an additional parameter maxHL denoting
the maximum hypothetical level of explored plans. The
following fields are added to the standard plan structure
to support hypothetical planning: hlevel denotes the
hypothetical level of the plan, suspendedGoals denotes
a list of sets of goals, planning for which is suspended
until the sensing step(s) are executed.

PSIPOP-SE starts by calling procedure POPH. POPH
is searching for a way of supporting an open goal of a
partially ordered plan that is passed in as a parameter,
and simultaneously explores the hypothetical support

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

94

for the goal. Hypothetical plans are created by proce-
dure FindHypPlans, which nondeterministically chooses
a sensing step - source of the hypothetical link to the
goal in consideration, suspending the rest of the plan’s
open goals, and setting the set of plan’s goals to the pre-
condition of the added sensing step. The hypothetical
plans returned by FindHypPlans are not expanded fur-
ther unless the search for a simple solution plan results
in failure.

If POPH returns with a failure, in other words, a sim-
ple plan that achieves a goal does not exist, PSIPOP-SE
nondeterministically chooses a hypothetical plan from
HPlans. The picked hypothetical plan has as its list of
open goals the preconditions of the earliest source of the
first in order hypothetical link, and the rest of the plan’s
open preconditions as its suspended goals. These sub-
goals were suspended because unless the target condition
of the hypothetical link is found to be true, it does not
make sense to continue planning to satisfy the rest of
subgoals of the plan.

To enable execution of the first in order information
gathering action, PSIPOP-SE calls procedure HPOP,
which searches for a (partial) plan that makes the sens-
ing step-source of the hypothetical link executable from
the initial state. If such completion is found, HPOP ex-
ecutes the plan up until the source of the hypothetical
link, otherwise, the next hypothetical plan is explored.

Upon execution of each action SOK is updated
according to equations (4) and (6) in procedure
UpdateAfterExecution. The executed plan is updated
as well: the executed steps are removed, links originat-
ing in the executed steps are now drawn from the initial
step denoting the SOK, previously suspended goals are
restored and the planner continues to work towards com-
pleting the plan.

It is possible that due to the executed portion of the
plan some sensing acts may have become redundant,
as previously unknown propositions became known.
To avoid redundant information gathering, procedure
HPOP verifies that the sensing is necessary by call-
ing VerifyIgnorance, when picking the next hypothetical
plan to expand. Note also that some causal links may
be invalidated because the truth value of a proposition
was reversed by the executed actions. This would not
happen to the executed current plan, but it may affect
other hypothetical plans in HPlans. Thus, HPOP may
discard some invalid links originating from the initial
step (SOK) that are no longer valid, adding their target
conditions to the plan’s goals.

4 Conclusions and Future Work

We have presented a novel method for interleaving plan-
ning with execution, which enables information gather-
ing to be used in support of planning goals. The method
has been implemented within a partial order planner,
however, its formulation is based on the general concepts
of entailment, reasoning about knowledge and ignorance,
which could make the method applicable to other plan-

PSIPOP-SE (init-plan, maxHL)
HPlans = ∅ // hypothetical plans
if POPH(init-plan, HPlans, maxHL) fails

Choose a plan ph from HPlans
remove ph from HPlans
HPOP(ph, maxHL, HPlans)

POPH(plan, maxHL, HPlans)
if (plan.goals = ∅) return plan
else plan’ = copy(plan)

Choose a goal g from plan’.goals
if FindSupport(plan’,g) fails or
ResolveThreats(plan’,g) fails)

result =∅
HPlans=HPlans∪FindHypPlans(plan’,maxHL, g)
if result =∅ then fail
else POPH(plan’, maxHL, HPlans)

FindHypPlans(plan, maxHL, g)
// where g denotes a precondition p on step Sp
if (plan.hlevel<maxHL) and V erifyIgnorance(p, Sp) =
true

Choose a sensing operator Ss with effect k
such that k |=k kwfy(p). If found Ss:

planh = copy(plan)
add hypoth. link Ss −− > Sp to planh.links
planh.hlevel = planh.hlevel + 1
push (planh.goals) to planh.suspendedGoals
planh.goals = P(Ss)
return planh

HPOP(planh, maxHL, HPlans)
-- Complete and execute a hypothetical planh
Remove invalid causal links with source in the SOK
from planh.links,
add their goals to plan.goals
Find the earliest step Ss - source of hypothetical
link in planh.
Suppose it is linked to precondition p of Sp
if VerifyIgnorance(p, Sp) = true and ph.goals 6= ∅

// find an executable completion of ph, phe
phe = POPH(planh, maxHL, HPlans))

else phe = ph;
Execute phe up to and including Ss
UpdateAfterExecution (phe)
if (phe.hlevel > 0)
// remaining plan still has hypothetical links

HPOP(phe, maxHL, HPlans)
else POPH(phe, maxHL, HPlans)

UpdateAfterExecution (ph)
For each executed step S in ph

SOK = update(SOK,S) // equations (4,6)
Replace S with SOK in all causal links
originating from S to the rest of plan

ph.hlevel = ph.hlevel - 1
ph.goals = pop a list from ph.suspendedGoals

Figure 3: Nondeterministic algorithm PSIPOP-SE.

ning and acting frameworks.
Future research needs to focus on fully exploring the

properties of hypothetical planning on problems from a

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

95

variety of domains, generalizing the hypothetical plan-
ning approach to planning in domains with irreversible
actions, and examining formal issues related to sound-
ness and completeness of the search for hypothetical
plans in PSIPOP-SE.

References
[Ambros-Ingerson and Steel, 1988] Jose A. Ambros-Ingerson

and Sam Steel. Integrating planning, execution and mon-
itoring. In Proceedings of the Seventh National Confer-
ence on Artificial Intelligence (AAAI-88), pages 83–88,
St. Paul, Minnesota, 21–26 August 1988. Morgan Kauf-
mann.

[Babaian and Schmolze, 2000] T. Babaian and J. Schmolze.
Psiplan: open world planning with ψ-forms. In Proceedings
of AIPS’00, pages 292–300, 2000.

[Babaian et al., 2002] Tamara Babaian, Barbara J. Grosz,
and Stuart M. Shieber. A writer’s collaborative assistant.
In Proc. of IUI’02, pages 7–14. ACM Press, January 2002.

[Babaian, 2000] Tamara Babaian. Knowledge Representa-
tion and Open World Planning Using ψ-forms. PhD thesis,
Tufts University, 2000.

[Baral and Son, 2001] Chitta Baral and Tran Cao Son. For-
malizing sensing actions – a transition function based ap-
proach. Artificial Intelligence, 125, 2001.

[Golden et al., 1994] K. Golden, O. Etzioni, and D. Weld.
Omnipotence without omniscience: Efficient sensor man-
agement for planning. In Proceedings of AAAI-94, 1994.

[Golden, 1998] Keith Golden. Leap before you look: Infor-
mation gathering in the puccini planner. In Proceedings of
AIPS’98. AAAI Press, June 1998.

[Russell and Norvig, 1995] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach. Prentice Hall,
Englewood Cliffs, NJ, 1995.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

96

Risk-directed Exploration in Reinforcement Learning
Edith L.M. Law and Melanie Coggan and Doina Precup and Bohdana Ratitch

McGill University
School of Computer Science

3480 University Street
Montreal, Quebec, Canada

H3A 2A7

Abstract
Learning agents that have to act autonomously and
learn without an explicit teacher are faced with an
important dilemma. On one hand, they need to
explore their environment in order to gather infor-
mation. On the other hand, exploration can result
in action choices with catastrophic consequences.
This is an important issue for agents that learn in a
realistic setting, rather than in simulation. Hence,
it is important to assess the risk of actions and be
able to learn quickly how to avoid “bad” outcomes.
We present a heuristic approach for defining risk for
reinforcement learning agents, and an algorithm for
incorporating this risk notion into exploration. Un-
like other existing work, our method still allows the
agent to learn optimal action values. Our heuris-
tic allows the definition of agents that are either
risk-averse or risk-seeking. In preliminary exper-
iments, risk-based RL agents compare favorably
with agents using other undirected and directed ex-
ploration methods.

1 Introduction
Intelligent agents are increasingly used for tasks that hu-

mans would not or could not perform. For example, robots
may be deployed to collect data on an unexplored planet,
clean up toxic waste at a disaster zone, and recover sunken
objects from the deep sea. Artificial intelligence is used in
medicine to make diagnosis, recommend short term and long-
term treatment strategies, or dynamically control biomedical
devices. In these safety critical systems, it is crucial for au-
tonomous agents to be as conservative as possible, in order
to minimize the risk of damaging expensive robotic machin-
ery in the former case, and of undermining patient well-being
in the latter. Common to these applications is the fact that
agents are required to operate autonomously in environments
that are unknown, uncertain and changing. Second, bounding
the overall risk of the system does not suffice, if the system
is to be used in real time. In a potentially hazardous environ-
ment, a single wrong choice of action may lead to fatal and
irrecoverable consequences.

Reinforcement learning (RL) provides a framework for
learning in stochastic, dynamic environments whose model

is unknown a priori or incomplete. RL agents learn about
the environment by selecting actions that are informative, a
process known as exploration. At the same time, they strive
to behave optimally, by selecting the best known action in
any given state (exploitation). One of the key issues facing
RL agents in practical applications is how to balance explo-
ration and exploitation [Bulitko, 2004]. Most of the existing
exploration methods are aimed at ensuring that the agent can
gather enough information about the environment. However,
this process can result in “catastrophic” outcomes, which are
not explicitly considered by most existing exploration meth-
ods. A standard assumption is that learning takes place in
simulation, and hence many reincarnations of the agent are
possible. However, this is not always an option.

Two main approaches to handling risk in exploration have
been proposed in prior RL research. One approach is to for-
mulate the control problem that the agent is trying to solve
in such a way that risk is not an issue. Research along this
line, e.g. [Milan, 1996; Singh et al., 1994] is based on for-
mulating actions that are not risky, based on prior knowledge
about the environment. As second line of research is based on
transforming the action values that are being learned such that
risk is taken into account. Existing approaches include solv-
ing a Markov Decision Problem (MDP) subject to constraints
on the variance of the returns [Sato and Kobayashi, 2000]
or on the frequency of entering a fatal state [Geibel, 2001],
and distorting the action values [Heger, 1994; Gaskett, 2003;
Neuneier and Mihatsch, 2002]. There are several reasons why
it is not desirable to induce risk-averse behavior by transform-
ing the action values. First, if the action values are updated
based on a conservative criterion, the policy may be overly
pessimistic. Second, the distortion of the action values means
that the true long-term utilities of actions are not computed
accurately anymore. Hence, it is harder to understand what
kind of approximation errors the agent will produce.

In this paper we present an alternative approach, which
does not distort the action values. We adapt a risk measure
defined in economics for one-shot decision making to MDPs.
We present a straightforward directed exploration algorithm
which uses the risk measure, together with the estimated ac-
tion values, in order to pick actions. We illustrate the way in
which this approach can be used to generate risk-sensitive be-
havior (rather than just conservative risk avoidance). In pre-
liminary experiments on gridworld domains, this risk mea-

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

97

sure compares favorably with other undirected and directed
exploration methods.

2 The notion of risk
The notion of risk is crucial in economics and decision the-

ory. Economists typically distinguish between decisions un-
der risk and decisions under uncertainty. In decision making
under risk, an agent is faced with a set of actions, whose ef-
fects are unknown but can be represented in terms of a prob-
ability distribution over outcomes. In decision making under
uncertainty, no assumptions about the existence of a proba-
bility distribution over outcomes can be made. In the context
of decision making under risk, actions are essentially equiv-
alent to lotteries, where a lottery li is a set of outcomes oi,
each of which occurs with probability pi and is associated
with a specific reward ri. The decision problem is analogous
to the problem of determining one’s preference amongst a set
of lotteries at each time step.

We are focusing on sequential decision problems formally
represented as MDPs [Bellman, 1957]. An MDP consists of
a tuple {S,A,T,R}, where S is a discrete finite set of states in
the environment, A is a discrete finite set of available or per-
missible actions within the environment, T is a set of matrices
consisting of the probabilities of transitioning between states
and R is a set of matrices containing the expected rewards
associated with transitions. More precisely,

T a
ss′ = Pr(st+1 = s′|st = s,at = a) ∀t

and
Ra

ss′ = E[rt+1|st = s,at = a,st+1 = s′] ∀t
The goal of the decision problem is to find a way of select-
ing actions, called a policy which maximizes the long term
expected reward:

E[
T ′

∑
t=0

γ
trt]

where T ′ is the number of decision epochs, in a finite hori-
zon problem, or ∞ for the infinite horizon problem and γ is
a discounting factor which is used to weigh less the rewards
obtained later in the future. RL algorithms compute a good,
sometimes optimal policy when the MDP model, specified by
the matrices T and R, is unknown. In this case, the agent must
explore unknown actions in order to gain information about
the state space. Risk arises naturally in RL, like in one-step
decision making, due to the stochasticity of the environment.
In some environments, actions can potentially have “catas-
trophic” consequences, i.e. destroying the agent in some way.
Hence, despite the information they may reveal, actions may
not always be worth taking. It is important to ask how much
risk the agent should tolerate in order to gather information.

3 Risk-directed Exploration
Intuitively, an action could be deemed risky under two cir-

cumstances: the action may lead to a negative event (one
much worse that the ”average” event expected); or, the ac-
tion may have a lot of stochasticity. The second interpreta-
tion is based on observations about the behavior of animals

and people, who tend to prefer determinism. The risk mea-
sure adopted in this paper, which is a variant based on the
definition proposed by [Yang and Qiu, 2005], incorporates
these two intuitions about risk. Given a state, we define the
measure of risk for a particular action a as the weighted sum
of the entropy and normalized expected reward of that action:

Risk(s,a) = wH(s,a)− (1−w)
E[Ra

ss′]
maxa∈As |E[Ra

ss′]|

where:

H(s,a) =−T a
ss′ logT a

ss′ and E[Ra
ss′] = ∑

s′
T a

ss′R
a
ss′

The definition consists of an entropy term, describing the
stochasticity of the outcomes of a given action in a state, and
a normalized expected reward term, describing how much
worse this action is, in terms of immediate consequences,
than the best action in this state. These two terms are
weighted using a parameter w. The risk measure of an ac-
tion is combined linearly with the action value to form the
risk-adjusted utility of an action:

Ur(s,a) = p∗ (1−Risk(s,a))+(1− p)∗Q(s,a) (1)

The first term measures the safety value of an action, while
the second term measures the long-term utility of that action.
The parameter p provides a way to interpolate between pay-
ing attention to the long-term utility of an action, and paying
attention to safety.

We use the risk-adjusted utility of an action as a substitute
for action values in a Boltzmann distribution:

π(s,a) =
e

Ur(s,a)
τ

∑
n
b=1 e

Ur(s,b)
τ

(2)

where τ is the temperature parameter. This exploration strat-
egy can be naturally incorporated in value-based RL algo-
rithms, such as Sarsa or Q-learning. The corresponding ver-
sion of Sarsa, taking into account risk, is given in Figure 1.

Initialize Q(s,a),n(s),n(s,a) ∀s ∀a
Repeat (for each episode):

Initialize st
n(st)← n(st)+1
Choose at from st using (2)
Repeat (for each step of episode):

Execute action at , observe rt+1 and st+1
n(st ,at)← n(st ,at)+1
Choose at+1 from st+1 using (2)
Qt+1(st ,at)← Qt(st ,at)+

α[rt+1 + γQt(st+1,at+1)−Qt(st ,at)]
Update Risk(st ,at) and Ur(st ,at)
st ← st+1; at ← at+1

Until st is terminal

Figure 1: Risk-directed exploration in Sarsa

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

98

5 0 0 .5 1
0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1
Pr

o
b

ab
ili

ty

p=0.0

p=1.0

p=0.2
p=0.4

p=0.6

p=0.8

Action Selection Probability as a Variation of Q-Values

Q-Value

(a) δ = 0.1

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q−Value

Pr
o

b
ab

ili
ty

Action Selection Probability as a Variation of Q−Values

p=0.0
p=0.2

p=0.4

p=0.6

p=0.8p=1.0

(b) δ = 0.3

5 0 0 .5 1
0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

Pr
o

b
ab

ili
ty

p=1.0

p=0.0
p=0.2
p=0.4
p=0.6
p=0.8

Action Selection Probability as a Variation of Q-Values

Q-Value

(c) δ = 0.5

5 0 0 .5 1
0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

Pr
o

b
ab

ili
ty

p=1.0

p=0.0
p=0.2
p=0.4
p=0.6
p=0.8

Action Selection Probability as a Variation of Q-Values

Q-Value

(d) δ = 0.7

Figure 3: The probability of selecting action a1 when the risk values of the two actions differ by varying amounts δ

5 0 0 .5 1
0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

Pr
o

b
ab

ili
ty

p=1.0

p=0.0
p=0.2

p=0.4
p=0.6

p=0.8

Action Selection Probability as a Variation of Q-Values

Q-Value

Figure 2: Different trends in the probability of selecting action a1
for risk-directed exploration with different p-values

Note that computing the risk-adjusted utility requires a
model of the environment. Such a model can be given, or
it can be learned based on samples, at the same time as the
value function. We explored both alternatives in our experi-
ments.

Consider two actions a1 and a2 that have the same risk
value. Figure 2 shows that for the standard Boltzmann, a1
has increasingly higher probability of being selected when its
action value surpasses that of a2 which is constant at 0, and
lower probability of being selected when its action value falls
below 0. The probability curve is sigmoid-shaped. A simi-
lar trend is observed for the Boltzmann probability that uses
risk-adjusted utilities, although the curves become flatter as
the p-value increases, i.e. as risk term is increasingly over-
weighted. At p = 1.0, the risk measure completely dominates
the risk-adjusted utility value. Since the two actions have the
same risk, they are picked with equal probability at all times.
Note that in practice one would always expect p < 1.

For the intermediate p-values, there are two observations.
As the p-value increases, the probability of selecting a1 is
lowered. It requires a greater difference in the predicted value
in order for a1 to be preferred. This is analogous to risk-
averse behavior. However, it is also true that unless its value
is very bad, a1 still has some probability of being chosen.
This is due to the fact that the safety term in the risk-adjusted
utilities can be positive even for risky actions. As a result, it
can potentially raises the risk-adjusted utilities of both good
and bad actions, causing the bad actions to be selected more
often than desirable. Ideally, the Boltzmann probability func-
tion should be transformed such that it is concave for positive
utilities and convex for negative utilities. This type of trans-
formation may have interesting connections with the Prospect

theory [Kahneman and Tversky, 1979] in psychology, which
states that people are risk-averse when prospect are framed
in terms of gain, and risk-seeking when prospects are framed
in terms of losses, implying the existence of a concave and
convex utility function for gains and losses respectively.

What if a1 has a different value of risk than a2? The prob-
ability of selecting a1 when the risk value of a1 is higher than
a2 by 0.1, 0.3, 0.5, 0.7 are plotted in Figure 3. The value of
a2 is 0 at all times, while the value of a1 changes from -1 to
1. Within each plot in Figure 3, the general trend induced
by intermediate p-values is still observed, i.e. the higher the
p-values, the flatter the curve. In addition, the more the risk
value of a1 increases, the higher the predicted value has to be
in order for a1 to be selected. Furthermore, the greater the
p-value, the more drastically the action selection probability
is depressed as the difference of the risk values between a1
and a2 becomes larger.

In short, the parameter p controls the relative risk aversion
of the agent. As the value of the parameter p increases, the
Boltzmann action selection rule selects the action with higher
risk with exceedingly lower probability (Figure 2, 3).

4 Experimental Results
An environment typically used in reinforcement learning to

evaluate the sensitivity of algorithms to risk is the cliff world.
Two versions for this environment are presented in Figure 4.
In these environments, the objective of the agent is to travel
from the start to the goal state without falling off the cliff.

(a) Close-by-cliff World (b) Cake-or-cheese World

Figure 4: Environments

In both worlds, the state is the exact position of the agent.
In a grid world with 20 by 20 tiles, the total number of states
is 400. The terminal states include the location where the

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

99

METHOD A B C
SOFTMAX α = 0.5, τ = 0.01 α = 0.5, τ = 0.01 α = 0.5, τ = 0.01
SOFTMAX, T D(λ) — — α = 0.25, τ = 0.01
RECENCY-BASED α = 0.5, τ = 0.01 α = 0.5, τ = 0.01 α = 0.5, τ = 0.05
COUNTER-BASED α = 0.5, τ = 0.01 α = 0.5, τ = 0.01 α = 0.5, τ = 0.05
RISK-BASED, P=0.2 α = 0.5, τ = 0.01 α = 0.5, τ = 0.01 α = 0.5, τ = 0.01
RISK-BASED, P=0.4 α = 0.5, τ = 0.01 α = 0.5, τ = 0.01 α = 0.5, τ = 0.01
RISK-BASED, P=0.6 α = 0.5, τ = 0.01 α = 0.5, τ = 0.01 α = 0.1, τ = 0.01
RISK-BASED, P=0.8 α = 0.5, τ = 0.01 α = 0.5, τ = 0.01 α = 0.25, τ = 0.01

Table 1: Parameter Settings for close-by-cliff world. A: 1-step risk,
fixed model; B: 1-step risk, learned model; C: 2-step risk,
learned model

METHOD A B C
SOFTMAX α = 0.5, τ = 0.01 α = 0.5, τ = 0.01 α = 0.5, τ = 0.01
SOFTMAX, T D(λ) — — α = 0.5, τ = 0.05
RECENCY-BASED α = 0.5, τ = 0.01 α = 0.5, τ = 0.05 α = 0.1, τ = 0.05
COUNTER-BASED α = 0.5, τ = 0.01 α = 0.5, τ = 0.01 α = 0.5, τ = 0.05
RISK-BASED, P=0.2 α = 0.5, τ = 0.01 α = 0.5, τ = 0.01 α = 0.25, τ = 0.01
RISK-BASED, P=0.4 α = 0.5, τ = 0.01 α = 0.5, τ = 0.01 α = 0.25, τ = 0.01
RISK-BASED, P=0.6 α = 0.5, τ = 0.01 α = 0.5, τ = 0.01 α = 0.25, τ = 0.01
RISK-BASED, P=0.8 α = 0.5, τ = 0.01 α = 0.5, τ = 0.01 α = 0.5, τ = 0.01

Table 2: Parameter Settings for cake-or-cheese world. A: 1-step
risk, fixed model; B: 1-step risk, learned model; C: 2-step
risk, learned model

goal (cheese) is found, and the location of the cliffs. The
agents are allowed four actions, i.e. A={up, left, right and
down}. However, due to the constraints of the boundaries of
the grid, the set of permissible actions As in each state may be
smaller than A. With probability 0.8 that the agent will enter a
state as intended, and with probability 0.2 that it will slip into
the neighboring cells of the intended destination. Finally, the
reward for reaching the goal is +1, the penalties for falling
off a cliff -1, and the reward for all other states is 0. In the
cake-or-cheese world, the reward for reaching the cheese is
+1, while the reward for reaching the cake is +0.01. In testing
this environment, it would be interesting to observe whether
the agent chooses the short path to the small goal, longer but
less risky path to the large goal, or the shorter but more risky
path to the large goal. The agent has a maximum of 4000
time steps to complete each training trial, and 400 time steps
to complete each testing trial.

In our experiments, the performance of the algorithm is
characterized by five measures: (a) the training score in terms
of cumulative discounted reward (b) the testing score in terms
of cumulative discounted reward (c) % of termination by cliff
fall during learning (d) % of termination by reaching the goal
during learning (e) the life span during training, in terms of
the number of time steps elapsed until termination.

Three sets of experiments are run for each environment: 1-
step risk using fixed model, 1-step risk using learned model
and 2-step risk using learned model. The experiment is run
over 200 episodes for the close-by-cliff world and 1000 epis-
does for the cake-and-cheese world and all results are aver-
aged over 20 runs. w is set to be 0.5. The constant used
in the counter-based method is 400 for both environments,
and that for the recency-based method is 400 for the close-
by-cliff world, and 4 for the cake-or-cheese world. α and τ

are optimized for each algorithm for each environment and
experimental scenario, as shown in table 1 and table 2.

4.1 Effect of varying p
Varying the parameter p produces an interesting range of

risk-averse behavior. As shown in Figure 5, when using a
fixed model, the higher the p-value, the lower the percentage
of death during training.

In the cake-or-cheese world, the higher the p-value, the
more the agent prefers the small goal, especially during the
beginning of learning (figure 6). A similar trend can be ob-
served for both the fixed and learned model.

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epochs

Pr
o

p
o

rt
io

n

% Death by Cliff Fall

p=0.0

p=0.2
p=0.4

p=0.6
p=0.8

(a) Close-by-cliff World

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epochs

Pr
o

p
o

rt
io

n

l% Death by Cliff Fall

p=0.0

p=0.2

p=0.4

p=0.6

p=0.8

(b) Cake-or-cheese World

Figure 5: Percentage of cliff fall using fixed model

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Epochs

Pr
o

p
o

rt
io

n

% Small Goal Reached

p=0.0

p=0.2

p=0.4

p=0.6

p=0.8

(a) % Small Goal Reached, FM

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epochs

Pr
o

p
o

rt
io

n

% Big Goal Reached

p=0.0

p=0.2

p=0.4

p=0.6

p=0.8

(b) % Big Goal Reached, FM

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Epochs

Pr
o

p
o

rt
io

n

% Small Goal Reached

p=0.0

p=0.2
p=0.4

p=0.6

p=0.8

(c) % Small Goal Reached, LM

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epochs

Pr
o

p
o

rt
io

n
% Big Goal Reached

p=0.0

p=0.2

p=0.4

p=0.6

p=0.8

(d) % Big Goal Reached, LM

Figure 6: Percentage of termination at small goal versus large
goal in cake-and-cheese world. FM=Fixed Model,
LM=Learned Model

4.2 Learned model with look-ahead versus without
look-ahead

We tested the performance and behavior of the algorithm
using a learned model. For one-step risk, risk-directed explo-
ration failed to produce better online learning performance
than other directed methods (figure 7).

One remedy is to incorporate more lookahead in the learn-
ing, by introducing two-step risk.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

100

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epochs

Pr
o

p
o

rt
io

n
% Death by Cliff Fall

p=0.2

recency-based

counter-based

softmax

(a) Close-by-cliff World

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epochs

Pr
o

p
o

rt
io

n

% Death by Cliff Fall

p=0.2

softmax

recency-based

counter-based

(b) Cake-or-cheese World

Figure 7: Percentage of cliff fall using learned model (without
lookahead)

RiskII(s,a) = λHII(s,a)− (1−λ)
EII [Ra

ss′]
maxa∈A |EII [Ra

ss′]|
where
HII(s,a) = H(s,a)+∑s′ T a∗

ss′ H(s′,a∗)

EII [Ra
ss′] =

∑s′ T
a
ss′ [R

a
ss′+∑s′′ T

a∗
s′s′′R

a∗
s′s′′]

maxa EII [Ra
ss′]

and a∗ is chosen to maximize Q(s′,a′)

As shown in Figure 9, using two-step risk results in more
distinction between the life span of the agent under different
values of p, and generally longer life span than using one-step
risk. Based on the percentage of cliff fall during training,
the performance of risk-directed exploration using two-step
risk is comparable to that of T D(λ) where λ = 0.7 (figure 8).
However, under T D(λ), the agent has much shorter life span
and prefers the small goal significantly less than if it were
to adopt risk-directed exploration during training (figure 10).
Comparing the percentage of termination at the small goal
versus the big goal (figure 10) with the equivalent results for
one-step risk (figure 6(c) and 6(d)) implies that the effects of
risk aversion is much more exaggerated when lookahead is
incorporated.

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epochs

Pr
o

p
o

rt
io

n

% Death by Cliff Fall

p=0.2
TD(lambda)

recency-based

softmax

counter-based

(a) Close-by-cliff World

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epochs

Pr
o

p
o

rt
io

n

% Death by Cliff Fall

p=0.2
TD(lambda)

recency-based

counter-based

softmax

(b) Cake-or-cheese World

Figure 8: Percentage of cliff fall using learned model (with looka-
head)

5 Discussion and Future Work
The risk-directed exploration method presented here offers

a simple and intuitive solution for ensuring survival during
learning by risk avoidance. The mechanism of risk avoidance
is achieved by learning the risk values of actions during learn-
ing, based on which the probability of selecting that action is

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

900

1000

Epochs

N
u

m
b

er
 o

f S
te

p
s

Training Life Span

p=0.0

p=0.2

p=0.4

p=0.6

p=0.8

(a) Close-by-cliff world, 1-step risk

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

Epochs

N
u

m
b

er
 o

f S
te

p
s

Training Life Span

p=0.0

p=0.2

p=0.4

p=0.6
p=0.8

TD(lambda)

(b) Close-by-cliff world, 2-step risk

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

450

500

Epochs

N
u

m
b

er
 o

f S
te

p
s

Training Life Span

p=0.0 p=0.2
p=0.4
p=0.6

p=0.8

(c) Cake-or-cheese world, 1-step risk

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

Epochs

N
u

m
b

er
 o

f S
te

p
s

Training Life Span

p=0.0

p=0.2

p=0.4

p=0.6

p=0.8

TD(lambda)

(d) Cake-or-cheese world, 2-step risk

Figure 9: Life span using learned model

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Epochs

Pr
o

p
o

rt
io

n

% Small Goal Reached

p=0.0

p=0.2

p=0.4
p=0.6

p=0.8
TD(lambda)

(a) % Small Goal Reached

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epochs

Pr
o

p
o

rt
io

n

% Big Goal Reached

p=0.0

p=0.2

p=0.4

p=0.6

p=0.8

TD(lambda)

(b) % Big Goal Reached

Figure 10: Percentage of termination at small goal versus large goal
in cake-and-cheese world using learned model (with
lookahead)

adjusted.
One criticism of this method may be that by visiting only

states that are less risky, the agent does not sample widely
enough to have an accurate picture of the environment. As a
result, learning an optimal policy will be slower. Our stand-
point is that if self-preservation is one of the criteria of an
efficient exploration method, this sacrifice is acceptable.

Similarly, the claim that risk aversion is useful for sur-
vival is likely to provoke disagreement. One may argue that
risk aversion is useful in certain situation, but it can produce
pathological behavior in others. Imagine a cliff world envi-
ronment where the cliff divide the space between the agent
and cheese. The risk-directed exploration method will select
actions such that the agent remains in the safer region of the
environment, never approaching the cheese.

Reflection on the limitation of risk aversion suggests that
it may be beneficial for the agent to be risk-averse at cer-
tain times, but risk-seeking at other times depending on the
current context. In fact, risk sensitivity in decision making
has been widely observed in the study of animal foraging be-

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

101

haviour. In one experiment, the yellow-eyed junco birds were
presented with a choice between a feeding station that pro-
vides a constant supply of three seeds and a second feeding
station that provides either no seeds or six seeds with equal
probability. It is found that the birds’ preferences for the
two foraging options depended on the temperature. At nor-
mal temperature (19◦C), the birds are on a positive energy
budget, i.e. the average reward of three seeds is sufficient to
maintain the energy level above a critical threshold. It is ob-
served that the birds prefer the constant foraging option that
provides three seeds, i.e. they are risk-averse. At low tem-
perature (1◦C), where the average reward of three seeds can
no longer compensate for the energy expenditure, a reversal
in the preference is observed. The birds were risk-seeking,
preferring the variable foraging option that has some prob-
ability of providing enough seeds to bring the energy level
above the critical threshold [Caraco et al., 1990]. This ex-
ample illustrates that risk attitude does not remain static, but
adapts continuously to the environment in favour of actions
that maximize the probability of survival. This switch be-
tween risk-seeking and risk-averse behaviour is also observed
when the source of hazard is not resource depletion, but pre-
dation [Milinski and Heller, 1978].

These observations of animal foraging behaviour have in-
teresting implication for decision making in uncertain envi-
ronments. First, these evidence support the fact that a mea-
sure of risk, instead of expected utility, can be potentially use-
ful for the valuation of a prospect. Second, the ability to ad-
just risk attitude dependent on the context seems to have a
clear advantage in ensuring survival, and empirically shown
to exist even in human decision making [March and Shapira,
1992]. In addition, risk sensitivity may be useful also for
modelling a wide range of rich emotion, behaviour and per-
sonality in agents.

The risk-directed exploration method presented in this pa-
per can be easily extended to provide a framework in which
the risk attitude is dynamically alternated during the learn-
ing phase based on the current context. This can be done
by adjusting the parameter p subject to some predetermined
schedule of decay, or according to some other constraints. In
this paper, we focus on understanding the behaviour and per-
formance of the risk-directed exploration method for a fixed
level of p. Hence, the appropriate mechanisms for dynam-
ically controlling the risk attitude remains an open research
question.

Another interesting enhancement would be the use of a
multi-step risk measure. An adjustable window of how far
to look ahead when calculating risk can be analogous to pay-
ing attention to short term, medium term, or long term risk
of an action. Second, the risk measure can be subject to TD
learning so that a global, instead of local, measure of risk
is derived. In order to subject the risk measure to dynamic
programming, the risk measure must have certain desirable
properties, e.g. additivity. Hence, it would be useful to char-
acterize exactly what those desirable properties are, and what
other definitions of risk are suitable for application. Lastly,
this exploration method can be used to select temporally ex-
tended actions.

References
[Bellman, 1957] R. Bellman. Dynamic Programming.

Princeton University Press, Princeton, N.J., 1957.
[Bulitko, 2004] Vadim Bulitko. Rl for life notes. 2004.
[Caraco et al., 1990] T. Caraco, W.U. Blanckenhorn, G.M.

Gregory, J.A. Newman, G.M. Recer, and S.M. Zwicker.
Risk-sensitivity: ambient temperature affects foraging
choice. Animal Behavior, 39:338–345, 1990.

[Gaskett, 2003] C. Gaskett. Reinforcement learning under
circumstances beyond its control. In Proceedings of the In-
ternational Conference on Computational Intelligence for
Modelling Control and Automation, 2003.

