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In this paper we propose a semantic analysis of Lewis’ counterfactuals. By exploiting 
the structural properties of the recently introduced boolean algebras of conditionals, we 
show that counterfactuals can be expressed as formal combinations of a conditional object 
and a normal necessity modal operator. Specifically, we introduce a class of algebras that 
serve as modal expansions of boolean algebras of conditionals, together with their dual 
relational structures. Moreover, we show that Lewis’ semantics based on sphere models 
can be reconstructed in this framework. As a consequence, we establish the soundness 
and completeness of a slightly stronger variant of Lewis’ logic for counterfactuals with 
respect to our algebraic models. In the second part of the paper, we present a novel 
approach to the probability of counterfactuals showing that it aligns with the uncertainty 
degree assigned by a belief function, as per Dempster-Shafer theory, to its associated 
conditional formula. Furthermore, we characterize the probability of a counterfactual in 
terms of Gärdenfors’ imaging rule for the probabilistic update.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Counterfactuals are subjunctive conditional statements about hypothetical situations phrased in the form “if [antecedent] 
were the case, then [consequent] would be the case” and where the antecedent is usually assumed to be false. The study 
of counterfactuals and counterfactual reasoning has been carried out in various fields, ranging from logic to philosophy 
of language and linguistics (see [51] and [32] and the more recent [11] and [46]), as well as social sciences and artificial 
intelligence.1

The present paper studies counterfactual statements from a logical and algebraic perspective by introducing a class of 
modal algebras which we call Lewis algebras.2 We show that a slightly stronger variant of the logic for counterfactual defined 
by Lewis in [38] is sound and complete with respect to Lewis algebras. In addition, we present some new ideas and results 
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1 The literature on the subject is vast, and providing an exhaustive treatment of the applications of counterfactual reasoning in science is beyond the 
scope of this first section. We invite interested readers to consult [49] and the references therein for an interesting and comprehensive overview of the 
philosophical aspects of counterfactuals. The book [9], on the other hand, explores the use of counterfactuals in psychological and social sciences. Moving 
on to more AI-oriented approaches to counterfactuals, they will be discussed in what follows.

2 The authors are aware that the term “Lewis algebras” has already been used in the literature to refer to interior algebras [6] (also known as S4-algebras) 
named after the logician C. I. Lewis, who initially proposed the modal logics S4 and S5. However, we believe that our chosen usage of the term will not 
cause any confusion.
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on the uncertainty of counterfactuals by characterizing the imaging rule for updating an a priori probability defined on 
these structures.

Our modal algebraic perspective on counterfactual conditionals builds on, and it is inspired by, the algebraic framework 
of boolean algebras of conditionals recently developed in [19]. In addition to placing counterfactuals in the map of algebraic 
logic, our approach also enables us to introduce relational, Kripke-style, models which we call Lewis frames. These models 
naturally arise through the duality between algebras with operators and Kripke frames. Alongside Lewis algebras, the present 
paper aims to study this alternative semantics and present Lewis frames as an alternative to the typical semantics for 
counterfactuals provided by Lewis’ sphere models.

Lewis algebras, Lewis frames, and their mutual inter-definability are employed in the second part of the paper to show 
relevant properties for the probability of counterfactuals and to establish a close connection with belief function theory, the 
mathematical models of Dempster-Shafer theory of evidence, and Gärdenfors’ imaging rule for the probabilistic update.

In addition to these technical results, this paper aims to provide logicians working on counterfactuals with a new toolkit 
to study them using the powerful tools of algebra and algebraic modal logic. Furthermore, it aims to broaden the scope of 
applications of algebraic logic by bridging the gap between theoretical and applied research.

The best-known approach to counterfactuals originates from the philosophical literature, mainly due to the significant 
contributions by Lewis [38] and Stalnaker [48]. In the late ‘60s and early ‘70s, they initiated a productive and active research 
area focused on studying logics for counterfactuals in a broad sense. In the formal setting developed by Lewis and Stalnaker, 
a counterfactual statement of the form “if ψ were the case, then ϕ would have occurred” is usually denoted by ψ lÑ ϕ
and, according to their semantics, it is true in a possible world w if ϕ is true in all the closest worlds to w in which ψ is 
true. The rough intuition behind such interpretation is exemplified by referring to Lewis’ own words [38, page 1]:

‘If kangaroos had no tails, they would topple over’ seems to mean something like this: in any possible state of affairs
in which kangaroos have no tails, and which resembles our actual state of affairs as much as kangaroos having no tails 
permits it to, the kangaroos would topple over. I shall give a general analysis of counterfactual conditionals along these 
lines.

