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Abstract

In this paper we consider expansions
of  Lukasiewiz, Product, Gödel and
Nilpotent Minimum logics with truth-
constants for an algebra of rational
truth-values. We study the semantics for
these logics given by chains defined over
the rational unit interval and the com-
pleteness properties they provide, with
a special attention to the completeness
with respect to the canonical chain (i.e.
the algebra where each truth-constant is
interpreted in its corresponding truth-
value).

Keywords: t-norm based fuzzy log-
ics, truth-constants, rational semantics,
completeness.

1 INTRODUCTION

Fuzzy logics are the logics corresponding to the
notion of comparative truth, i.e. the paradigm
where the classical truth-values are extended by
adding intermediate ones which are comparable
by using some total ordering. The expansions of
fuzzy logics with truth-constants have been pro-
posed as a means to deal explicitly in the lan-
guage with the intermediate truth-values. They
first appeared already in the 70s when Pavelka
[13] introduced a propositional many-valued log-
ical system which turned out to be equivalent
to the expansion of  Lukasiewicz logic by adding
into the language a truth-constant r for each real
r ∈ [0, 1], together with a number of additional

axioms. Hájek in [11] simplified in significant form
Pavelka’s system by showing that the same re-
sults could be obtained by adding just a truth-
constant for each rational r ∈ [0, 1]. Expansions
of other t-norm based fuzzy logics with count-
able sets of truth-values and their completeness
properties with respect to the standard semantics
over the real unit interval have been studied in
[4, 6, 8, 9, 14]. Nevertheless, although the power
of rational-chain semantics for fuzzy logics was
been shown in [3, 7, 2], it had not been consid-
ered for logics with truth-constants yet. Thus,
in this paper we will study rational completeness
properties for fuzzy logics with truth-constants.

2 PRELIMINARIES

The basic logic in this framework is the (propo-
sitional) Monoidal t-norm based logic MTL [5],
with primitive connectives & (multiplicative con-
junction), → (implication), ∧ (additive conjunc-
tion) and the truth-constant 0. MTL is in fact the
logic of left-continuous t-norms and their residua
[12], in the sense that the set of its theorems is ex-
actly

⋂
{Taut(∗) | ∗ is a left-continuous t-norm},

where Taut(∗) denotes the set of tautologies when
interpreting respectively &, → and ∧ by ∗, its
residuum ⇒ and the min operation. In this set-
ting, we denote by [0, 1]∗ the standard MTL-
chain defined by the left-continuous t-norm ∗
and its residuum ⇒, i. e. [0, 1]∗ = 〈[0, 1], ∗,⇒
,min,max, 0, 1〉, and by L∗ the axiomatic exten-
sion of MTL whose equivalent algebraic semantics
is the variety generated by [0, 1]∗.

In this paper we will mainly focus on four promi-
nent examples of these logics, namely Gödel (G),
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 Lukasiewicz ( L), Product (Π), and Nilpotent Min-
imum (NM) logics, corresponding respectively to
the cases when ∗ is the minimum t-norm, the
 Lukasiewicz t-norm, the product t-norm, or the
nilpotent minimum t-norm (see [11, 5] for their
axiomatics and further details).

Given a logic L∗ and a class K of L∗-chains, one
defines three completeness properties:

• L∗ has the property of strong K-
completeness, SKC for short, if for every set
of formulae Γ and every formula ϕ, Γ `L∗ ϕ
iff Γ |=K ϕ.

• L∗ has the property of finite strong K-
completeness, FSKC for short, if for every
finite set of formulae Γ and every formula ϕ,
Γ `L∗ ϕ iff Γ |=K ϕ.

• L∗ has the property of K-completeness, KC
for short, if for every formula ϕ, `L∗ ϕ iff
|=K ϕ.

If K is the class of all chains over the real unit
interval [0, 1] we use the notation RC and call the
properties standard completeness, while if it is the
class of all chains over the rational unit interval
[0, 1]Q = [0, 1] ∩ Q we use the notation QC. The
standard and rational completeness properties for
the above considered logics are in Table 1.
Theorem 2.1 ([2]). Let ∗ be a left-continuous t-
norm. If L∗ has the FSRC, then it has the SQC.

 L Π G NM
RC Yes Yes Yes Yes

FSRC Yes Yes Yes Yes
SRC No No Yes Yes
QC Yes Yes Yes Yes

FSQC Yes Yes Yes Yes
SQC Yes Yes Yes Yes

Table 1: Standard and rational completeness
properties for propositional fuzzy logics.