[Geibel, 2001] P. Geibel. Reinforcement learning with
bounded risk. In C. E. Brodley and A.P. Danyluk, edi-
tors, Proceedings of the Eighteenth International Confer-
ence (ICML01), pages 162–169, San Francisco,CA, 2001.
Morgan Kaufmann Publishers.

[Heger, 1994] M. Heger. Consideration of risk in reinforce-
ment learning. In Proceedings of the eleventh Interna-
tional Conference on Machine Learning, pages 105–111,
1994.

[Kahneman and Tversky, 1979] D. Kahneman and A. Tver-
sky. Prospect theory: An analysis of decision under risk.
Econometrica, 47(2):263–292, 1979.

[March and Shapira, 1992] J.G. March and Z. Shapira. Vari-
able risk preferences and the focus of attention. Psycho-
logical Review, 99(1):172–183, 1992.

[Milan, 1996] J.R. Milan. Rapid, safe and incremental learn-
ing of navigation strategies. In Proceedings of the IEEE
Transactions on Systems, Man, and Cybernetics, volume
26(3), pages 408–420, 1996.

[Milinski and Heller, 1978] M. Milinski and R. Heller. In-
fluence of a predator on the optimal foraging behavior of
stickleback. Nature, 275:642–644, 1978.

[Neuneier and Mihatsch, 2002] R. Neuneier and O. Mi-
hatsch. Risk-sensitive reinforcement learning. Machine
Learning, 49:267–290, 2002.

[Sato and Kobayashi, 2000] M. Sato and S. Kobayashi.
Variance-penalized reinforcement learning for risk-averse
asset allocation. In K.S. Leung, L.W. Chan, and H. Meng,
editors, IDEAL 2000, pages 244–249, 2000.

[Singh et al., 1994] S. Singh, A. Barto, R. Grupen, and
C. Connolly. Robust reinforcement learning in motion
planning. In J.D. Cowan, G. Tesauro, and J. Alspector, ed-
itors, Advances in Neural Information Processing Systems
6, pages 655–662. San Mateo, CA: Morgan Kaufmann,
1994.

[Yang and Qiu, 2005] J. Yang and W. Qiu. A measure of
risk and a decision-making model based on expected util-
ity and entropy. European Journal of Operation Research,
164(3):792–799, 2005.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

102

Best-first Utility-guided Search

Wheeler Ruml
Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, CA 94304 USA
ruml at parc dot com

Elisabeth H. Crawford
Computer Science Department

Carnegie Mellon University
Pittsburgh PA 15213 USA
ehc at cs.cmu dot edu

Abstract
In many shortest-path problems of practical inter-
est, insufficient time is available to find a prov-
ably optimal solution. In dynamic environments,
for example, the expected value of a plan may de-
crease with the time required to find it. One can
only hope to achieve an appropriate balance be-
tween search time and the resulting plan cost. Sev-
eral algorithms have been proposed for this setting,
including weighted A*, Anytime A*, and ARA*.
These algorithms multiply the heuristic evaluation
of a node, exaggerating the effect of the cost-to-go.
We propose a more direct approach, called BUGSY,
in which one explicitly estimates search-nodes-to-
go. One can then attempt to optimize the overall
utility of the solution, expressed by the user as a
function of search time and solution cost. Exper-
iments in several problem domains, including mo-
tion planning and sequence alignment, demonstrate
that this direct approach can surpass anytime algo-
rithms without requiring performance profiling.

1 Introduction
Many important tasks, such as planning, parsing, and se-
quence alignment, can be represented as shortest-path prob-
lems. If sufficient computation is available, optimal solutions
to such problems can be found using A* search with an ad-
missible heuristic [Hart et al., 1968]. However, in many prac-
tical scenarios, time is limited or costly and it is not desirable,
or even feasible, to look for the least-cost path. Furthermore,
in dynamic environments, a plan’s chance of becoming in-
valid increases with time, making any plan based on current
knowledge less valuable as time passes. Instead of ensuring
an optimal solution, search effort should be carefully allo-
cated in a way that balances the cost of the paths found with
the required computation time. This trade-off is expressed by
the user’s utility function, which specifies the subjective value
of every combination of solution quality and search time. In
this paper, we introduce a new shortest-path algorithm called
BUGSY that explicitly acknowledges the user’s utility func-
tion and uses it to guide its search.

A* is a best-first search in which the ‘open list’ of unex-
plored nodes is sorted by f(n) = g(n) + h(n), where g(n)

denotes the known cost of reaching a node n from the ini-
tial state and h(n) is typically a lower bound on the cost of
reaching a solution from n. A* is optimal in the sense that
no algorithm that returns an optimal solution using the same
lower bound function h(n) visits fewer nodes [Dechter and
Pearl, 1988]. However, in many applications solutions are
needed faster than A* can provide them. To find a solution
faster, it is common practice to increase the weight of h(n)
via f(n) = g(n) + w · h(n), with w ≥ 1 [Pohl, 1970].
There are many variants of weighted A* search, including
A∗

ε
[Pearl and Kim, 1982], Anytime A* [Hansen et al., 1997;

Zhou and Hansen, 2002], and ARA* [Likhachev et al., 2004].
In ARA*, for example, a series of solutions of decreasing cost
is returned over time. The weight w is initially set to a high
value and then decremented by δ after each solution. If al-
lowed to continue, w eventually reaches 1 and the cheapest
path is discovered. Of course, finding the optimal solution
this way takes longer than simply running A* directly.

These algorithms suffer from two inherent difficulties.
First, it is not well understood how to set w or δ to best sat-
isfy the user’s needs. Setting w too high or δ too low can
result in many poor-quality solutions being returned, wasting
time. But if w is set too low or δ too high, the algorithm may
take a very long time to find a solution. Therefore, to use
a weighted A* technique like ARA* the user must perform
many pilot experiments in each new problem domain to find
good parameter settings.

Second, for anytime algorithms such as ARA*, the user
must estimate the right time to stop the algorithm. The search
process appears as a black box that could emit a significantly
better solution at any moment, so one must repeatedly esti-
mate the probability that continuing the computation will be
worthwhile according to the user’s utility function. This re-
quires substantial prior statistical knowledge of the run-time
performance profile of the algorithm and rests on the assump-
tion that such learned knowledge applies to the current in-
stance.

These difficulties point to a more general problem: any-
time algorithms must inherently provide suboptimal perfor-
mance due to their ignorance of the user’s utility function. It
is simply not possible in general for an algorithm to quickly
transform the best solution achievable from scratch in time t

into the best solution achievable in time t + 1. In the worst
case, visiting the next-most-promising solution might require

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

103

starting back at a child of the root node. Without the ability to
decide during the search whether a distant solution is worth
the expected effort of reaching it, anytime algorithms must be
manually engineered according to a policy fixed in advance.
Such hardcoded policies mean that there will inevitably be
situations in which anytime algorithms will either waste time
finding nearby poor-quality solutions or overexert themselves
finding a very high quality solution when any would have suf-
ficed.

In this paper we address the fundamental issue: knowl-
edge of the user’s utility function. We propose a simple vari-
ant of best-first search that represents the user’s desires and
uses an estimate of this utility as guidance. We call the ap-
proach BUGSY (Best-first Utility-Guided Search—Yes!) and
show empirically across several domains that it can success-
fully adapt its behavior to suit the user, sometimes signifi-
cantly outperforming anytime algorithms. Furthermore, this
utility-based methodology is easy to apply, requiring no per-
formance profiling.

2 The BUGSY Approach
Ideally, a rational search agent would evaluate the utility to
be gained by each possible node expansion. The utility of
an expansion is equal to the utility of the eventual outcomes
enabled by that expansion, namely the solutions lying below
that node. For instance, if there is only one solution in a tree-
structured space, expanding any node other than the one it
lies beneath has no utility (or negative utility if time is costly).
We will approximate these true utilities by assuming that the
utility of an expansion is merely the utility of the highest-
utility solution lying below that node.

We will further assume that the user’s utility function can
be captured in a simple linear form. If f(s) represents the
cost of solution s, and t(s) represents the time at which it
is returned to the user, then we expect the user to supply
three constants: Udefault, representing the utility of returning
an empty solution; wf , representing the importance of solu-
tion quality; and wt, representing the importance of compu-
tation time. The utility of expanding node n is then computed
as

U(n) = Udefault − min
s under n

(wf · f(s) + wt · t(s))

where s ranges over the possible solutions available under n.
(Note that we follow the decision-theoretic tradition of better
utilities being more positive, requiring us to subtract the esti-
mated solution cost f(s) and search time t(s).) This formu-
lation allows us to express exclusive attention to either cost
or time, or any linear trade-off between them. The number
of time units that the user is willing to spend to achieve an
improvement of one cost unit is wf/wt. This quantity is usu-
ally easily elicited from users if it is not already explicit in the
application domain. (The utility function would also be nec-
essary when constructing the termination policy for an any-
time algorithm.) Although superficially similar to weighted
A*, BUGSY’s node evaluation function differs because wf is
applied to both g(n) and h(n).

Of course, the solutions s available under a node are un-
known, but we can estimate some of their utilities by using

time

bound

nearest

cheapestupper

‘optimistic
lower bound’

utility

cost

Figure 1: Estimating utility using the maximum of bounds on
the nearest and cheapest solutions.

functions analogous to the traditional heuristic function h(n).
Instead of merely computing a lower bound on the cost of the
cheapest solution under a node, we also compute the lower
bound on distance in search nodes to that hypothetical cheap-
est solution. In many domains, this additional estimate en-
tails only trivial modifications to the usual h function. Search
distance can then be multiplied by an estimate of time per
expansion to arrive at t(s). (Note that this simple estimation
method makes the standard assumption of constant time per
node expansion.) To provide a more informed estimate, we
can also compute bounds on the cost and time to the nearest
solution in addition to the cheapest. U(n) can then be esti-
mated as the maximum of the two utilities. For convenience,
we will also notate by f(n) and t(n) the values inherited from
whichever hypothesized solution had the higher utility.

Figure 1 illustrates this process. The two solid dots repre-
sent the solutions hypothesized by the cheapest and nearest
heuristic functions. The dashed circles represent hypotheti-
cal solutions representing a trade-off between those two ex-
tremes. The dotted lines represent contours of constant utility
and the dotted arrow shows the direction of the utility gradi-
ent. Assuming that the two solid dots represent lower bounds,
then an upper bound on utility would combine the cost of the
cheapest solution with the time to the nearest solution. How-
ever, this is probably a significant overestimate. Taking the
time of the cheapest and the cost of the nearest is not a true
lower bound on utility because the two hypothesized solu-
tions are themselves lower bounds and might in reality lie
further toward the top and right of the figure. Note that un-
der different utility functions (different slopes for the dotted
lines) the relative superiority of the nearest and cheapest so-
lutions can change.

2.1 Implementation
Figure 2 gives a pseudo-code sketch of a BUGSY implemen-
tation. The algorithm closely follows a standard best-first
search. U(n) is an estimate, not a lower bound, so it can
overestimate or change arbitrarily along a path. This implies
that we might discover a better route to a previously expanded
state. Duplicate paths to the same search state are detected in
steps 7 and 10; only the cheaper path is retained. We record
links to a node’s children as well as the preferred parent so
that the utility of descendants can be recomputed (step 9) if

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

104

BUGSY(initial, U())
1. open← {initial}, closed← {}
2. n← remove node from open with highest U(n) value
3. if n is a goal, return it
4. add n to closed
5. for each of n’s children c,
6. if c is not a goal and U(c) < 0, skip c

7. if an old version of c is in closed,
8. if c is better than cold,
9. update cold and its children
10. else, if an old version of c is in open,
11. if c is better than cold,
12. update cold
13. else, add c to open
14. go to step 2

Figure 2: BUGSY follows the outline of best-first search.

g(n) changes [Nilsson, 1980, p. 66]. The on-line estimation
of time per expansion has been omitted for clarity. The exact
ordering function used for open (and to determine ‘better’ in
steps 8 and 11) prefers high U(n) values, breaking ties for
low t(n), breaking ties for low f(n), breaking ties for high
g(n). Note that the linear formulation of utility means that
open need not be resorted as time passes because all nodes
lose utility at the same constant rate independent of their esti-
mated solution cost. In effect, utilities are stored independent
of the search time so far.

The h(n) and t(n) functions used by BUGSY do not have
to be lower bounds. BUGSY requires estimates—there is no
admissibility requirement. If one has data from previous runs
on similar problems, this information can be used to convert
standard lower bounds into estimates [Russell and Wefald,
1991]. In the experiments reported below, we eschew the
assumption that training data is available and compute cor-
rections on-line. We keep a running average of the one-step
error in the cost-to-go and distance-to-go, measured at each
node generation. These errors are computed by comparing
the cost-to-go and distance-to-go of a node with those of its
children. If the cost-to-go has not decreased by the cost of the
operator used to generate the child, we can conclude that the
parent’s value was too low and record the discrepancy as an
error. Similarly, the distance-to-go should have decreased by
one. These correction factors are then used when computing
a node’s utility to give a more accurate estimate based on the
experience during the search so far. Given the raw cost-to-
go value h and distance-to-go value d and average errors eh

and ed, d
′ = d(1 + ed) and h

′ = h + d
′
eh. Because on-line

estimation of the time per expansion and the cost and dis-
tance corrections create additional overhead for BUGSY rela-
tive to other search algorithms, we will take care to measure
CPU time in our experimental evaluation, not just node gen-
erations.

2.2 Properties of the Algorithm
BUGSY is trivially sound—it only returns nodes that are
goals. If the heuristic and distance functions are used without
inadmissible corrections, then the algorithm is also complete

if the search space is finite. If wt = 0 and wf > 0, BUGSY
reduces to A*, returning the cheapest solution. If wf = 0 and
wt > 0, then BUGSY is greedy on t(n). Ties will be broken
on low f(n), so a longer route to a previously visited state
will be discarded. This limits the size of open to the size of
the search space, implying that a solution will eventually be
discovered. Similarly, if both wf and wt > 0, BUGSY is com-
plete because t(n) is static at every state. The f(n) term in
U(n) will then cause a longer path to any previously visited
state to be discarded, bounding the search space and ensuring
completeness. Unfortunately, if the search space is infinite
and wt > 0, BUGSY is not complete because a pathological
t(n) can potentially mislead the search forever.

If the utility estimates U(n) are perfect, BUGSY is optimal.
This follows because it will proceed directly to the highest-
utility solution. Assuming U(n) is perfect, when BUGSY ex-
pands the start node the child node on the path to the highest
utility solution will be put at the front of the open list. BUGSY
will expand this node next. One of the children of this node
must have the highest utility on the open list since it is one
step closer to the goal than its parent, which previously had
the highest utility, and it leads to a solution of the same qual-
ity. In this way, BUGSY proceeds directly to the highest util-
ity solution achievable from the start state. It incurs no loss in
utility due to wasted time since it only expands nodes on the
path to the optimal solution.

It seems intuitive that BUGSY might have application in
problems where operators have different costs and hence the
distance to a goal in the search space might not correspond
directly to its cost. But even in a search space in which all
operators have unit cost (and hence the nearest and cheapest
heuristics are the same), BUGSY can make different choices
than A*. Consider a situation in which, after several expan-
sions, it appears that node A, although closer to a goal than
node B, might result in a worse overall solution. (Such a sit-
uation can easily come about even with an admissible and
consistent heuristic function.) If time is weighted more heav-
ily than solution cost, BUGSY will expand node A in an at-
tempt to capitalize on previous search effort and reach a goal
quickly. A*, on the other hand, will always abandon that
search path and expand node B in a dogged attempt to op-
timize solution cost regardless of time.

In domains in which the cost-to-goal and distance-to-goal
functions are different, BUGSY can have a significant advan-
tage over weighted A*. With a very high weight, weighted
A* will find a solution only as quickly as the greedy algo-
rithm. BUGSY however, because its search is guided by an
estimate of the distance to solutions as well as their cost, can
actually find a solution in less time than the greedy algorithm.

3 Empirical Evaluation
To determine whether such a simple mechanism for time-
aware search can be effective in practice with imperfect es-
timates of utility, we compared BUGSY against seven other
algorithms on three different domains: gridworld path plan-
ning (12 different varieties), dynamic robot motion planning
(used by Likhachev et al. [2004] to evaluate ARA*), and mul-
tiple sequence alignment (used by Zhou and Hansen [2002] to

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

105

#
oooooooo
o # o
o # o
o # o

##o# #o
Soo# G

jhgiggh
j-grmgg
o-grm-o

Figure 3: Examples of the test domains: dynamic motion
planning (left), gridworld planning (top right), and multiple
sequence alignment (bottom right).

evaluate Anytime A*). All algorithms were coded in Objec-
tive Caml, compiled to native code, and run on one processor
of a dual 2.6GHz Xeon machine with 2Gb RAM, measuring
CPU time used. The algorithms were:
A* detecting duplicates using a closed list, breaking ties on

f in favor of high g,
weighted A* with w = 3,
greedy A* but preferring low h, breaking ties on low g,
speedy greedy but preferring low time to goal (t(n)), break-

ing ties on low h, then low g,
Anytime A* weighted A* (w = 3) that continues, pruning

the open list, until an optimal goal has been found,
ARA* performs a series of weighted A* searches (starting

with w = 3), decrementing the weight (δ = 0.2, follow-
ing Likhachev et al.) and reusing search effort,

A∗
ε from among those nodes within a factor of ε (3) of the

lowest f value in the open list, expands the one esti-
mated to be closest to the goal.

Note that greedy, speedy, and A* do not provide any inherent
mechanism for adjusting their built-in trade-off of solution
cost against search time; they are included only to provide a
frame of reference for the other algorithms. The first solu-
tion found by Anytime A* and ARA* is the same one found
by weighted A*, so those algorithms should do at least as
well. We confirmed this experimentally, and omit weighted
A* from our presentation below. On domains with many so-
lutions, Anytime A* often reported thousands of solutions;
we therefore limited both anytime algorithms to only report-
ing solutions that improve solution quality by at least 0.1%.
A∗

ε performed very poorly in our preliminary tests, taking a
very long time, so we omit its results as well. 1

3.1 Dynamic Robot Motion Planning
Following Likhachev et al. [2004], this domain involves mo-
tion planning for a mobile robot (see Figure 3 for an exam-

1Although Pearl and Kim do not discuss implementation tech-
niques (their results are presented solely in terms of node expan-
sions), it seems that their algorithm could be made to operate more
efficiently by designing a special coordinated heap and balanced bi-
nary tree data structure. We have not pursued this yet.

U() BUGSY ARA* Sp Gr
time only 72 66 75 88

10 microsec 72 66 75 88
100 microsec 69 66 74 88

1 msec 58 63 70 83
10 msec 51 47 47 56

0.1 sec 66 59 53 55
1 sec 69 65 56 56

10 secs 67 69 53 54
100 secs 67 69 53 53

Table 1: Results on dynamic robot motion planning.

ple). Rather than finding the shortest path, the objective is
to find the fastest path, taking into account the maximum
acceleration of the robot and its inability to turn quickly at
high speed. Solution cost corresponds to the duration of the
planned robot trajectory. In effect, each utility function spec-
ifies a different trade-off between planning time and plan ex-
ecution time. The state representation records position, head-
ing, and speed. The path cost heuristic (h(n)) is simply the
shortest path distance to the goal, divided by the maximum
speed. This is precomputed to all cells at the start of the
search. The plan cost lower bound f(n) is the usual cost-
so-far (g(n)) plus this cost-to-go (h(n)). For speedy and
BUGSY, the distance in moves to the goal is also precom-
puted. The search cost estimate t(n) is this distance divided
by the number of search nodes expanded per second, which
was estimated on-line as discussed above. No separate esti-
mates were made for BUGSY of the distance to the cheapest
goal or cost of the nearest goal, so U was estimated only on
this single f and t values. Legal state transitions (ignoring
position) were precomputed. Unlike the heuristics, this was
the same for all algorithms and was not included in the search
time. We used 20 worlds 100 by 100 meters (discretized as in
Likhachev et al. every 0.4 meters), each with 20 linear obsta-
cles placed at random. Starting and goal positions and head-
ings were selected uniformly at random. Instances that were
solved by A* in less than 10 seconds or more than 1000 sec-
onds were replaced.

Table 1 compares the solutions obtained by each algorithm
under a range of different possible utility functions. Each
row of the table corresponds to a different utility function.
Recall that each utility function is a weighted combination of
path cost and CPU time taken to find it. The relative size of
the weights determines how important time is relative to cost.
In other words, the utility function specifies the maximum
amount of time that should be spent to gain an improvement
of 1 cost unit. This is the time that is listed under U() for
each row in the table. For example, ”1 msec” means that a
solution that takes 0.001 seconds longer to find than another
must be at least 1 unit cheaper to be judged superior. The
utility functions tested range over several orders of magnitude
from one in which only search time matters to one in which
100 seconds can be spent to obtain a one unit improvement in
the solution cost.

Recall that, given a utility function at the start of its search,
BUGSY returns a single solution representing the best trade-

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

106

off of path cost and search time that it could find based on the
information available to it. Of course, the CPU time taken
is recorded along with the solution cost. Greedy (notated Gr
in the table) and speedy (notated Sp) also each return one
solution. These solutions may score well according to util-
ity functions with extreme emphasis on time but may well
score poorly in general. The two anytime algorithms, Any-
time A* and ARA*, return a stream of solutions over time.
For these experiments, we allowed them to run to optimality
and then, for each utility function, post-processed the results
to find the optimal cut-off time to optimize each algorithm’s
performance for that utility function. Note that this ‘clairvoy-
ant termination policy’ gives Anytime A* and ARA* an un-
realistic advantage in our tests. However, both A* and Any-
time A* performed extremely poorly in this domain and are
omitted from Table 1. To compare more easily across differ-
ent utility functions, all of the resulting solution utilities were
linearly scaled to fall between 0 and 100. Each cell in the
table is the mean across 20 instances.

The results suggest that BUGSY is competitive with or bet-
ter than ARA* on all but perhaps one of the utility functions.
In general, BUGSY seems to offer a slight advantage when
time is important. Given that BUGSY does not require per-
formance profiling to construct a termination policy, this is
encouraging performance. As one might expect, Greedy per-
forms well when time is very important, however as cost be-
comes important the greedy solution is less useful. Compared
to greedy, speedy is not able to overcome the overhead of
computing two node evaluation functions.

3.2 Gridworld Planning
We considered several classes of path planning problems on
a 500 by 300 grid, using either 4-way or 8-way movement,
three different probabilities of blocked cells, and two differ-
ent cost functions. In addition to unit costs, under which ev-
ery move is equally expensive, we used a graduated cost func-
tion in which moves along the upper row are free and the cost
goes up by one for each lower row. Figure 3 shows a small
example solution under these costs (the start and goal posi-
tions are always in these corners). We call this cost function
‘life’ because it shares with everyday living the property that
a short direct solution that can be found quickly (shallow in
the search tree) is relatively expensive while a least-cost solu-
tion plan involves many annoying economizing steps. Under
both cost functions, simple analytical lower bounds (ignor-
ing obstacles) are available for the cost (g(n)) and distance
(in search steps) to the cheapest goal and to the nearest goal.
These quantities are then used to compute the f(n) and t(n)
estimates. Because A* can perform well in this domain and
our experiments include utility functions that make it worth
finding the optimal solution, we diluted BUGSY’s estimated
lower-bound correction factors by dividing them by 5, de-
creasing the severity of any overestimation.

Table 2 shows typical results from three representative
classes of gridworld problems. As before, the rows repre-
sent a broad spectrum of utility functions, including those in
which speedy and A* are each designed to be optimal. Each
value represents the mean over 20 instances. Anytime A* is
notated AA*. In the top group (unit costs, 8-way movement,

U() BUGSY ARA* AA* Sp Gr A*
unit costs, 8-way movement, 40% blocked

time only 99 100 99 99 100 69
500 microsec 98 96 96 95 95 69

1 msec 98 91 93 90 91 69
5 msec 95 60 68 56 56 68

10 msec 94 44 57 34 34 74
50 msec 95 85 77 33 33 91

cost only 95 96 96 33 33 96
unit costs, 4-way movement, 20% blocked

time only 97 98 98 98 99 19
100 microsec 95 94 95 94 95 21
500 microsec 91 67 70 61 62 28

1 msec 86 62 43 28 29 50
5 msec 82 81 42 22 22 91

10 msec 79 87 46 20 20 92
cost only 76 93 93 19 19 93

‘life’ costs, 4-way movement, 20% blocked
time only 99 92 88 100 96 16

1 microsec 97 94 90 93 98 17
5 microsec 92 89 85 52 92 18

10 microsec 93 86 83 12 88 30
50 microsec 97 86 87 11 85 87

100 microsec 97 91 89 11 85 94
cost only 94 97 97 11 82 97

Table 2: Results on three varieties of gridworld planning.

40% blocked), we see BUGSY performing very well, behav-
ing like speedy and greedy when time is important, like A*
when cost is important, and significantly surpassing all the
algorithms for the middle range of utility functions. In the
next group (4-way movement, 20% blocked), BUGSY per-
forms very well as long as time has some importance, again
dominating in the middle range of utility functions where bal-
ancing time and cost is crucial. However, its inadmissible
heuristic means that it cannot perform quite as well as A* or
ARA* at the edge of the spectrum when cost becomes crit-
ical. (Of course, one can always disable BUGSY’s correc-
tion factors when running under such circumstances, but pre-
sumably in practice one would be using A* search anyway if
search time weren’t an important consideration.) In the bot-
tom group in the table (‘life’ costs, 4-way movement, 20%
blocked), we see a similar general pattern: BUGSY performs
very well across a wide range of utility functions, dominat-
ing other algorithms for the middle range of utility functions.
However, it does fall slightly short of A* when solution cost
is the only criterion.

3.3 Multiple Sequence Alignment
Alignment of multiple strings has recently been a popular do-
main for heuristic search algorithms [Hohwald et al., 2003].
An example alignment is shown in Figure 3. The state rep-
resentation is the number of characters consumed so far from
each string; a goal is reached when all characters are con-
sumed. Moves that consume from only some of the strings
represent the insertion of a ‘gap’ character into the others. We
computed alignments of three sequences at a time, using the

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

107

U() BUGSY ARA* AA* Sp Gr A*
time only 99 100 100 100 100 22

1 msec 100 99 99 97 98 22
5 msec 99 97 97 88 92 24

10 msec 98 92 94 74 83 26
50 msec 87 80 81 14 42 90

0.1 sec 69 89 68 11 33 93
cost only 57 95 95 9 27 95

Table 3: Results on multiple sequence alignment.

standard ‘sum-of-pairs’ cost function in which a gap costs 2,
a substitution (mismatched non-gap characters) costs 1, and
costs are computed by summing all the pairwise alignments.
Sequences were over 20 characters, representing amino acid
triplets. The uniform random sequences that are popular
benchmarks for optimal alignment algorithms are not suit-
able in our setting because the solution found by the speedy
algorithm (merely traversing the diagonal, resulting in many
substitutions) is very often the optimal alignment. Instead, we
use biologically-inspired benchmarks which encourage opti-
mal solutions that contain significant numbers of gaps and
matches. Starting from a ‘common ancestor’ string which
does not become part of the instance, we create sequences
by deleting and substituting characters uniformly at random.
In the instances used below, the ancestors were 1000 char-
acters long and the probabilities of deletion and substitution
were both 0.25 at each position. The heuristic function h(n)
was based on optimal pairwise alignments that were precom-
puted by dynamic programming. The lower bound on search
nodes to go was simply the maximum number of characters
remaining in any sequence. As in gridworld, A* is a feasible
algorithm and thus we dilute BUGSY’s correction factors by
5.

Table 3 shows the results, with each row representing a
different utility function and all raw scores again normalized
between 0 and 100. Each cells represents the mean over 5 in-
stances (there was little variance in the scores in this domain).
Again we see the same pattern of performance. BUGSY per-
forms very well when time is important and surpasses the
other algorithms when balancing between cost and time. It
does fall short of A* when cost is paramount, due to its inad-
missible heuristic.

4 Discussion
We have presented empirical results, using actual CPU time
measurements and a variety of search problems, demonstrat-
ing that BUGSY is at least competitive with state-of-the-art
anytime algorithms. For utility functions with an emphasis on
solution time or on balancing time and cost, it often performs
significantly better than any previous method. However, for
utility functions based heavily on solution cost it can some-
times perform worse than A*. BUGSY appears quite robust
across different domains and utility functions.

When its utility estimates are perfect, BUGSY is optimal.
However, more work remains to understand the exact trade-
off between accuracy and admissibility. Our empirical expe-
rience demonstrates that attempting to correct lower bounds

into more accurate estimators can impair BUGSY’s perfor-
mance when solution quality is very important. However,
it seems foolish not to take advantage of on-line error esti-
mation to bring these bounds closer to the accurate estimates
that would allow BUGSY to be optimal. In this paper, we have
chosen to merely dilute the correction factors. In the future,
we hope to be able to analyze the given utility function in the
context of the domain and determine whether admissibility is
worth preserving.

We have done preliminary experiments incorporating sim-
ple deadlines into BUGSY, with encouraging results. Because
it estimates the search time-to-go, it can effectively prune so-
lutions that lie beyond a search time deadline. Another simi-
lar extension applies to temporal planning: one can specify a
bound on the sum of the search time and the resulting plan’s
execution time and let BUGSY determine how to allocate the
time.

Note that BUGSY solves a different problem than Real-
Time A* [Korf, 1990] and its variants. Rather than perform-
ing a time-limited search for the first step in a plan, BUGSY
tries to find a complete plan to a goal in limited time. This
is particularly useful in domains in which operators are not
invertible or are otherwise costly to undo. Having a complete
path to a goal ensures that execution does not become en-
snared in a deadend. It is also a common requirement when
planning is but the first step in a series of computations that
might further refine the action sequence.

In some applications of best-first search, memory use is a
prominent concern. In a time-bounded setting this is less fre-
quently a problem because the search doesn’t have time to ex-
haust available memory. However, the simplicity of BUGSY
means that it may well be possible to integrate some of the
techniques that have been developed to reduce the memory
consumption of best-first search if necessary.

When planning in a dynamic environment, we assume not
only that BUGSY is provided with a utility function that cap-
tures the decrease in expected plan value as a linear function
of time, but also that the algorithm has full access to knowl-
edge of how the domain changes. It would be very interest-
ing to combine the utility-based search of BUGSY with tech-
niques to exploit localized changes in the search space, such
as used in ARA*.

5 Conclusions
As Nilsson notes, “in most practical problems we are inter-
ested in minimizing some combination of the cost of the path
and the cost of the search required to obtain the path” yet
“combination costs are never actually computed . . . because
it is difficult to decide on the way to combine path cost and
search-effort cost” [1971, p. 54, emphasis his]. BUGSY ad-
dresses this problem by letting the user specify how path cost
and search cost should be combined.

This new approach provides an alternative to anytime algo-
rithms. Instead of returning a stream of solutions and relying
on an external process to decide when additional search ef-
fort is no longer justified, the search process itself makes such
judgments based on the node evaluations available to it. Our
empirical results demonstrate that BUGSY provides a simple

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

108

and effective way to solve shortest-path problems when com-
putation time matters. We would suggest that search proce-
dures are usefully thought of not as black boxes to be con-
trolled by an external termination policy but as complete in-
telligent agents, informed of the user’s goals and acting on the
information they collect so as to directly maximize the user’s
utility.

References
[Dechter and Pearl, 1988] Rina Dechter and Judea Pearl.

The optimality of A*. In Laveen Kanal and Vipin Kumar,
editors, Search in Artificial Intelligence, pages 166–199.
Springer-Verlag, 1988.

[Hansen et al., 1997] Eric A. Hansen, Shlomo Zilberstein,
and Victor A. Danilchenko. Anytime heuristic search:
First results. CMPSCI 97-50, University of Massachusetts,
Amherst, September 1997.

[Hart et al., 1968] Peter E. Hart, Nils J. Nilsson, and Bertram
Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions of Systems Sci-
ence and Cybernetics, SSC-4(2):100–107, July 1968.

[Hohwald et al., 2003] Heath Hohwald, Ignacio Thayer, and
Richard E. Korf. Comparing best-first search and dynamic
programming for optimal multiple sequence alignment. In
Proceedings of IJCAI-03, pages 1239–1245, 2003.

[Korf, 1990] Richard E. Korf. Real-time heuristic search. Ar-
tificial Intelligence, 42:189–211, 1990.

[Likhachev et al., 2004] Maxim Likhachev, Geoff Gordon,
and Sebastian Thrun. ARA*: Anytime A* with prov-
able bounds on sub-optimality. In Proceedings of NIPS
16, 2004.

[Nilsson, 1971] Nils J. Nilsson. Problem-Solving Methods in
Artificial Intelligence. McGraw-Hill, 1971.

[Nilsson, 1980] Nils J. Nilsson. Principles of Artificial Intel-
ligence. Tioga Publishing Co, 1980.

[Pearl and Kim, 1982] Judea Pearl and Jin H. Kim. Studies
in semi-admissible heuristics. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, PAMI-4(4):391–
399, July 1982.

[Pohl, 1970] Ira Pohl. Heuristic search viewed as path find-
ing in a graph. Artificial Intelligence, 1:193–204, 1970.

[Russell and Wefald, 1991] Stuart Russell and Eric Wefald.
Do the Right Thing: Studies in Limited Rationality. MIT
Press, 1991.

[Zhou and Hansen, 2002] Rong Zhou and Eric A. Hansen.
Multiple sequence alignment using anytime A*. In Pro-
ceedings of AAAI-02, pages 975–976, 2002.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

109

Heuristic Speed-Ups for Learning in Complex Stochastic Environments

Christian J. Darken
MOVES Institute

Department of Computer Science
Naval Postgraduate School

Monterey, CA 93943

Abstract

We describe a novel methodology by which a
software agent can learn to predict future events
in complex stochastic environments together with
an important heuristic-based acceleration technique
for computing the prediction. This speed-up en-
ables us to use much more context in our predic-
tions than was previously possible[Darken, 2005].
We present results gathered from a first prototype
of our approach.

