
Requesting agent participation in Electronic Institutions

(Extended Abstract)
Hector G. Ceballos

Tecnologico de Monterrey
Ave. E. Garza Sada 2501

Monterrey, Mexico
ceballos@itesm.mx

Pablo Noriega
IIIA-CSIC

UAB Campus
Bellaterra, Spain

pablo@iiia.csic.es

Francisco J. Cantu
Tecnologico de Monterrey
Ave. E. Garza Sada 2501

Monterrey, Mexico
fcantu@itesm.mx

ABSTRACT
The Electronic Institutions (EIs) framework is designed for
regulating interactions among heterogeneous agents in open
systems [1]. In EIs, agent interactions are speech acts whose
exchange is organized as conversation protocols called scenes.
Agents can participate simultaneously in multiple scenes
playing a single role in each one of them. However, at some
point, the execution of a given scene may require the pres-
ence of an agent playing a particular role. When such an
agent is missing, a deadlock may ensue unless the institu-
tion or the agents themselves can invoke the participation
of an agent to play the missing role. Such functionality is
not provided in the current EI framework. We propose an
extension of the framework that addresses that problem in a
generic way: the provision of an institutional agent in charge
of instantiating new agents and dispatching them to scenes
through a participation request protocol. In this paper we
make the proposal precise and illustrate it with a use case.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms

Keywords
Agent-oriented software engineering. Development environ-
ments. Electronic institutions.

1. REQUESTING AGENT PARTICIPATION
A Dispatcher agent is as an intermediary agent that fa-

cilitates recruiting agents to participate in a scene. Let us
represent the Dispatcher agent with the symbol AD and de-
note its attributes with its DAgent role. AD keeps track of
all agents in the institution through the relation Agents =
{A1, ..., An}. Additionally, AD is involved in three rela-
tions: AgClasses, hasType and canP lay. The set of agent
classes AgClasses = {C1, ..., Cn} is an equivalence relation

Cite as: Requesting agent participation in Electronic Institutions (Ex-
tended Abstract), Hector Ceballos, Pablo Noriega and Francisco Cantu,
Proc. of 9th Int. Conf. on Autonomous Agents and Multia-
gent Systems (AAMAS 2010), van der Hoek, Kaminka, Lespérance,
Luck and Sen (eds.), May, 10–14, 2010, Toronto, Canada, pp.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

that represents the software implementation of any partici-
pant, denoted by a source code class. Through hasType ⊂
Agents×AgClasses, AD keeps track of the agent class of ev-
ery agent in the institution. Finally, canP lay ⊂ AgClasses×
Roles denotes the roles that may be played by an agent ac-
cording to its agent class.

AD is endowed with three primitives, one for creating new
agent instances and two more for maintaining the previously
introduced relations. The Instantiate(Ci) primitive creates
a new instance Ai of the agent class Ci and enters it in the
institution. This primitive makes use of the Agent Manage-
ment System (AMS) provided by any FIPA-compliant agent
platform. The configuration of AD specifies, for each agent
class, the maximum number of agents it can handle, de-
noted MaxAgs(Ci). The RegisterAgent(Ai, Ci) primitive
inserts Ai in Agents and introduces the tuple (Ai, Ci) in
hasType. Similarly, the UnregisterAgent(Ai) primitive re-
moves Ai from Agents and the tuple (Ai, Ci) from hasType.
The function CurrAgs(Ci) returns the number of tuples
(Aj , Ci) ∈ hasType.

1.1 Request and Invitation Protocols
An agent A1 playing role R1 in scene S may be unable

to achieve a goal if another agent playing role R is missing
in that scene. Let agsP layingRole(R, S, Q) denote A1’s re-
quirement of Q agents playing role R in scene S, where the
quantifier Q ∈ {ONE, ALL, N=n}, represents only one agent,
all available agents, or exactly n agents, respectively. Agent
participation is negotiated through two protocols, one for re-
questing agent participation (PReq) and another for inviting
agents to scenes (PInv).

Through PReq, A1 (playing role ReqAgent) informs AD

of its request for agent participation. AD processes the re-
quest and informs A1 whether enough agents accepted its
invitation or that its request was unsatisfied.

Through PInv, AD sends invitations to available or new
agents (playing role InvAgent), who may accept or decline
the invitation. A new agent Ai is invited to those scenes that
motivated its instantiation before entering the institution
and denied access, by AD, if it doesn’t accept any of these
invitations.

1.2 Processing Agent Participation Requests
In PReq, AD generates an agent participation request that

identifies the request from agent AR for committing Q agents
to participate in S with role R, denoted APR(AR, R, S, Q).
First, AD determines satisfiability of apr based on the avail-
ability of agents capable of playing role R. In order to nar-

1375

1375-1376

row the invitation to agents capable of playing role R, the
set of agent classes to consider is given by AgClss(apr) =
{Ci|canP lay(Ci, R)}. Potential availability for apr is given
by Cap(apr) =

∑
i MaxAgs(Ci) for each Ci ∈ AgClss(apr).