2.1 ADDING TRUTH-CONSTANTS

Given a left-continuous t-norm ∗ let C be a count-
able subalgebra of [0, 1]∗. Then, L∗(C) is the

propositional fuzzy logic defined as follows:

(i) the language of L∗(C) is the one of L∗ ex-
panded with a new propositional constant r
for each r ∈ C \ {0, 1},

(ii) the axioms and rules of L∗(C) are those of L∗
plus the book-keeping axioms:

r&s↔ r ∗ s
(r → s) ↔ r ⇒ s

for each r, s ∈ C.

Its algebraic counterpart, the L∗(C)-algebras, are
the expansions of L∗-algebras with nullary func-
tions rA (one for each r ∈ C) satisfying the book-
keeping axioms, i.e. for every r, s ∈ C the follow-
ing identities hold:

rA&sA = r ∗ sA

rA → sA = r ⇒ sA.

L∗(C)-chains defined over the real unit interval
[0, 1] are called standard. Among them, there is
one which reflects the intended standard seman-
tics, the so-called canonical standard L∗(C)-chain
[0, 1]L∗(C) which is the standard chain where the
truth-constants are interpreted by their defining
values, i.e. one has rA = r for all r ∈ C whenever
A = [0, 1]L∗(C). It is worth to point out that for
a logic L∗(C) there may exist multiple standard
chains as soon as there exist different ways of in-
terpreting the truth-constants on [0, 1] respecting
the book-keeping axioms. Indeed, in the standard
chains of  L, Π, G and NM logics, the only possi-
ble interpretations are of the following type: for
each proper filter F of C (a non-empty upper sub-
set closed under the t-norm and not containing
0), truth-constants admit the following interpre-
tation:

rA =


1, if r ∈ F
0, if ¬r ∈ F
r, otherwise

The resulting standard chain is denoted [0, 1]FL∗(C).
In the case of  L the only proper filter is the trivial
one {1}. In the case of Π there are two: (0, 1] and
{1}. For G (resp. NM) there are many: [c, 1] for
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every c > 0 (resp. c > 1
2) and (c, 1] for every c ≥ 0

(resp. c ≥ 1
2).

Completeness properties w.r.t. both the class of
all standard chains and the canonical standard
chain have been studied in the literature and
solved for the logics we are considering (see Ta-
ble 2). In the cases where the standard complete-
ness fails one can try to improve the situation by
restricting the logic to the so called evaluated lan-
guage, i.e. formulae r → ϕ where no additional
truth-constant occurs in ϕ. In the case of NM
one must require that the value r is positive, i.e.
r > 1

2 . Table 3 summarizes these completeness
results.

 L(C) Π(C) G(C) NM(C)
RC Yes Yes Yes Yes

FSRC Yes Yes Yes Yes
SRC No No Yes Yes

CanRC Yes Yes Yes Yes
CanFSRC Yes No No No
CanSRC No No No No

Table 2: Standard completeness properties for
propositional fuzzy logics with truth-constants.

 L(C) Π(C) G(C) NM(C)
RC Yes Yes Yes Yes

FSRC Yes Yes Yes Yes
SRC No No Yes Yes

CanRC Yes Yes Yes Yes
CanFSRC Yes Yes Yes Yes
CanSRC No No No No

Table 3: Standard completeness properties for
propositional fuzzy logics with truth-constants re-
stricted to (positively) evaluated formulae.

3 NEW RESULTS: THE GENERAL
CASE

Let ∗ be a left-continuous t-norm and ⇒ its
residuum such that the rational unit interval
[0, 1]Q is closed under the operations ∗ and⇒. Let
[0, 1]Q∗ be the L∗-chain defined by the restriction
of ∗ and ⇒ to [0, 1]Q. Let C be a countable subal-
gebra of [0, 1]Q∗ and consider the logic L∗(C). Now

L∗(C)-chains defined over the rational unit inter-
val are called rational chains and among them, the
one which reflects the intended rational semantics
is the so-called canonical rational L∗(C)-chain

[0, 1]QL∗(C) = 〈[0, 1], ∗,⇒,min,max, 〈r : r ∈ C〉〉,

i.e. the rational chain over [0, 1]Q∗ where the truth-
constants are interpreted by their defining values.