1 Introduction
A significant challenge for intelligent software agents is mak-
ing them proactive, i.e. able to understand their environment
to the degree that they are able to predict what is likely to hap-
pen next and can therefore take appropriate measures. The
ability to predict likely next events can in principle be con-
verted into intelligent action selection along the lines sug-
gested by[Sutton and Barto, 1981]. We propose that simple,
transparent learning schemes may enable agents to predict the
likely course of events. The prediction algorithm has been
previously described in[Darken, 2005], but the acceleration
techniques and results they enable are new.

In order to explore our hypothesis, we have created a sim-
ple game in the RPG (role-playing game) family. We then
implemented a sensory interface that passes percepts coded
in a first-order logic subset to the agent. The agent then at-
tempts to predict the next percept that it will see. This envi-
ronment is both stochastic and complex. ”Stochastic” implies
that future percepts are not a function of the sequence of pre-
vious ones. This environment may be considered complex
in many senses, beginning with the fact that, although it is a
small and simple game as such games go, its state space is
very large. More significant, we believe, is the fact that there
is no obvious way for the agent to sum up its information
about the world in a representation of fixed dimension, i.e.
that some aspects of first-order logic are apparently needed
in order to accomplish the task. Our impression is that learn-
ing algorithms that can succeed in stochastic domains without
obvious representations of fixed dimension are of interest for
many domains stretching far beyond interactive entertainment
applications.

2 Related Work
Anticipation of hostile unit behavior in the context of com-
puter games has previously been addressed in[Laird, 2001],
who had the agent apply its own action selection procedure
based on the information probably possessed by the hostile
unit in order to guess what the hostile would do. In this work,
we are attempting to learn to anticipate without hand-coded
rules. Further, while hostile unit behavior is one of the things
we would like to predict, it is not the only thing.

We have not been successful in finding known algorithms
that we can productively compare with our approach. Logical
rules, including some types of predictive rules, can be learned
by algorithms such as FOIL[Mitchell, 1997]. However, these
algorithms assume a deterministic domain. Hidden Markov
Models[R. Duda and Stork, 2001] are well suited to stochas-
tic domains, but assume a finite state space, and in practice
state spaces that are finite but large are problematic. We are
more optimistic about the scaling of variable order Markov
models[R. Begleiter and Yona, 2004], but these also assume
a finite state space.

After submitting this paper, the reviewers suggested that
several recent models may be related to the one presented
in this paper. We have not been able to follow up these
suggestions in as much detail as we would have liked, but
we offer the following preliminary comments. Predictive
State Representations[Singhet al., 2003] and Schema Learn-
ing [Holmes, 2005] are recent approaches to prediction in
stochastic environments. Both are focused on predicting the
results of agent actions. We believe both approaches are cur-
rently limited to finite state spaces, and we are aware of tests
on only very small domains (tens of states). Relational Re-
inforcement Learning (for example,[Gretton and Thiebaux,
2004]) also considers relational, stochastic domains like the
approach described in this work, though it appears to be fo-
cused on action selection (as is conventional reinforcement
learning) rather than prediction.

3 Benchmark Environment
Our benchmark environment is a simple virtual environment
with a text interface modeled after the DikuMUD family of
combat oriented MUD’s. This family of games is instantly
comprehensible to a player of World of Warcraft or Everquest
2, to name two current exemplars, and is arguably a progen-

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

110

Paperville
Terrified eyes peer from every window

of this besieged hamlet.
Contents: pitchfork, wand, Conan

get pitchfork

You get the pitchfork.

equip pitchfork

You equip the pitchfork.

w

The Eastern Meadow
All the grass has been trampled into

the dirt, and tiny footprints are
everywhere.

Contents: Conan

Figure 1: The beginning of a session with the benchmark en-
vironment as it appears to a human player named Conan.

itor of these systems. Players of this type of game assume
the role of a young adventurer. The goal of the game is to
expand the power of one’s in-game avatar to the maximum
extent possible. This goal is primarily accomplished by slay-
ing the monsters that roam the virtual environment. Slaying
monsters results in improvements to the avatar’s capabilities
through an abstracted model of learning (“experience points”)
and also though the items (“loot”) that the slain monsters drop
or guard, which either consist of or may be traded for more
powerful combat gear.

The benchmark environment consists of 19 locations, four
monsters of three different types, and four different weapon
types, of which there may be any number of instantiations.
Growth of combat capabilities through experience has not
been modeled, therefore, improved capability comes only by
acquiring more powerful weapons. The environment as a
whole may be conceived of as a discrete event system with
a state that consists of the Cartesian product of some number
of variables. The system remains in a state indefinitely until
an event is received, at which time it may transition to a new
state.

The benchmark environment together with networking and
multiplayer infrastructure was coded from scratch in Python.
The system uses a LambdaMOO-like method dispatch mech-
anism to determine which game object should process a
player action. An unusual feature is the ability to provide
output in English text and/or in a first-order logic fragment,
as shown in Figures 1 and 2.

4 Perceptual Model
We have implemented text-based interfaces to allow both hu-
mans and software agents to interact with the benchmark en-
vironment. The human interface consists of English text. We
describe the agent interface below.

(A 40.6979999542 look)
(+ 40.7079999447 location pitchfork

Paperville)
(+ 40.7079999447 location wand

Paperville)
(+ 40.7079999447 location Conan

Paperville)

get pitchfork

(A 44.6440000534 get pitchfork)
(E 44.6440000534 get Conan pitchfork)
(- 44.6440000534 location pitchfork

Paperville)
(+ 44.6440000534 location pitchfork

Conan)

equip pitchfork

(A 47.6080000401 equip pitchfork)
(+ 47.6080000401 equipping Conan

pitchfork)

w

(A 51.2130000591 w)
(E 51.2130000591 go Conan west)
(- 51.2130000591 location wand

Paperville)
(- 51.2130000591 location Conan

Paperville)
(+ 51.2130000591 location Conan

The_Eastern_Meadow)

Figure 2: The beginning of the same session described in Fig-
ure 1 with the benchmark environment as it would appear to
a software agent named Conan. The first four percept fields
are: type, time stamp, percept name. These are followed by
the percept arguments, if any.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

111

Perception for software agents in the benchmark environ-
ment is modeled as direct access to a subset state variables
and system events. The subset of visible events and variables
depends upon the location of the agent in the environment, i.e.
an agent receives information only about occurrences in his
immediate location. The agent’s own actions also generate
percepts. Thus, four types of percepts are required. ’A’ repre-
sents agent actions. ’E’ represents events. ’+’ represents the
beginning of a time interval in which a variable was sensed to
have a particular value. When the variable changes value, or
it can no longer be sensed, a ’-’ percept is received. We form
logical atoms from percepts whenever needed by appending
the percept type to the percept name to create a predicate (i.e.
a percept of type ’E’ with name ’location’ would correspond
to an atom with predicate ’locationE’) and taking the remain-
ing elements of the percept as the arguments of the predicate
(the time stamp is ignored). At any given time, we define the
“sensation” of the agent to be the set of all variables and their
values that are currently being sensed.

5 Prediction

After the agent is turned on for the first time, and percepts
start to arrive, a percept predictor is constructed on the fly, i.e.
the agent learns as it goes along, just like animals do. As each
percept is received, the new data is used to enhance (“train”)
the predictor, and the enhanced predictor is immediately put
to use to predict the next percept. Prediction depends upon a
few key notions. The first is the notion of a “situation”.

Our statistical one-step-ahead percept predictor is a func-
tion whose input is the percept sequence up to the time of
prediction and whose output is a probability distribution over
all percepts that represents the probability that each percept
will be the next one in the percept sequence. Of course, all
percepts in the percept sequence are not equally useful for
prediction. In particular, one might expect that, as a general
rule, more recent percepts would be more useful than older
ones. On this basis, we discriminate the “relevant” subset of
the percept sequence, and ignore the rest. We define a recency
thresholdT . For predictions at timet, a percept in the percept
sequence is relevant if either its time-stamp is in the interval
[t − T, t], or it is a ’+’ type percept whose corresponding ’-’
percept has not yet been received (this would indicate that the
contents of the percept are still actively sensed by the agent).
Given the set of relevant percepts, we produce the multiset of
relevant atoms (multisets are sets that allow multiple identi-
cal members, also known as bags) by stripping off the times-
tamps and appending the type to the predicate to produce a
new predicate whose name reflects the type. We call these
relevant atom multisets “situations”.

Our predictor function takes the form of a table whose left
column contains a specification of a subset of situations and
whose right column contains a prescription for generating a
predictive distribution over percepts given a situation in the
subset. The table contains counters for the number of times
each left column and right column distribution element is en-
countered. We have investigated two different methods of
specifying subsets and generating the corresponding predic-
tions.

5.1 Exact Matching
In this technique, each left column entry consists of a single
situation. A new situation matches the entry only if it is iden-
tical (neglecting the order of the atoms). Each right column
entry consists of a distribution of situations. If a new situa-
tion matches a left column entry, the predicted percept distri-
bution is the list of atoms in the right-hand column together
with probability estimates which are simply the value of the
counter for the list member element divided by the value of
the counter for the situation in the left column.

As each percept arrives, it is used to train the predictor
function as follows. The situation as it wasat the time of the
arrival of the last perceptis generated and matched against all
entries in the left-hand column of the table. Because of how
the table is constructed, it can match at most one. If a match
is found, the counter for the entry is incremented. Then the
new percept is matched against each element of the predicted
percept distribution. If it matches, the counter for that ele-
ment is incremented. If it fails to match any element of the
distribution, it is added as a new element of the distribution
with a new counter initialized to one. If the situation matches
no left-hand column entry, a new entry is added.

Next, the current situation (including the percept that just
arrived) is constructed and matched against the left-hand col-
umn entries to generate the predicted distribution for the next
percept to arrive. If the situation does not match any entry,
there is no prediction, i.e. the situation is completely novel to
the agent.

An instructive example to illustrate the algorithm’s func-
tion can be found in[Darken, 2005].

5.2 Patterns with Variables
The above technique makes predictions that are specific to
specific objects in the environment. In environments where
an object may be encountered only once and never again,
for example, this is not very useful. By replacing references
to specific objects by variables, we produce a technique that
generalizes across objects. In this technique, left column en-
tries contain variables instead of constants. A new situation
matches the entry if there is a one-to-one substitution of the
variables to constants in the situation. A one-to-one substitu-
tion is a list of bindings for the variables, that has the property
that one and only one variable can be bound to one specific
constant. The reason for the constraint to one-to-one substi-
tutions is to ensure that each situation matches at most one
pattern (left column entry). This restriction is not necessary,
but it is convenient. Right column entries can also contain
variables in this model. Given a match of a pattern to a situ-
ation, the predicted percept distribution is given by applying
the substitution to the atoms in the right column distribution.
Note that it may be the case that some variables remain in the
prediction even after the substitution is applied.

As each percept arrives, it is used to train the predictor
function as follows. The situation is generated and matched
against all entries in the left-hand column of the table. It can
match at most one. If a match is found, the substitution (list
of variable-to-constant bindings) is kept, and the counter for
the entry is incremented. Then the substitution is applied to
each element of the predicted percept distribution, and the

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

112

percept is matched against it. If it matches, the counter for
that element is incremented. If it fails to match any element
of the distribution, it is “variablized” by replacing each con-
stant with the corresponding variable from the substitution,
and replacing each remaining constant with a new variable,
and then added as a new element of the distribution with a
new counter initialized to one. If the situation matches no
left-hand column entry, a new entry is added, consisting of
the situation with each constant replaced by a variable.

Note that one can conceive of interesting schemes that are
combinations of the two presented techniques. For example,
one might try to predict the next percept with an exact match-
ing model first, but if no prediction was available (or if the
prediction was based on too little data), one might revert to
a simultaneously developed variable-based predictor. Alter-
natively, one might design the environment so that percept
references to objects were either existentially quantified vari-
ables or constants. A hybrid model could be developed which
would then produce patterns with variables or constants based
on what was present in the percept. This places the burden of
deciding how the predictor should behave onto the percept
designer.

6 Accelerated Search
Initially we implemented a back-tracking depth-first search to
match situations to table entries. Using back-tracking search
and progressing linearly through the predictor table proved
too slow. We wanted to experiment with higher recency
thresholds. But a higher recency threshold corresponds di-
rectly to larger situations, and a great deal more time per-
forming backtracking search.

For the exact matching algorithm, it is the case that each
situation corresponds to a unique string which is the con-
stituent atoms (taken as lists of strings which are the predicate
and constant arguments) put into lexical order. These strings
are then placed in a hash table. Now a new situation can be
tested against the table by constructing its string and checking
the hash table.

For the variable pattern approach, simply sorting the atoms
will not work, as they contain variables whose names are not
significant. Our approach is to compute an invariant of the
situation pattern that does not depend on the names of the
variables. For each variable, we construct two lists of predi-
cates, the list of predicates where the variable appears as the
first argument and the list of predicates where the variable ap-
pears as the second. All of our predicates are binary. Were
this not the case, more lists could be used, or the higher de-
gree atoms reduced to a semantically equivalent set of binary
atoms. We then put this list of list pairs into lexical order
and then hash them into a table. Two situations that are iden-
tical up to substituting the names of variables must hash to
the same location in the table. Unfortunately, situations that
are different in more than just variable names can nonethe-
less hash to the same location, so a backtracking search must
be performed on each situation in the hash cell to determine
whether the match is genuine or not. Still, hash collisions
occur relatively rarely, and this approach is very much faster
than backtracking search over every row of the predictor ta-

ble.

6.1 Example
The following example provides proof that the “list of list
pairs” invariant, described above, is not sufficient to discrimi-
nate all situations that are legitimately different. Consider the
following situation description, as might appear as a left col-
umn entry in the variable pattern method. Only one predicate,
“P”, is used.

P(?v,?w)
P(?w,?x)
P(?x,?y)
P(?z,?y)

Constructing the two lists for each variable as described
above yields:

?v: [P] []
?w: [P] [P]
?x: [P] [P]
?y: [] [P P]
?z: [P] []

Here is a similar, yet different situation description.

P(?v,?w)
P(?w,?x)
P(?y,?x)
P(?z,?y)

And here is the corresponding list of list pairs.

?v: [P] []
?w: [P] [P]
?x: [] [P P]
?y: [P] [P]
?z: [P] []

After lexical sort, both cases become:

[] [P P]
[P] []
[P] []
[P] [P]
[P] [P]

7 Results
7.1 First Experiment
We created a software agent that takes random actions (one
every 0.25 seconds) and connected it to the benchmark en-
vironment. Since the action generator is not very intelligent,
many actions elicit what are essentially error messages from
the environment. We do not consider this a problem. In fact,
we would like the agent to learn when an action will be fruit-
less.

We describe the results of a typical run. For this run, per-
cepts were defined as relevant if they had been received in the
last 0.1 seconds or if they were in the agent’s current sensa-
tion. The agent was allowed to explore the environment for
about one and one quarter hours of real time while the learn-
ing algorithm ran concurrently. 38519 percepts were received
and processed during the run.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

113

The exact matching approach produced 5695 predictors
(rows in the table). The approach with variables produced
only 952, much fewer, as might be expected.

Numeric results are given in Figures 3 and 4. The average
predicted probability of the percepts as a function of time is
presented in Figure 7. Note that by the end of the run, both
curves are fairly flat. The exact match curve is lower, but
increasing faster.

For the approach with variables, the prediction is consid-
ered correct if it matches the actual next percept (to within a
one-to-one variable substitution). Note that the agent’s own
actions, being randomly generated, were the most difficult
to predict. Neglecting type ’A’ percepts, the average pre-
dicted probability of all remaining percepts is 66.6 percent
for the exact match model and 70.5 percent for the model
with variables. This strikes us as reasonably high given the
fine-grained nature of the predictions, the simplicity of the
algorithm and the high degree of remaining irreducible ran-
domness in the environment caused by random movements
of monsters and outcomes of each attempted strike in com-
bat. A significant number of mistakes seemed to be caused
by forgetting of important percepts caused by the severe re-
cency threshold used (0.1 sec). We have found that the simple
table-based predictive model does not scale well to the re-
cency threshold of multiple seconds that would be seem to be
necessary to solve the problem without modifying the agents
perception to be more informative.

Detailed analysis of the top five types of errors for each
algorithm shows that both algorithms are strongly impacted
by the 0.1 sec recency threshold. The worst symptom is that
the algorithms are unable to predict combat-related messages
accurately because they can not tell that they are in combat.
They can not tell that they are in combat because there is noth-
ing in the sensation that indicates ongoing combat, and com-
bat messages are spaced at intervals of one to two seconds.

For the exact matching algorithm, the most common er-
rors stem from the simple fact that, being completely unable
to generalize, many situations look completely novel, even
at the end of the run. This difference can be clearly seen in
the histograms of the last 5000 prediction probabilities pre-
sented as Figures 5 and 6. The exact match algorithm has
more predictions with probability one than the variable-based
algorithm, but it also has more with probability zero, indicat-
ing the absence of a match with any table entry.

The variable-based approach scored better that the exact
matching algorithm overall. Nonetheless, the lack of predi-
cates for indicating object type in the benchmark environment
caused an interesting problem for this approach. For example,
this approach was unable to predict the results of attempts to
’get X’, and therefore had to hedge its bets between success
and an error message. This was no issue for the exact match
algorithm, as it could learn that ’get Troll’ would provoke an
error while ’get sword’ would succeed. Note that the addi-
tion of a ’portable’ predicate, for example, would mitigate
this problem.

7.2 Second Experiment
In the second experiment, a fresh run of the agent was per-
formed with the time between actions greatly increased (from

Type Avg. Probability Occurrences Error
A 7.65% 14488 65.5%
E 72.09% 14905 20.3%
+ 45.92% 4563 12.1%
- 69.28% 4563 6.9%

Figure 3: Performance summary for exact matching. The av-
erage predicated probability over all percepts was 44.43%.
Error is the expected fraction of the total number of predic-
tion errors for percepts of the given type.

Type Avg. Probability Occurrences Error
A 7.82% 14488 65.3%
E 66.39% 14905 24.5%
+ 65.12% 4563 7.8%
- 89.32% 4563 2.4%

Figure 4: Performance summary for patterns with vari-
ables. The average predicted probability over all percepts was
46.94%. Error is the expected fraction of the total number of
prediction errors for percepts of the given type.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5: Prediction probability for the last 5000 percepts of
the run with constants. The black bars represent the predic-
tions of exactly 0 or 1.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

114

0
200
400
600
800

1000
1200
1400
1600
1800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6: Prediction probability for the last 5000 percepts of
the run with variables. The black bars represent the predic-
tions of exactly 0 or 1.

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10000 20000 30000

Figure 7: Average prediction probability as a function of the
number of percepts received. White diamonds represent the
algorithm with variables and black squares the algorithm with
constants.

0.1s 2.1s
Exact Match 62.2% 57.3%

Variable Pattern 64.8% 62.3%

Figure 8: Performance summary on the second experiment
on all percepts except ’A’ type percepts.

0.25 seconds to 2.5 seconds between successive actions. The
reason for the increase was because at 0.25 seconds per action
and two seconds per combat round, the agent would attempt
up to four actions in between successive combat “blows”. The
combat messages were thus somewhat “buried”. This run was
longer than that of the previous experiment. It consisted of
170762 percepts received over 38 hours of real time.

Using the acceleration techniques described above, we
tested both 0.1 second and 2.1 second recency thresholds with
both the exact match and variable pattern techniques. Re-
sults on all percepts excluding ’A’ type percepts are presented
in Figure 8. As in the first experiment, the variable pattern
approach performs better. The additional context provided
by the higher recency threshold seems to hurt overall perfor-
mance rather than helping. Apparently the extra information
in the larger context is not enough to overcome the need for
more training data. However, these results are very new, and
we are still analyzing them in detail.

8 Discussion
A few comments on the structural characteristics of the meth-
ods presented in this paper are in order.

One very positive characteristic of them is that there is a
clear “audit trail” that can be followed when the agent makes
unexpected predictions. I.e. each row in the table can be
traced to a specific set of prior experiences that are related to
the predictions it makes in an obvious way. Many machine
learning techniques do not share this characteristic.

Note that the situations in the left column of the table di-
vide all possible percept sequences into a set of equivalence
classes, i.e. many percept sequences can map into a single
situation set. To the agent, only the sequence sets specified
in the left column of the table matter. It will never be able
to discriminate between different percept sequences that map
into the same sequence set. The temptation naturally arises to
make these sets as differentiated as possible by, for example,
increasing the recency threshold or using exact matching in-
stead of patterns with variables. But increasing the fineness of
the situation sets is a two-edged sword. While it does indeed
make it possible for the agent to discriminate between differ-
ent percept sequences that it could not differentiate before, it
also makes it increasingly rare that the agent visits situations
that it knows about. Figures 5, 6, and 7 illustrate this fact.

9 Future Work
Although we have not discussed it previously, note that it is
possible to extend the system as described to making predic-
tions aboutwhenthe next percept will be received in addition
to what the next percept will be along the lines described in
[Kunde and Darken, 2005].

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

115

A key direction for further investigation is improved pre-
dictive models and systematic exploitation of the predictions.
The technique described in this work is very limited in its
generalization capabilities. Unlike FOIL, which searches
through candidate atoms and includes only the most promis-
ing in the model, the current approach takes all atoms that
have passed the relevance test. It would be nice to have an
approach that could perhaps learn from experience which of
the relevant atoms were actually necessary to accurate predic-
tion.

While we take for granted that many special-purpose
schemes can be constructed which can improve agent behav-
ior based on the ability to predict future percepts, it seems
worth pointing out that one can search over the space of po-
tential courses of action using the predictive model and a
quality function to decide which course to adopt. This is a
homogeneous and general-purpose method of exploiting pre-
diction very similar in spirit to the model predictive control
techniques that are an established part of chemical engineer-
ing [Morari and Lee, 1997]. It has been explored within the
computer science literature as well[Sutton and Barto, 1981].

10 Acknowledgements
Partial funding for this work was provided by the U.S. Army
TRADOC Analysis Center (TRAC) Monterey and the Naval
Modeling and Simulation Management Office. The author
wishes to thank the anonymous reviewers for very helpful ref-
erences, comments and advice.

References
[Darken, 2005] C. Darken. Towards learned anticipation in

complex stochastic environments. InProc. Artificial Intel-
ligence for Interactive Digital Entertainment 2005, Marina
Del Rey, CA, 2005.

[Gretton and Thiebaux, 2004] C. Gretton and S. Thiebaux.
Exploiting first-order regression in inductive policy selec-
tion - extended abstract. InProc. of the ICML ’04 Work-
shop on Relational Reinforcement Learning, 2004.

[Holmes, 2005] M. Holmes. Schema learning: Experience-
based construction of predictive action models. InNeural
Information Processing Systems, 2005.

[Kunde and Darken, 2005] D. Kunde and C. Darken. Event
prediction for modeling mental simulation in naturalistic
decision making. InProc. BRIMS 2005, Universal City,
CA, 2005.

[Laird, 2001] J. Laird. It knows what you’re going to do:
adding anticipation to a quakebot. In Jörg P. Müller,
Elisabeth Andre, Sandip Sen, and Claude Frasson, edi-
tors,Proceedings of the Fifth International Conference on
Autonomous Agents, pages 385–392, Montreal, Canada,
2001. ACM Press.

[Mitchell, 1997] Tom M. Mitchell. Machine Learning.
McGraw-Hill, Boston, 1997.

[Morari and Lee, 1997] M. Morari and J. Lee. Model predic-
tive control: Past, present and future, 1997.

[R. Begleiter and Yona, 2004] R. El-Yaniv R. Begleiter and
G. Yona. On prediction using variable order markov mod-
els. Journal of Artificial Intelligence Research (JAIR),
22:385–421, 2004.

[R. Duda and Stork, 2001] P. Hart R. Duda and D. Stork.
Pattern Classification. John Wiley & Sons, New York,
2001.

[Singhet al., 2003] S. Singh, M. Littman, N. Jong, D. Par-
doe, and P. Stone. Learning predictive state representa-
tions. InProceedings of the Twentieth International Con-
ference on Machine Learning (ICML) 2003, pages 99—
106, 2003.

[Sutton and Barto, 1981] R. Sutton and A. Barto. An adap-
tive network that constructs and uses an internal model
of its world. Cognition and Brain Theory, 4(3):217–246,
1981.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

116

Deduction and Exploratory Assessment of Partial Plans

Jacek Malec and Sławomir Nowaczyk
Jacek.Malec@cs.lth.se and Slawomir.Nowaczyk@cs.lth.se

Department of Computer Science, Lund University,
Box 118, 221 00 Lund, Sweden

Abstract
In this paper we present a preliminary investigation
of rational agents who, aware of their own limited
mental resources, use learning to augment their rea-
soning. In our approach an agent creates and de-
ductively reasons about possible plans of actions,
but — aware of the fact that finding complete plans
is in many cases intractable — it executes partial
plans which look promising. By doing so, it can
acquire new knowledge from results of performed
actions, which allows it to plan further into the fu-
ture in a more effective way.
We describe a possible application of Inductive
Logic Programming to learn which of such par-
tial plans are most likely to lead to reaching the
goal. We also discuss how one can use ILP frame-
work for generalising partial plans, thus allowing
an agent to discover, after a number of episodes, a
complete plan — or at least a good approximation
of it.

1 Introduction
The basic idea of this project is to investigate a methodol-
ogy for developing rational agents — both virtual and physi-
cal ones — that would be able to learn from experience, be-
coming more efficient at solving their tasks. A rational agent
is expected to use deductive reasoning in order to take ad-
vantage of whatever domain knowledge it has been provided
with. Besides that, it should perform inductive learning to
benefit from experience it has gathered, correcting missingor
inaccurate parts of that knowledge. Finally, it must acknowl-
edge the fact that both reasoning and acting takes time, and
try to balance those activities in a reasonable way.

In this paper we present how such rational agents can deal
with planning in domains where complexity makes finding
complete solutions intractable. Clearly, in many domains (es-
pecially those that are, at least from agent’s point of view,
nondeterministic) it is not realistic to expect an agent to be
able to find a total plan which solves a problem at hand.
Therefore, we investigate how an agent can create and reason
aboutpartial plans. By that we mean plans which bring it
somewhat closer to achieving the goal, while still being sim-
ple and short enough to be computable in reasonable time.

Currently we mainly focus on plans which allow an agent to
acquire additional knowledge about the world.

By executing such “information-providing” partial plans,
an agent can greatly simplify further planning process — it
no longer needs to take into account the vast number of possi-
ble situations which will be inconsistent with newly observed
state of the world. Thus, it can proceed further in a more ef-
fective way, by devoting its computational resources to more
relevant issues.

We believe that the research field of planning has currently
matured enough that it is time to explore new, more ambitious
settings, in order to bring artificial agents closer to what hu-
mans are capable of. Our goal is to create an agent that is able
to function in an adversary environment which it can only par-
tially observe and which it only partially understands. More-
over, the agent is supposed to face a large number of episodes,
learning from its mistakes and improving its efficiency.

We will base our examples on a simple game of Wum-
pus, a well-known test bed for intelligent agents, which is
straightforward enough to properly illustrate our approach.
In its basic form, the game takes place on a square board
through which an agent is allowed to move. One square is
inhabited by the Wumpus. Agent’s goal is to kill the mon-
ster by shooting an arrow onto the square it occupies, while
avoiding getting eaten by the monster. Luckily, Wumpus is a
smelly creature, so the player always knows if the monster is
on one of the squares adjacent to his current position — but
unfortunately, not on which one. We leave the exact details of
whether and how fast Wumpus can move open for now, since
we will vary it in order to illustrate different ideas.

The main problem in the game of Wumpus is to learn the
position of the monster. In order to plan for achieving this
objective, an agent needs to be able to reason about its own
knowledge and about how will it change as a result of per-
forming various actions. Thus, the logic it utilises in its rea-
soning needs to strongly support epistemic concepts. At the
same time, a notion of time-awareness is necessary, as we
require our agent to consciously balance planning and acting.

To accommodate those requirements, we employ a variant
of Active Logic [Elgot-Drapkinet al., 1999] as the agent’s
underlying reasoning apparatus. This logic was designed
for non-omniscient agents and has mechanisms for dealing
with uncertain and contradictory knowledge. We believe it
is a good reasoning technique for versatile agents, as it has

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

117

been successfully applied to several different problems — in-
cluding some in which planning plays a very prominent role
[Puranget al., 1999].

The domain of Wumpus game has one more interesting
feature, namely that the interesting behaviour of the agent
consists of two phases. First, it has to gather some infor-
mation (“Where is the Wumpus?”) and, after that, it needs to
exploit this knowledge (“How to get rid of it from there?”).
Since this knowledge only becomes available during plan ex-
ecution, not while agent is creating the plan, it needs to make
its choice of actions depend on the previous observations of
the world. Therefore, it has to create, reason about and ex-
ecute conditional plans. Currently we have chosen a simple,
straightforward way of representing conditional actions,al-
though quite a few more advanced formalisms can be found
in the literature [Russell and Norvig, 2003].

To summarise, our agent will create several different plans
and reason about usefulness of each one — including what
knowledge can be acquired by executing it. Further, it will
judge whether it is more beneficial to immediately begin ex-
ecuting one of those plans or rather to continue deliberation.
In other words, the agent will be performing on-line plan-
ning, interleaving it with plan execution. Moreover, we ex-
pect it to live much longer than any single planning episode
lasts, so it should generalise each solution it finds. In par-
ticular, the agent needs to extract domain-dependent control
knowledge and use it when solving subsequent, similar prob-
lem instances. Finally, it will have to be able to handle non-
stationary, adversary environment, to cooperate with others in
multi-agent setting and to plan for goals more complex than
simple reachability properties (such as temporally extended
goals and restoration goals).

All of the features mentioned above have been extensively
studied in the planning literature, including ideas how to in-
tegrate various combinations of them — and we will discuss
some of this work through this paper. However, to the best
of our knowledge, nobody has yet attempted to merge all, or
even most, of those features together in one, consistent frame-
work.

This work is divided in the following way: the next section
presents the architecture of our agent, describing the impor-
tant modules and their functions, as well as how they interact.
Sections 3–5 provide more detailed overview of each module
separately. In Section 6 we briefly present some of the most
relevant work done by other researchers. We conclude with
summary and several ideas for further work.

2 Architecture
The architecture of our agent, presented in Figure 1, consists
of three main elements. First of them is the Deductor, which
performs deductive reasoning about world, actions and their
consequences. Its main aim is to generate plans applicable in
current situation. Furthermore, it predicts — at least as far as
agent’s past experience and imperfect domain knowledge al-
lows — effects each of those plans will have, including what
new knowledge can be acquired.

The second component is the Actor, which chooses and
executes plans created by Deductor. It is also responsible for

Deductor

Actor

Plan

Observation

LearningGame history

Figure 1: The architecture of the system.

observing the world and introducing effects of actions — and,
potentially, other changes in the environment — into agent’s
knowledge base. It is important to note that Actor determines
when to stop deliberation and start execution of the chosen
plan.

These two modules form the core of the agent. By creating
and executing a sequence of partial plans our agent moves
progressively closer and closer to its goal, until it reaches a
point where a winning plan can be directly created by Deduc-
tor, and its correctness can be proven.

However, success depends on whether the chosen partial
plans are indeed moving an agentcloser to the solution. Since
agent’s knowledge is incomplete and moreover it does not
have enough resources to fully utilise the knowledge it pos-
sesses, there is — in principle — no guarantee that it will be
so. In particular, if an Actor makes a mistake, the chosen plan
may lead to loosing the game.

This is the reason for including the third module in our
architecture. After the game is over, regardless of whether
the agent has won or lost, learning system attempts to induc-
tively generalise experience it has gathered — attempting to
improve Deductor’s and Actor’s performance. We intend to
use the learned information to fill gaps in the domain knowl-
edge, to figure out generally interesting reasoning directions,
to discover relevant subgoals and, finally, to more efficiently
choose the best partial plan.

In principle, learning could take place at any time, but we
do not currently see much benefit of learning in the middle
of the game. Our variant of Wumpus game is simple enough
that a single episode does not last very long, and there is some
useful information that is only available to an agent after the
game is finished — information which can be very valuable
during learning.

3 Deductor

In order to present Deductor we begin with a description of
the chosen knowledge representation formalism. Next we in-
troduce those concepts from Active Logic which are neces-
sary for understanding the rest of this text. We then present
how the conditional actions are incorporated in our frame-
work, and finally we illustrate how the three elements are
combined for creating (partial) plans.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

118

3.1 Knowledge representation
The language used by Deductor is the First Order Logic
(FOL) augmented with Situation Calculus mechanisms for
describing action and change. Within a given situation,
knowledge is expressed using standard FOL. In particular,
we do not put any limitations on the expressiveness of the
language, as some mechanisms we later employ would in-
validate benefits of restricting ourselves to languages such
as Horn clauses or description logics. PredicateK describes
knowledge of the agent, e.g.,

K[smell(a) ↔ ∃x(Wumpus(x) ∧ Neigh(a, x))]

meaning:agent knows that it smells on exactly those squares
which neighbour Wumpus’ position. The predicateK may be
nested, although it is seldom useful. We use standard reifica-
tion mechanism for putting formulae as parameters of theK
predicate.

The next step is to introduce action and change repre-
sentation. We use the well-known Situation Calculus ap-
proach, introducing predicatesHolds(situation, formula)
to denote that the formula holds in situation and
Informs(action, groundedwff) to denote thataction pro-
vides information whethergroundedwff holds. We also intro-
duce functionResult(situation, action), which returns the
set of situations resulting from applyingaction in situation.