In artificial intelligence (AI), the interest in counterfactual reasoning has grown in slightly more recent times and from 
different perspectives. To start with, it is important to emphasize the early work of the symbolic-oriented community of 
AI, which can be traced back to the papers by Ginsberg [24] and Pearl [44]. In this stream, a special mention is surely due 
to the paper by Galles and Pearl [22] who formally presented a way to apply counterfactual reasoning to causality. This 
connection between counterfactuals and causality has been further investigated to explain causation [37,45], develop a logic 
for causal reasoning [3,7,28,22], and explore (recursive) causal models [29].

Counterfactuals have also drawn the attention of the community of subsymbolic AI. Indeed, counterfactual-like reasoning 
has inspired improvements in deep learning algorithms [41] and generative adversarial networks [42]. Currently, one of 
the most intriguing applications of counterfactuals concerns explainable AI (XAI), where they are adopted to increase the 
confidence in artificial neural networks by human users (see [10,40]).

The present paper aligns with the former stream and aims to put forward a reductionist perspective on counterfactuals. 
It aims to define counterfactuals by combining a normal necessity operator from modal logic [5] and the probabilistic 
conditional from recent work on boolean algebras of conditionals [19]. In the standard and other semantic accounts for 
counterfactuals (such that Fine’s [18], Ciardelli’s [11], Barbero’s [3], Galles and Pearl’s [22]) the counterfactual arrow lÑ is 
taken as a primitive operator in the logical language. Truth conditions for lÑ are hence spelled out in terms of interventions, 
similarity relations, truthmakers, and so on. In our account, however, the counterfactual operator is reduced to already known 
and familiar logical operators. This reduction conceptually offers a completely new perspective on counterfactuals from 
a more technical point of view. Lewis algebras and their dual Lewis frames allow us to re-elaborate the classical truth 
conditions of counterfactuals in terms of an accessibility relation over permutations of complete state descriptions (i.e. 
atoms of a boolean algebra of conditionals, see Subsection 2.2 for details), without appealing to any notion of similarity. 
This fact might suggest new interpretations for counterfactuals as, for instance, Kripke’s translation of intuitionistic logic to 
S4 modal logic [34] shed light on the way intuitionism interprets the logical language.

In the second part of the paper we will address the problem of uncertain quantification of counterfactuals and relate 
it to the so-called imaging rule (or simply imaging, hereafter) for updating probabilities. The imaging rule is a method 
introduced by Lewis in [38] and further elaborated by Gärdenfors in [23] and others (see, e.g., [16,26]) for updating an 
a priori probability distribution on possible worlds when one learns (or imagines) that an event has occurred. Although 
various methods have been defined for assigning a probability to a counterfactual conditional, we still lack an answer 
to the question of how to interpret the probability of a counterfactual. Our reductionist account allows us to technically 
characterize the probability of a counterfactual and offer a new interpretation of it. In Theorem 7.4 we show that the 
probability of a counterfactual amounts to the value of a certain belief function and can be characterized in terms of 
Gärdenfors’ imaging. It is important to point out again that Lewis algebras are a key tool for obtaining such results. Following 
the same reductionist philosophy that guided us in the first part of this paper, belief functions can be defined from a 
probability function and a normal modal operator [15,27,31].

Summary and structure of contributions. To make the rest of this section clear, let us specify that boolean algebras of condi-
tionals are algebras containing formal expressions of the form pa | bq and representing the conditional event “a given b”. 
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Besides these basic expressions, these structures can also deal with compound boolean expressions like pa | bq ̂ pc | dq or 
�pa | bq that read, respectively, “a given b and c given d” and “it is not the case that a given b is true”. The construction 
of such structures starts with any boolean algebra A of plain (unconditional) events and produces another boolean algebra 
CpAq that formalizes the conditionals that can be expressed from the events of A. Therefore, for every initial boolean alge-
bra A, a Lewis algebra of A is a pair LpAq “ pCpAq, lq where CpAq is as above and l : CpAq Ñ CpAq is a normal necessity 
operator satisfying further properties that will be specified in Section 3.