As already mentioned, in this paper we restrict
ourselves to the logics L∗(C) defined by four
prominent t-norms (Gödel,  Lukasiewicz, Product
and Nilpotent Minimum), and study for them
completeness properties with respect to all ra-
tional L∗(C)-chains (QC, FSQC and SQC) and
with respect to the canonical rational L∗(C)-chain
(CanQC, CanFSQC and CanSQC). In fact, all
the logics we are considering obviously enjoy the
QC, FSQC and SQC by virtue of Theorem 2.1,
since all of them enjoy the FSRC (see Table
2). We start the study of canonical completeness
properties for the  Lukasiewicz-based logics  L(C).

Theorem 3.1. For every countable C ⊆ [0, 1]Q L,
the logic  L(C) enjoys the CanFSQC.

Proof. Suppose that for some arbitrary set of for-
mulae we have ϕ1, . . . , ϕn 0 L(C) ψ. We must prove
that ϕ1, . . . , ϕn 6|=[0,1]Q

 L(C)

ψ. On one hand, by the

FSRC, there is an evaluation e over [0, 1] L(C) such
that e(ϕ1) = . . . = e(ϕn) = 1 and e(ψ) < 1. On
the other hand, as proved in [1]1, we know that
[0, 1] L(C) is partially embeddable into [0, 1]Q L(C)

.

Therefore, by embedding into [0, 1]Q L(C)
the values

of all the subformulae of the formulae involved, we
obtain an evaluation over the rational canonical
chain such that is a model of {ϕ1, . . . , ϕn} while
it is not a model of ψ.

However, this property fails for the remaining log-
ics we are considering. Indeed, suppose that ∗ is
the product, Gödel or Nilpotent Minimum t-norm
and C ⊆ [0, 1]Q∗ , let F be a non-trivial proper filter
of C and take r ∈ F \ {1}. Then:

• (p→ q) → r |=
[0,1]Q

L∗(C)
q → p

1Actually the result we use from [1] comes from a trans-
lation of the paper in Russian [10].
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• (p→ q) → r 6|=([0,1]Q)F
L∗(C)

q → p

Therefore, there is an entailment which holds
for the canonical rational chain, but not for all
the chains. Thus none of these logics enjoy the
CanFSQC. We turn now to the CanQC.

Theorem 3.2. For every countable C ⊆ [0, 1]QΠ,
the logic Π(C) enjoys the CanQC.

Proof. For this proof we need to introduce some
notation. Given x = 〈x1, . . . , xn〉 ∈ Rn and δ =
〈δ1, . . . , δn〉 ∈ (R+)n, we define the set Eδ(x) =
{〈y1, . . . , yn〉 ∈ Rn | xi = yi if xi ∈ Q, and yi ∈
(xi − δi, xi + δi) if xi /∈ Q}.

Suppose that 6`Π(C) ϕ. Assume further that the
variables of ϕ are among {p1, . . . , pn}. By the
CanRC, there is an evaluation e on [0, 1]Π(C) such
that e(ϕ) < 1. We prove by induction that for
every subformula ψ of ϕ:

1. If e(ψ) = 0, then there is Eδ(e(p1), . . . , e(pn))
such that for every evaluation v on [0, 1]QΠ(C),
if 〈v(p1), . . . , v(pn)〉 ∈ Eδ(e(p1), . . . , e(pn))
then v(ψ) = 0.

2. If e(ψ) 6= 0, then for every ε > 0 there is
Eδ(e(p1), . . . , e(pn)) such that for every eval-
uation v on [0, 1]QΠ(C), if 〈v(p1), . . . , v(pn)〉 ∈
Eδ(e(p1), . . . , e(pn)) then | v(ψ)− e(ψ) |< ε.

From this it easily follows that there is an evalu-
ation v on [0, 1]QΠ(C) such that v(ϕ) < 1, and thus
the theorem is proved.

Theorem 3.3. For every C, the logics G(C) and
NM(C) enjoy the CanQC.

Proof. It can be proved just in the same way as we
proved in [8] that these logics enjoy the CanRC.
We rewrite the proof here for the reader’s con-
venience. Assume that ∗ is the Gödel or Nilpo-
tent Minimum t-norm. Suppose ϕ is a tautology
with respect to [0, 1]QL∗(C). We will prove that ϕ
is also a tautology with respect to ([0, 1]Q)F

L∗(C)
for each filter F of C, which, due to the QC,
implies that `L∗(C) ϕ. Let e be an interpreta-
tion over the chain ([0, 1]Q)F