Another important concept in our formalism is a plan,
which is a sequence of actions. Plans may be subject to con-
catenation operation. In every place where this might matter
(in particular at argument list of theK predicate) we intro-
duce two additional parameters. We denote by them, respec-
tively, the set of situations and the set of plans to be executed
(starting from those situations) in order to make the third ar-
gument true. So, actually, the formula shown above should
look as follows:

K[{s}, {p}, smell(a) ↔ ∃x(Wumpus(x) ∧ Neigh(a, x))]

meaning:in a situation s agent knows that if it executes plan p
then it smells on exactly those squares which neighbour Wum-
pus’ position.

This particular formula is true regardless of the chosens
andp (it is an universal law), a fact which we can denote, for
example, byS (set of all situations) and either∅ (empty plan)
or P (the set of all plans). Still, there are many interesting
formulae — like ones in the form “Wumpus(x)” — which
are trueonly for specifics andp.

Please observe that the main notion our agent reasons about
is its own knowledge about the world. Similar idea was intro-
duced in [Petrick and Bacchus, 2004], where authors inves-
tigate how various actions and observations of their effects
modify agent’s belief state. They describe how such modi-
fications can be propagated backwards and forwards through
the state history: as the agent gains new knowledge, it can in-
fer that various statementsdid hold in past states of the world,
even if it did not know it then. Authors also show how such
propagation can be used to deal with temporally extended and
restoration goals.

3.2 Active Logic
Active Logic (AL) is intended to describe the deduction as an
ongoing process, instead of characterising just some infinite,
fixed-point consequence relation. To this end, it annotates
every formula with a time-stamp (usually an integer) of when
it was first derived, and bookkeeps the reasoning process by
incrementing the label with every application of an inference
rule. E.g.,

i : a, a → b

i + 1 : b

Additional features, available in AL and important for this
work, include theNow predicate, true only during current
time point (i.e., “i : Now(j)” is true for alli = j, but false for
all i 6= j) and theobservation function, which delivers axioms
that are valid since a specific time-point. It is used to model
agent acquiring new knowledge from the environment. This
way the reasoning process may refer, viaNow, to the current
(absolute or relative) time and conclude whether it has passed
a deadline or not. It can also describe change that is not a
result of performing any action — thus lifting two important
limitations present in the classical situation calculus.

3.3 Conditional plans
The conditional plans we consider consist of a concatenation
of classical and conditional actions, where each conditional
action may be described as(predicate ? action1 : action2),
meaning thataction1 will be executed ifpredicate holds,
and action2 will be executed otherwise. We consider the
possibility of introducing a more complex structure of con-
ditions (like while loops), but within this application simple
conditionals will suffice.

This type of conditional actions introduces a high branch-
ing factor in case of longer plans, but this effect is unavoid-
able at some level of consideration and will not be further
discussed here. It has received some attention in the works
by other authors (see [Russell and Norvig, 2003] for extended
bibliography).

For a well-developed discussion of conditional partial
plans and interleaving planning and execution see for exam-
ple [Bertoliet al., 2004], where authors introduce notion of
progressive plan — intuitively, one that provably moves the
agent closer to the goal. They also present an algorithm for
finding such plans in a nondeterministic but fully known do-
main and prove that it is guaranteed to find a solution if one
exists.

A somewhat similar, very interesting idea was pursued in
[Nyblom, 2005], where author uses classical planner to plan
for “optimistic” case, where an agent can choose the most
favourable outcome of each non-deterministic action. From
such an optimistic plan it is then possible, using knowledge
of probabilities of each action outcome, to generate more re-
alistic plans by updating relative costs of optimistic actions.

3.4 Reasoning about plans
Finally, the representation language needs to be augmented
with reasoning capabilities. It is done using a set of rather
natural, although not quite trivial, inference rules. Their pre-
sentation, however, is outside the scope of this paper. Using

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

119

those rules, the Deductor may conclude, from the example
formula shown earlier, that

∀x K[S, P, ¬smell(a) ∧ Neigh(a, x)] ↔

K[Result(s, p), ∅, ¬Wumpus(x)]

i.e., thatif it doesn’t smell in position a then the agent will
know that there is no Wumpus on any of its neighbour posi-
tions. This may be further used for creating a useful plan of
actions given that the agent currently is, or has been before,
in positiona.

One of the reasons we have chosen symbolic representa-
tion of plans, as opposed to a policy (an assignment of value
to each state–action pair) is that we intend to deal with other
types of goals than just reachability ones. For a discussionof
possibilities and rationalisation of why such goals are inter-
esting, see for example [Bertoliet al., 2003], where authors
present a solution for planning with goals described in Com-
putational Tree Logic. This formalism allows to express goals
of the kind “valuea will never be changed”, “a will be re-
stored to its original value” or “value ofa after timet will
always beb” etc.

Furthermore, one of our ideas is to extend the solution pre-
sented in this paper to the case of multi-agent cooperative
planning, where benefits of symbolic plan representation are
even more clear.

To summarise, the agent uses the formalism presented in
this section in order to deductively develop plans. Given the
complexity of the domain and vastly branching proof proce-
dure (currently it can only perform forward chaining) the cre-
ated plans are usually partial, i.e. they lead to some interme-
diate states of the game, where the final outcome is not yet
decided.

4 Actor
The Actor module supervises the deduction process and
breaks it at selected moments, e.g., when it notices a particu-
larly interesting plan or when it decides that sufficiently long
time has been spent on planning. It thenevaluates existing
partial plans and executes the best one of them. The evalu-
ation process is crucial here, and we expect the subsequent
learning process to greatly contribute to its improvement.In
the beginning, the choice may be done at random, or some
simple heuristic may be used. After execution of partial plan,
a new situation is reached and the Actor lets the Deductor
create another set of possible plans.

This is repeated as many times as needed, until the game
episode is either won or lost. Losing the game clearly identi-
fies bad choices on the part of the Actor and leads to an update
of the evaluation function.

Winning the game also yields feedback that may be used
for improving this function, but it also provides a possibility
to (re)construct a complete plan, i.e. one which originates
from the initial situation and ends in a winning state. If such
a plan can be found, it may be subsequently used to imme-
diately solve any problem instance for which it is applicable.
Moreover, even if such plan is not applicable, an Actor can
use it when evaluating other plans found by the Deductor.

Those which have similar structure to the successful one are
more likely to lead to the goal.

In other words, the intention is for Actor to acquire gener-
alised knowledge of the domain, which can be used to guide
an agent in more promising directions.

In a sense this is similar to ideas discussed in [Fernet al.,
2004], where authors use Markov Decision Process to rep-
resent planning domains and approximate policy iteration as
means of learning agent’s behaviour. They use long random
walks to create progressively harder goals, thus bootstrapping
the agent in its learning of domain-dependent control knowl-
edge.

5 Learning
As we mentioned earlier, our agent will be presented with
large number of tasks to solve. Therefore, upon finishing each
game episode, the events (actions, observations and the re-
sult) are fed into a learning module. This module attempts to
generalise this information and provide guidelines for Actor
and Deductor to improve their performance. In this paper we
will mainly investigate the learning module from Actor’s per-
spective, as using ILP framework to evaluate quality of partial
plans is, to the best of our knowledge, a novel idea. In further
work we also intend to improve domain knowledge and to
identify interesting reasoning directions, but those later ideas
are — while definitely interesting and non-trivial — mainly a
matter of integrating the already available techniques.

5.1 Goal of learning
The first task we would like our learning module to address
is how an Actor is to choose which one of the plans being
considered by Deductor should it execute. Clearly, the longer
it allows planning phase to proceed, the better plans will it
get to choose from, and the more information about conse-
quences of each plan will be known. On the other hand, more
of the deduction effort will be wasted by considering potential
situations which will not take place in this particular game.

At some point, however, an Actor must choose one plan,
from those created by Deductor, for immediate execution.
Some of those plans are better than others — but it cannot be
determined exactly and with full confidence until those plans
extend to the terminal state of the game. And for problems
we intend to tackle, that is intractable — agent’s computa-
tional resources do not suffice tocompletely solve problems
we are interested in. Therefore, the Actor needs some heuris-
tic method of evaluating quality of partial plans and of com-
paring them.

There is quite a bit of knowledge that domain experts could
provide — but our aim is to have a solution which does notre-
quire such experts. At the same time, if people familiar with
particular domain are available, the agent should take advan-
tage of whatever information they can provide. Therefore,
Inductive Logic Programming appears to fit our needs quite
well: it uses background knowledge when it is available, but
can also solve problems when it is not.

It is important to keep in mind that our agent has a dual
aim, very akin to the exploration and exploitation dilemma,
well-studied in reinforcement learning and related research

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

120

areas. On one hand, it wants to win the current game, but at
the same time it needs to learn as much general knowledge as
possible — in order to improve its performance at subsequent
tasks.

5.2 Choosing plans
There are clearly many features which can distinguish be-
tween good and bad plans. And with sufficiently rich history
of game episodes, it is possible to learn this distinction. In the
simplest case the agent can start with Actor randomly choos-
ing plans for execution. After a couple of games — some of
which will be won but, likely, many will be lost — it will have
enough experience to learn some useful rules.

The main problem is that most work on ILP, as well as on
Machine Learning in general, has been dealing with the prob-
lem ofclassification, while what we need is ratherevaluation.
There is no predefined set of classes into which plans should
be assigned. What our agent needs is a way to choose thebest
one of them.

Still, in order to be able to take advantage of the vast
amount of research done in the Inductive Logic Programming
framework, in the first step we recast our problems as a clas-
sification one. In particular, we attempt to distinguish plans
that leading to losing the game from all the others. In our
initial architecture this part is relatively easy — we assume
that the Deductor has perfect knowledge of consequences of
execution of each plan, so it can deduce (for some plansp) a
fact “K[{s}, {p},¬die]”.

A separate question is whether an Actor canlearn to
choose only plans for which “K[¬die]” has been deduced.
After all, not every plan for which such fact cannot be proven
actuallydoes lead to losing every game.

Moreover, it is worth noting that if the Wumpus is allowed
to move, there exist plans which do not lead to agent’s death,
but which do lead to states where winning it is no longer pos-
sible — for example, if an agent gets stuck in a corner with
Wumpus blocking its way out. It may be difficult for an agent
to notice and learn that the mistake has been made in the pre-
vious step, not in the one when the agent was killed.

5.3 Application of ILP
From the above analysis it becomes clear than the notion of
positive and negative examples, as used in ILP algorithms,
is not quite appropriate for what we would like to express
in our framework. What they correspond to, informally, are
conditions that are bothnecessary andsufficient — while we
are mainly interested those that are sufficient.

An interesting line of research, which possibly could be
useful in our case, was presented in [Gretton and Thiebaux,
2004], where authors attempt to deductively generate
domain-specific hypothesis language which is as simple as
possible, and yet expressive enough to represent all the nec-
essary concepts in a particular domain. This language is then
used by inductive learning algorithm to create generalised
policies from solutions of small problem instances.

Let us assume that we restrict ourselves to dividing plans
into two classes: those that can lead to agent’s death and
those that cannot. Each partial plan executed at some pre-
vious game can be seen as a single example. First issue we

need to deal with is which example belongs to which class. It
is easy to note that some plans — namely those that in agent’s
experiencedo lead to losing the game — are definitely exam-
ples of bad plans. However, not every plan which does not
cause the agent to die is, indeed, agood plan. What is more,
not every plan that leads towinning a game is a good one.
An agent executing a dangerous plan might have just gotten
lucky, if in a particular episode Wumpus was in favourable
position.

Therefore, if we want ILP algorithm to learn the concept
of bad plans, we do have a set of positive examples, and a set
of examples for which we do not — at least not immediately
— know their affiliation. We have decided to use PROGOL
as a learning algorithm. The standard version is presented in
[Muggleton, 1995] and can be described here, in a somewhat
simplified manner, by the following steps:

1. Select an example to be generalised. If no more exam-
ples exist, stop.

2. Construct the most specific clause, within provided lan-
guage restrictions, which entails selected example. This
is called the ”bottom clause”.

3. Find, by searching for some subset of the literals in the
bottom clause, more general clauses. Choose one with
the best “score”.

4. Add the clause found in the previous step to the cur-
rent theory, and remove all clauses made redundant. It is
worth noting that the best clause may make clauses other
than the examples redundant. Move back to Step 1.

In our case we can define as positive examples those plans
which lead — or can beproven to possibly lead — to agent’s
death. On the other hand, those plans which can be proven to
never lead to the agent’s death are treated as negative exam-
ples. We are working on ways to utilise other plans in some
way, those for which neither of the above assertions can be
proven (within reasonable time) — right now we simply ex-
clude them from learning.

With the definitions as above, we can use standard ILP al-
gorithm, be it PROGOL or almost any other, to have Actor
learn to choose onlynon-losing plans for execution.

However, this is only a beginning. After all, it is not quite
enough not to die, as an agent which moves in circles, without
exploring the world, clearly does not get eaten by the Wum-
pus — but it never wins either. On the other end of the spec-
trum, the feature “plan which kills the Wumpus” is clearly
non-operational.

Hopefully, we will be able to report more details on prac-
tical applicability of the ideas described above when our im-
plementation is finished and we have run some experiments.

5.4 Further ideas
One very promising idea seems to be exploring the epistemic
quality of plans. An agent should pursue those plans which
provide it with the most important knowledge. Clearly, in the
Wumpus domainimportant is directly linked with monster’s
true position — or at least that is what human players consider
it to be. Therefore, as a next step, we can redefinebad plans
as those that lead to the agent’s death or do not provide any

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

121

interesting knowledge. Again, we can use one of many ILP
algorithms to learn such concepts.

Another very general and important way of expressing dis-
tinction between good and bad partial plans, and one we feel
can lead to very good results, is related to discovering rele-
vant subgoals and landmarks in the plans, akin to the work
done in [Hoffmannet al., 2004].

The problem is that those ideas require more domain
knowledge than we are comfortable with. For example, what
we would like to have is an agent figuring out that “position
of Wumpus” is important just from the definition of the rules
and goals of the game. In principle, it appears to be pos-
sible — it is not difficult to deduce that knowing Wumpus’
position suffices for winning the game (the plan to win once
Wumpus’ position is known is simple and can be found eas-
ily). However, it is not clear how to combine such reasoning
with learning as expressed above. It is our understanding that
some modifications to the learning algorithm will be required.

To summarise, it is easy (for a human) to see some general
rules distinguishing good plans from bad ones. For example,
a plan for which an agent doesn’t know that it will not lose the
game is a bad plan. Such knowledge can be easily provided
by domain expert and most ILP algorithms are ready to use
it. Interesting question, however, is whether and how can this
knowledge be discovered by an agent itself.

One way would be to try something along the lines of re-
search presented in [Walkeret al., 2004], where authors ran-
domly sample a large number of relational features and eval-
uate them on small problems. The idea is that features found
to work satisfactory on such sample problems should also de-
scribe larger problems sufficiently well.

6 Related Work
Combination of planning and learning is an area of active
research, in addition to the extensive amount of work being
done separately in those respective areas. However, most of
the related work we are aware of is devoted to either using
state-of-the-art learning in a rather limited planning frame-
work, or to using limited learning in a more complex plan-
ning setup. Comparisons of the two areas are also relatively
common, while the true, nontrivial combination will appar-
ently require much more investigation. Since we believe it to
be very promising, this paper is aiming at attracting attention
to this line of research.

The first to mention is [Dietterich and Flann, 1995], which
presented results establishing conceptual similarities between
explanation-based learning and reinforcement learning. In
particular, they discussed how EBL can be used to learn ac-
tion strategies and provided important theoretical results con-
cerning its applicability to this aim.

There has been significant amount of work done in learn-
ing about what actions to take in a particular situation. One
notable example is [Khardon, 1999], where author showed
important theoretical results about PAC-learnability of action
strategies in various models.

In [Moyle, 2002] author discussed a more practical ap-
proach to learning Event Calculus programs using Theory
Completion. He used extraction-case abduction and the

ALECTO system in order to simultaneously learn two mu-
tually related predicates (Initiates andTerminates) from
positive-only observations.

Recently, [Könik and Laird, 2004] developed a system
which is able to learn low-level actions and plans from goal
hierarchies and action examples provided by experts, within
the SOAR architecture.

The work mentioned above focuses primarily on learning
how to act, without focusing on reaching conclusions in a de-
ductive way. In a sense, the results are somewhat more similar
to the reactive-like behaviour than to classical planning sys-
tem, with important similarities to the reinforcement learning
and related techniques. In case of large search spaces this
approach may not be as effective as a suitable combination
of learning and deduction. Therefore, some effort have been
devoted to searching for a suitable combination.

One attempt to escape the trap of large search space has
been presented in [Džeroskiet al., 2001], where relational
abstractions are used to substantially reduce cardinalityof
search space. Still, this new space is subjected to reinforce-
ment learning, not to a symbolic planning system.

A conceptually similar idea, but where relational represen-
tation is actually being learned via behaviour cloning tech-
niques, is presented in [Morales, 2004].

Outside the domain of planning, there is a lot of interesting
research being done in the learning paradigm.

Recently, [Colton and Muggleton, 2003] showed several
ideas about how to learn interesting facts about the world,
as opposed to learning a description of a predefined concept.
A somewhat similar result, more specifically related to plan-
ning, has been presented in [Fernet al., 2004], where the sys-
tem learns domain-dependentcontrol knowledge beneficial in
planning tasks.

From another point of view, [Khardon and Roth, 1995]
presented a framework of learning done “specifically for the
purpose of reasoning with the learned knowledge” — an in-
teresting early attempt to move away from thelearning to
classify paradigm.

Yet another track of research focuses on (deductive) plan-
ning, taking into account incompleteness of agent’s knowl-
edge and uncertainty about the world. Conditional plans, gen-
eralised policies, conformant plans and universal plans are
the terms used by various researchers [Cimattiet al., 2004;
Bertoli et al., 2004] to denote in principle the same idea: gen-
erating a plan which is “prepared” for all possible reactions
of the environment. This approach has much in common with
control theory, as observed in [Bonet and Geffner, 2001] or
earlier in [Dean and Wellman, 1991]. We are not aware of
any such research that would attempt to integrate learning.

As can be seen, many of the ideas we investigate in this pa-
per have been analysed previously, but an attempt to merge
them into a single, consistent framework has not yet been
made.

7 Conclusions and Further Work
The work presented here is more a discussion of an interest-
ing track of research than a report on some concrete results.
However, we think that this idea is important and promising

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

122

enough to be subjected to wider discussion, and therefore we
have decided to present it in this forum.

We have introduced an agent architecture facilitating
resource-aware deductive planning interwoven with plan ex-
ecution and supported by inductive, life-long learning. The
particular deduction mechanism used is based on Active
Logic, in order to incorporate time-awareness into the de-
duction itself. The plans created in deductive way are condi-
tional, taking into account possible results of future actions,
in particular information-gathering ones.

The learning mechanism employed is based on PROGOL,
although in principle any standard ILP algorithm would be
suitable as well. Learning is expected to provide an evalua-
tion of the current deductive knowledge in order to improve
the agent’s performance in the long run.

We are at the moment working on implementation of the
system and expect to be able to report results of first experi-
ments at the time of the workshop.

In the future we intend to continue this work in the follow-
ing directions:

• Discovering subgoals and subplans. It seems that one
of the most useful capacities of humans problem solving
is the ability to divide a complex problem into subprob-
lems and then to solve each of them separately before
combining their solutions into a global one. We would
like to force our agent to discover this possibility. In our
example domain a useful subgoal/subproblem could be
“First, find a place where it smells.”

• Discovering general rules which Deductor will be able
to use later on. An example of such a rule might be
“Don’t shoot if you don’t know Wumpus’ position”. It
seems that availability of such rules can save a substan-
tial amount of work for Deductor, if it can establish early
on that some plans would not be usable.

• Generalisation of plans. A clear advantage would be
to reuse a valid plan in a different context. As long as
the context does not differ substantially, this operation
should lead to fast solution of a problem similar to one
solved in the past.

• Capability of handling imperfect knowledge. The cur-
rent setup assumes complete domain knowledge, while
in many situations this assumption might be violated
(e.g., the agent might not know that the Wumpus ac-
tually can move). The system should allow the agent
to learn domain knowledge, if possible, to complete its
understanding of the environment.

• Last, but not least, allow interaction with a user. Domain
experts might be an invaluable source of knowledge that
the agent should be able to exploit, if possible. For ex-
ample, to better adjust tradeoff between spending time
on deduction and induction, the agent could be guided
by an external observer (the user) providing a feedback
about its performance.

The list above does not cover all the possible further inves-
tigations and extensions of the proposed system; it is just a
biased presentation of the authors’ own interests and judge-
ments.

Acknowledgements
The authors are grateful to the anonymous reviewers for their
very thorough comments and suggestions, which lead to a
substantial improvement of this paper.

References
Piergiorgio Bertoli, Alessandro Cimatti, Marco Pistore, and

Paolo Traverso. A framework for planning with extended
goals under partial observability. InInternational Confer-
ence on Automated Planning and Scheduling, pages 215–
225, 2003.

Piergiorgio Bertoli, Alessandro Cimatti, and Paolo Traverso.
Interleaving execution and planning for nondeterministic,
partially observable domains. InEuropean Conference on
Artificial Intelligence, pages 657–661, 2004.

Blai Bonet and Hector Geffner. Planning and control in arti-
ficial intelligence: A unifying perspective.Applied Intelli-
gence, 14(3):237–252, 2001.

Alessandro Cimatti, Marco Roveri, and Piergiorgio Bertoli.
Conformant planning via symbolic model checking and
heuristic search.Artificial Intelligence, 159(1-2):127–206,
2004.

Simon Colton and Stephen Muggleton. ILP for mathematical
discovery. In13th International Conference on Inductive
Logic Programming, 2003.

Thomas Dean and Michael P. Wellman.Planning and Con-
trol. Morgan Kaufmann, 1991.

Thomas G. Dietterich and Nicholas S. Flann. Explanation-
based learning and reinforcement learning: A unified view.
In International Conference on Machine Learning, pages
176–184, 1995.

Saso Džeroski, Luc De Raedt, and Kurt Driessens. Relational
reinforcement learning.Machine Learning, 43(1/2):7–52,
2001.

Jennifer Elgot-Drapkin, Sarit Kraus, Michael Miller, Mad-
hura Nirkhe, and Donald Perlis. Active logics: A unified
formal approach to episodic reasoning. Technical Report
CS-TR-4072, University of Maryland, 1999.

Alan Fern, SungWook Yoon, and Robert Givan. Learning
domain-specific control knowledge from random walks.
In International Conference on Automated Planning and
Scheduling, 2004.

Charles Gretton and Sylvie Thiebaux. Exploiting first-order
regression in inductive policy selection. InConference on
Uncertainty in Artificial Intelligence, 2004.

Jörg Hoffmann, Julie Porteous, and Laura Sebastia. Ordered
landmarks in planning.Journal of Artificial Intelligence
Research, 22:215–278, 2004.

Khardon and Roth. Learning to reason with a restricted view.
In Proceedings of the Workshop on Computational Learn-
ing Theory, Morgan Kaufmann Publishers, 1995.

Roni Khardon. Learning to take actions.Machine Learning,
35:57–90, 1999.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

123

Tolga Könik and John Laird. Learning goal hierarchies from
structured observations and expert annotations. In14th In-
ternational Conference on Inductive Logic Programming,
2004.

Eduardo P. Morales. Relational state abstraction for rein-
forcement learning. InProceedings of the ICML’04 Work-
shop on Relational Reinforcement Learning, 2004.

Steve Moyle. Using theory completion to learn a robot navi-
gation control program. In12th International Conference
on Inductive Logic Programming, 2002.

Stephen Muggleton. Inverse entailment and Progol.New
Generation Computing, Special issue on Inductive Logic
Programming, 13(3-4):245–286, 1995.

Per Nyblom. Handling uncertainty by interleaving cost-aware
classical planning with execution. InSwedish AI Society
Workshop, 2005.

Ronald P. A. Petrick and Fahiem Bacchus. Extending the
knowledge-based approach to planning with incomplete in-
formation and sensing. InProceedings of the International
Conference on Automated Planning and Scheduling, pages
2–11, 2004.

Khemdut Purang, Darsana Purushothaman, David Traum,
Carl Andersen, and Donald Perlis. Practical reasoning and
plan execution with active logic. InProceedings of the
IJCAI-99 Workshop on Practical Reasoning and Rational-
ity, pages 30–38, 1999.

S. Russell and P. Norvig.Artificial Intelligence: A Modern
Approach. Prentice Hall Series in AI, 2nd edition, 2003.

Trevor Walker, Jude Shavlik, and Richard Maclin. Relational
reinforcement learning via sampling the space of first-order
conjunctive features. InIn working notes of ICML-04
Workshop on Relational Reinforcement Learning, 2004.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

124

Robust and Opportunistic Planning for Planetary Exploration

Daniel M. Gaines, Tara Estlin, Caroline Chouinard, Forest Fisher
Rebecca Castãno, Robert C. Anderson, and Michele Judd

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Dr., Pasadena CA 91109
{firstname.lastname}@jpl.nasa.gov

Abstract

Planning for rover operations involves a sig-
nificant amount of uncertainty. With lim-
ited a priori knowledge of the area a rover
will explore, it is difficult to predict the ef-
fects of actions including their duration and
the amount of resources they will consume.
In addition, the system may not even know
ahead of time all of the goals it will be asked
to achieve as new opportunities may be iden-
tified during the mission. We are develop-
ing the OASIS system to enable rovers to
generate and execute high quality mission
operations plans and to identify and exploit
new science opportunities that may arise dur-
ing the mission. OASIS combines planning
and machine learning techniques to achieve
these results. In this paper we discuss how
OASIS handles these types of uncertainties
and present results from testing the system in
simulation and on rover hardware.

1 Introduction
Planetary exploration by its nature involves a significant
amount of uncertainty. The objective of such missions
is to gather information about previously unknown ar-
eas. As such, little a priori information may be available
about the nature of the terrain a rover must explore or the
obstacles that it will encounter. This makes it challeng-
ing to develop an operation sequence as it is difficult to
estimate the time and resources required by rover activi-
ties.

In addition, we are developing technologies that en-
able rovers to identify potentially interesting science op-
portunities on their own. This will provide important ca-
pabilities for rovers such as enabling rovers to identify
opportunities that might have otherwise gone unnoticed
or to take advantage of short-lived science opportunities
such as a passing dust devil. However, this capability
also adds another element of uncertainty to mission op-
erations as the rover will not know ahead of time all the
science goals it will be asked to work on. New goals

with different priorities may be posted to the system at
any time.

We have developed the OASIS (Onboard Au-
tonomous Science Investigation System) integrated sci-
ence analysis and planning system that enables planetary
rovers to generate and execute high quality mission op-
erations plans in the presence of these types of uncer-
tainty. OASIS includes a continuous planning system to
generate operations plans given prioritized science goals
and mission constraints and to monitor and repair plans
during execution. The system also includes a data analy-
sis unit that uses machine learning algorithms to perform
onboard processing of collected science data. When a
science opportunity is detected, one or more requests
are sent to the planning and execution system which at-
tempts to accomplish these additional objectives while
still achieving current mission goals.

2 OASIS
The OASIS system provides onboard science analysis
coupled with planning and execution. The system en-
ables a rover to carry out prioritized science goals com-
manded from Earth as well as opportunistic science goals
identified by onboard data analysis. Figure 1 shows the
main components of the OASIS system and how they in-
teract to analyze data and re-task the rover to respond to
opportunistic science events. OASIS consists of the fol-
lowing components:

Planning and Scheduling: generates operations plans
for mission goals and dynamically modifies plan
in response to new science requests.

Execution: carries out the rover functional capabili-
ties to perform the plan and collect data. Oasis
TDL [Simmons and Apfelbaum, 1998] for its Ex-
ecutive and the CLARAty[Nesnaset al., 2003]
functional layer for low-level robotic capabilities.

Feature Extraction: detects rocks in images and ex-
tracts rock properties (e.g. shape and texture).

Data Analysis: uses extracted features to assess the sci-
entific value of the planetary scene and to generate
new science objectives that will further contribute
to this assessment.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

125

rock
features

data

optimize repair

activities

science
alerts

shape

control / functional layer

albedo

Execution

rock detection

Feature Extraction

Data Analysis

novelty

Planning/Scheduling

executivevisual texture

target signature

Figure 1: OASIS architecture.

The feature extraction and data analysis components
of OASIS have been described previously in[Castano
et al., 2004]. Here we will give a brief overview of
these components and concentrate on the planning and
scheduling unit and how it supports opportunistic sci-
ence.

2.1 Feature Extraction
Our initial emphasis in OASIS has focused on image
analysis and the characterization of surface rocks. Rocks
are among the primary features populating the Martian
landscape and the understanding of rocks on the surface
is a first step leading to more complex regional geologi-
cal assessments.

Images are segmented using a rock detection algo-
rithm based on edge detection and tracing. Next, a set of
properties is extracted from each rock. Our feature ex-
traction priorities are based upon our knowledge of how
a geologist in the field would extract information. Im-
portant features to look for and categorize include albedo
(an indicator of rock surface reflectance properties), vi-
sual texture (which provides valuable clues to mineral
composition and geological history), shape, size, color
and arrangement of rocks. Currently our system identi-
fies the first three of this set; future work will expand this
to cover additional features.

2.2 Data Analysis
After features have been extracted from each rock, OA-
SIS runs a set of data analysis algorithms to look for in-
teresting rocks. Two of these algorithms can result in
the generation of science alerts: key target signature and
novelty detection.

Key Target Signature: enables scientists to effi-
ciently and easily stipulate the value and importance of
certain features. Scientists often have an idea of what
they expect to find during a rover mission and/or are
looking for specific clues that reflect signs of life or wa-
ter (past or present). Using this technique, target feature

vectors can be pre-specified and an importance value as-
signed to each of the features. Rocks are then prioritized
as a function of the weighted Euclidean distance of their
extracted features from the target feature vector.

Novelty Detection: detects and prioritizes unusual
rocks that are dissimilar to previous rocks encountered.
We have looked at three different learning techniques for
novelty detection: distance-based using k-means clus-
tering, probability-based using Gaussian mixture models
and discrimination-based using kernel one-class classi-
fier. The general idea is that as the rover collects data
about the rocks in an area, the machine learning tech-
niques will enable it to build a model of the characteristic
rocks. If a new sample falls well outside of this model,
then it is considered novel and potentially worthy of fur-
ther investigation.

2.3 Science Alert Protocol

Using the above algorithms, the data analysis software
can flag rocks that should be further analyzed and pro-
duce a new set of measurement goals. We call this ca-
pability the science alert, since it alerts other onboard
software that new and high priority science opportuni-
ties have been detected. OASIS currently supports two
types of alerts. Astop and call homealert indicates that
the rover should remain at its current location until it has
received further instructions form Earth. Such an alert
would typically be reserved for situations in which data
analysis has made an extremely interesting observation
and the rover should stay where it is to avoid the risk of
losing the target. The second class of alerts isdata sam-
ple requestsin which the rover is requested to perform
an additional science measurement and then continue on
with previously scheduled activities. Achieving this alert
may require the rover to change its heading or possibly
its position.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

126

2.4 Planning and Scheduling
The objectives of OASIS’s planning and scheduling
component is to maximize the value of the science that is
performed by the rover and to ensure that the operations
plan satisfies rover and mission constraints. To provide
robust execution, the system must respond to problems
that might arise during plan execution, such as an activity
consuming more resource than expected. To maximize
the value of the plan, the system must exploit opportu-
nities that arise. These may include additional available
time due to an activity taking less time than expected or
a new, highly interesting goal that has been identified by
Science Analysis.

Planning and scheduling capabilities in OASIS are
provided by CASPER[Estlin et al., 2002; Chienet al.,
2000], which employs a continuous planning technique
where the planner continually evaluates the current plan
and modifies it when necessary based on new state and
resource information. Rather than consider planning a
batch process, where planning is performed once for a
certain time period and set of goals, the planner has a cur-
rent goal set, a current rover state, and state projections
into the future for that plan. At any time an incremental
update to the goals or current state may update the cur-
rent plan. This update may be an unexpected event (such
as a new science opportunity) or a current reading for a
particular resource level (such as power). The planner is
then responsible for maintaining a plan consistent with
the most current information.

A plan consists of a set of grounded (i.e., time-tagged)
activities that represent different rover actions and be-
haviors. Rover state in CASPER is modeled by a set of
plan timelines, which contain information on states, such
as rover position, and resources, such as power. Time-
lines are calculated by reasoning about activity effects
and represent the past, current and expected state of the
rover over time. As time progresses, the actual state of
the rover drifts from the state expected by the timelines,
reflecting changes in the world. If an update results in
a problem, such as an activity consuming more mem-
ory than expected and thereby over-subscribing RAM,
CASPER re-plans, using iterative repair[Zwebenet al.,
1994], to address conflict.

CASPER includes an optimization framework for rea-
soning about soft constraints. User-defined preferences
are used to compute plan quality based on how well the
plan satisfies these constraints. Optimization proceeds
similar to iterative repair. For each preference, an opti-
mization heuristic generates modifications that could po-
tentially improve the plan score.

While CASPER provides a framework for integrated
planning and scheduling, there is still significant work
required to apply the system effectively to a complex do-
main. For our rover work, this included developing a
domain model for rover operations, developing a con-
trol algorithm geared toward appropriately responding to
problems and opportunities and integrating optimization
and repair. In order to realize an operation rover sys-

tem, we also integrated CASPER with a large number of
systems such as path planning, navigation, position esti-
mation, an executive, and science analysis.

We have developed a domain specific control algo-
rithm within CASPER to support the objectives of max-
imizing plan quality and ensuring robust execution. Fig-
ure 2 provides a high level description of this algorithm.
Table 1 shows the preferences that are used to compute
a plan score ordered from most important to least impor-
tant. The score for the plan is a weighted sum of each
preference. The weights are set to reflect relative impor-
tance of these preferences. For example, achieving stop
and call home alerts is of highest importance to make
sure that if a stop and call home alert is issued the rover
will always prefer plans that achieve it. As another ex-
ample, plans without conflicts are more important than
plans that achieve more goals but have conflicts.