Definition 1. An apr = APR(AR, R, S, Q) is satisfiable if
Cap(apr) ≥ 1 for a quantifier Q ∈ {ONE, ALL}, or Cap(apr) ≥
n for a quantifier Q = N=n. Otherwise, apr is considered un-
satisfiable.

Unsatisfiable requests are canceled and notified to the
requester. AD continues processing feasible requests iden-
tifying the set of available agents for apr, Avail(apr) =
{Aj |Agents(Aj)∧hasType(Aj , Ci)∧canP lay(Ci, R)}. Next,
AD progressively invites agents Aj ∈ Avail(apr) until reach-
ing the quota of accepted invitations or until finishing with
the list. The list of agents accepting the invitation for apr
is denoted AccAgs(apr) and is used for determining apr’s
satisfaction.

Definition 2. An apr = APR(AR, R, S, Q) is satisfied if
|AccAgs(apr)| ≥ 1 for Q ∈ {ONE, ALL} or |AccAgs(apr)| =
n for Q = N=n.

If apr is not satisfied with the current set of agents, AD

will try to instantiate and invite additional agents of type
Ci ∈ AgClss(apr) such that MaxAgs(Ci)−CurrAgs(Ci) >
0. If there is no capacity for agents of type Ci, AD will
wait for agents becoming available or for slots released by
agents leaving the institution. After a fixed period of time
AD will declare the request unsatisfied. Both satisfied and
unsatisfied requests are notified as completed to AR in PReq.

2. CASE STUDY
We used the the software platform EIDE [2] for imple-

menting an information auditing process. We generated
multiple Correction scenes on which a software agent may
be required to perform the automatic correction (Corrector
role) of a record, a human auditor may be required to su-
pervise the correction (Expert role) and the corresponding
author of the record may be required to make a final assess-
ment (Author role). In each case, the participation of these
agents is not assured and record’s information determines
which users must be addressed.

2.1 Implementation
Our proposal was incorporated in an initial system imple-

mentation through the introduction of a new performative
structure with four scenes where agents: 1) log in, 2) re-
quest agent participation, 3) receive and answer invitations
to scenes, and 4) log out. AD is permanently present in the
four scenes. The auditing process modeled in the original
performative structure, AuditingPS, is nested in this per-
formative structure making every agent pass through the
log-in scene and remain active in the request and invitation
scenes. After leaving AuditingPS, agents pass through the
log-out scene. The functionality of the Dispatcher agent was
implemented in one of the original agents. Agent instanti-
ation was implemented through a new institutional service.
Agents originally developed for AuditingPS were augmented
with the functionality of ReqAgent and InvAgent roles.

2.2 Experiments and Results
For testing purposes we set up three system configura-

tions. The first configuration corresponds to a low demand
setting. The second had an information feeding rate higher
than revision time. The last configuration had a reduced
number of User agents hence generating unsatisfiable re-
quests.

As expected, in the first configuration we only had a single
scene at a time and one agent playing each role in the system.
In the second configuration the reduction on the feeding rate
produced stalled scenes and a higher utilization of agents;
the maximal number of User agents was reached but stalled
scenes were released after the exit of busy agents. Finally,
in the third configuration a deadlock was produced when all
user agents were busy and a second request for user agents
in stalled scenes was unsatisfied. This situation could be
prevented by warranting the availability of agents for the
scene before issuing the first agent request.

3. DISCUSSION
Our approach enables mediated scene coordination and

proposes agent instantiation as a mechanism for regulating
agent populations online. The participation of agents is ne-
gotiated centrally by the Dispatcher agent which allows to
detect unsatisfiable requests to some extent. Experiments
show the necessity of extending our approach to handle re-
quests for future participation, enabling agent slot reserva-
tion and release, at the start and at the end of a scene,
respectively. This approach can be applied on Madkit [3]
and ORA4MAS [4], where coordination in groups shows the
same limitation that EI scenes.

4. ACKNOWLEDGMENTS
This paper was partially funded by the Spanish Ministry

of Science and Innovation AT (CSD2007-0022, INGENIO
2010) and EVE (TIN2009-14702-C02-01), by the Generali-
tat de Catalunya 2009-SGR-1434, by the Mexican Council
for Science and Technology and by the Tecnologico de Mon-
terrey.

5. REFERENCES
[1] J. Arcos, M. Esteva, P. Noriega, J. Rodriguez-Aguilar,

and C. Sierra. Engineering open environments with
electronic institutions. Engineering Applications of
Artificial Intelligence, (18):191–204, March 2005.

[2] M. Esteva, J. A. Rodŕıguez-Aguilar, J. L. Arcos,
C. Sierra, P. Noriega, and B. Rosell. Electronic
institutions development environment. In Proceedings of
the 7th International Joint Conference on Autonomous
Agents and Multiagent Systems. AAMAS-08.

[3] O. Gutknecht and J. Ferber. MadKit: Organizing
heterogeneity with groups in a platform for multiple
multi-agent systems. Technical Report R.R.LIRMM
9718, LIRM, December 1997.

[4] R. Kitio, O. Boissier, J. F. Hubner, and A. Ricci.
Organisational artifacts and agents for open
multi-agent organisations. In Coordination,
Organizations, Institutions, and Norms in Agent
Systems III, pages 171–186, 2008.

1376