L∗(C). Suppose that
A is the finite algebra generated by {e(ψ) | ψ

subformula of ϕ} and α = min{r ∈ F | r oc-
curs in ϕ}. Take f : [0, 1]Q → [0, 1]Q such that
f : (¬α, α)Q → (0, 1)Q is a bijection, f(r) = r
for all r /∈ F such that ¬r /∈ F and r occurs
in ϕ. So defined, f is a homomorphism from A
into the canonical rational chain. Then define an
evaluation e′ over the canonical rational chain by
e′(p) = f−1(e(p)) if p is a propositional variable
that appears in ϕ and e′(p) = 1 otherwise. Since
ϕ is a tautology for the canonical rational chain,
e′(ϕ) = 1. Take the algebra [0, 1]Q∗ /Fα where Fα

is the filter [α, 1] ∩ C. This algebra is isomorphic
to [0, 1]Q∗ . Define the evaluation e′′ on the quotient
algebra obtained from e′ and it obviously satisfies
e′′(ϕ) = [1]Fα . Now a simple computation shows
that the algebra B generated by {e′′(ψ) | ψ sub-
formula of ϕ} is isomorphic to A and e′′(ϕ) over
the quotient algebra corresponds to e(ϕ) over the
chain ([0, 1]Q)F

L∗(C), and hence e(ϕ) = 1.

The new results proved in this section are gath-
ered in Table 4.

 L(C) Π(C) G(C) NM(C)
QC Yes Yes Yes Yes

FSQC Yes Yes Yes Yes
SQC Yes Yes Yes Yes

CanQC Yes Yes Yes Yes
CanFSQC Yes No No No
CanSQC No No No No

Table 4: Rational completeness properties for
propositional fuzzy logics with truth-constants.

4 NEW RESULTS: THE CASE OF
EVALUATED FORMULAS

In this section we focus on completeness proper-
ties for the restriction of the logics to (positively)
evaluated formulae. As regards to completeness
properties with respect to the class of all rational
chains there is nothing to say: all three proper-
ties hold for evaluated formulae because they hold
in general for all formulae. Thus, we only need
to examine the restricted canonical completeness
properties.

All the logics under our scope fail to satisfy the
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CanSQC restricted to (positively) evaluated for-
mulae as it can be seen by the following coun-
terexample (already used in [4] for standard se-
mantics in the continuous t-norm case). Let
Γ = {( n

n+1) → ϕ | n ∈ N}. For every logic
L∗(C) we have Γ |=

[0,1]Q
L∗(C)

ϕ. But if Γ `L∗(C) ϕ,

then, by finitariness, there would exist n0 ∈ N
such that ( n0

n0+1) → ϕ `L∗(C) ϕ, hence, we would
have ( n0

n0+1) → ϕ |=
[0,1]Q

L∗(C)
ϕ; a contradiction.

In spite of this negative result which does not
improve the situation with respect to the unre-
stricted CanSQC, we can still show several posi-
tive results for the CanFSQC.

Theorem 4.1. For every countable C ⊆ [0, 1]QΠ,
the logic Π(C) enjoys the CanFSQC restricted to
evaluated formulae.

Proof. Assume that {ri → ϕi | i = 1, . . . , n} ∪
{s→ ψ} is a finite set of evaluated formulae such
that {ri → ϕi | i = 1, . . . , n} 6`Π(C) s → ψ. We
must prove that {ri → ϕi | i = 1, . . . , n} 6|=

[0,1]Q
Π(C)

s→ ψ. By the CanFSRC restricted to evaluated
formulae, there is an evaluation e on [0, 1]Π(C) such
that for every i ∈ {1, . . . , n}, e(ri → ϕi) = 1
and e(s → ψ) = 1, i.e. s > e(ψ) and ri ≤ ϕi

for every i. Without loss of generality we can
assume that ri < e(ϕi) for every i (if it is not the
case, we choose any positive real number α such
that for every i, ri ≤ e(ϕi) < e(ϕi)α and s >
e(ψ)α > e(ψ) and take instead of e the evaluation
e′(x) = e(x)α). Then we use the same trick as
in the proof of Theorem 3.2 showing by induction
that for every subformula ψ of ϕ (we assume the
variables in ϕ are among {p1, . . . , pn}):

1. If e(ψ) = 0 then there is Eδ(e(p1), . . . , e(pn))
such that for every evaluation v on [0, 1]QΠ(C),
if 〈v(p1), . . . , v(pn)〉 ∈ Eδ(e(p1), . . . , e(pn))
then v(ψ) = 0.

2. If e(ψ) 6= 0 then for every ε > 0 there is
Eδ(e(p1), . . . , e(pn)) such that for every eval-
uation v on [0, 1]QΠ(C), if 〈v(p1), . . . , v(pn)〉 ∈
Eδ(e(p1), . . . , e(pn)) then | v(ψ)− e(ψ) |< ε.