Preference
Prefer plans that achieve stop and call home
Prefer plans with fewer conflicts
Prefer plans with more goals achieved
Prefer plans with less time spent traversing

Table 1: Preferences used to compute plan score ordered
from most important to least important

Initial Plan Generation
We use a Depth First Branch and Bound algorithm to
generate the initial operations sequence. The input to the
system is a set of prioritized science requests and con-
straints on the time and energy available for carrying out
the mission. We use a “tiered” objective function that
first ensures that plans that exceed resource or time con-
straints are rejected. Next, it computes the value of the
science goals in the plan using a “strict priority” scheme
in which a plan must achieve higher priority goals be-
fore including lower priority goals. Finally, plans are
scored based on distance traveled. The result is an ini-
tial plan that maximizes the value of science goals that
can be achieved with time and resource constraints.

Plan Execution
CASPER monitors updates from the Executive as the
plan is executed, checking for problems that must be re-
solved or opportunities that can be exploited. A problem
can occur with an activity at any point during its lifetime.
For examples, an update may indicate that there will be a
problem with an activity scheduled to start at some time
in the future. In this case, CASPER will use iterative re-
pair as part of the optimization loop to try to resolve the
conflict.

Problems may also occur for activities that have al-
ready been passed to the Executive but have not yet be-
gun execution. In this case, CASPER will send a rescind
message for the problematic activity to the Executive. If
the Executive receives the message before the activity
has begun execution, it will delete it and send CASPER a

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

127

Input
Prioritized science goals from Earth
Time constraint
Resource constraints

Initial Plan Generation
Run Depth First Branch and Bound given initial science goals and constraints

Plan Execution
While running

Get current time
Process any updates from Executive
For each activity scheduled to start within<n> seconds

If activity does not contribute to an existing conflict, send to Executive
If there are conflicts in the schedule

If an activity already sent to executive is contributing, rescind activity
Optimize:

for i = 1 to numoptimize iterations
Compute plan score based on preferences in Table 1
If score of current plan is best so far, save plan
If there is an unsatisfied opportunistic science goal, satisfy it
Else, if there are conflicts, perform an iteration of repair
Else, if there are unsatisfied science goals, satisfy one from set of highest priority science goals

Reload plan with highest score
If an opportunistic science goal has not been satisfied for opscitime limit, delete the goal
If no activities are currently executing, check if an activity in the future can be moved up in time

Figure 2: CASPER control algorithm for rover domain.

confirmation. If the activity has already begun execution,
the Executive will abort the activity and send an update
to CASPER once the activity has been aborted.

The Executive itself monitors problems with activities
that are currently executing. If a problem is detected, it
is the responsibility of the executive to abort the activity
and send an update to CASPER to let CASPER know
that the activity was aborted.

While the first priority of the planning and scheduling
system is to ensure robust execution, it is also continually
checking for opportunities to increase the value the mis-
sion. An update from the Executive may indicate that an
activity took less time or energy than predicted. In this
case, it may be possible to achieve a goal that was not in-
cluded in the initial plan. During the optimization loop,
if all conflicts have been resolved, CASPER will select
a high priority goal from the set of unsatisfied goals and
add it to the schedule. This will most likely introduce
new conflicts and the following optimization iterations
will be spent trying to resolve them. If the conflicts can
be resolved, the plan score will be increased and this plan
will be saved as the best seen so far.

If an opportunistic science opportunity has been iden-
tified by Data Analysis, CASPER will try to add it to the
plan. Again, this is likely to introduce conflicts and it-
erative repair will be used to try to fix them. It may be
that the rover’s schedule is too constrained to achieve the
opportunistic goal. We set a timer for each opportunistic
goal and if the timer expires before the goal is achieved,

the goal is permanently deleted.
As a final check to try to maximize the use of rover

resources, after the optimize loop, if there are no cur-
rently executing activities, CASPER will look ahead in
the schedule to see if a future activity can be moved up
in time without causing a conflict. If so, this will result
in packing the schedule, limiting rover idle time.

3 System Testing
To evaluate our system we performed a series of tests
both in simulation and using rover hardware in the JPL
Mars Yard (Figure 3). These tests covered a wide range
of scenarios that included the handling of multiple, prior-
itized science targets, limited time and resources, oppor-
tunistic science events, resource usage uncertainty caus-
ing under or over-subscriptions of power and memory,
large variations in traverse time, and unexpected obsta-
cles blocking the rover’s path.

Figure 3: Testing with the FIDO rover in the Mars Yard.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

128

Our testing scenarios typically consisted of a number
of science targets specified at certain locations. A map
was used that would represent a sample mission-site lo-
cation where data would be gathered using multiple in-
struments at a number of locations. Figure 4 shows a
sample scenario that was run as part of these tests. This
particular map is of the JPL Mars Yard. The pre-specified
science targets represented targets that would be commu-
nicated by scientists on Earth. These targets were typi-
cally prioritized and for many scenarios constraints on
time, power or memory would limit the number of sci-
ence targets that could be handled. The map also shows
the path that was planned for the rover and the path the
rover actually followed. These are not necessarily the
same as the planned path does not account for all the
obstacles the rover may have to avoid. A large focus of
our tests was to improve system robustness and flexibility
in a realistic environment. Towards that goal we used a
variety of target locations and consistently selected new
science targets and/or new science target combinations
that had not been previously tested.

Figure 4: Example scenario.

Another primary scenario element was dynamically
identifying and handling opportunistic science events.
For these tests, we concentrated on a particular type of
event, which was finding rocks with a high albedo mea-
surement (i.e., light or white-colored rocks). This setting
was an example of using the data analysis algorithm for
target signature, where a particular terrain signature is
identified as having a high interest level. If rocks were
identified in hazard camera imagery that had a certain in-
terest score, then a science alert was created and sent to
the planner. If a science alert was detected the planner
attempted to modify the plan so an additional image of
the rock of interest was acquired.

Other important scenario elements included adding
or deleting ground-specified science targets based in re-
source under or over-subscriptions. For instance, in some

tests, the rover covered distances faster than expected and
the planner was able to add in additional science targets
that could not be fit into the original plan. Conversely,
in other tests, the rover used more power than expected
during traverses (or science measurements), which even-
tually caused a power over-subscription. The planner re-
solved this situation by deleting some lower priority sci-
ence targets. Unexpected energy drops during a traverse
could also be handled by the executive, which detects
the shortfall and stops the current traverse if there is not
enough energy to complete it. In all cases, the planning
and execution system attempts to preserve as many high
priority science targets as possible with current resource
and time settings.

3.1 Discussion of Test Results
We are in the process of developing a formal evaluation
process by which we will be able to obtain quantitative
measurements of how well our system provides robust
and opportunistic planning and execution. At this point
we have more anecdotal results from our extensive test-
ing in simulation and with rover hardware in the JPL
Mars Yard.

Tests in the Mars Yard typically consisted of 20-50
meter runs over a 100 square meter area with many obsta-
cles that cause deviations in the rover’s path. Most rocks
in the Mars Yard are dark in color, thus we brought in
a number of whiter rocks to trigger science alerts during
rover traverses. Science measurements using rover hard-
ware were always images, since other instruments were
not readily available (e.g., spectrometer). However dif-
ferent types of measurements were included when testing
in simulation.

As a final test of our system, we performed a several
hour long demonstration in October 2004. This demon-
stration covered the elements previously presented in this
section. Further, the combination of science targets used
had not been previously tested with. This set also in-
cluded a science target that was selected that day by a
present Mars Exploration Rover (MER) scientist. Rocks
intended to cause science alerts were also placed in new
locations not previously used. Overall, the demonstra-
tion was very successful. Two scenario runs were per-
formed. Both had multiple targets with time or resource
constraints preventing all targets from being included in
the initial plan. In the first run a number of science alerts
were correctly identified and handled. This run also had
an additional science target added dynamically in the
run due to the rover traveling faster than estimated. In
the second run, lower priority targets were deleted due
to more power being used in early traverses than ex-
pected. The software presented in this paper (planning,
scheduling, execution, feature extraction and data anal-
ysis) operated correctly in all cases and caused no un-
desirable behavior. In general, the rovers operated fully
autonomously and traveled over 40 meters.

While the system performed well during testing, we
have identified some areas for in which the system’s han-

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

129

dling of uncertainty could be improved. While the plan-
ning system can respond appropriately when activities do
not run in the estimated time (whether they take more
time or less time than predicted) it would be better if
the system could make more accurate predictions as the
planner could do a better job optimizing the value of the
mission plan. This would reduce the time the planner
spends replanning and, in some cases, could result in
higher quality plans.

The challenge in making such predictions is that the
duration of traverse activities depend on the nature of
the terrain and the amount of obstacles the rover will en-
counter, which can be difficult to predict ahead of time.
A possible solution may be to allow the rover adjust its
predictive model of its activities based on its experience
during mission. Techniques such as regression tree learn-
ing have been shown to allow robots to learn such predic-
tive models for navigation actions[Balacet al., 2000].

Another improvement would be to explicitly reason
about the uncertainty of activities. This would enable
the planner to make tradeoffs between actions that may
result in the collection of valuable science but may have
a high uncertainty in the outcome.

Finally, a significant challenge in developing auton-
omy for space exploration is developing algorithms that
will meet the computational constraints of the flight sys-
tems. Processors and memory used in space must be ra-
diation hardened and the available processors are signifi-
cantly slower than non-radiation hardware. For example,
the current Mars Exploration Rovers each have 128 MB
of RAM and a 20 Mhz processor. Rover missions within
the next 10 years may have processor speeds of about 200
Mhz. Based on computation performance of our system
on faster processors, we anticipate requiring 1 to 2 min-
utes of computation time to update the plan to respond
to problems or opportunities. We also estimate requiring
15-20 MB of RAM. As another data-point, CASPER is
currently being used in the Autonomous Sciencecraft Ex-
periment to automate the Earth Observing-1 spacecraft
which has a 12 Mhz processor[Sherwoodet al., 2004].

4 Related Work
The objectives of OASIS are similar to those of the Au-
tonomous Sciencecraft Experiment (ASE)[Sherwoodet
al., 2003] which also uses science analysis to generate
additional goals for a planner. OASIS differs from ASE
in the types of feature extraction and data analysis that
are performed. In addition, while ASE has focused on
planning for orbiter missions, the focus for OASIS has
been on ground operations. To support this type of plan-
ning OASIS must deal with the high degree of uncer-
tainty inherent in ground operations and integrate path
planning into the planning and scheduling process. Fi-
nally, in OASIS it is often necessary to temporarily halt
currently executing activities, such as a traverse, in order
to accomplish new science goals.

A number of other systems have used planning meth-
ods to coordinate robot behavior (e.g.[Bonassoet al.,

1997; Alami et al., 1998]). However, these systems
generate plans with a batch approach where plans are
generated for a certain time period and if re-planning
is required, an entire new plan must be produced. In
OASIS, plans are continuously modified in response to
changing conditions and goals. The CPS planner gener-
ates contingent plans which are then executed onboard a
rover and can be modified at certain points if failures oc-
cur[Bresinaet al., 1999]. Since only a limited number of
contingencies can be anticipated, our approach provides
more onboard flexibility to new situations.

5 Conclusions
OASIS supports opportunistic science by integrating
data analysis algorithms, which identifies potentially
interesting science measurements, with planning and
scheduling algorithms, which enables the rover to re-
spond to these new requests. Our current system has
been tested with several scenarios in simulation and on
prototype rover hardware. In these scenarios we demon-
strate the systems ability to respond appropriately to
problems with plan execution and to exploit unexpected
opportunities that might arise.

Currently, the planner preserves the original mission
goals when attempting to perform opportunistic science.
We will relax this constraint and allow the system to use
priorities to determine when it is appropriate to achieve
opportunistic science at the cost of existing goals. There
are significant challenges with introducing autonomous
techniques into the mission operations culture. We are
taking steps to address this by introducing MER scien-
tists to off-line versions of our software.

Acknowledgments
The research described in this paper was carried out
at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronau-
tics and Space Administration. This work was funded by
the NASA Intelligent Systems program and the JPL In-
terplanetary Network Directorate. We wish to thank the
other members of the OASIS team for their work on fea-
ture extraction and data analysis and the CLARAty team,
especially Issa Nesnas and Max Bajracharya, for their as-
sistance with the rover.

References
[Alami et al., 1998] R. Alami, R. Chautila, S. Fleury,

M. Ghallab, and F. Ingrand. An architecture for au-
tonomy. International Journal of Robotics Research,
17(4), April 1998.

[Balacet al., 2000] Natasha Balac, Daniel M. Gaines,
and Doug Fisher. Using regression trees to learn ac-
tion models. InIEEE Systems, Man and Cybernetics,
Nashville, October 2000.

[Bonassoet al., 1997] R. Bonasso, R. Firby, E. Gat,
D. Kortenkamp, D. Miller, and M. Slack. Experiences

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

130

with an architecture for intelligent, reactive agents.
Journal of Experimental and Theoretical Artificial In-
telligence Research, 9(1), 1997.

[Bresinaet al., 1999] J. Bresina, K. Golden, D. E.
Smith, and R. Washington. Increased flexibility and
robustness for Mars rovers. InProceedings of the
Fifth International Symposium on Artificial Intelli-
gence, Robotics, and Automation in Space, Noord-
wijk, Netherlands, 1999.

[Castanoet al., 2004] R. Castano, M. Judd, T. Estlin,
R. Anderson, L. Scharenbroich, L. Song, D. Gaines,
F. Fisher, D. Mazzoni, and A. Castano. Autonomous
onboard traverse science system. InIEEE Aerospace
Conference, Big Sky, Montana, March 2004.

[Chienet al., 2000] Steve Chien, Russell Knight, Andre
Stechert, Rob Sherwood, and Gregg Rabideau. Using
iterative repair to improve the responsiveness of plan-
ning and scheduling. InFifth International Confer-
ence on Artificial Intelligence Planning and Schedul-
ing, Breckenridge, CO, April 2000.

[Estlinet al., 2002] Tara Estlin, Forest Fisher, Daniel
Gaines, Caroline Chouinard, Steve Schaffer, and Issa
Nesnas. Continuous planning and execution for a
mars rover. InThird International NASA Workshop
on Planning and Scheduling for Space, Houston, TX,
October 2002.

[Nesnaset al., 2003] Issa A. Nesnas, Ann Wright,
Max Bajracharya, Reid Simmons, Tara Estlin, and
Won Soo Kim. Claraty: An architecture for reusable
robotic software. InProceedings of SPIE Aerosense
Conference, Orlando, Florida, 2003.

[Sherwoodet al., 2003] Robert Sherwood, Steve Chien,
Rebecca Castano, and Gregg Rabideau. The au-
tonomous sciencecraft experiment. InProceedings of
the IEEE Aerospace Conference, Big Sky, MT, March
2003.

[Sherwoodet al., 2004] R. Sherwood, S. Chien, D.
Tran, B. Cichy, R. Castano, A. Davies, and G. Ra-
bideau. Operating the autonomous sciencecraft exper-
iment. InProceedings of International Conference on
Space Operations (SpaceOps 2004), Montreal, May
2004.

[Simmons and Apfelbaum, 1998] Reid Simmons and
David Apfelbaum. A task description language for
robot control. InProceedings of Conference on Intel-
ligent Robotics and Systems, Vancouver Canada, Oc-
tober 1998.

[Zwebenet al., 1994] M. Zweben, B. Daun, E. Davis,
and M. Deale. Scheduling and rescheduling with iter-
ative repair. In M. Fox and M. Zweben, editors,Intel-
ligent Scheduling, pages 241–256. Morgan Kaufmann
Publishers Inc., 1994.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

131

Bayesian Models of Nonstationary Markov Decision Processes

Nicholas K. Jong and Peter Stone
Department of Computer Sciences

University of Texas at Austin
Austin, Texas 78712

{nkj,pstone}@cs.utexas.edu

Abstract

Standard reinforcement learning algorithms gener-
ate polices that optimize expected future rewards in
a priori unknown domains, but they assume that the
domain does not change over time. Prior work cast
the reinforcement learning problem as a Bayesian
estimation problem, using experience data to con-
dition a probability distribution over domains. In
this paper we propose an elaboration of the typi-
cal Bayesian model that accounts for the possibil-
ity that some aspect of the domain changes spon-
taneously during learning. We develop a reinforce-
ment learning algorithm based on this model that
we expect to react more intelligently to sudden
changes in the behavior of the environment.

1 Introduction
Reinforcement learning (RL) research provides algorithms
for generating universal plans from experience, given min-
imal prior knowledge about the domain[Sutton and Barto,
1998]. Classical RL algorithms assume only that the domain
obeys the Markov property: the effects of each action depend
only on the currently observed state. However, the behavior
of many interesting domains depends on factors that are dif-
ficult or impossible to represent in the state space. A robot’s
effectors may change unexpectedly due to damage. An over-
turned truck may render a highway suddenly impassable. An
opened door in a previously explored area may grant access to
new opportunities. Standard RL algorithms adapt only grad-
ually to such drastic changes to the overall system. Enough
experience after the change must accumulate to outweigh the
outdated knowledge. The agent maynevernotice a change
that occurs in a region of the state space that the learned be-
havior doesn’t visit.

In this paper, we consider statistical methods for detect-
ing changes in the domain in a more timely manner. Intu-
itively, an intelligent agent should notice when the environ-
ment ceases to behave as expected. Such an agent should con-
sider throwing out or discounting its old model of the relevant
aspects of the environment. We adopt a Bayesian framework
that allows us to reason explicitly about uncertainty over the
domain[Strens, 2000]. We elaborate the standard probabilis-
tic model to represent the possibility of domain change. We

then propose an algorithm that employs statistical inference
techniques to behave more robustly in the presence of domain
change.

2 Background

The standard domain formalism in RL research is the Markov
decision problem (MDP). An MDP〈S, A, P, R〉 comprises a
finite set of statesS, a finite set of actionsA, a transition
function P : S × A × S → [0, 1], and a reward function
R : S × A → R. Executing an actiona in a states yields an
expected immediate reward ofR(s, a) and causes a transition
to states′ with probabilityP (s, a, s′). A policy π : S → A
specifies an actionπ(s) for every states and induces a value
function V π : S → R that satisfies the Bellman equations
V π(s) = R(s, π(s))+ γ

∑
s′∈S P (s, π(s), s′)V π(s′), where

γ ∈ [0, 1] is a discount factor for future reward that may be
necessary to make the equations satisfiable. For every MDP
at least one optimal policyπ∗ exists that maximizes the value
function at every state simultaneously. To compute an op-
timal policy from a fully specified MDP, a number of algo-
rithms are available, including dynamic programming, policy
iteration, and linear programming[Littmanet al., 1995].

In the RL problem, only the state spaceS and the ac-
tion spaceA are known a priori, but standard approaches as-
sume that the transition functionP and reward functionR
are fixed. An important class of RL algorithms are model-
based: they compute policies by first estimatingP andR and
then solving the estimated MDP. Although solving an MDP
is too computationally expensive to perform after every time
step, algorithms such as Prioritized Sweeping[Moore and
Atkeson, 1993] describe how to propagate incremental up-
dates to a model through a policy learned through dynamic
programming. However, model-based algorithms are partic-
ularly vulnerable to nonstationary domains, since they typ-
ically employ maximum likelihood estimates of parameters
of the model given all the available experience data. Hence,
changes in the domain will tend to averaged into a large body
of outdated prior experience.

In this paper, we elaborate a model-based algorithm called
Bayesian dynamic programming[Strens, 2000]. For each
state-action pair(s, a), this approach interpretsP (s, a, ·) as
the parameters of an a priori unknown multinomial distri-
bution andR(s, a) as the mean of an unknown normal dis-

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

132

tribution.1 We represent our initial uncertainty about these
unknown distributions as prior distributions over their pa-
rameters. The joint distribution over all the presumed-
independent state-action pairs yields a probability distribu-
tion over MDPs. Since conjugate families of prior distri-
butions exist for both the multinomial and normal distribu-
tions, we can compactly represent and efficiently update these
distributions over MDPs. At the beginning of each training
episode, Bayesian dynamic programming samples a hypo-
thetical model of the domain from this distribution and then
behaves according to the policy obtained from solving the
model.

3 A Probabilistic Model of Change
We propose a simple model of environmental change: after
every episode and for each state-action pair, the associated
multinomial successor-state distribution and normal reward
distribution reset with some small probability to distributions
drawn from the respective original priors. This model caters
to the fact that only small parts of a domain may change at
a time. A more sophisticated model might also capture the
fact that a change in one state-action pair makes a change
in another pair more likely, but such models may be quite
complex.

Our Bayesian model of the domain must change to acco-
modate this probability of reset. Suppose that we havek com-
plete training episodes of data. Consider a particular state-
action pair(s, a). Let T denote the episode number when the
state-action pair(s, a) last reset, soT = 0 is the hypothesis
that the behavior ofa at states has never changed andT = k
is the hypothesis that the behavior reset at the beginning of the
current episode. LetP denote the successor state distribution
given(s, a). Then we have a hierarchical distribution overP ,
given byPr(P = ~p) =

∑
t Pr(P = ~p|T = t) · Pr(T = t),

wherePr(P = ~p|T = t) is the result of the standard Bayesian
conditioning process, but using only a suffix of all the data.
Similar reasoning applies to the distribution overR, the re-
ward function evaluated at(s, a). When we sample a hypoth-
esis MDP from our Bayesian model, we must now first draw
a sample hypothesizing the last time each state-action pair re-
set (according to the distributionPr(T), before sampling the
pieces of the transition and reward functions from posterior
distributions conditioned on the corresponding suffixes of the
data.

No conjugate family of prior distributions exists forPr(T),
so in practice we approximate this distribution by maintaining
the relative probabilities for a small subset of episode num-
bers. The computation of these relative probabilities poses
another obstacle. Suppose that we have a prior distribu-
tion Pr(T) that we want to update given experience dataD
that we assume all come from the same distribution. Then
from Bayes’ Theorem we havePr(T = t|D) ∝ Pr(D|T =
t)·Pr(T = t). We can rewrite the model likelihood as an inte-
gral over Bayesian models conditioned on a suffix of the data:
Pr(D|T = t) =

∫ ∫
Pr(D|P = ~p,R = r, T = t) · Pr(P =

1The MDP formalism does not require the rewards to be
normally-distributed, but this assumption seems fairly innocuous
given that we care only about the mean of the reward distribution.

~p|T = t) · Pr(R = r|T = t) d~p dr. Computing the model
likelihood exactly is infeasible, but we can approximate it
with Monte Carlo integration by sampling some number of
values forP andR, again conditioned on the appropriate suf-
fix of the data.

Our Bayesian model of the state-action pair(s, a) is there-
fore approximate in two ways. First, we approximatePr(T)
with a bounded-size sample of the most probable values ofT .
Each point in this sample has a scalar weight and a Bayesian
model ofP andR, represented exactly as the appropriate pa-
rameters to the conjugate priors for these distributions. The
second approximation is in our Bayesian update of our model
given new data. We reweight the sample by multiplying each
weight by the model likelihood, estimated using Monte Carlo
integration.

4 Application of the Bayesian Model

We can use the Bayesian model elaborated above directly
with Strens’ Bayesian dynamic programming algorithm
[Strens, 2000]. After each episode, we add to our sample
of Pr(T) the hypothesis for each state-action pair that it reset
before that episode. We give this hypothesis some portion of
the weight equal to our prior probability of domain change at
each episode. Then we condition the weights and each model
of P andR on the data from that episode. To keep the sample
size reasonable, we select a value ofT to discard. Finally, for
the next episode, we sample an MDP from the hierarchical
model.

This Bayesian approach to recognizing domain change al-
lows us to avoid unilateral commitments to either keeping or
discarding old data. Additionally, in the absence of evidence
to the contrary, it gradually increases the belief that neglected
state-action pairs have reset. If the prior distribution over the
reward function is optimistic, then the agent will eventually
choose to explore the action again.

Unfortunately, Bayesian dynamic programming does not
always work so well when the state-action pair that changed
is part of the learned policy. If a previously reliable action
suddenly fails entirely, the solution to the sampled MDP may
cause the agent stubbornly to retry expensive actions until
timing out. The same phenomenon can occur in model-free
methods such as Q-learning: depending on the learning rate,
the agent may spend quite some time in a negative-reward
loop.

We propose a small modification of Bayesian dynamic pro-
gramming. If the number of visits to a state in a single episode
exceeds a certain threshold, we begin to conduct statistical
goodness-of-fit tests to evaluate our hypotheses forP andR
at the appropriate state-action. If the data collected during
that episode cause us to reject the sample ofP or R, we im-
mediately resample them from a Bayesian model conditioned
on only that data. We then update the policy as necessary to
solve the updated MDP. Note that even though we resample
from a distribution assuming that a reset occurred, we still
update the Bayesian model as usual at the end of the episode.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

133

5 Future Work and Discussion
The implementation and evaluation of the algorithm de-
scribed above remains to be done. However, we believe that
this approach of building a Bayesian model of domain uncer-
tainty is very promising. One concern is the computational
cost of Bayesian inference, but the proposed modifications
to Bayesian dynamic programming should not worsen the
runtime much. The Monte Carlo integration only occurs for
state-action pairs executed during an episode, and the primary
cost of this procedure is the sampling ofP andR that the
algorithm already performs once for every state-action pair.
The goodness-of-fit tests only occur upon revisiting a state
several times in the same episode, and some form of expo-
nential backoff can help prevent spurious testing. (Testing
again after one additional data point is unlikely to produce a
different result.)

The ideas described in this paper are reminiscent of our
previous usage of a Bayesian model of MDPs to infer state
abstractions[Jong and Stone, 2005] from the solution of one
MDP for use in similar MDPs. A particularly promising
avenue of future research is the usage of a single Bayesian
model to reason about both dynamic domains and state ab-
straction simultaneously. In this framework we can imagine
inducing structure such as state abstraction that continues to
aid learning despite continual changes in the reward and tran-
sition functions.

Acknowledgments
This research was supported in part by NSF CAREER award
IIS-0237699 and DARPA grant HR0011-04-1-0035.

References
[Jong and Stone, 2005] Nicholas K. Jong and Peter Stone.

State abstraction discovery from irrelevant state variables.
In Proceedings of the Nineteenth International Joint Con-
ference on Artificial Intelligence, 2005.

[Littmanet al., 1995] Michael L. Littman, Thomas L. Dean,
and Leslie Pack Kaelbling. On the complexity of solving
Markov decision problems. InProceedings of the Eleventh
Conference on Uncertainty in Artificial Intelligence, 1995.

[Moore and Atkeson, 1993] Andrew W. Moore and Christo-
pher G. Atkeson. Prioritized sweeping: Reinforcement
learning with less data and less real time.Machine Learn-
ing, 13:103–130, 1993.

[Strens, 2000] Malcolm Strens. A Bayesian framework for
reinforcement learning. InProceedings of the Seventeenth
International Conference on Machine Learning, pages
943–950, 2000.

[Sutton and Barto, 1998] Richard S. Sutton and Andrew G.
Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, 1998.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

134

Simulation Methods for Uncertain Decision-Theoretic Planning

Douglas Aberdeenand Olivier Buffet
National ICT Australia

Australian National University
Canberra, Australia

{douglas.aberdeen,olivier.buffet }@nicta.com.au

Abstract

Experience based reinforcement learning (RL) sys-
tems are known to be useful for dealing with do-
mains that area priori unknown. We believe that
experience based methods may also be useful when
the model is uncertain (or even completely known).
In this case experience is gained bysimulatingthe
uncertain model. This paper explores a simple way
to allow experience based RL systems to cope with
uncertainty in a model. The particular form of RL
we consider is a policy-gradient method. The par-
ticular domains we attempt to optimise in are from
temporal decision-theoretic planning. Our previous
experience with military planning problems indi-
cates that a human specified model of the planning
problem is often inaccurate, especially when hu-
mans specify probabilities, thus planners that take
into account this uncertainty are very useful. De-
spite our focus on policy-gradient RL for planning,
our simple (but approximate) solution for dealing
with uncertainty in the model can be applied to any
simulation based RL method, such as Q-learning
or SARSA. Our attempt to solve decision-theoretic
planning problems with a policy-gradient approach
is novel in itself, making up another contribution of
this paper.

1 Introduction

If the true model of a Markov decision problem (MDP) is
hidden we must use algorithms that train agents byinteract-
ing with the MDP. This is done by experiencing trajectories
through the state space and forming either an explicit model
(transition matrix) or an implicit model (value function or
policy) of the system. These Monte-Carloesque methods can
be beneficial even when the true model is completely known,
especially if the model is too complex to work with directly.
E.g., the state space might be too large to enumerate, or it
might be continuous. In this case the model is only used in
simulating the system, generating state space trajectories that
the agent uses to optimise its behaviour. Another argument
for simulation based optimisation is the ease of creating a
simulator compared to a set of stochastic transition matrices.

This is especially true if aspects of the system are unknown
or approximated.

This paper explores the idea of using anuncertainmodel
to simulate trajectories, allowing an agent to directly optimise
its policy in a way that minimises the impact, or risk, associ-
ated with the uncertainty in the model. Moreover, this can be
achieved in highly complex domains.

The problems we consider come from temporal decision-
theoretic planning, where methods that enumerate any part
of the state space fail to scale to interesting problems. The
model is provided in the form of a set of tasks the planner
can choose from. Each task has a pre-defined duration and
has probabilistic outcomes that set multiple state variables to
true or false. The goal of the planner is to select actions, and
schedule them concurrently, to achieve the desiredgoal state
values of the state variables. Resources constrain which tasks
can be run in combination, and resources are consumed as
tasks end. This is a very general expression of the planning
problem and only a few probabilistic planners are emerging
that can operate in this setting. They can be used to optimise
plans in a wide variety of situations, such as Mars rover plan-
ning [Mausam and Weld, 2005], military operations planning
[Aberdeenet al., 2004], or building site planning. Probabili-
ties might arise from modelling variable battery strength, an
opponent’s actions, or weather. The outcome probabilities are
often estimated from finite data, or guessed by human experts.
Thus, the probabilities are subject to some uncertainty.

The contribution of this paper is two fold. Firstly, we de-
scribe the factored policy gradient (FPG) Planner: a novel
approach to temporal decision-theoretic planning that allows
very large domains to beapproximatelyoptimised. We
achieve this by: (1) factoring the policy into simple indepen-
dent policies for starting each task; (2) using a local optimi-
sation method instead of trying to find a globally optimal so-
lution; (3) using algorithms with memory use that scales lin-
early with the number of tasks, state variables, and resources,
not with the state space.

The second contribution is to demonstrate how uncertainty
over the probabilities described in a model can be incorpo-
rated into a simulation based optimisation. We assume that
probabilities of task outcomes lie in intervals between[0, 1].
The width of the interval can be computed based on the qual-
ity of the data used, or based on how confident the human
guess was. The goal is to find a policy that minimises the

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

135

risk, or variance, associated with enacting the policy over the
range of models implied by the uncertainty. I.e., the policy
that still performs relatively well even in the worst case sce-
nario. The key idea is simply to simulate state space trajecto-
ries using the mostpessimisticmodel. The most pessimistic
model might generally be as difficult to compute as the pol-
icy, however, we show empirically that a local approximation
to the pessimistic model might be sufficient. We can also
compute policies based on the mostoptimisticmodel, to ex-
amine the differences in policy or determine how much our
uncertainty could be effecting agent performance.

We start by describing background work in temporal prob-
abilistic planning and interval methods for Markov decision
problems (MDPs). Section 3 describes MDPs for planning.
Section 4 describes the factored policy agents and the estima-
tor we use to compute the gradient of the objective function.
Section 5 describes preliminary experiments.

2 Background
Previous probabilistic temporal planners include CPTP
[Mausam and Weld, 2005], Prottle[Little, 2004], and a mil-
itary operations planner[Aberdeenet al., 2004]. All these
algorithms use some form of dynamic programming (either
RTDP [Barto et al., 1995] or AO*) to associate values with
each state/action pair. However, this requires that values be
stored for each encountered state. Even though these algo-
rithms do not enumerate the entire state space their ability
to scale is limited by memory size. Even problems with a
few tasks and state variables can produce millions of relevant
states. Another probabilistic temporal planner is Tempastic
[Younes and Simmons, 2004], which uses the generate, test,
and debug planning paradigm. This method may suffer in
domains that are highly non-deterministic.

Our FPG-Planner performs gradient ascent in the space of
parameters of the factored policies (or policy agents). The
policy agents can be any differentiable function approxima-
tor. We show that maximising a simple reward function natu-
rally minimises plan durations and maximises the probability
of reaching the goal. Gradients are estimated by simulating
trajectories through the planning state space and calculating
small contributions to the gradient at each step[Baxteret al.,
2001]. The FPG-Planner will be described in this paper, but
is covered in more detail in Aberdeen[2005].

The use of intervals to describe uncertainty in MDPs was
investigated by Givanet al. [2000], Hosakaet al. [2001], and
Strehl and Littman[2004]. Our approach is most closely re-
lated to the approach of Buffet and Aberdeen[2005], who use
uncertainty intervals to make RTDP robust. RTDP uses sim-
ulation to determine which state values should be updated,
thus is similar in its use of simulation to help cope with large
state spaces. The intervals are used to compute the most pes-
simistic transition probabilities given thecurrent value esti-
mates. Our work deliberately avoids storing values, thus can-
not use them to approximate the worst model. Instead, we
assume that the simulator can often select the probability in
each interval on a state by state basis that will result in a pes-
simistic model being simulated. Specifically, in our planning
domains we assume that each task has two outcomes: suc-

cess, which is helpful, and failure, which is harmful.
Actions in temporal planning consist of launching multiple

tasks concurrently. The number of candidate actions available
in a given state is the power set of the tasks that are eligible to
start under the current state variables. That is, withN eligible
tasks there are2N possible actions. With only 10 eligible
tasks we have 1,024 actions to choose from! Current planners
try to explore this action space systematically, pruning actions
that lead to low rewards (or equivalently, high costs).