The fact that Lewis algebras are special boolean algebras with operators allows us to regard them as Kripke frames 
through the mirror of Jónnson-Tarski duality [5]. By exploiting the dual relation between algebraic and relational models, 
we will show that every Lewis algebra results in a Lewisian original model for counterfactuals based on spheres, and 
conversely we will also show that every sphere model determines a Lewis algebra. Consequently, we will show that a 
(somewhat stronger version of) Lewis’ logic for counterfactuals is sound and complete with respect to Lewis algebras and 
their associated relational frames.

In the second part of the paper, we will address the problem of uncertain quantification of counterfactuals and relate it 
to the so-called Lewis’ imaging rule (or simply imaging, henceforth) for probability updating. This method was introduced by 
Lewis in [39] and then further elaborated by Gärdenfors in [23] and others (see for instance [16,26]), to update an a priori 
probability distribution P on possible worlds, upon learning (or imaging) that some event b has occurred. The intuition 
is that the a priori probability distribution P is updated to a new probability Pb by redistributing the masses Ppαq, for α
being a possible world in which b is false, to those α˚ ’s that instead satisfy b. The way chosen to redistribute the probability 
masses from the possible words not satisfying b to those that instead satisfy it determines several specific definitions of 
imaging. One, for instance, is the usual Bayesian conditioning rule that uniformly distributes the mass of the non-model of 
b to those of b.

The boolean algebra CpAq that appears in the definition of a Lewis algebra LpAq allows us to define probabilities on the 
latter in a quite natural way. However, instead of updating P by another probability function Pb , we follow a suggestion 
made by Dubois and Prade in [14] and we will consider that the imaging by an event b, of an a priori P on A, is made in 
terms of a belief function Belb defined on A. Then, we show that such an update is faithfully recovered on a Lewis algebra 
LpAq “ pCpAq, lq by combining the so-called canonical extension μP of P to CpAq (cf. [19,21]) with the modal operator 
l. The probability μP pb lÑ aq of the counterfactual b lÑ a can hence be defined as μP plpa | bqq. As we will prove in 
Section 7, μP plpa | bqq coincides with Belbpaq, i.e., the value that the belief imaged by b gives to the plain event a.

The paper is structured as follows: In the next Section 2 we first recall the basis of Lewis logic for counterfactuals and its 
semantics based on sphere models (Subsection 2.1), while Subsection 2.2 presents boolean algebras of conditionals and their 
main properties. The main focus of our paper, namely Lewis algebras, is the subject of Section 3. The details about these 
algebras and their necessary structural properties are respectively given in Subsections 3.1 and 3.2 to enhance readability. 
The logic of Lewis algebras, denoted as C1` , is introduced in Section 4. Specifically, in Subsection 4.1 we formally define 
our logic and prove its soundness and completeness with respect to the proper subclass of sphere models that we refer 
to as total. Then, in Subsection 4.2, we focus on that semantics and show how to define canonical models. The relationship 
between Lewis algebras, their associated Kripke frames, and total sphere models is the topic that we develop in Section 5. 
There, in Subsections 5.1, 5.2 and 5.3, we respectively show how to define Lewis algebras from sphere models, sphere models 
from Lewis algebras, and we prove a completeness theorem for C1` with respect to Lewis algebras. The second part of the 
present paper, in which we study ways for the uncertain quantification of counterfactuals and the imaging rule based on our 
algebraic setting opens with Section 6 where we briefly recall how belief functions can be defined by combining probability 
measures and a normal necessity operator l. In Section 7, we then apply these ideas to define probability functions on 
Lewis algebras. In the same Section 7, we prove the main result (of the second part) showing that the probability of a 
counterfactual is the belief imaged by its antecedent and, in turn, it also coincides with the canonical extension, on Lewis 
algebras, of our modal representation of the counterfactual itself. We then end the paper with Section 8 where we recap 
our main contributions and also present remarks and ideas for improvements and we outline our future work.

To facilitate the reading of the paper, some technical proofs have been relegated to an appendix.

2. Preliminaries

For this initial section on preliminary notions, we assume that the reader is familiar with both Lewis’ work on logics for 
counterfactuals and their semantics, universal algebra, and basics of finite boolean algebras. We invite the interest reader to 
consult [38] and [8] for more details.

2.1. Lewis logic for counterfactuals

Let L be the language of classical logic on finitely many variables p1, . . . , pk and in the usual signature ^, _, Ñ, K, J. 
Formulas of classical logic will be denoted by lower-case Greek letters with possible subscripts ϕ, ϕ1, ψ, ψ1, etc. Further-
more, let lÑ be a new symbol for a binary connective that applies to pairs of classical formulas, so that, if ϕ, ψ are 
formulas, then ψ lÑ ϕ is a formula as well.