Therefore, there is an evaluation v on [0, 1]QΠ(C)
that maps to 1 the premises while maps the con-

clusion to some lower value and hence {ri → ϕi |
i = 1, . . . , n} 6|=

[0,1]Q
Π(C)

s→ ψ.

For the two remaining cases the result is obtained
following a reasoning analogous to that of [6] for
the standard semantics.

Lemma 4.2. Let a ∈ (0, 1]Q and b ∈ (1
2 , 1]Q and

define a pair of mappings fa, f
b : [0, 1]Q → [0, 1]Q

as follows:

fa(x) =
{

1, if x ≥ a
x, otherwise

f b(x) =


1, if x ≥ b
0, if x ≤ 1− b
x, otherwise

Then fa is a homomorphism with respect to the
Gödel truth functions, and f b is a homomor-
phism with respect to the Nilpotent Minimum
truth functions. Therefore, if e is a evaluation
over [0, 1]QG(C) (resp. over [0, 1]QNM(C)) then ea =
fa ◦e (resp. eb = f b ◦e) is also an evaluation over
the same algebra.

Theorem 4.3. For every countable C ⊆ [0, 1]QΠ,
the logics G(C) and NM(C) enjoy the CanFSQC
restricted to evaluated formulae.

Proof. Consider first the case of Gödel logic. As-
sume again that {ri → ϕi | i = 1, . . . , n} ∪ {s →
ψ} is a finite set of evaluated formulae such
that {ri → ϕi | i = 1, . . . , n} 6`G(C) s → ψ.
By the Deduction-detachment Theorem we have
6`G(C)

∧n
i=1(ri → ϕ) → (s → ψ), and hence by

the CanQC, there is an evaluation e on the ra-
tional canonical chain which is not a model of
(
∧n

i=1(ri → ϕ) → (s→ ψ). We must find another
evaluation e′ which is model of {ri → ϕi | i =
1, . . . , n} and not of s→ ψ.

If e is a model of every ri → ϕi, then we can take
e′ = e and the problem is solved. Otherwise, there
exists some 1 ≤ j ≤ n for which rj > e(ϕj) and
thus e(rj → ϕj) = e(ϕj) < 1. Let J = {j | rj >
e(ϕj)} and let a = e(

∧n
i=1 ri → ϕi) = min{e(ϕj) |

j ∈ J}. Then the evaluation e′ such that e′ =
ea over the propositional variables does the job.
Namely, by the previous lemma, over Gödel for-
mulae we have e′ = ea ≥ e, so e′ is still a model
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of ri → ϕi for every i ∈ {1, . . . , n} \ J . But now,
e′(ϕj) = 1 for every j ∈ J , so e′ is also a model
of {ri → ϕi | i = 1, . . . , n}. On the other hand,
since e(

∧n
i=1(ri → ϕ) → (s→ ψ)) < 1, it must be

s > e(ψ) and a = e(
∧n

i=1(ri → ϕi)) > e(ψ). Now,
by the previous lemma, e′(ψ) = ea(ψ) = e(ψ),
hence e′(s→ ψ) = e(s→ ψ) < 1.

For the case of Nilpotent Minimum logic the proof
runs analogously by using the evaluations eb de-
fined in the previous lemma.

The obtained results are summarized in Table 5.

 L(C) Π(C) G(C) NM(C)
QC Yes Yes Yes Yes

FSQC Yes Yes Yes Yes
SQC Yes Yes Yes Yes

CanQC Yes Yes Yes Yes
CanFSQC Yes Yes Yes Yes
CanSQC No No No No

Table 5: Rational completeness properties for
propositional fuzzy logics with truth-constants re-
stricted to (positively) evaluated formulae.

5 CONCLUSIONS

In this paper we have proposed the rational se-
mantics for fuzzy logics expanded with truth-
constants as a new topic for research. The col-
lection of first results we have presented show the
interest of the approach, as the rational semantics
has demonstrated to provide better completeness
properties for the main propositional fuzzy logics.
We plan to extend these results in forthcoming
papers by addressing the following problems:

(i) extend the investigation on rational com-
pleteness properties to wider classes of log-
ics based on continuous and weak nilpotent
t-norms;

(ii) study rational completeness properties for
first-order predicate fuzzy logics, as it has
been done for the standard semantics in [9];
and

(iii) investigate rational completeness results for
expansions of logics with the projection con-
nective ∆, both in the propositional and the
first-order case.
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