A key contribution of the FPG-Planner is to deal with the
explosion of the action space by replacing the single agent
choosing from the power-set of tasks with a single simple
agent for each task. The policy learnt by each agent is
whether to start its associated task given its observation, inde-
pendent of the decisions made by the other agents. This idea
alone does not simplify the problem. Indeed, if the agents all
receive perfect state information they could presumably pre-
dict the decision of the other agents and still act optimally.
The significant reduction in complexity arises from two ad-
ditional factors: (1) the agents are only provided enough in-
formation to make an approximate decision, not an optimal
decision; (2) each agent is optimised locally.

3 POMDP Formulation of Planning
Our intention is to deliberately simplify the agents by restrict-
ing their access to state information. This requires us to ex-
plicitly consider partial observability. We now describe the
partially observable MDP framework (POMDP), define the
state space, our objective function, and the process for simu-
lating the state space.

Definition 1 A finite partially observable Markov decision
process consists of: a finite set of statess ∈ S; a finite set of
actionsa ∈ A; probabilitiesPr[s′|s,a] : S ×S ×A → [0, 1]
of making state transitions → s′ under actiona; a reward
for each stater(s) : S → R; a finite set of observation vec-
tors o ∈ O seen by the agent in place of the complete state
description; and probabilitiesPr[o|s] : R|o| × S → [0, 1] of
observing vectoro of dimension|o|, given current states.

In addition, our specification of intervals around each task
outcome probability induces intervals around each state tran-
sition probabilityPr[s′|s,a]. As will be demonstrated later,
our use of simulation on the level of planning tasks, instead of
states, means we never need to explicitly computePr[s′|s,a]
probabilities or their intervals.

Goal statesare states where all the goal variables are sat-
isfied.Failure statesare states from which it is impossible to
reach a goal state (usually because time or resources have run
out). These two classes of state are combined to form the set
of resetstates that produce an immediate reset to the initial
states0. A single trajectory through the state space consists
of many individual trials that automatically reset tos0 each
time a goal state or failure state is reached.

Policies are possibly stochastic, mapping observation vec-
tors to a probability over each action. LetN be the number
of basic tasks available to the planner. In our setting an action
a is a binary vector of lengthN . An entry of 1 at indexn
means ‘Yes’ begin taskn, and a 0 entry means ‘No’ do not
start taskn. The probability of actions is writtenPr[a|o, θ],

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

136

where conditioning onθ reflects the fact that the policy is dic-
tated by a set ofp real valued parametersθ ∈ Rp. We show
later how real valued parameters can control probability dis-
tributions over actions given observations, thus determining
a policy. This paper assumes that all stochastic policies (i.e.,
all values forθ) reach reset states in finite time when executed
from s0. This is enforced by limiting the maximum duration
of a plan. Because all policies reach a reset state, and by
continuously resetting to the initial state, we ensure the un-
derlying MDP isergodic,1 which is necessary for producing
gradient estimates.

The aim of policy gradient algorithms is to find the set of
parametersθ that induce a policy to move from the initial
states0 to a reset state while maximising the long-term av-
erage reward. The long-term average reward is the average
of all instantaneous rewards received over an infinite sample
trajectory of the POMDP2

η(θ) = lim
T→∞

1
T

T−1∑
t=0

r(st).

In the context of planning, the instantaneous reward provides
the agent with a measure of progress toward the goal. A sim-
ple reward scheme is to setr(s) = 1 for all statess that rep-
resent the goal state, and 0 for all other states. To maximise
η(θ), goal states must be reached as frequently as possible.
This has the desired property of simultaneously minimising
plan duration, as well as maximising the probability of reach-
ing the goal (failure states achieve no reward). It is tempting
to provide a negative reward for failure end states, but in this
case an agent could partially maximise its reward by avoiding
progress altogether, never achieving end states, and therefore
never achieving negative (or positive) rewards.

We propose a reward scheme that provides a large reward
(1000 in this paper) for reaching the goal as described, plus a
reward at each step that heuristically awards progress toward
the goal. This additionalshapingreward provides a reward
of 1 for every goal condition achieved, and -1 for every goal
condition that becomes unset.

3.1 Planning State Space
For probabilistic temporal planning our state description con-
tains: the state’s absolute time, a queue of impending events,
the status of each task, the truth value of each state variable,
and the available resources. In a particular state, only a subset
of the eligible tasks will satisfy all preconditions for execu-
tion. This subset is called theeligible task list. When a deci-
sion to start a fixed duration task is made, an end-task event is
added to the time ordered event queue. The event queue holds
a list of events that the planner is committed to, although the
outcome of those events may be uncertain.

The generation of successor states is shown in Alg. 1. The
algorithm begins by starting the tasks given by each bit in
the action, implementing any immediate effects. An end-task

1Except for the aperiodic condition for ergodicity that is not im-
portant for this paper.

2Because the underlying MDP is ergodic,η(θ) is independent of
the starting state.

Algorithm 1 findSuccessor(States, Actiona)
1: for eachan =’Yes’ in a do
2: s.beginTask(n)
3: s.addEvent(n, s.time+taskDuration(n))
4: end for
5: repeat
6: if s.time> maximum makespanthen
7: s.failureLeaf=true
8: return
9: end if

10: if s.operationGoalsMet()then
11: s.goalLeaf=true
12: return
13: end if
14: if s.noEvents() &¬s.anyEligibleTasks()then
15: s.failureLeaf=true
16: return
17: end if
18: e = s.nextEvent()
19: s.time =e.time
20: selectModel(e.PrSuccessLower,e.PrSuccessUpper)
21: samplesucess Pr = p, failurePr = 1− p
22: s.implementEffects(outcome)
23: until s.anyEligibleTasks()

Algorithm 2 selectModel(lowerBound, upperBound)
1: if pessimisticthen
2: return (e.lowerBound)
3: else
4: if optimisticthen
5: return (e.upperBound)
6: else
7: return(lowerBound+upperBound)/2
8: end if
9: end if

event is added at an appropriate time in the queue. The state
update then processes events until there is at least one task
that is eligible to begin. Lines 6–17 check for reset states
before the next event for the current states is processed.

Events have probabilistic outcomes. Uncertain models pro-
vide intervals of probabilities for outcomes. The intervals are
defined as part of the problem specification. Before sam-
pling we must choose a point in this interval to base the
sample on. We assume that maximising the probability of
failure also minimises the long-term average reward for the
current policy. Thus, to train the agent to operate well un-
der the pessimistic model we always choose the lower bound
on the probability of success as the true probability of the
event (Alg. 2), and sample the outcome accordingly. Simi-
larly, if we wish the agent to perform well if the optimistic
model turns out to be correct, we select the upper bound on
the probability of success. If there are more than two out-
comes we could put intervals on the probability mass asso-
ciated with each outcome. We then distribute the probability
mass as constrained by the intervals. The worst outcomes gets
the maximum probability mass, the next worst outcome gets

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

137

the maximum allowed remaining mass, and so on.
This scheme is not guaranteed to select probabilities from

the intervals that correspond to the worst overall model. A
pessimistic choice at the current state could lead to future
states with very little uncertainty in the model, whereas an
optimistic choice could lead to future states with massive un-
certainty and hence larger scope for poor models. We assume
there is a way to approximately measure which outcomes will
lead to high or low rewards. Section 6 outlines how we might
learn the worst (or best) overall model in the same setting.

Line 21 of Alg. 1 samples one possible outcome from the
distributions permitted by the intervals in the problem defini-
tion. Alg. 2 is the only point in the algorithm where intervals
are considered. The remainder of the algorithm description is
independent of our use of uncertain models.

Future states are only generated at points when tasks can
be started. If an event outcome is processed and no tasks are
enabled, the search recurses to the next event in the queue.

4 Policy Gradient Ascent
In this section we describe policy-gradient algorithms for re-
inforcement learning and how we use this approach for the
FPG-Planner. We assume the presence of policy agents,
parameterised with independent sets of parameters for each
agentθ = {θ1, . . . , θN}. There arep parameters in total. We
seek to adjust the parameters of the policy to maximise the
long-term average rewardη(θ).

Baxteret al. [2001] describe the GPOMDP algorithm that
estimates the gradient∇η(θ) of the long-term average reward
with respect to the current set of policy parameters. Once
an estimatê∇η(θ) is computed, we maximise the long-term
average reward with a gradient ascent step:θ ← θ+α∇̂η(θ),
whereα is a small step size. Maximisingη(θ) produces better
policies, both in terms of duration and probability of failure.
Repeating the process of estimating the gradient, followed by
a gradient ascent step, optimises the policy until a maxima in
the long-term average reward is found.

4.1 Estimating Gradients
The GPOMDP gradient estimate algorithm works by sam-
pling a single long trajectory through the state space. The
state transitions are generated with Alg. 1 after each task
agent has chosen whether to start or not. All agents receive
the same reward for the new state and update their gradient
estimates independently.

The parameterised policy maps observations to probability
distributions over action vectors. The action vector at each
step isat, a combination of independent ‘Yes’ or ‘No’ ac-
tions made by the agents. Each agent is parameterised by
an independent set of parameters that make upθ ∈ Rp:
θ1, θ2, . . . , θN . If atn represents the binary decision made
by agentn at timet about whether to start its corresponding
task then the stochastic policy factors into

Pr[at|ot, θ] = Pr[at1, . . . , atN |ot, θ1, . . . , θN]
= Pr[at1|ot, θ1]× · · · × Pr[atN |ot, θN].

It is not necessary for all agents to receive the same obser-
vation, and it may be advantageous to show different agents

different parts of the state, leading to a decentralised planning
algorithm. Introducing partial observability in similar multi-
agent policy-gradient approaches[Peshkinet al., 2000] has
been shown to increase the number of local minima. Choos-
ing a good observation vector allows the problem to remain
tractable while hopefully avoiding the introduction of severe
local maxima.

After some experimentation[Aberdeen, 2005], we chose
an observation vector that is a binary description of the eligi-
ble tasks (15 bits) and the condition truth values (10 bits) plus
a constant 1 bit to provide bias to the agents’ linear networks.

The main requirement for each policy-agent is that
Pr[atn|ot, θn] be differentiable with respect to the parameters
for each choice task startatn =‘Yes’ or ‘No’. We choose to
represent each agent with a two output linear network mapped
into probabilities using a soft-max function:

Pr[atn = Y es|ot, θn] =
exp(o>t θn,Y es)

exp(o>t θn,Y es) + exp(o>t θn,No)

Pr[atn = No|ot, θn] =
exp(o>t θn,No)

exp(o>t θn,Y es) + exp(o>t θn,No)
.

This can be thought of as a two output linear network where
the outputs are subsequently normalised to produce a well be-
haved probability distribution. If the dimension of the obser-
vation vector is|o| then eachθn can be thought of as an|o|×2
matrix where the columns represent the network weights for
the ‘Yes’ decision output and the ‘No’ decision output respec-
tively. This expression is a form of logistic regression. The
log derivatives, necessary for Alg. 3, are given in Baxteret
al. [2001]. Initially the parameters are set to small random
values: a near uniform random policy. This encourages ex-
ploration of the action space. Each gradient step typically
moves the parameters closer to a deterministic policy.

Figure 1 shows the selection of actions graphically. Alg. 3
describes the algorithm for computinĝ∇η(θ). The gradient
estimate provably converges to a biased estimate of∇η(θ)
as T → ∞. The quantityβ ∈ [0, 1) controls the degree
of bias in the estimate. Asβ approaches 1, the bias of the
estimates drop to 0. However ifβ = 1, estimates exhibit
infinite variance asT → ∞. Thus the parameterβ achieves
a bias/variance tradeoff in the stochastic gradient estimates.

Line 8 computes the log gradient of the sampled action
probability and adds the gradient for then’th agent’s param-
eters into aneligibility trace. The gradient for parameters not
relating to agentn is 0. We do not computePr[atn|ot, θn]
or gradients for tasks with unsatisfied preconditions. If all
eligible agents decidenot to start their tasks, we issue a null-
action. If the state event queue is not empty, we process the
next event, otherwise time is incremented by 1 to ensure all
possible policies will eventually reach a reset state.

5 Experiments
This section provides some preliminary experiments that vali-
date the ideas in this paper. We compare the present algorithm
with that of our earlier RTDP based planner for military oper-
ations[Aberdeenet al., 2004]. Both the current tools and our
previous tool use the same code to generate states, represent-
ing exactly the same domains, providing a fair comparison.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

138

Conditions
Eligible tasks
Task status
Resources
Event queue

Time

Current State

Conditions
Eligible tasks
Task status
Resources
Event queue

Time

Not Eligible

Task N

Task 1

Task 2

Next State

Choice disabled

ot

ot

Pr[Y es|ot, θ1] = 0.1

Pr[No|ot, θ1] = 0.9

Pr[No|ot, θ2] = 1.0

Pr[Y es|ot, θN] = 0.5

Pr[No|ot, θN] = 0.5

findSuccessor(st, at)

at

Figure 1: Task-policies receive an observation of the current
state and individually choose whether to start or not. The
combined decision is fed into the state simulator that proba-
bilistically generates the next state. In this example, the joint
action probability isPr[No, No, . . . , Y es|ot, θ] = 0.45.

The problem3 consists of 15 tasks designed to represent
the high level process of building a sky-scraper. These tasks
achieve a set of 10 state variables needed for operation suc-
cess. Four of the effects can be established independently by
two different tasks, however, resource constraints only allow
one of the tasks to be chosen. Furthermore, tasks are not re-
peatable, even if they fail. The probability of failure of tasks
ranges between 0 and 20% with an interval on either side of
20% (unless such an interval would result in a probability of
failure of less than 0%).

We have constructed this example to demonstrate the effec-
tiveness of planning with intervals. Thus, for each effect that
has two tasks that can achieve it we have selected one task
to have a high probability of success, but also a high uncer-
tainty. The second task has a lower probability of success, but
an interval of 0 (perfect knowledge of the model). The second
(lower) probability of success is chosen to be higher than the
lower boundon the first tasks success probability. The robust
plan should (and does) choose tasks with the lower proba-
bility of success, but zero interval. Table 1 shows that the
results of using the FPG-Planner with different modes of op-
timisation: 1- No optimisation at all, the plan is to start each
eligible task with a probability of 50%; 2- Optimisation based
on a simulation of a pessimistic model; 3- Optimisation based
on the original human model (mean model); 4- Optimisation
based on a simulation of an optimistic model. Evaluations
are repeated three times. The evaluations assume that the true
model is: 1- pessimistic, 2- the original model (mean model),
3- optimistic.

3The problem definition can be found onhttp://rsise.
anu.edu.au/˜daa , written using an XML version of the PDDL
language).

Algorithm 3 Factored Planning Gradient Estimator

1: Sets0 to initial state,t = 0, et = [0]
2: while t < T do
3: et = βet−1

4: Generate observationot of st

5: for Each eligible taskn do
6: ComputePr[Y es|ot, θn] andPr[No|ot, θn]
7: Sampleatn =Yes oratn =No
8: Computeet = et +∇ log Pr[atn|o, θn]
9: end for

10: Try actionat = {at1, at2, . . . , atN}
11: while mutex or resource prohibitsat do
12: randomly turn off one task start inat

13: end while
14: st+1 = findSuccessor(st,at)
15: ∇̂tη(θ) = ∇̂t−1η(θ)− 1

t+1 (r(st+1)et − ∇̂t−1η(θ))
16: t← t + 1
17: end while
18: Return∇̂T η(θ)

The parameters of the GPOMDP algorithm are:T =
50, 000 gradient estimation steps andβ = 0.9. Optimisa-
tion time was limited to 5 minutes wall clock time on a sin-
gle user 3GHz Pentium IV with 1GB ram. All optimisations
ran to the complete 5 minutes. After 5 minutes optimisation
was terminated and the current policy evaluated. The FPG-
Planner has the ‘any time’ property that returns better policies
the longer optimisation is allowed to run, thus it is possible
we might have gotten improved results with more patience.
Results quote the average duration (± the variance), and the
percentage of plans that terminate in a failure state. Plans that
fail often have short average durations because they fail early
in the execution of the plan due to resource limitations or a
lack of alternative courses of action. Because optimisation
has a stochastic component the results are the average over
100 training runs and 10,000 evaluation runs of the plan.

Unsurprisingly we see that plans formed under pessimistic
training perform much better than other training modes when
the true (evaluation) model turns out to follow the pessimistic
model. Less obviously, the plan formed under a pessimistic
model has a more uniform failure probability and durations
over the possible true models. This is highly desirable be-
cause it means we have less variance in the outcome of plans
despite operating over a wide range of models. We emphasise
that this result is largely dependent on the particular domain
and is a result of a true assumption that experiencing a less
pessimistic true model can only benefit the policy. We have
seen similar effects on other domains using the RTDP planner
[Buffet and Aberdeen, 2005].

The RTDP results are quite similar to the FPG-Planner re-
sults. The FPG-Planner is performing somewhat better than
RTDP if the true model turns out to be pessimistic, but train-
ing assumed a mean or optimistic model. RTDP gets the best
overall result when the true model is optimistic and training
assumed a mean or optimistic model. In this case RTDP is
finding a global maxima in long-term average reward, but
FPG gets stuck in local maxima.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

139

Table 1: Average failure prob and duration of the optimised Building plan. The columns are different training conditions. The
rows are different evaluation conditions. Optimisation is performed with the FPG-Planner

True model No train Pess. train Mean train Opt train
Fail% Dur. Fail% Dur. Fail% Dur. Fail% Dur.

Pessimistic 0.657 4.80±2.22 0.549 4.42±1.78 0.688 3.35±2.89 0.694 3.42±2.37
Mean 0.403 5.97±1.69 0.420 5.16±1.34 0.378 4.98±1.64 0.381 5.03±1.67
Optimistic 0.325 6.30±1.36 0.386 5.35±1.12 0.278 5.46±1.03 0.277 5.51±1.05

Table 2: Same results as Table 1, but this time optimised with an RTDP based planner.
True model No train Pess. train Mean train Opt train

Fail% Dur. Fail% Dur. Fail% Dur. Fail% Dur.
Pessimistic 0.657 4.80±2.22 0.541 4.62±3.12 0.729 5.32±1.46 0.724 5.40±1.76
Mean 0.403 5.97±1.69 0.428 5.09±1.80 0.272 6.49±1.12 0.272 6.54±1.19
Optimistic 0.325 6.30±1.36 0.386 5.18±1.65 0.099 6.90±0.451 0.100 6.90±0.452

For problems of this size RTDP can enumerate the state
space in memory, giving it a significant advantage because
it can compute the optimal global policy. Thus, we do not
expect to be able to generally perform better RTDP on this
problem. The fact that we outperform RTDP at all is due
to the fact that we use the labelled variant of RTDP[Bonet
and Geffner, 2003], with a non-zero labelling threshold that
results in some degree of approximation in the policy. How-
ever, as Aberdeen[2005] demonstrates, when problems are
too large to fit into main memory, the FPG-Planner can per-
form significantly better than RTDP based planners.

6 Discussion
The main requirement for learning with policy-gradient
POMDP methods is that a trajectory of state observations is
available. Even if we haveno modelof the planning problem
we can still use FPG-Planning provided we can interact with
the real-world to generate trajectories.

The greatest drawback of our work is the assumption that
the poorest (or best) global model can be approximated by al-
ways trying to simulate the extremes of the intervals in each
state. We can avoid this assumption by simultaneously learn-
ing the worst model at the same time as learning the best
policy. This can be achieved with a second agent assigned
to each planning task. The second agent learns, again using
a gradient method, the most pessimistic point in the interval
that should be used to simulate trajectories. We plan to try this
approach soon, borrowing on the work of Bowling[2005].

To summarise, we have demonstrated an algorithm with
great potential to produce policies that are robust to a de-
gree of ‘guesswork’ in constructing the model. It is critical
that real-world planning tools are tolerant of errors in the de-
scription of the model. Human beings are bad at estimating
probabilities, and it is rare that we have sufficient data to per-
fectly estimate all parameters of a system. Further work will
attempt to justify our claim that the simulation approach to
dealing with uncertainty has merit in very large domains.

Acknowledgements
National ICT Australia is funded by the Australian Govern-
mnent’s Backing Australia’s Ability program and the Centre

of Excellence program. This project was also funded by the
Australian Defence Science and Technology Organisation.

References
[Aberdeenet al., 2004] D. Aberdeen, S. Thiébaux, and L. Zhang.

Decision-theoretic military operations planning. InProc.
ICAPS’04, 2004.

[Aberdeen, 2005] D. Aberdeen. Probabilistic temporal planning by
factored policy gradient. Technical report, NICTA, 2005.

[Bartoet al., 1995] A.G. Barto, S. Bradtke, and S. Singh. Learning
to act using real-time dynamic programming.Artificial Intelli-
gence, 72, 1995.

[Baxteret al., 2001] J. Baxter, P. Bartlett, and L. Weaver. Exper-
iments with infinite-horizon, policy-gradient estimation.JAIR,
15:351–381, 2001.

[Bonet and Geffner, 2003] Blai Bonet and Hector Geffner. Labeled
RTDP: Improving the convergence of real-time dynamic pro-
gramming. InProceedings of ICAPS-03, 2003.

[Bowling, 2005] Michael Bowling. Convergence and no-regret in
multiagent learning. InProc. of NIPS’04, volume 17, 2005.

[Buffet and Aberdeen, 2005] O. Buffet and D. Aberdeen. Planning
with robust (l)rtdp. InProc. of IJCAI’05, 2005.

[Givanet al., 2000] R. Givan, S. Leach, and T. Dean. Bounded pa-
rameter markov decision processes.Artificial Intelligence, 122(1-
2):71–109, 2000.

[Hosakaet al., 2001] M. Hosaka, M. Horiguchi, and M. Kurano.
Controlled markov set-chains under average criteria.Applied
Mathematics and Computation, 120(1-3):195–209, 2001.

[Little, 2004] I. Little. Probabilistic temporal planning. Honours
thesis, Australian National University, 2004.

[Mausam and Weld, 2005] Mausam and Daniel S. Weld. Concur-
rent probabilistic temporal planning. InProc. ICAPS’05, 2005.

[Peshkinet al., 2000] L. Peshkin, N. Meuleau K.-E. Kim, and L. P.
Kaelbling. Learning to cooperate via policy search. InUAI, 2000.

[Strehl and Littman, 2004] A. Strehl and M. Littman. An empirical
evaluation of interval estimation for markov decision processes.
In Proc. of ICTAI’04, 2004.

[Younes and Simmons, 2004] Hakan L. S. Younes and Reid G.
Simmons. Policy generation for continuous-time stochastic do-
mains with concurrency. InProc. of ICAPS’04, volume 14, 2004.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

140

Dynamic Domains in Data Production Planning

Keith Golden Wanlin Pang∗
NASA Ames Research Center

Moffett Field, CA 94035
{kgolden, wpang}@email.arc.nasa.gov

Abstract
This paper discusses a planner-based approach to
automating data production tasks, such as pro-
ducing fire forecasts from satellite imagery and
weather station data. Since the set of available data
products is large, dynamic and mostly unknown,
planning techniques developed for closed worlds
are unsuitable. We discuss a number of techniques
we have developed to cope with data production do-
mains, including a novel constraint propagation al-
gorithm based on planning graphs and a constraint-
based approach to interleaved planning, sensing
and execution.

1 Introduction
Petabytes of remote sensing data are now available from
Earth-observing satellites to help measure, understand and
forecast changes in the Earth system, but using these data ef-
fectively can be surprisingly hard. The volume and variety of
data files and formats are daunting. Simple data management
activities, such as locating and transferring files, changing
file formats, gridding point data, and scaling and reprojecting
gridded data, can consume far more personnel time and re-
sources than the actual data analysis. We addressed this prob-
lem by developing a planner-based agent for data production,
called IMAGEbot [Golden et al., 2003], that takes data prod-
uct requests as high-level goals and executes the commands
needed to produce the requested data products.

The data production problem consists of converting an ini-
tial set of low-level data products into higher-level data prod-
ucts that can be used for science or decision support. The data
products we are concerned with are geospatial data measur-
ing specific variables of the Earth system, such as precipita-
tion, vegetation productivity and fire risk, but our approach
is also applicable to other types of data. Higher-level data
products may be altered versions lower-level data products,
or they may be entirely new products that estimate unknown
Earth system variables, such as soil moisture, based on known
variables, such as precipitation. These variables are estimated
by running one or more computational models, such as sim-
ulation codes. The models can be precisely characterized in

∗QSS Group Inc.

terms of their input and output requirements, which makes
them straightforward to represent in an AI planning system.
However, there are significant differences between the data
production problem and more traditional planning domains,
calling for different techniques.

Notable features of data processing domains include large
dynamic universes, incomplete information and uncertainty.
There are petabytes of data available, with new data becom-
ing available all the time, and the agent itself produces many
new data products in the course of fulfilling the user’s goal—
data products that could be used to fulfill subsequent goals.
There is also considerable uncertainty — uncertainty of the
time that particular data will be available, or whether the data
will arrive at all, uncertainty in the quality of data, even un-
certainty as to whether a given processing algorithm will suc-
ceed. To cope with this uncertainty, the agent may need to
poll for data availability or try alternative courses of action if
the one it is pursuing seems unpromising.

We have developed a planner-based agent, called IMAGE-
bot, to automate data production. The data production prob-
lem may be viewed as a planning problem in which the initial
state describes the current set of available data products, and
whose goal state describes the properties of the desired high-
level data products. Planner operators correspond to data
transformation and generation tools. IMAGEbot takes data
product requests as high-level goals and executes the com-
mands needed to produce the requested data products.

We adopt a planning approach somewhat similar to Graph-
plan [Blum & Furst, 1997], consisting of a Graphplan-style
reachability analysis and a constraint-based search. How-
ever, the large universe of the data production problem makes
the grounded planning graph of Graphplan inapplicable; in-
stead, we choose a lifted representation where actions and
plans contain variables. Because of the lifted representation,
and the uncertain and dynamic nature of the data production
problem, the reachability analysis and search cannot be sep-
arated; instead, IMAGEbot interleaves planning, constraint
reasoning and execution.

In this paper, we report on our work on IMAGEbot, with
a focus on the constraint reasoning that underlies planning,
sensing and execution. Section 2 gives an overview of the
IMAGEbot system architecture and high-level planning ap-
proach; Section 3 discusses our constraint-based approach to
sensing; Section 4 discusses a novel constraint propagation

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

141

Expert UI

NLI

Web
Interface

DPADL

Parser

Database

Task
Manager

Planner
(Doppler)

JNET

Executive

Web
Service

TOPS
Database

RMI
Interface

TOPS
Models

User
Interface IMAGEbot

JDAF

Figure 1: The architecture of IMAGEbot

algorithm based on the planning graph. Section 5 discusses
interleaved planning and execution.

2 IMAGEbot Overview
2.1 System Architecture
The architecture of the IMAGEbot agent is depicted in Figure
1. The main components are:

JDAF: The Java Distributed Application Framework com-
prises the execution environment for IMAGEbot; it provides
the agent with a common API for data-processing programs
and ecological forecasting models.

DPADL: The Data Processing Action Description
Language [Golden, 2002] is used to provide action descrip-
tions of data-processing programs and available data sources.
Goals, in the forms of data product requests, can also be de-
scribed in DPADL. To support both fine-grained and flexible
sensing, DPADL allows constraints to make calls to the un-
derlying runtime environment (Section 3).

DoPPLER: The Data Processing Planner accepts goals in
the form of data descriptions and synthesizes and executes
data-flow programs. It reduces the planning problem to a
Constraint Satisfaction Problem (CSP) whose solution pro-
vides a solution to the original planning problem.

JNET: Java Constraint Network is a constraint represen-
tation and reasoning framework that provides the agent with
constraint propagation and search capabilities.

The architecture provides a planning framework that inter-
leaves planning with constraint reasoning and plan execution.

2.2 Planning Approach
Planning in IMAGEbot is a two-stage process. The first stage
consists of a Graphplan-style reachability analysis [Blum &
Furst, 1997] to derive heuristic distance estimates and re-
strict the search space for the second stage, a constraint-based
search. These stages are not entirely separate, however; con-
straint propagation occurs even in the the graph-construction
stage, and the graph is refined during the constraint-search
phase.

Lifted planning graphs
Planning domains are specified in DPADL. From the plan-
ning problem specification, the planner incrementally con-
structs a directed graph, similar to a planning graph. Planning
graphs were introduced in Graphplan [Blum & Furst, 1997],
and have been adopted widely as an efficient data structure
for computing reachability heuristics for planning problems.

A planning graph consists of alternating layers of proposi-
tion nodes and action nodes. After the first proposition layer,
which contains all propositions that are true in the initial
state, each action layer comprises all actions whose precon-
ditions are supported by the previous proposition layer and
each proposition layer comprises all propositions that appear
in the effects of the previous action layer. Pairwise mutual ex-
clusion constraints (mutexes) are used to indicate when two
actions or propositions cannot possibly appear at the same
time. For example, P and ¬P are mutex, as are actions that
interfere with each other. The planning graph provides a com-
pact, abstract representation of all possible plans up to a given
length. In the initial construction phase, it is built up until qui-
escence, i.e., until there are no changes from one layer to the
next, at which point the planner can search backward from
the last layer for a plan that satisfies the goal. If no plan is
found, the graph is extended by adding more layers and the
search is repeated.

A disadvantage of the planning graph, for our purposes, is
that it is fully grounded. Since the number of possible objects
(and hence the number of propositions and actions) is infi-
nite, we use a lifted representation (i.e., containing variables).
We also replace proposition nodes with object nodes, which
correspond to the data products produced and consumed by
actions. Instead of binary mutexes, we rely on a richer set
of constraints that specify the inputs, outputs and parameters
of actions in terms of those of other actions. This graph is
used to obtain distance estimates for heuristic search, obtain
bounds on the possible values of variables, and is also the ba-
sis for the construction of the CSP. Arcs in the graph are anal-
ogous to causal links [Penberthy & Weld, 1992]. A causal
link is a triple 〈αs, p, αp〉, recording the decision to use ac-
tion αs to support precondition p of action αp. However, in-
stead of recording a commitment of support, it indicates the
possibility that αs supports p. The lifted graph contains mul-
tiple ways of supporting p; the choice of the actual supporter
becomes a constraint satisfaction problem. We add an extra
term to the arc for bookkeeping purposes — the condition,
γαs

p , needed in order for αs to achieve p. A link then becomes〈
αs, γ

αs
p , p, αp

〉
.

Given an unsupported precondition p of action αp, our first
task is to identify all the actions that could support p. Be-
cause the universe is large and dynamic, identifying all possi-
ble ground actions that could support p would be impractical,
so instead we use a lifted representation, identifying all action
schemas that could provide support. Given an action schema
α, we determine whether it supports p by regressing p through
α. The result of regression is the formula γαs

p . If γαs
p =⊥,

then α does not support p. Initial graph construction termi-
nates when all preconditions have support or (more likely) a
potential loop is detected.

From planning to constraints
After the graph is constructed, heuristic distance estimates
for guiding the search are computed, and a constraint prob-
lem representing the search space is incrementally built. It
is incremental because the planning graph comprises a com-
pact representation of the search space, in which each action
node can represent multiple concrete actions in the final plan.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

142

Since the number of possible actions can be large, even infi-
nite, we cannot simply generate all of them at once but do so
lazily during search. This is handled using a dynamic CSP
(DCSP), in which new variables and constraints can be added
for each new action and causal link in the plan.

A Constraint Satisfaction Problem (CSP) is a represen-
tation and reasoning framework consisting of variables, do-
mains, and constraints. Formally, it can be defined as a struc-
ture < X,D,C > where X = {x1, x2, . . . , xn} is a fi-
nite set of variables, D = {d(x1), d(x2), . . . , d(xn)} is a
set of domains containing values the variables may take, and
C = {C1, C2, . . . , Cm} is a set of constraints. Each con-
straint Ci is defined as a relation R on a subset of variables
V = {xi, xj , . . . , xk}, called the constraint scope. R may
be represented extensionally as a subset of cartisan product
d(xi) × d(xj) × . . . × d(xk). A constraint Ci = (Vi, Ri)
limits the values the variables in V can take simultaneously
to those assignments that satisfy R. A consistent instantiation
of all variables in X is a solution. The central reasoning task
(or the task of solving a CSP) is to find one or more solutions.

The CSP contains: 1) boolean variables for all arcs, nodes
and conditions; 2) variables (of any type) for all parameters,
input and output variables and function values; 3) for every
condition in the graph, a constraint specifying when that con-
dition holds (for conditions supported by arcs, this is just the
XOR of the arc variables); 4) for conjunctive and disjunc-
tive expressions, the constraint is the respective conjunction
or disjunction of the boolean variables corresponding to ap-
propriate sub-expressions; 5) for every arc in the graph, con-
straints specifying the conditions under which the supported
fluents will be achieved (i.e., γα

p ⇒ p, where γα
p is the pre-

condition of α needed to achieve p) ; 6) user-specified con-
straints; and 7) constraints representing structured objects.

Constraint-based search
After converting the planning problem to a CSP, the planner
searches the CSP for a solution. At a high level, the plan-
ner, guided by heuristic distance estimates extracted from the
planning graph, selects subgoals to achieve and actions to
achieve them (Algorithm 2). After the subgoal and action
selection, the planner (or more accurately, the CSP solver)
finds values for variables representing planner action param-
eters. This is necessary to make actions executable. During
the search, propagation is performed whenever a value is as-
signed to a variable. The search is an iterative process involv-
ing possible backtracks; that is, if there are no valid parame-
ters for a chosen action, the planner has to search for another
plan; if it is impossible to extract a plan from the current plan-
ning graph, the planning graph is extended, by adding more
layers, or search fails. Extending the planning graph and re-
peating the search corresponds to searching for longer plans.