The connective lÑ is what Lewis ([38]) calls the counterfactual conditional connective that allows reading a formula 
ψ lÑ ϕ as “if it were the case that ψ , then it would be the case that ϕ”.
3
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Notation 1. To improve the readability and clarify the interpretation of Lewis’ formulas in the algebraic language that will 
be presented in Section 3, for any pair of classical formulas ϕ, ψ , we will use the notation pϕ |̋ ψq instead of ψ lÑ ϕ for 
the counterfactual conditional “ϕ , if it were ψ”.

More precisely, our language, which we refer to as L ` , is L Y t |̋ u, where counterfactual formulas are defined in the 
following inductive way:

• every classical formula ϕ is a counterfactual formula;
• for every pair of classical formulas ϕ, ψ , for ψ satisfiable, pϕ |̋ ψq is a basic counterfactual formula;
• the set CF of counterfactual formulas is the smallest set of formulas including the above ones and being closed under 

classical connectives ^, _, Ñ, K, J.

CF denotes the set of counterfactual formulas, and we use the upper-case Greek letters �, �, . . . to denote formulas in 
CF. Notice that Lewis’ original language for counterfactuals allows nested occurrences of the binary operator lÑ that, as 
already stressed, we denote by |̋ . In the present paper, we adopt the simplified language defined above that essentially does 
not allow for nested occurrences of |̋ . It is worth recalling that similar approaches to deal with simplified languages where 
some logical operators do not occur nested are quite common in logic and knowledge representation (see for instance 
[2,17,25,33]). Possible extensions of our language to encompass nested, yet controlled, occurrences of the counterfactual 
operator are discussed in Subsection 8.2. However, notice that our simplified language does not exclude us from formalizing 
the axioms of Lewis logic C1 as all of them can be expressed in CF.

Definition 2.1. Lewis’ logic for counterfactual C1 is the logic induced by the following Hilbert-style axiomatization on CF

(A) pϕ |̋ ϕq;
(B) ppϕ |̋ ψq ̂ pψ |̋ ϕqq Ñppχ |̋ ϕq Øpχ |̋ ψqq;
(C) pϕ |̋ ϕ _ψq _ pψ |̋ ϕ _ψq _ ppχ |̋ ϕ _ψq Øpχ |̋ ϕq ̂ pχ |̋ ψqq;
(D) pϕ |̋ ψq Ñpψ Ñ ϕq;
(E) pϕ ^ψq Ñpϕ |̋ ψq.

The following are the deduction rules of C1.

(T) $ ϕ for each classical tautology ϕ;
(DT) ψ1, . . . , ψk $ ϕ for all classical tautology of the from pψ1 ^ . . .^ψkq Ñ ϕ;
(DC) pψ1 ^ . . .^ψnq Ñ ϕ $ ppψ1 |̋ γ q ̂ . . .^ pψn |̋ γ qq Ñpϕ |̋ γ q.

Lewis ([36,38]) introduced several semantics for the logic C1. In the present paper, we will be mainly concerned with 
the most popular ones, called Lewis’s sphere models.

Definition 2.2. A sphere model is a triple 	 “ pI, S , vq where I is a non-empty set and S is a function S : I Ñ PpPpIqq
that assigns, to each i P I , a set Si of subsets of I with the following properties: for all i P I ,

(S1) Si is nested: for all S, T PSi , either S Ď T or T Ď S;
(S2) for all S PSi , i P S;
(S3) either 

Ť

Si “H, or tiu PSi .

Moreover, for each propositional variable p, vppq is a subset of I .

Given a sphere model 	 “ pI, S , vq, the map v is extended to compound formulas as follows:

• vpϕ |̋ ψq “ ti P I | vpψq X
Ť

Si “H, or DS PSi pH ‰ pvpψq X Sq Ď vpϕqqu;
• vp��q “ Izvp�q;
• vp� ̂ �q “ vp�q X vp�q.

We write i ,�, if i P vp�q. A formula � is valid if for all sphere model 	 “ pI, S , vq and all i P I , i ,�.

Theorem 2.3 ([36]). The logic C1 is sound and complete w.r.t. the class of sphere models. In particular, a formula is a theorem of C1 iff 
it is valid in every sphere model.

The next example shows that the conditional excluded middle principle is not valid in C1.
4
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Example 2.4 (Conditional Excluded Middle). It is easy to see that the principle of conditional excluded middle pϕ |̋ ψq _p�ϕ |̋ ψq
is not valid in sphere models and hence, by Theorem 2.3 below, it is not a theorem of C1. Consider in fact a sphere model 
pI, S , vq such that:

• I “ ti, j, ku;
• Si “ ttiu, ti, j, kuu, with S1 “ tiu and S2 “ ti, j, ku, S j “ t ju, and Sk “ tku;
• for some propositional variables p, q, vppq “ t j, ku, vpqq “ t ju

Notice that i . pq |̋ pq since S2 X vppq Ę vpqq and i . p�q |̋ pq since S2 X vppq Ę vp�qq. l

2.2. Boolean algebras of conditionals

In this second subsection, we recall basic notions and results from [19] that presents a construction for building a 
boolean algebra of conditionals, BAC for short, denoted by CpAq, for any boolean algebra A “ pA, ̂ , _, �, K, Jq. Intuitively, a 
BAC over A allows for the presence of basic conditionals, i.e. objects of the form pa | bq for a P A and b P A1 “ AztKu. These 
basic conditionals can be combined with the usual boolean operations, subject to certain constraints. In particular, a BAC 
must satisfy the following requirements:

(R1) For every b P A1 , the conditional pb | bq will be the top element of CpAq, while p�b | bq will be the bottom;
(R2) Given b P A1 , the set of conditionals A | b “ tpa | bq : a P Au will be the domain of a boolean subalgebra of CpAq, and in 

particular when b “J, this subalgebra will be isomorphic to A;
(R3) In a conditional pa | bq we can replace the consequent a by a ̂ b, that is, the conditionals pa | bq and pa ̂ b | bq

represent the same element of CpAq;
(R4) For all a P A and all b, c P A1 , if a ď b ď c, then the result of conjunctively combining the conditionals pa | bq and pb | cq

must yield the conditional pa | cq.

Notice that R4 encodes a sort of restricted chaining of conditionals and it is inspired by the chain rule of conditional 
probabilities: Ppa | bq ̈ Ppb | cq “ Ppa | cq whenever a ď b ď c.

In mathematical terms, the formal construction of the algebra of conditionals CpAq is as follows. First, consider the 
free boolean algebra FreepA | A1q “ pF reepA | A1q, [, \, ñ, K˚, J˚q generated by the set A | A1 “ tpa | bq | a P A, b P A1u. 
For every element t P F reepA | A1q, we abbreviate t ñK˚ by „t . Second, take the smallest congruence relation ”C on 
FreepA | A1q such that:

(C1) pb | bq ”C J
˚ , for all b P A1;

(C2) pa1 | bq [ pa2 | bq ”C pa1 ^ a2 | bq, for all a1, a2 P A, b P A1;
(C3) „pa | bq ”C p�a | bq, for all a P A, b P A1;
(C4) pa ̂ b | bq ”C pa | bq, for all a P A, b P A1;
(C5) pa | bq [ pb | cq ”C pa | cq, for all a P A, b, c P A1 such that a ď b ď c.

Note that (C1)-(C5) faithfully account for the requirements R1-R4 where, in particular, (C2) and (C3) account for R2. 
Finally, the algebra CpAq is defined as follows.

Definition 2.5. For every boolean algebra A, the boolean algebra of conditionals of A is the quotient structure

CpAq “ FreepA | A1
q{”C

.

To distinguish the operations of A from those of CpAq, the following signature is adopted:

CpAq “ pCpAq,[,\,„,ñ,KC,JCq

Since CpAq is a quotient of FreepA | A1q, its elements are equivalence classes. However, without danger of confusion, we will 
henceforth identify classes rts”C

with one of its representative elements, in particular, by t itself.
A basic observation is that if A is finite, CpAq is finite as well, and hence atomic. Indeed, if A is a boolean algebra with 

n atoms, i.e. |atpAq| “ n, it is shown in [19, Theorem 4.4] that the atoms of CpAq are in one-to-one correspondence with 
sequences xα1, . . . , αny of pairwise different atoms of A and of maximal length. Each of these sequences gives rise to an 
atom ω defined as the following conjunction of n ́ 1 basic conditionals:

ω “ pα1 | Jq [ pα2 | �α1q [ . . .[ pαn´1 | �α1 ^ . . .^�αn´2q. (1)

It is clear that |atpCpAqq| “ n! and hence, although finite, CpAq is considerably larger than the original algebra A.
5
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Notation 2. Given the bijective correspondence between atoms of CpAq and strings of pairwise different atoms of A of 
maximal length recalled above, for every ω P atpCpAqq and every j “ 1, . . . , n, we denote by ωr js the atom of A that 
appears in the jth position in the (unique) string that defines ω by (1).