3 Constraint-based sensing
In order to find out what data products relevant to the task at
hand are available, the agent needs to sense its environment.
One way of doing this is to introduce sensing actions [Golden
& Weld, 1996], which the agent can execute in order to obtain
information. This approach has the advantage that it can be
used to capture sensing actions that have preconditions, but it

also requires the plan to be at least partially executed before
the information can be obtained. We follow an alternative ap-
proach of representing low-cost precondition-free sensors us-
ing procedural constraints. That is, we can implement con-
straints as procedures that can perform database queries or
invoke other information-gathering operations in the course
of identifying the domain of values a given variable can have.
This constraint-based sensing approach is much more flexible
than the sensing-action approach, as the order of sensing op-
erations is based on constraint propagation, and information
dependencies are inherently multi-directional.

For example, suppose we have a set of satellite images,
each of which corresponds to a given region of the Earth’s
surface for a given day. Procedure calls are available to iden-
tify satellite images for a particular region and day and to
identify specific attributes of individual images. To obtain
the set all the images for a given region ρ and day d, we can
call findTiles(ρ, d). To obtain the resolution of image t, we
call t.getResolution(). To find the percent cloud cover for
t, we call t.getCloudCover(). Other attributes of t can be
determined similarly. In order to make these procedures us-
able to the constraint solver, we must represent them as con-
straints. The DPADL language makes this easy, by allowing
the code for the procedure calls to be embedded directly into
constraint definitions [Golden, 2003]. The details of the syn-
tax are unimportant. All that matters is that when the con-
straint solver encounters the constraint r = resolution(t), it
can enforce it by calling the getResolution method on indi-
vidual values from the domain of t, which are Java objects.
The results are combined and intersected with the original do-
main of r. If the result of the intersection is non-empty, then
the constraint is still valid. Similarly, findTiles(r, d) can be
called to restrict the domain of t.

What information-gathering procedures are called, and the
order in which they are called, depends on the constraint
propagation algorithm used by the constraint solver. In gen-
eral, if the domain of any variable is reduced, all constraints
involving that variable will be enforced, possibly causing the
domains of other variables to be reduced as well, which will
trigger other constraints to be enforced. Propagation stops
when this process reaches quiescence or some variable do-
main becomes empty, which indicates an inconsistency. Con-
straint propagation provides a powerful and flexible way of
sensing. The specific set of operations performed depends on
what information is “known” to the constraint solver. Invok-
ing a sensing operation may trigger further sensing through
constraint propagation. For example, suppose we are inter-
ested in finding a high resolution satellite image of Oregon
for a day in June that had no rainfall. We can represent that
as a set of constraints:

resolution(i)≤250m, region(i)=Oregon,
day(i)=d, month(d)=June, year(d)=2005,
rainfall(d) = 0.

Initially, the domains of i and d are “full,” i.e., completely
unknown, but enforcing the constraints on month and year
restricts d to a set of 30 possible values. The rainfall con-
straint can be evaluated for each value of d by executing a

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

143

procedure that does a database lookup on past meteorologi-
cal data. Days that had any rainfall will be eliminated from
the domain of d. The procedure findTiles(r, d) can then be
called with each of those dates for region “Oregon.” to re-
strict the domain of i to a finite set. Once the images are
known, getResolution can be called on each one, and im-
ages with inadequate resolution will be eliminated from the
domain of i. At this point, all values in the domain of i sat-
isfy all the constraints. As this example shows, the order of
sensing operations depends on what information is “known”
and what information is needed.

We can also represent more traditional sensing actions, us-
ing actions that produce new objects (data files), which con-
tain information. Acquiring these objects can, in turn, trig-
ger more constraint propagation, resulting in more implicit
sensing. For example, a data-acquisition action may obtain
a set of satellite images from a remote location. Once these
images are available, additional operations can be performed
to obtain information about the images, such as data qual-
ity. These additional operations can be implemented as con-
straints rather than actions, which removes them from the set
of deliberate decisions that the planner needs to make.

4 Action-based Constraint Propagation
As we have discussed, data production problems, due to their
large, uncertain and dynamic universes, are not suitable for
a grounded representation. The lifted planning graph is a
much more concise representation than the grounded plan-
ning graph, but it is potentially less informative, which makes
conventional constraint propagation and search less effective.
The CSP derived from the lifted planning graph contains vari-
ables with infinite domains [Golden & Frank, 2002], so there
is no way to enumerate solutions by search alone, yet the tra-
ditional constraint propagation that establishes certain levels
of consistency does not work well either. For example, we
have a constraint propagator in JNET that enforces a partial1
generalized arc-consistency (GAC) [Bessiere & Ch, 1997;
Katsirelos & Bacchus, 2001]. The definition of GAC is built
upon the variables and their values; namely, a CSP is GAC if
all its variables are GAC; a variable is GAC is all its values
are GAC; a value v of a variable x is GAC if it has support
from other variables in every constraint on x. Establishing
consistency requires evaluating every value to see if it satis-
fies certain constraints, which is not possible in general for
infinite variable domains. A combination of propagation and
search will eventually find a solution, but propagation does
not become informative until late in the search .

We have developed a new constraint propagation algorithm
that propagates changes among the actions in the planning
graph, which yields much more information, even before
search begins. It not only restricts the domains of variables
by eliminating inconsistent values, but it also may add values
to the variable domains when new information is available
(e.g., a new object is created). In this section, we first de-
scribe the propagation algorithm, then illustrate how it works

1We call it partial GAC for two reasons: 1) not every constraint
procedure enforces the GAC; and 2) not every constraint is executed
in the propagation.

Algorithm 1 Action Constraint Propagation
Given a lifted plan graph G. Let A be the set of actions in G,
let P = (X, D, C) be the CSP derived from the lifted plan
graph, and let A′ be a subset of actions to be propagated:

propagate(G, A, P,A′)

1. while (A′ 6= ∅) do
(a) let a← an action removed from A′

(b) let Ca ← constraints relevant to a

(c) < d(I(a)), d(O(a)) >← enforce(P,Ca)
(d) for (∀i ∈ I(a) s.t. d(i) = ∅)

remove supporting link to i

(e) for (∀o ∈ O(a) s.t. d(o) = ∅)
remove supporting link from o

(f) for (∀i ∈ I(a) s.t. d(i) changed)
i. for (∀b ∈ A s.t. b supports a)

if (revise(P,O(b), i)) A′ ← A′∪ {b}

(g) for (∀o ∈ O(a) s.t. d(o) changed)
i. for (∀b ∈ A s.t. a supports b)

if (revise(P, I(b), o)) A′ ← A′∪ {b}

2. return

with an example, and discuss its role in the planning search
and constraint search.

4.1 Algorithm
Formally, a data-processing action schema can be seen as a
tuple 〈I,O,P,Π, E , χ〉, where I,O,P are the input variables,
output variables and parameters respectively. The parameters
are unknowns that may appear in constraints on either or both
input and output. Π is the precondition, E is the effect and χ
is a procedure for executing the action that may reference any
variable in I ∪ P and must set every variable in O. A lifted
planning graph can be seen as a partially ordered set of ac-
tion schemas (A,≺), where a ≺ b iff action a supports b or a
supports c and c ≺ b. In the CSP derived from the lifted plan-
ning graph, we have constraints specifying the relationships
among variables inside an action and constraints specifying
relationships of two actions if one supports another. For an
individual action, if something changes — for example, if a
value is assigned to a variable in the action input due to search
— the change to this variable can be propagated to other vari-
ables in the output, which may change their domains. For two
actions a and b, where a supports b, changes in the input of
b can be propagated to the output of a; similarly, changes in
the output of a can be propagated to the input of b. The idea
of this propagation is outlined in Algorithm 1.

In Algorithm 1, function enforce(P,Ca) enforces ev-
ery constraint c ∈ Ca associated with action a. It restricts
domains of variables in c by eliminating inconsistent values.
Function revise(P,O(b), i) (or revise(P, I(b), o)) com-
putes the domains of variables in O(b) (or I(b)), where i is
an input (or o an output) of action a and action b supports (or
is supported by) a. The function revise may remove in-
consistent values or add newly discovered values depending
on the planning graph structure. It returns true if any variable

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

144

domain has been revised, in which case the action b is added
to A′, waiting to be propagated.

In addition to removing inconsistent values or discovering
new values for variables in an action, this propagation also
removes certain supporting links if it identifies inconsistency.
If all links from an action a supporting other actions are re-
moved, the action a is useless in the planning graph so it can
be safely removed. If all links to an input of an action a
are removed, this action cannot be executed because one of
its inputs does not have support. The planner either has to
find other support for this action (e.g., expanding the plan-
ning graph by inserting more actions) or remove this action
from the planning graph.

4.2 Example
For illustration, we consider a simplified version of construct-
ing a mosaic. Many satellites continuously image whatever
portion of the Earth they pass over, like giant hand-held scan-
ners. For convenience, the resulting swath data is usually
reprojected onto a 2D map and chopped up into tiles, cor-
responding to a regular grid drawn over the map. To obtain
the data pertaining to a particular region of the Earth, we first
identify and obtain the tiles that cover that region and then
combine them into a single image, known as a mosaic, and
crop away the pixels outside the region of interest.

These tiles are represented in the planner as first-class ob-
jects. The attributes of a tile describe, among other things,
the physical measurement the data in the tile represent, the
position of the tile on the grid, the projection used to flatten
the globe, and the region of the Earth covered by the pixels
in the image. For simplicity, we assume in this example that
tiles have only two attributes: the region a tile covers and
the cloudiness when the image was taken. A simplified task
becomes to take some tiles from thousands of available tiles
and compose them to create a mosaic that covers a specified
region without too much cloud cover.

Specifically, a region is a pair of points 〈ul, lr〉 where ul
is the upper-left corner and lr the lower-right corner. A point
is a pair of coordinates (x, y). Normally x and y would be
longitude and latitude, but as a further simplification, we will
assume both x and y are non-negative integers. The cloudi-
ness is represented by a real number from 0 to 1, where 0
is clear sky and 1 is totally obscured. Further, we assume
there are only three actions the planner may take: compose
two tiles horizontally (comp2h) or vertically (comp2v), or get
a tile with its ul point as a parameter (getTile). A real mo-
saic command is not limited to combining two tiles. Figure 2
shows action preconditions and effects with respect to the re-
gion. In addition, the effect of composing two images is that
their combined cloudiness is treated as the maximum of the
cloudiness of the input tiles.

A problem instance we consider here consists of some
small tiles, such as those covering the region〈(0, 0), (1, 2)〉,
or 〈(2, 3), (3, 5)〉. The goal is to compose a mosaic for the
region 〈(0, 0), (3, 2)〉 with no more than 30% cloud cover. As
shown in Figure 4, the region 〈(0, 0), (3, 2)〉 consists of 6 unit
squares denoted by B1, B2, ..., B6. For example, B1 refers
to the region 〈(0, 0), (1, 1)〉, and B1B2 together refer to the
region 〈(0, 0), (2, 1)〉. The mosaic is composed of tiles cov-

comp2h getTilecomp2v

input &
preconditions

output &
effects

Figure 2: The planner actions: the dots inside actions are
inputs and outputs. Parameters are not shown.

comp2h

comp2h

comp2v

comp2v

comp2h comp2v

getTile

getTile

getTile

getTile

∞ ∞ ∞ ∞

∞ ∞ ∞∞

∞∞ ∞∞

B5 B6B4
B1 B3B2

Goal

Figure 3: A planning graph

ering B1, B2, ..., B6 (referring to the region 〈(0, 0), (3, 2)〉),
which may or may not be available locally; if not, we assume
that action getTile((x, y)) can be executed to get any available
tiles covering the region 〈(x, y), (x + m, y + n)〉.

The planning graph created by the planner is shown in Fig-
ure 3, where nodes represent lifted actions or objects, and arcs
the supporting relations. The dots inside action nodes are in-
puts and outputs of the actions, each representing a set of
objects, possibly infinite. At the time when a CSP is derived
from this planning graph, these unknown objects, inputs and
outputs of the actions and their parameters, are represented as
variables with infinite domains.

The action-based constraint propagation can be invoked
to restrict some of the infinite domains. Since the plan-
ner goal, a mosaic of region 〈(0, 0), (3, 2)〉 with cloudiness
no more than 0.30, is known, the output of action comp2v,
which supports the goal, is also known; applying the prop-
agation on comp2v from output to input, we have the do-
mains of its two inputs, both of which are singletons, namely
a mosaic covering the region{〈(0, 0), (3, 1)〉} and another
one covering{〈(0, 1), (3, 2)〉}, both with cloudiness of more
than 0.30. Similarly, the output of comp2h is known from
the goal; applying the propagation on comp2h, we have the

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

145

comp2h

comp2v comp2h

comp2v

comp2hcomp2v

B1 B3B2

B5B4

B1 B2

B6

B2 B3

B5B5B4 B6

B1

B3

B2B1

B2 B3

B4

B6B5 B6

B4 B5

B3B2B1

B4 B5 B6

B5 B6B4

B1 B3B2

B3

B6

B2 B3 B5 B6

B5

B2 B3

B6

B1

B4

B2B1 B4 B5

B4

B1

B5

B2

B1

B4 B5B4

B2B1

B5 B6

B3B2 B3

B6

Figure 4: Constraint propagation in the planning graph. Ob-
jects in a dotted rectangles are inputs to an action, an ob-
ject divided by dashed line is a single or a composed object;
whether a single object is available in the initial state or can
be obtained with getTile (not shown) depends on the task.

domains of its two inputs, both of which contain two mo-
saics covering the regions: {〈(0, 0), (1, 2)〉 , 〈(0, 0), (2, 2)〉}
and, {〈(1, 0), (3, 2)〉 , 〈(2, 0), (3, 2)〉}, respectively. Again,
all these mosaics (some are possibly single tiles, depending
on the sizes of tiles available) must have cloudiness of at
most 0.30. The changes to inputs of the these actions are
propagated to the prior level actions supporting them. This
process continues until there are no more changes to the in-
put and output of any actions. At the end of the backward
propagation, we have a much more limited search space, as
shown in Figure 4, where the tiles in the inputs and outputs
are restricted to specified regions and cloudiness. Notice also
that many links appearing in the planning graph (see Figure
3) have been removed by the propagation. For example, all
links from comp2v to comp2v have been removed.

At this point, none of the actual tiles are available, since
the getTile actions have yet to be executed, so the domains
of the variables representing cloudiness are all [0 . . . 0.30],
based on propagation from the goal. No further propagation
or pruning can be done. We continue with this example in the
next section.

5 Planning and Execution
Although our constraint-based approach to sensing helps to
cope with large, unknown domains, there is still some uncer-
tainty, even for a “complete” plan. Data products may turn
out to be of a lesser quality than expected, due to cloud cover
for instance, or may even turn out to be missing entirely. Pro-

Algorithm 2 Plan construction and execution. Iteratively
supports subgoals and executes actions until all goals are sup-
ported and all actions are executed. The keyword pick indi-
cates a choice that is not a backtrack point. The keyword
choose indicates nondeterministic choice (backtrack point)
The keyword fail indicates a backtrack.
public void PlanAndExecute(goal, actions)

1. let G← BuildPlanGraph(goal, actions)
2. let P ←BuildConstraintNet(G), A← Actions in G

3. let agenda← {goal}, unexecuted← {goal}
4. set d(goal)← {true}
5. while (propagate(G, A, P,A) returns false)

if (ExpandGraph(G, P) returns false) fail
6. while (unexecuted 6= ∅) pick

(a) pick α ∈unexecuted
if (execute(α) returns true)
remove α from unexecuted

(b) let p← remove from agenda
i. choose

〈
αs, γ

αs
p , p, αp

〉
in G

ii. add γαs
p to agenda and set d(γαs

p) = {true}
iii. add αs to unexecuted
iv. if (propagate(G, A, P, {αs, αp}) returns false)

fail
(c) ExpandGraph(G, P)

cessing algorithms may fail to perform as well as expected,
perhaps due to problems with the input data, or they may
simply crash. Some quality problems can be automatically
detected, but only after the data products are in hand, meaning
after the plan has been at least partially executed. Fortunately,
the non-destructive nature of data production domains means
the cost of plan execution is limited to the time and resources
consumed, so it is natural to view plan execution as an ex-
tension of the search process. If partial execution of a plan
reveals a violation of a constraint or preference, it is a simple
matter to backtrack and try something else, since there are
no state changes to be undone. Furthermore, actions may be
executed before the plan is complete, yielding information to
reduce search or choose between competing options. For ex-
ample, if there are two candidate data sets, each of unknown
quality and each of which requires different processing steps,
the planner can execute the actions to obtain both sets of data
and decide which one to use before wasting time planning out
all the processing operations for data that may not be used.

Here, again, the planning graph representation is useful,
because it provides a guide to which data sources and actions
are relevant to a problem without requiring a complete plan to
be generated. Once an action has been executed and its out-
puts produced, the output variables are instantiated with the
results from execution and the constraints are re-propagated,
which may further restrict the domains of other variables, re-
ducing the amount of search.

This approach to interleaving planning, sensing and exe-

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

146

cution can be contrasted with contingency planning [Warren,
1976; Pryor & Collins, 1996; Draper, Hanks, & Weld, 1994],
in which explicit branches are inserted into the plan after
sensing actions in order to respond appropriately to the in-
formation obtained from sensing without the need for replan-
ning; e.g., “look-outside; if (raining), bring-umbrella.” By
interleaving planning with execution, we remove the need for
explicit branches. The planner deals with the contingency af-
ter executing the sensing action. Suppose look-outside is exe-
cuted, and the result is that it is raining. If the planner did not
already commit to whether to select the bring-umbrella ac-
tion, that choice is now forced by constraint propagation, and
bring-umbrella becomes part of the plan. On the other hand,
if the choice was already made not to bring the umbrella,
then after constraint propagation the plan will be inconsis-
tent; the planner will then backtrack and consider a plan that
involves bringing the umbrella. Because there are no destruc-
tive actions in a data-production domain, there is never any
harm from (re)planning for contingencies when they arise,
other than wasted time and resources from executing unnec-
essary actions. On the other hand, as noted above, there is
also no harm in planning and executing sub-plans both con-
tingencies, which is essentially conformant planning [Smith
& Weld, 1998].

Backtracking over execution cannot generate looping be-
havior. First, unlike [Golden, 1998], it never requires correc-
tive actions to restore the world to a previous state because
all state change is monotonic, creating new objects but never
changing or destroying old ones. Second, backtracking oc-
curs in the context of an overall search algorithm that is sys-
tematic.

5.1 Example
In Section 3, we discussed sensing constraints that can per-
form database queries or invoke other information-gathering
operations to obtain available tiles. Sensing constraints, like
other types of constraints, are invoked during the propaga-
tion. It is convenient to use constraints to represent low-cost,
precondition-free sensors. However, we use actions to repre-
sent sensors that are costly or require some setup; this allows
the planner to reason about the cost of sensing or consider
alternative ways of achieving the preconditions for sensing.
In the previous example, we used a constraint to model the
sensor that informs the agent of the availability of tiles, since
that availability test can be performed using a simple database
query. However, obtaining and inspecting the actual files may
require costly file transfers, so we represent that as an action,
getTile (not shown in the figures).

To continue our previous example, suppose that we exe-
cute all the getTile actions in the planning graph before doing
any explicit search, as shown in Figure 5. Some of the tiles
believed to be available based on the database lookup are not
delivered, due to network problems. These tiles, as well as
the actions that depend on them, are eliminated through con-
straint propagation. Additionally, now that the files are avail-
able, the actual cloudiness values (black bars) are determined,
and these values are intersected with the prior domain values,
which come from the goal requirement. The tile spanning B1

and B2 has cloudiness of 0.60, and all the others have cloudi-

comp2h

comp2v comp2h

comp2v

comp2hcomp2v

B2B1

B3B2B1

B4 B5 B6

B2 B3B2B1 B4 B5

B4

B1

B5

B2

B1

B4

B5

B5

B2

B2B1 B2

B3B2B1

B1 B3

B4

B1

B3

B5 B6B4

B5 B6

B5 B6

B6

B4

B5 B6

B4 B5
B1 B3

B6B4

B2

B5

B3

B6

B2B1

B5B4

B5 B6B4

B1 B3B2

B5B4

B2B1

B3

B6

B5 B6

B3B2 B3

B6

B2 B3

Figure 5: After execution, some tiles that were expected were
not returned; constraint propagation in the planning graph
eliminates these (crossed out). The actual cloud cover for the
remaining tiles is determined (black bars; the original cloud
cover domains, based on the goal, are shown in grey).

ness values less than 0.30. Since we know, from the goal and
from the previous backward propagation, that any tile with
cloudiness of more than 0.30 is useless in this task, the tile
covering B1B2 will be removed from the available tiles. As a
result of further propagation, other tiles in the input and out-
put of actions depending on that tile will be removed as well
(crossed out by thick gray line). The final search space after
the propagation is shown in Figure 6.

6 Conclusions
IMAGEbot is implemented and has been integrated into
an ecological forecasting application [Golden et al., 2003],
which produces “nowcasts” and forecasts of socioeconomic
importance, such as crop health and fire risk. New contribu-
tions presented in this paper include the algorithm for action-
based constraint propagation and the constraint-based algo-
rithm for interleaving planning, sensing and execution.

The idea of interleaving planning with execution as a way
of coping with uncertainty is not new. Our approach is loosely
based on [Golden, Etzioni, & Weld, 1994; Golden, 1998],
which in turn was inspired by [Ambros-Ingerson & Steel,
1988]. However, interleaving planning and execution is much
more natural in monotonic problem domains like data pro-
duction.

We believe the constraint-based sensing and planning-
graph propagation approaches introduced in this paper would
be equally suitable to other software domains that involve
large, unknown dynamic domains. Related applications to
which planners have been applied include Internet softbots

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

147

comp2h

comp2h

comp2v

comp2h
comp2v

B4

B1

B5

B2

B1

B4

B5

B2

B3B1

B1 B3

B4

B1 B3

B5 B6B4

B5 B6 B5

B2

B5 B6

B6

B4

B5 B6

B4 B5
B1 B3

B6B4

B5B3 B6B1 B5B4

B5 B6B4

B1 B3B2

B4 B5

B5B4

B2B1

B3

B6

B5 B6

B3B2 B3

B6

Goal State

Figure 6: The planning graph after execution and propaga-
tion. The intervals for cloud cover have been replaced with
singleton values.

[Golden, 1998; Etzioni, Golden, & Weld, 1997], web ser-
vices [Srivastava & Kholer, 2003], image processing [Lansky,
1998; Chien et al., 1997], and grid-based computing [Blythe
et al., 2003].

References
[Ambros-Ingerson & Steel, 1988] Ambros-Ingerson, J., and Steel,

S. 1988. Integrating planning, execution, and monitoring. In
Proc. 7th Nat. Conf. AI, 735–740.

[Bessiere & Ch, 1997] Bessiere, C., and Ch, J. 1997. Arc-
consistency for general constraint networks: Preliminary results.
In Proceedings of IJCAI-97, 398–404.

[Blum & Furst, 1997] Blum, A., and Furst, M. 1997. Fast planning
through planning graph analysis. J. Artificial Intelligence 90(1–
2):281–300.

[Blythe et al., 2003] Blythe, J.; Deelman, E.; Gil, Y.; Kesselman,
C.; Agarwal, A.; Mehta, G.; and Vahi, K. 2003. The role of plan-
ning in grid computing. In Proc. 13th Intl. Conf. on Automated
Planning and Scheduling (ICAPS).

[Chien et al., 1997] Chien, S.; Fisher, F.; Lo, E.; Mortensen, H.;
and Greeley, R. 1997. Using artificial intelligence planning to
automate science data analysis for large image database. In Proc.
1997 Conference on Knowledge Discovery and Data Mining.

[Draper, Hanks, & Weld, 1994] Draper, D.; Hanks, S.; and Weld,
D. 1994. A probabilistic model of action for least-commitment
planning with information gathering. In Proc. 10th Conf. Uncer-
tainty in Artifical Intelligence.

[Etzioni, Golden, & Weld, 1997] Etzioni, O.; Golden, K.; and
Weld, D. 1997. Sound and efficient closed-world reasoning for
planning. J. Artificial Intelligence 89(1–2):113–148.

[Golden & Frank, 2002] Golden, K., and Frank, J. 2002. Universal
quantification in a constraint-based planner. In Proc. 6th Intl.
Conf. Automated Planning Systems.

[Golden & Weld, 1996] Golden, K., and Weld, D. 1996. Repre-
senting sensing actions: The middle ground revisited. In Proc.
5th Int. Conf. Principles of Knowledge Representation and Rea-
soning, 174–185.

[Golden et al., 2003] Golden, K.; Pang, W.; Nemani, R.; and
Votava, P. 2003. Automating the processing of earth observa-
tion data. In International Symposium on Artificial Intelligence,
Robotics and Automation for Space.

[Golden, Etzioni, & Weld, 1994] Golden, K.; Etzioni, O.; and
Weld, D. 1994. Omnipotence without omniscience: Sensor man-
agement in planning. In Proc. 12th Nat. Conf. AI, 1048–1054.

[Golden, 1998] Golden, K. 1998. Leap before you look: Informa-
tion gathering in the PUCCINI planner. In Proc. 4th Intl. Conf.
AI Planning Systems.

[Golden, 2002] Golden, K. 2002. DPADL: An action language for
data processing domains. In Proceedings of the 3rd NASA Intl.
Planning and Scheduling workshop, 28–33. to appear.

[Golden, 2003] Golden, K. 2003. An domain description language
data processing. In ICAPS 2003 Workshop on the Future of
PDDL.

[Katsirelos & Bacchus, 2001] Katsirelos, G., and Bacchus, F. 2001.
GAC on conjunctions of constraints. In Proceedings of CP-2001.

[Lansky, 1998] Lansky, A. 1998. Localized planning with action-
based constraints. Artificial Intelligence 98(1–2):49–136.

[Penberthy & Weld, 1992] Penberthy, J., and Weld, D. 1992.
UCPOP: A sound, complete, partial order planner for ADL. In
Proc. 3rd Int. Conf. Principles of Knowledge Representation and
Reasoning, 103–114.

[Pryor & Collins, 1996] Pryor, L., and Collins, G. 1996. Planning
for contingencies: A decision-based approach. J. Artificial Intel-
ligence Research.

[Smith & Weld, 1998] Smith, D., and Weld, D. 1998. Conformant
graphplan. In Proc. 15th Nat. Conf. AI.

[Srivastava & Kholer, 2003] Srivastava, B., and Kholer, J. 2003.
Web service composition - current solutions and open problems.
In ICAPS 2003 Workshop on Planning for Web Services. avail-
able at http://www.isi.edu/info-agents/workshops/icaps2003-
p4ws/program.html.

[Warren, 1976] Warren, D. 1976. Generating Conditional Plans and
Programs. In Proceedings of AISB Summer Conference, 344–
354.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

148

Hedged learning: Regret-minimization with learning experts

Yu-Han Chang, Leslie Pack Kaelbling
CSAIL, Massachusetts Institute of Technology
32 Vassar Street, Cambridge, MA 02139 USA

{ychang, lpk}@csail.mit.edu

Abstract

In non-cooperative multi-agent situations, there
cannot exist a globally optimal, yet opponent-
independent learning algorithm. Regret-
minimization over a set of strategies optimized for
potential opponent models is proposed as a good
framework for deciding how to behave in such sit-
uations. Using longer playing horizons and experts
that learn as they play, the regret-minimization
framework can be extended to overcome several
shortcomings of earlier approaches to the problem
of multi-agent learning.

1 Introduction
In recent years, there has been increasing interest in multi-
agent learning. A large body of this work tries to marry
game theoretic concepts such as Nash equilibrium to learn-
ing in various types of games. However, as Reinhard Selton,
1995 Economics Nobel Prize winner (along with Nash and
Harsanyi) once wrote in a personal communication, “Game
theory is for proving theorems, not for playing games.”

What does this mean for AI researchers interested in de-
signing algorithms that learn to play good strategies in multi-
agent domains? There are three issues related to applying
equilibrium results from game theory directly: computational
efficiency, learning dynamics, and opponent assumptions. In
some cases, straight computation of Nash or correlated Nash
equilibria in a given game is quite useful, and there have
been a number of recent advances exploiting game structure
to compute such equilibria efficiently. Moreover, some of
these algorithms use learning dynamics to converge to cor-
related equilibria, thus addressing the core of Selton’s com-
plaint: while the classic Nash equilibrium is a stable point,
it is not necessarily the stable point of reasonable system dy-
namics.

Although these advances begin to resolve the issues of
computational efficiency and learning dynamics, the problem
of opponent assumptions remains more elusive. When we
face an unknown opponent, we have no guarantee that the
opponent will be playing strategically (as in classical Nash
results), following any particular learning rule (as in themore
recent work on correlated equilibria), or even playing vaguely

r1 =

[

−1 1

1 −1

]

r1 =

[

1 −1

2 0

]

r2 = −r1 r2 =

[

1 2

−1 0

]

(a) Matching pennies (b) Prisoner’s Dilemna

Figure 1: Common examples of matrix games.

intelligently. Perhaps the opponent has broken sensors or ac-
tuators, or lacks some crucial information. If we try to play
our half of an equilibrium strategy, we may end up worse
off if the opponent does not play its half of the strategy. To
counter this problem, we would like to be able to model
as many different types of potential opponents as possible.
When one of our opponent models is correct, we would like to
be performing optimally with respect to that model. If none of
our models is correct, we would still like to avoid performing
too poorly. The framework of regret minimizing, or hedging,
algorithms provides a useful setup for approaching this prob-
lem. Using this framework, we can simultaneously achieve
both of these goals: perform optimally if one of our models is
correct, and still perform reasonably well if none of our mod-
els are correct. Since we know that it is impossible to design
an algorithm that performs optimally with respect to all pos-
sible opponents[Nachbar & Zame, 1996], this is the best we
can hope to do in a non-cooperative setting.

2 Mathematical setup
Repeated games, such as those in Figure 1, form the simplest
framework for studying multi-agent learning. We will focus
on this setup, although most of our ideas can be extended to
stochastic games as well. We will assume that the reader has
some familiarity with classical equilibrium concepts, such as
Nash equilibrium of the one-shot game.

Modern game theory often takes a more general view of
optimality in repeated games, considering actions that arede-
fined as strategies over time, rather than only as a probabil-
ity distribution over actions in a single instance of the matrix
game. The machine learning community has also recently be-
gun adopting this view[Chang & Kaelbling, 2001] [de Farias

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

149

& Meggido, 2004]. Rather than treating policies as a single
probability distribution, we now define policiesµi : H → Ai,
whereH =

⋃

t Ht andHt is the set of all possible histo-
ries of lengtht. Histories are observations of joint actions,
ht = (ai, a−i, h

t−1). Playeri’s strategy at timet is then
expressed asµi(h

t−1).

Definition 1 A τ -length behavioral strategy µτ is a mapping
from all possible histories Hτ to actions a ∈ A. Let Mτ be
the set of all possible τ -length behavioral strategies µτ .

We note that|Mτ | = |A||A|2τ

. In the case where we take
Ht = H, we could even consider learning algorithms them-
selves to be a possible “behavioral strategy” for playing a re-
peated game. This definition of our strategy space is clearly
more powerful, and allows us to define a much larger set
of potential equilibria, where players are following a stable
pair of behavioral strategies and have no incentive to deviate.
However, when the opponent is not rational, it is no longer ad-
vantageous to find and play an equilibrium strategy. In fact,
given an arbitrary opponent, the Nash equilibrium strategy
may return a lower payoff than some other action. Indeed,
the payoff may be even worse than the original Nash equilib-
rium value. Thus, we turn to regret minimization algorithms.

2.1 Regret-minimization
In repeated games, the standard regret minimization frame-
work enables us to perform almost as well as the best action,
if that single best action were played in every time period.
Suppose we are playing using some regret-minimizing al-
gorithm which outputs action choicesat ∈ A at each time
period. Then our reward overT time periods isR(T) =
∑T

t=1
rat

(t).

Definition 2 Our regret is defined to be Rmax(T) − R(T),
where Rmax(T) = maxa∈A

∑T
t=1

ra(t). If our algorithm
randomizes over possible action choices, we also define ex-
pected regret to be Rmax(T) − E[R(T)]. The set of ac-
tions against which we compare our performance is called
the comparison class.

Both game theorists and online learning researchers have
studied this framework[Fudenburg & Levine, 1995] [Freund
& Schapire, 1999]. We will refer frequently to the EXP3 al-
gorithm (and its variants) explored by Auer et al. (1995).
In the original formulation of EXP3, we choose single ac-
tions to play, but we do not get to observe the rewards we
would have received if we had chosen different actions. The
authors show that the performance of EXP3 exhibits a re-
gret bound of2

√
e − 1

√
TN lnN . Generally speaking, these

regret-minimizing algorithms hedge between possible actions
by keeping a weight for each action that is updated accord-
ing to the action’s historical performance. The probability of
playing an action is then its fraction of the total weights mixed
with the uniform distribution. Intuitively, better experts per-
form better, get assigned higher weight, and are played more
often. Sometimes these algorithms are called experts algo-
rithms, since we can think of the actions as being recom-
mended by a set of experts.

It is important to note that most of these existing methods
only compare our performance against strategies that are best

responses to what are often calledoblivious or myopic oppo-
nents. That is, the opponent does not learn or react to our
actions, and essentially plays a fixed string of actions. Our
best response would be to play the single best-response ac-
tion to the empirical distribution of the opponent’s actions.
Under most circumstances, however, we might expect an in-
telligent opponent to change their strategy as they observeour
own sequence of plays.

For example, consider the game of repeated Prisoner’s
Dilemma. If we follow the oblivious opponent assumption,
then the best choice of action would always be to “Defect.”
Given any fixed opponent action, the best response would al-
ways be to defect. This approach would thus miss out on the
chance to earn higher rewards by cooperating with opponents
such as a “Tit-for-Tat” opponent, which cooperates with us
as long as we also cooperate. These opponents can be called
reactive opponents.