The next result ([19, Proposition 4.7]) provides a useful characterization for the atoms of CpAq that are below, in the 
lattice order of CpAq, of a basic conditional of the form pa | bq. From now on (exactly as in [19]) we will use the same 
symbol ď to denote both the lattice order induced by the algebra A and the corresponding BAC, CpAq.

Proposition 2.6. For every n PN, if A is the boolean algebra with n atoms, for every basic conditional pa | bq P CpAq and ω P atpCpAqq, 
ωď pa | bq iff ωr js ď a ̂ b and for all i ă j, ωris ę b.

The following recaps some properties of BAC that will be used insofar and whose proof can be found in [19, Proposi-
tion 3.8].

Proposition 2.7. In every BAC CpAq the following properties hold: for every a P A and b, c P A1 ,

1. pa ̂ b | Jq ď pa | bq ď pb Ñ a | Jq;
2. if a ď b then pa | cq ď pb | cq;
3. pa | bq ̂ pa | cq ď pa | b _ cq.

3. Lewis algebras and their relational frames

As recalled in the introduction, our methodological approach is mainly algebraic; in this section, we introduce the main 
characters of the present paper that we call Lewis algebras. They consist of modal expansions of boolean algebras of condi-
tionals. As we will show later on, an (almost immaterial) extension of Lewis logic C1 turns out to be sound and complete 
with respect to these algebraic models.

3.1. Lewis algebras and Lewis frames

Let us hence start by defining and studying some basic properties of the following modal expansions of boolean algebras 
for conditionals.

Definition 3.1. For every boolean algebra A, a Lewis algebra of A is a pair LpAq “ pCpAq, lq where CpAq is the boolean algebra 
of conditionals of A and l is a unary operator on CpAq satisfying the following equations:

(L1) lpt ñ t1q ď plt ñlt1q for all t, t1 P CpAq;
(L2) lpa | Jq “ pa | Jq for all a P A;
(L3) lpa | a _ bq \lpb | a _ bq \ rlpc | a _ bq ñlppc | aq [ pc | bqqs “ 1 for all a, b, c P A with a, b ‰K.

In the remainder of the paper, we will mainly focus on finite Lewis algebras. However, the construction of LpAq is general 
and it applies to any initial boolean algebra A. Indeed, given any boolean algebra A, and being CpAq its boolean algebra of 
conditionals, there is always a unary operator l on CpAq that satisfies (L1), (L2) and (L3), namely, the identity map.

We will henceforth denote by L the class of all Lewis algebras LpAq for A being any finite boolean algebra. In other 
words

L“ tLpAq | A is a finite boolean algebrau.

To every finite boolean algebra A there correspond possibly several, non-isomorphic, Lewis algebras, each defined by dif-
ferent l operators, satisfying (L1), (L2), and (L3), which can be defined upon the conditional algebra CpAq. It should be 
noted that, although conditions (L1), (L2), and (L3) are expressed by equations, the class of Lewis algebras is not a variety of 
algebras, meaning it is not an equational class (cf. [8]). This is because boolean algebras of conditionals do not form a variety, 
as pointed out in [19]. Before studying some basic properties of Lewis algebras, let us briefly comment on the equations 
that describe the unary operation l.

Remark 3.2. The first equation (L1) is the algebraic version of the usual axiom (K) of modal logic. Also, recall that the 
top element of CpAq is pJ | Jq and notice that lpJ | Jq “ pJ | Jq is simply an instantiation of (L2). Therefore, the latter 
equation, together with (L1), ensures that the l of any Lewis algebra is normal (cf. [5]). Besides ensuring the normality of 
l, (L2) has an interesting interpretation. In fact, when interpreting counterfactual statements pa |̋ bq as lpa | bq in Lewis 
algebras, (L2) can be read as “trivial counterfactuals are trivial conditionals”, where the triviality comes from considering 
the sure event formula J as antecedent. Finally, (L3) is the most intricate condition for l, and it arises from the equally 
6
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intricate axiom (C) of Lewis logic C1 as in Definition 2.1. However, it is worth noting that, compared to (C), the equation 
(L3) has a slightly simplified form. As we prove below in this section, this simplification has been made possible by the 
structural properties inherited from boolean algebras of conditionals. In Lemma 3.8 below and, more accurately in the next 
Subsection 3.2, we will take advantage of our algebraic realm to provide more insights into the meaning of (L3) and its 
effect on Lewis algebras.

As recalled in Subsection 2.2 every CpAq is a boolean algebra and hence every Lewis algebra LpAq is a boolean algebra 
with operators, BAO in brief (as usual in modal logic [5]). A first immediate consequence of this fact is that in every Lewis 
algebra LpAq we can define the modal operator �, dual to l, as customary: for all t P CpAq, �t “�l�t .

Proposition 3.3. The following equations hold in every Lewis algebra LpAq:

1. lpa | aq “JC;
2. pa ̂ b | Jq ďlpa | bq ď pb Ñ a | Jq;
3. �pa | Jq “ pa | Jq;
4. lpa | bq ď�pa | bq;
5. lppa | bq ̂ pa | cqq ďlpa | b _ cq,

for every a P A and b, c P A1 .

Proof. Let us start noticing that equation (L1) implies, as usual, the monotonicity of l: for all t, s P LpAq, if t ď s, then 
lt ďls. The same (L1) implies that lpJCq “JC .

1. By construction pa | aq coincides, in CpAq, with JC . Thus the claim follows from the above Remark 3.2.
2. By Proposition 2.7 (1), pa ̂ b | Jq ď pa | bq ď pb Ñ a | Jq. Then, by monotonicity of l, one has lpa ̂ b | Jq ďlpa |

bq ďlpb Ñ a | Jq. Thus, equation (L2) implies pa ̂ b | Jq ďlpa | bq ď pb Ñ a | Jq.
3. By (L2), �pa | Jq “„l„pa | Jq “„lp�a | Jq “„p�a | Jq “ p��a | Jq “ pa | Jq.
4. lpa | bq ñ�pa | bq “„lpa | bq \�pa | bq “�„pa | bq \�pa | bq “�p�a | bq \�pa | bq “�p�a _ a | bq “�pJ | bq “�pJ | Jq “ pJ | Jq, where the last equality follows from 3. Thus, lpa | bq ď�pa | bq.
5. By Proposition 2.7 (3) and the monotonicity property of l. l

Remark 3.4. We saw in Example 2.4 that the Conditional Excluded Middle pa |̋ bq _ p�a |̋ bq does not hold in Lewis sphere 
semantics. Analogously, that principle does not hold in Lewis algebras as well. Indeed, although pa | bq _ p�a | bq is valid in 
all boolean algebras of conditionals (see [19]), the presence of the modal l makes it fail in some Lewis algebras. Indeed, 
as a counterfactual pa |̋ bq is interpreted in an appropriate Lewis algebra as lpa | bq, it is enough to show that lpa | bq _
lp�a | bq fails in some LpAq. Now, since p�a | bq “�pa | bq is true in every boolean algebra of conditionals, the previous 
lpa | bq _lp�a | bq becomes lpa | bq _l�pa | bq “lpa | bq _��pa | bq. Thus, to get a counterexample of the Conditional 
Excluded Middle principle is enough to consider a Lewis algebra LpAq “ pCpAq, lq in which for some pa | bq P CpAq, lpa |
bq ăJ, �pa | bq ąK and ��pa | bq ă�lpa | bq. Notice that this requirement is indeed compatible with what we proved in 
the above Proposition 3.3 (4).

A second immediate consequence of the fact that Lewis algebras are BAOs is that, from the well-known Jónsson-Tarski 
duality between (finite) BAOs and Kripke frames (see [5] and [35]), to each Lewis algebra LpAq it is uniquely associated a 
frame pW , Rq in which

• W is the set atpCpAqq of atoms of CpAq;
• R is the binary relation on atpCpAqq such that, for all ω, ω1 P atpCpAqq, ωRω1 iff @t P CpAq if ωďlt , then ω1 ď t .

For every Lewis algebra LpAq we will say that the relational frame patpCpAqq, Rq defined as above is a Lewis relational frame
(or simply a Lewis frame) which will be denoted by FLpAq .