3 Extending the experts framework
Our extensions to the regret-minimization framework follow
along the lines of the super-game setup proposed by Mannor
and Shimkin (2001). Instead of choosing actions fromA, we
choose behavioral strategies fromMτ . Mτ also replacesA
as our comparison class, essentially forcing us to compare
our performance against more complex and possibly better
performing strategies. While executingµτ ∈ Mτ for some
number of time periodsλ, the agent receives reward at each
time step, but does not observe the rewards he would have
received had he played any of his other possible strategies.
This is reasonable since the opponent may adapt differently
as a particular strategy is played, causing a different cumula-
tive outcome overλ time periods. Thus, the opponent could
be an arbitrary black-box opponent or perhaps a fixed finite
automaton. While the inner workings of the opponent are un-
observable, we will assume the agent is able to observe the
action that the opponent actually plays at each time period.

For example, we might consider an opponent whose action
choices only depend on the previousτ -length history of joint
actions. Thus, we can construct a Markov model of our op-
ponent using the set of all possibleτ -length histories as the
state space. If our optimal policy is ergodic, we can use the
mixing time of the policy as our choice ofλ, since this would
give us a good idea of the average rewards possible with this
policy in the long run. We will usually assume that we are
givenλ.

Definition 3 Let M be a Markov decision process that mod-
els the environment (the opponent), and let π be a pol-
icy in M such that the asymptotic average reward V π

M =
limT→∞ V π

M (i, T) for all i, where V π
M (i, T ′) is the average

undiscounted reward of M under policy π starting at state
i from time 1 to T ′. The ǫ-commitment time λπ of π is the
smallest T such that for all T ′ ≥ T , |V π

M (i, T ′) − V π
M | ≤ ǫ

for all i.

Thus, if we are executing a policyπ learned on a partic-
ular opponent modelM , then we must run the policy for at
leastλ time periods to properly estimate the benefit of using
that policy. Given a fixed commitment lengthλ, we may
like to be able to evaluate all possible strategies in order to

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

150

choose the optimal strategy. However, there are|A||A|2λ

pos-
sible strategies to evaluate. Not only would this take a long
time to try each possible strategy, but the regret bounds also
become exceedingly weak. The expected regret afterT time
periods is:

2
√

e − 1|A||A|2λ/2|A|2λ
√

Tλ ln |A|,
Clearly this amounts to a computationally infeasible ap-

proach to this problem. In traditional MDP solution tech-
niques, we are saved by the Markov property of the state
space, which reduces the number of strategies we need to
evaluate by allowing us to re-use information learned at each
state. Without any assumptions about the opponent’s behav-
ior, as in the classic regret minimization framework, we can-
not get such benefits.

4 Learning Algorithms as Experts
However, we might imagine that not all policies are useful
or fruitful ones to explore, given a fixed commitment length
of λ. In fact, in most cases, we probably have some rough
idea about the types of policies that may be appropriate for a
given domain. For example, in our Prisoner’s Dilemma exam-
ple, we might expect that our opponent is either a Tit-for-Tat
player, an Always-Defect or Always-Cooperate player, or a
“Usually Cooperate but Defect with probabilityp player”, for
example.

Given particular opponent assumptions, such as possible
behavioral models, we may then be able to use a learning al-
gorithm to estimate the model parameters based on observed
history. For example, if we believe that the opponent may
be Markov in theτ -length history of joint actions, we can
construct a Markov model of the opponent and use an effi-
cient learning algorithm (such as E3 from Kearns and Singh
(1998)) to learn theǫ-optimal policy in time polynomial to the
number of states,|A|2τ . In contrast, the hedging algorithm
needs to evaluate each of the exponentially large number of
possible policies, namely|A||A|2τ

possible policies. To make
this precise, we state the following lemma.

Proposition 4 Given a model of the opponent that
is Markov in the τ -length history of joint actions
{ai

t−τ , a−i
t−τ , . . . , ai

t−1, a
−i
t−1}, and given a fixed mixing

time λ, the number of actions executed by E3 and a hedging
algorithm such as EXP3 in order to arrive at an ǫ-optimal

policy is at most O
(

|A|10τ
)

for E3, and at least O
(

|A||A|2τ

)

for the hedging algorithm.

Of course, using this method, we can no longer guarantee
regret minimization over all possible policies, but as we will
discuss in the following section, we can choose a subset of
fixed policies against which we can compare the performance
of any learning algorithms we decide to use, and we can guar-
antee no-regret relative to this subset of fixed policies, aswell
as relative to the learning algorithms.

In some ways, using learning algorithms as experts sim-
ply off-loads the exploration from the experts framework to
each individual learning algorithm. The computational sav-
ings occurs because each learning algorithm makes particular

assumptions about the structure of the world and of the oppo-
nent, thus enabling each expert to learn more efficiently than
hedging between all possible strategies.

4.1 Example

D

10 2 3 4

C C

C

C C

D

D
D D

Figure 2: A possible opponent model with five states. Each
state corresponds to the number of consecutive “Cooperate”
actions we have just played.

For example, consider again the repeated Prisoner’s
Dilemma game. We might believe that the opponent reacts
to our past level of cooperation, cooperating only when we
have cooperated a consecutive number of times. If the oppo-
nent cooperates only when we have cooperated four periods
in a row, then the opponent model shown in Figure 2 would
correctly capture the opponent’s state dynamics. This model
is simpler than a full model using all possible 4-period histo-
ries, since it assumes that the opponent’s state is completely
determined by our half of the joint history. In the figure, the
labeled transitions correspond to our actions, and the oppo-
nent only cooperates when it is in state 4; otherwise it defects.

To learn the optimal policy with respect this opponent
model, a learning algorithm would simply have to visit all
the state-action pairs and estimate the resulting reward for
each possible action at each state. Since we assume that the
opponent model is Markov, we can use an efficient learning
algorithm such as E3.

Note that using this particular model, we can also learn the
optimal policy for an opponent that cooperates if we coop-
erate for some givenn consecutive periods, wheren ≤ 4.
However, ifn ≥ 5, learning using this model will no longer
result in the optimal policy. Whereas choosing the cooper-
ate action from state 4 results in a good reward whenn ≤ 4,
whenn ≥ 5 the same action results in a bad reward since the
opponent will most likely play defect. The problem is that the
5-state model is no longer sufficient to capture the opponent’s
state dynamics, and is no longer Markov.

5 The Hedged Learner
Since our chosen learning algorithms will sometimes fail to
output good policies, we propose to incorporate them as ex-
perts inside a hedging algorithm that hedges between a set of
experts that includes our learners. This allows the hedging
algorithm to switch to using the other experts if a particular
learning algorithm fails. It might fail due to incorrect oppo-
nent assumptions, such as in the previous section’s example,
or the learning algorithm may simply be ill-suited for the par-
ticular domain, or it may fail for any other reason. The point
is that we have a backup plan, and the hedging algorithm will
eventually switch to using these other options.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

151

We study two methods for adding learning experts into a
regret-minimization algorithm such as Auer et al.’s EXP3. It
is straightforward to extend our results to other variants of
EXP3 such as EXP3.P.1, which guarantees similar bounds
that hold uniformly over time and with probability one.

We are givenN fixed experts, to which we must addM
learning experts. We assume thatλi = 1 for all i ∈ N and
refer to these experts asstatic experts. These static experts
are essentially the pure action strategies of the game. For all
i ∈ M , we assumeλi > 1 and note thatM can also include
behavioral strategies. When it is clear from context, we will
often writeN andM as the number of experts in the setsN
andM , respectively.

• Naive approach: Let λmax = maxi λi. Once an expert
is chosen to be followed, follow that expert for aλmax-
length commitment phase. At the end of each phase,
scale the accumulated reward by1λmax

since EXP3 re-
quires rewards to fall in the interval [0,1] and update the
weights as in EXP3.

• Hierarchical hedging: Let E0 denote the top-level
hedging algorithm. Construct a second-level hedging al-
gorithmE1 composed of all the originalN static strate-
gies. UseE1 and the learning algorithms as theM + 1
experts thatE0 hedges between.

5.1 Naive approach
The Naive approach may seem like an obvious first method
to try. However, we will show that it is distinctly inferior to
hierarchical hedging.

Theorem 5 Suppose we have a set N of static experts, and
a set M of learning experts with time horizons λi. Using a
naive approach, we can construct an algorithm with regret
bound

2
√

e − 1
√

λmaxT (N + M) ln(N + M).

Proof. We run EXP3 with theM + N experts, with a
modification such that every expert, when chosen, is followed
for a commitment phase of lengthλmax before we choose
a new expert. We consider each phase as one time period
in the original EXP3 algorithm, and note that the accumu-
lated rewards for an expert over a given phase falls in the
interval [0, λmax]. Thus, the regret bound overTλmax

phases

is 2λmax

√
e − 1

√

T
λmax

(N + M) ln(N + M), and the result

follows immediately.¤

5.2 Hierarchical hedging
The Naive Approach suffers from two main drawbacks, both
stemming from the same issue. Because the Naive Approach
follows all experts forλmax periods, it follows the static ex-
perts for longer than necessary. Intuitively, this slows down
the algorithm’s adaptation rate. Furthermore, we also lose
out on much of the safety benefit that comes from hedging
between the pure actions. Whereas a hedging algorithm over
the set of pure actions is able to guarantee that we attain at
least the safety (minimax) value of the game, this is no longer
true with the Naive approach since we have not included all

possibleλmax-length behavioral experts. Thus, each expert
available to us may incur high loss when it is run forλmax

periods. Hierarchical Hedging addresses these issues.

Theorem 6 Suppose we have a set N of static experts, and a
set M of learning experts with time horizons λi, maxi λi >
|N |. We can devise an algorithm with regret bound:

2
√

e − 1
√

TN lnN

+ 2
√

e − 1
√

λmaxT (M + 1) ln(M + 1) .

This upper bound on the expected regret improves upon the
Naive Approach bound as long as

λmax ≥
√

lnN
√

ln(M + N) −
√

ln(M + 1)
.

In practice, we will often use only one or two learning algo-
rithms as experts, soM is small. ForM = 1, the bound
would thus look like:

2.63
√

TN lnN + 3.10
√

λmaxT .

However, we note that these are simply upper bounds on re-
gret. In Section 5.3, we will compare actual performance of
these two methods in a some test domains.

Proof. Using the bounds shown to be achieved by EXP3,
our top-level hedging algorithmE0 achieves performance

RE0
≥ max

i∈M+{E1}
Ri − 2

√
e − 1

√

T (M + 1) ln(M + 1).

Now consider each of the|M | + 1 experts. The|M | learn-
ing experts do not suffer additional regret since they are not
running another copy of EXP3. The expertE1 is running a
hedging algorithm over|N | static experts, and thus achieves
performance bounded by

RE1
≥ max

j∈N
Rj − 2

√
e − 1

√

λmaxTN lnN.

Combining this with the above, we see that

RE0
≥ maxi∈M+N Ri

−2
√

e − 1
√

TN lnN

−2
√

e − 1
√

λmaxT (M + 1) ln(M + 1). ¤

Proposition 7 The Hierarchical Hedging algorithm will at-
tain at least close to the safety value of the single-shot game.

Proof. From an argument similar to Freund and Schapire
(1999), we know that the second-level expertE1 will attain
at least the safety value (or minimax) value of the single-shot
game. Since the performance of the overall algorithmE0 is
bounded close to the performance of any of the experts, in-
cludingE1, the Hierarchical HedgerE0 must also attain close
to the safety value of the game.¤

As desired, hierarchical hedging is an improvement over
the naive approach since: (1) it no longer needs to play every
expert forλmax-length commitment phases and thus should
adapt faster, and (2) it preserves the original comparison class
by avoiding modifications to the original experts, allowingus
to achieve at least the safety value of the game.

Remark. It is also possible to speed up the adaptation
of these hedged learners by playing each experti for only

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

152

Table 1: Comparison of the performance of the different
methods for structuring the hedged learner.

Regret Actual Actual
Bound Expected Regret Performance

Naive 125,801 34,761 -96,154
Hierarchical 36,609 29,661 -8,996

λi time periods, weighting the cumulative rewards received
during this phase by1/λi, and using this average reward to
update the weights. Applied to the hierarchical hedger, we
would play each learning algorithmi for λi-length phases and
the second-level hedging algorithmE1 for N -length phases.
In practice, this often results is some performance gains.

5.3 Practical comparisons
We can verify the practical benefit of hierarchical hedging
with a simple example. We consider the repeated game of
Matching Pennies, shown in Figure 1. Assume that the op-
ponent is playing a hedging algorithm that hedges between
playing “Heads” and “Tails” every time period. This is close
to a worst-case scenario since the opponent will be adapting
to us very quickly.

We run each method for 200,000 time periods. The Hier-
archical Hedger consists of 9 single-period experts grouped
insideE1 and one 500-period expert. The Naive Hedger runs
all the experts for 500 periods each. The results are given in
Table 1, along with the expected regret upper bounds we de-
rived in the previous section. As expected, the hierarchical
hedger achieves much better actual performance in terms of
cumulative reward over time, and also achieves a lower ex-
pected regret. However, the regret for the naive approach is
surprisingly low given that its performance is so poor. Thisis
due to a difference in the comparison classes that the methods
use. In the naive approach, our performance is compared to
experts that choose to play a single action for 500 time peri-
ods, rather than for a single time period. Any single action,
played for a long enough interval against an adaptive oppo-
nent, is a poor choice in the game of matching pennies. The
opponent simply has to adapt and play its best response to
our action, which we are then stuck with for the rest of the
interval. Thus the expected rewards for any of the experts in
the naive approach’s comparison class is rather poor. For ex-
ample, the expected reward for the “Heads” expert is -98,582.
This explains why our expected regret is small, even though
we have such high cumulative losses; we are comparing our
performance against a set of poor strategies!

6 Experimental Results
Since the worst-case bounds we derived in the previous sec-
tion may actually be quite loose, we now present some exper-
imental results using this approach of hedged learning. We
consider the repeated Prisoner’s Dilemma game, and we first
assume that the unknown opponent is a “Tit-for-Ten-Tats” op-
ponent. That is, the opponent will only cooperate once we
have cooperated for ten time periods in a row.

We use a variety of different opponent models with sim-
ple learning algorithms, pure hedging algorithms that only

-100

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500 600 700 800

C
um

ul
at

iv
e

R
ew

ar
d

Time

Performance of Learners with Differing Opponent Models

4-state Learner
10-state Learner
30-state Learner

Figure 3: This graph shows the performance of learning algo-
rithms against a Tit-for-Ten-Tats opponent. As the opponent
model grows in size, it takes longer for the learning algorithm
to decide on an optimal policy.

-5000

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 5000 10000 15000 20000 25000 30000 35000 40000

C
um

ul
at

iv
e

R
ew

ar
d

Time

Performance of Hybrid Experts-Learners Algorithms Compared

4-state Learner
10-state Learner
1-period experts

25-period experts
25-period experts w/ 10-state Learner

25-period experts w/ 4-state Learner

Figure 4: This chart shows the performance of different learn-
ing, hedging, and hedging learning algorithms in a game of
repeated prisoner’s dilemma against a Tit-for-Ten-Tats oppo-
nent.

hedge between static experts, and hedged learning algorithms
that combine learning algorithms with static experts. First,
we note that larger opponent models are able to capture a
larger number of potential opponent state dynamics, but re-
quire both a longer commitment phaseλ and a larger num-
ber of iterations before a learning algorithm can estimate the
model parameters and solve for the optimal policy. For exam-
ple, Figure 3 shows the performance of three differentn-state
learners, withn = 4, 10, 30. As discussed earlier in Section
4, the 4-state learner is unable to capture the opponent’s state
dynamics and thus learns an “optimal” policy of defecting at
every state. This results in an average reward of zero per time
step. On the other hand, the 10-state and 30-state learners
lose some rewards while they are exploring and learning the
parameters of their opponent models, but then gain an aver-
age reward of 1 after they have found the optimal policy of
always cooperating.

Figure 4 shows the performance of various learning and

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

153

-5000

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

C
um

ul
at

iv
e

R
ew

ar
d

Time

Performance of Algorithms When Opponent Switches Strategies

10-state Learner
Hedged Learner

Figure 5: In these trials, the opponent switches strategy every
15,000 time periods. It switches between playing Tit-for-Ten-
Tats (“Cooperate for 10 Cooperates”) and “Cooperate for 10
Defects”. While the modeler becomes confused with each
switch, the hedging learner is able to adapt as the opponent
changes and gain higher cumulative rewards.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

P
ro

ba
bi

lit
y

of
 P

la
yi

ng

Time

Probability with which Cooperation or Defection is chosen over time

Learned
Defect

Cooperate

Figure 6: Graph showing the probability with which the
weighted hedger plays either a cooperating strategy or a de-
fecting strategy against the switching opponent over time.

hedging algorithms. The “1-period experts” hedging algo-
rithm hedges between single periods of cooperating and de-
fecting. This myopic algorithm is unable to learn the coop-
erative outcome and thus ends up achieving the single-shot
Nash equilibrium value of 0. It assigns a very high weight to
the Defect expert. On the other hand, the “25-period experts”
hedging algorithm switches between two experts which either
cooperate or defect for all possible 25-period histories. This
algorithm realizes that the “always cooperate” expert attains
higher reward and thus eventually plays Cooperate with prob-
ability approaching 1. The hedged 10-state learner is also
able to achieve the cooperative outcome. It achieves cumu-
lative reward only slightly lower than the unhedged 10-state
learner, since it quickly realizes that the “always cooperate”
policy and the learned optimal policy both return higher re-
wards than the “always defect” policy.

One main benefit of the hedged learning approach becomes

evident when we observe the performance of the hedged 4-
state learner. Even though the 4-state model is unable to cap-
ture the state dynamics and the learning algorithm thus fails
to learn the cooperative policy, the hedged 4-state learneris
able to achieve average rewards of 1 as it assigns larger and
larger weight to the “always cooperate” expert and learns to
ignore the recommendations of the failed learning expert. We
have wisely hedged our bets between the available experts
and avoided placing all our bets on the learning algorithm.

Another major benefit of using hedged learners occurs
when the environment is non-stationary. For example, as-
sume that the opponent switches between playing Tit-for-
Ten-Tats (“Cooperate for 10 Cooperates”) and “Cooperate for
10 Defects” every 15,000 time periods. While the unhedged
learner becomes confused with each switch, the hedged
learner is able to adapt as the opponent changes and gains
higher cumulative rewards (Figure 5). Note that when the op-
ponent does its first switch, the unhedged learner continues
to use its cooperative policy, which was optimal in the first
15,000 periods but now returns negative average reward. In
contrast, the hedged learner is able to quickly adapt to the new
environment and play a primarily defecting string of actions.
Figure 6 shows how the hedging algorithm is able to change
the probabilities with which it plays each expert as the envi-
ronment changes, i.e. when the opponent switches strategies.

7 Future Work
We are currently adapting these methods to stochastic games,
and gathering data from experiments with simple stochastic
games such as grid-world soccer. We hope to also be able to
present these results at the workshop.

References
Auer, P., Cesa-Bianchi, N., Freund, Y., & Schapire, R. E. (1995).

Gambling in a rigged casino: the adversarial multi-armed bandit
problem. Proceedings of the 36th Symposium on Foundations of
Computer Science.

Chang, Y., & Kaelbling, L. P. (2001). Playing is believing: The role
of beliefs in multi-agent learning.NIPS.

de Farias, D. P., & Meggido, N. (2004). How to combine expert (or
novice) advice when actions impact the environment.Proceed-
ings of NIPS.

Freund, Y., & Schapire, R. E. (1999). Adaptive game playing using
multiplicative weights.Games and Economic Behavior, 29, 79–
103.

Fudenburg, D., & Levine, D. K. (1995). Consistency and cautious
fictitious play. Journal of Economic Dynamics and Control, 19,
1065–1089.

Kearns, M., & Singh, S. (1998). Near-optimal reinforcement learn-
ing in polynomial time.ICML.

Mannor, S., & Shimkin, N. (2001). Adaptive strategies and regret
minimization in arbitrarily varying Markov environments.Proc.
of 14th COLT.

Nachbar, J., & Zame, W. (1996). Non-computable strategies and
discounted repeated games.Economic Theory.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

154

Supervised Learning of Options: A Pilot Study

Cosmin Paduraru and Vadim Bulitko
Department of Computing Science, University of Alberta

Edmonton, Alberta, T6G 2E8, Canada
{cosmin, bulitko}@cs.ualberta.ca

Abstract

Options represent a formal way of adding tem-
poral abstraction to reinforcement learning.
They have been shown to be successful in
terms of accelerating learning and there is much
promise in using them for knowledge represen-
tation. In this paper, we will propose super-
vised learning of option policies as an alter-
native to existing methods. This provides an
easy, intuitive way of transferring knowledge
from a human expert to a reinforcement learn-
ing agent. Moreover, the agent is not limited
to mimicking the expert’s behavior (as it would
be if supervised learning were to be performed
for the whole task), since an overall policy is
learned on top of both options and primitive ac-
tions. Supervised option learning also has the
advantage that the parts of the sensory input
irrelevant to the subtask are detected automat-
ically, thus allowing for generalization between
similar structures in the same environment.

1 Introduction
One very promising approach to scaling up reinforcement
learning is to use options as a form of temporal abstrac-
tion. The concept was introduced by Sutton, Precup and
Singh [Sutton et al., 1999], where they formally define
an option as an entity consisting of three components: a
partial policy π : S′ × A → [0, 1] (S′ ⊆ S), an initiation
set I ⊆ S and a termination condition β : S′ → [0, 1].
These components can generate behavior as follows: as
the agent interacts with the environment, it can initiate
an option in any state in I, after which it behaves ac-
cording to π. At each state s the option terminates with
probability β(s).

While an important body of recent work has focused
on autonomous discovery of options [McGovern, 2002],
the more simple view and the one that this paper will
focus on is that of options as a way of introducing ex-
pert knowledge. Options seem to be the right tool for
modeling the concept of skill teaching, a concept so often
encountered in human life (e.g., a baby is taught how to
walk, a tennis player is taught how to serve, etc.).

One of the simplest examples of this can be found in
the original options paper [Sutton et al., 1999], where

the authors define options for reaching doorways, know-
ing that the agent will have to go through a sequence of
doorways before reaching the goal. There are also more
realistic tasks on which this idea has proven to be suc-
cessful, such as aerial surveillance [Sutton et al., 1998] or
robot soccer [Sutton and Stone, 2001]. More generally,
defining sub-policies has been shown to speed up learning
in non-trivial domains by using other forms of hierarchi-
cal abstraction as well, such as MAXQ [Ghavamzadeh
and Mahadevan, 2003].

Besides its intuitive appeal, there are good reasons
for which defining sub-policies can improve the learning
process. First, a very large state-action space can be
considerably reduced by planning or learning only on
top of options, as has been shown in [Sutton et al.,
1998]. This effectively limits the set of policies that are
available to the agent and, while it usually means that
the learned overall policy is sub-optimal, the better the
designer is at defining sub-policies the better the final
policy can be.

Second, good options can help speed up learning by fo-
cusing the value function updates on relevant parts of the
state space. For instance, in their work with Robocup
soccer Sutton and Stone used sarsa(λ) without decay-
ing the traces while an option was executed [Sutton and
Stone, 2001]. Generally speaking, this is equivalent to
having variable values of λ, but without options it would
have been more difficult to figure out a good strategy for
varying λ.

We will propose in this paper an alternative to hand-
coding option policies as a way of introducing prior
knowledge: supervised learning of options. In the fol-
lowing, we will discuss the potential that this method
has, elaborate on its details and support it with prelim-
inary empirical evidence.

2 Reusable Options

There is one class of learning tasks for which options
could represent a very prolific approach, yet insufficient
investigation has been carried out in this area. These are
tasks for which the environment is structured in such
a way that it encourages the use of what we will call
reusable sub-policies, or reusable options. These are ba-
sically sub-policies that can be used in different, yet sim-
ilar areas of the state space.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

155

There are a number of suggestive examples from hu-
man behavior: for instance, opening a door, writing a
letter or closing our eyes represent sub-policies that can
be applied in various situations based on some common
elements of those situations. In the context of reinforce-
ment learning, an area where such sub-policies should
be abundant is robot tasks, which are usually rich in the
kind of repetitive structures that we wish to exploit. As
the matter of fact, hand-coding reusable sub-policies has
been done for quite a while in the robotics community,
and it has also been used with the options framework on
Robocup soccer [Sutton and Stone, 2001].

Hand-coding of reusable sub-policies exploits regular-
ities in the sensory space by defining sub-policies only
in terms of a subset of the sensory signal. For instance,
in their Robocup work, Sutton and Stone define their
options only in terms of the relative angles and dis-
tances and ignore the exact positions of the robots on
the field. Dietterich also acknowledges the importance of
this kind of subtask-specific state abstraction, and iden-
tifies a number of conditions under which it is consistent
with the MAXQ hierarchical learning [Dietterich, 2000].

In this context, it is important to move the burden of
coming up with the proper state abstraction for a certain
sub-policy from the programmer to a learning algorithm.
In the following, we will propose a way in which this can
be achieved.

3 Supervised learning of Options

One way of specifying sub-policies and accomplishing the
goals of subtask-specific state abstraction is supervised
learning of options. The idea is that a human expert
controls the agent and tries to accomplish the subtask,
thus generating a set of (sensory information, action)
pairs. A supervised learning method is then run on these
pairs, using the expert’s actions as the classification tar-
gets. The option’s policy will be represented by the re-
sult of applying the corresponding classifier on new ob-
servations. The same idea has been previously used for
learning overall policies, such as driving an autonomous
vehicle [Pomerleau, 1993].

We should note that using this method for acquiring
options can lead to making them reusable. For instance,
if the observation vector is large yet the expert only takes
into account some of its components while controlling the
agent, the supervised learning method should learn to
“pay attention” to only those components in the classi-
fication process. “Paying attention” can mean a number
of things in this case, such as that the corresponding
weights are non-zero (or significantly greater than zero)
in a linear classifier.

Another issue to mention here is that, unlike in su-
pervised policy learning for the overall task, examples of
states in which there is no point in even thinking about
trying the sub-policy should also be given by the teacher.
For instance, there is no point in considering opening a
door if there is no door nearby or following a wall in an
obstacle-free domain. In the options framework, this is

Figure 1: Our experimental “teleporting” gridworld.
The agent is moved (“teleported”) from each of the
states marked with a “T” to the next room, in the order
C2-C1-B2-B1-A2-A1. The goal is located in room A1
and is labeled with a “G”.

translated into restricting the initiation set of an option.
We realize that providing such “negative” examples

can be difficult for the teacher. However, the same dif-
ficulty is even aggravated when the sub-policy is hand-
coded since instead of merely providing negative training
examples the programmer would have to explicitly define
the initiation set.

These examples have the role of specifying S′, the set
of states for which the policy and the termination condi-
tion are defined. In the case of Markov options (options
for which the policy and the termination condition only
depend on the current state), it makes sense to assume
that the initiation set I is the same as S′. In this work
we have made both assumptions: that the options are
Markov (one reason for this was to be able to use intra-
option learning [Sutton et al., 1999]) and that I = S′.

Finally, we have to note that supervised policy learn-
ing methods have been generally avoided in the context
of autonomous agents, mainly because the learned pol-
icy was constrained to mimic the teacher’s behavior, thus
making it sub-optimal in many cases. However, in our
approach this disadvantage is compensated for as the
agent can identify useless or harmful options while learn-
ing the overall policy and learn not to use them or use
them in a very restricted part of the environment.

4 Preliminary results

We have empirically tested supervised learning of op-
tions in a gridworld-style domain, designed in such a
way that useful options were easy for a human to come
up with. The domain is shown in Figure 1, the task is
episodic and the goal is to reach the square marked with
a “G”. The world is deterministic and the four available
actions (up, down, left, right) have the usual outcomes,
except when the agent is “teleported” after entering each

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

156

X

X
X
X
X

X
X
X
X
X

XXXXX
X

X
X
X
X

X XX

X
X

X

X
X

X
X
X
X

X

Figure 2: Training data provided for the “get inside the
room through the right side” option. The ‘X’ means
that the corresponding state has been labeled as “option
inapplicable”. For states for which a training action has
been provided, that action is indicated by the direction
of the arrow.

of the inside rooms. The teleportation is done in a se-
quence that eventually leads it to the room where the
goal is located.

The option that we have taught the agent was to get
to the entrance of the inside rooms (where teleporting
would then occur) from states next to the inside walls.
It should be clear that this option is helpful on our task,
since the agent needs to get to the teleporting places in
order to reach the goal.

During learning, the observation vector was composed
of the unique state label for each square and 8 binary
inputs for the 8 directions (up, down, left, right and
diagonals). Each of the binary inputs had a value of 1 if
there was a wall in the corresponding direction and of 0
otherwise.

We have generated training examples (including ex-
amples of places where the option is not initiable) for
rooms of different sizes (see Figure 2) and trained a de-
cision tree with these examples. The examples where
generated such that the agent would be taken to the
teleporting spots by going on the right side of the room.

We have observed that, as expected, the decisions that
the decision-tree based classifier made were based on the
last 8 components of the input vector rather than the
state label. This allows the agent to use the same option
for each of the rooms. Indeed, if the policy is defined
only in terms of the squares around the agent, it will
work for any room, no matter what the exact position
of that room is or how long the walls are.

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

Episode

N
um

be
r

of
 s

te
ps

 to
 g

oa
l

Intra−options learning

SMDP learning

primitive actions only

Figure 3: Using options defined by supervised learning
can speed up learning. Each data point is averaged over
20 folds.

To test the utility of our “reusable option”, we com-
pared learning with primitive actions only against learn-
ing with both primitive options and the decision-tree
learned option. We used sarsa(λ) as the learning al-
gorithm. Both SMDP and intra-option methods [Sutton
et al., 1999] were employed when learning with both ac-
tions and options. The rewards were 1 if the goal was
reached and 0 for any other transition, and the control
parameters were γ = 0.9, λ = 0.9, α = 0.2.

The results, presented in Figure 3, show a consider-
able improvement in convergence speed when the learn-
ing algorithm made use of the option. This shows that
the agent was able to generalize from expert-provided
training examples and apply the option in every room.
Generally speaking, these results suggest that including
expert knowledge via supervised learning of options is a
viable solution for speeding up reinforcement learning in
complex domains.

5 Conclusions and Future Work

The following question appears important for tempo-
ral abstractions and hierarchical reinforcement learning:
What is the proper way to go from our idea of what the
agent’s sub-policies should be to the agent’s representa-
tion of these sub-policies? This paper discussed super-
vised learning of options as a candidate answer to this
question. Strengths of the proposed approach include
the fact that expert knowledge can be introduced with-
out any programming effort on the user side and that
the subset of sensory information relevant to the sub-
policy can be automatically selected. The discussion is
supported with a pilot empirical study in a toy domain.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

157

The promise of this preliminary work warrants a larger
scale investigation, possibly using robot simulation such
as the RoboCup competition [Kitano et al., 1997] . A
first issue to be investigated is how appropriate differ-
ent function approximation schemes (such as neural net-
works, decision trees, linear regression etc.) are for rep-
resenting option policies.

We also intend to compare different methods of pro-
viding a reinforcement learning agent with options (or
skills), including our approach, subgoal specification,
manual programming, reward system specification, etc.
The option policies generated will be used with one of the
known option learning or planning algorithms [Sutton
et al., 1999], and the relative performances will suggest
which of the methods has produced the most robust and
useful policies.

We hope that, by doing this, we will get a clear idea
of which of these methods are more intuitive, easy and
practical. For instance, we may come across subtasks
that no expert knows how to solve yet which can be
well handled by reinforcement learning algorithms based
on subgoal values [Sutton et al., 1999]. Or, perhaps,
we can find teaching to be the better choice in practice,
because providing examples turns out to be a lot eas-
ier than specifying the proper option-specific rewards or
subgoal values for each option.

Acknowledgments

We thank Mark Ring and Rich Sutton for invaluable in-
put and overall wisdom. We are also grateful for the
financial support from iCORE and the University of Al-
berta.

References

[Dietterich, 2000] Thomas G. Dietterich. Hierarchical
reinforcement learning with the MAXQ value func-
tion decomposition. Journal of Artificial Intelligence
Research, 13:227–303, 2000.

[Ghavamzadeh and Mahadevan, 2003] Mohammad
Ghavamzadeh and Sridhar Mahadevan. Hierarchical
policy gradient algorithms. In 20th International
Conference on Machine Learning (ICML-03), Wash-
ington, DC, 2003.

[Kitano et al., 1997] Hiroaki Kitano, MilindTambe, Pe-
ter Stone, Manuela Veloso, Silvia Coradeschi, Eiichi
Osawa, Hitoshi Matsubara, Itsuki Noda, and Minoru
Asada. The robocup synthetic agent challenge. In
15th International Joint Conference on Artificial In-
telligence, San Francisco, CA, 1997.

[McGovern, 2002] Amy McGovern. Autonomous Dis-
covery of Temporal Abstractions from Interacting with
an Environment. PhD thesis, University of Mas-
sachusetts, Amherst, Massachusetts, 2002.

[Pomerleau, 1993] D. Pomerleau. Neural Network Per-
ception for Mobile Robot Guidance. Kluwer Academic
Publishing, 1993.

[Sutton and Stone, 2001] Richard S. Sutton and Peter
Stone. Scaling reinforcement learning toward robocup
soccer. In 18th International Conference on Machine
Learning (ICML-01), 2001.

[Sutton et al., 1998] Richard S. Sutton, Satinder Singh,
Doina Precup, and Balaraman Ravindran. Improved
switching among temporally abstract actions. In Neu-
ral Information Processing Systems 11 (NIPS-98).
MIT Press, 1998.

[Sutton et al., 1999] Richard S. Sutton, Doina Precup,
and Satinder Singh. Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforce-
ment learning. Artificial Intelligence, 112:181–121,
1999.

IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains V. Bulitko & S. Koenig (eds.)

158

	malec.pdf
	Introduction
	Architecture
	Deductor
	Knowledge representation
	Active Logic
	Conditional plans
	Reasoning about plans

	Actor
	Learning
	Goal of learning
	Choosing plans
	Application of ILP
	Further ideas

	Related Work
	Conclusions and Further Work