Definition 3.5. For every finite boolean algebra A, for every element t P LpAq and for every ω P atpCpAqq, we say that ω
models t and we write ω, t according to the next inductive definition:

1. if t is a basic conditional pa | bq P CpAq, ω, pa | bq if ωď pa | bq in CpAq;
2. if t “lpa | bq, ω,lpa | bq if for all ω1 such that ωRω1 , ω1 , pa | bq;
3. if t “„s, ω,„s if ω. s;
4. if t “ s ̂ r, ω, s ̂ r if ω, s and ω, r;
5. if t “ s _ r, ω, s _ r if ω, s or ω, r.

Let us recall from Subsection 2.2 that, for every atom ω of CpAq there exists a unique string xα1, . . . , αny of atoms of A
such that, for any basic conditional pa | bq P CpAq, ωď pa | bq iff for the first index j such that α j ď b, then α j ď a as well. 
7
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Therefore, according to Definition 3.5, and adopting the notation of Section 2.2, ω ,lpa | bq iff for all ω1 P atpCpAqq such 
that ωRω1 , ω1r js ď a ̂ b and for all i ă j, ω1ris ę b.

The following is an immediate consequence of a well-known and general result.

Fact 1. For every finite boolean algebra A and for all t, s P LpAq, the equation t “ s holds in LpAq iff for all ω P atpCpAqq, ω , t iff 
ω , s. Thus, in particular, the classes of Lewis algebras and Lewis frames share the same tautologies written in the language of Lewis 
algebras.

We shall see that the binary relation R of every Lewis frame satisfies some additional properties. To show that, some 
preliminary notions are needed.

Notation 3. For a boolean algebra A and a P A, we indicate with �a� “ tα P atpAq | α ď au the set of atoms of A that are 
below a. Furthermore, for every Lewis frame FLpAq “ patpCpAqq, Rq and for every ω P atpCpAqq, we will write Rrωs to 
denote tω1 P atpCpAqq |ωRω1u.

Definition 3.6. Given a Lewis frame LpAq “ patpCpAqq, Rq, the selection function on LpAq, is a map f : A ˆ atpCpAqq Ñ
PpatpAqq defined as follows: for all a P A, for all ω P atpCpAqq,

f pa,ωq “ tω1
ris P atpAq |ωRω1 and i is the smallest index s.t. ω1

ris ď au

Remark 3.7. Note that, by the above definition of selection function, the semantic clauses for basic conditionals in Defini-
tion 3.5 (2) can be reformulated as:

(2’) ω,lpa | bq iff f pb, ωq Ď �a�

The next lemma shows some properties of the selection function defined as in Definition 3.6 and the accessibility relation 
of a Lewis frame.

Lemma 3.8. In every Lewis frame patpCpAqq, Rq, the binary relation R and the selection function f on patpCpAqq, Rq satisfy the 
following properties:

1. @ω Dω1 pωRω1q (seriality)
2. @ω, ω1 pωRω1 Ñpωr1s “ω1r1sqq (centering)
3. @a@b@ω, f pa _ b, ωq Ď �a� or f pa _ b, ωq Ď �b� or f pa, ωq Y f pb, ωq Ď f pa _ b, ωq (sphericity)

Proof. 1. Assume, by contradiction, that the Lewis frame patpCpAqq, Rq does not satisfy seriality. In particular, let ω P
atpCpAqq such that, for all ω1 P atpCpAqq it is not the case that ωRω1 . Furthermore, let a P A be such that ωr1s ę a. There-
fore, vacuously ω,lpa | Jq, since no ω1 is accessible from ω. On the other hand, ω . pa | Jq because, by Proposition 2.6
ωr1s ďJ, but ωr1s ę a by assumption. Therefore, by Fact 1, one has that the equation lpa | Jq “ pa | Jq does not hold in 
LpAq which leads to a clear contradiction with the very definition of Lewis algebra.

2. By way of contradiction, assume that there exists ω, ω1 such that ωRω1 , and ωr1s ‰ ω1r1s. Let a P A be such that 
ωr1s ď a, but ω1r1s ę a (for instance, take a “ωr1s). Then, ω, pa | Jq, but ω.lpa | Jq and hence, by the same argument 
used in the previous point, this is in contradiction with the fact that lpa | Jq “ pa | Jq holds in LpAq, for any a P A.

3. Assume by way of contradiction that there are ω P atpCpAqq and a, b P A such that f pa _ b, ωq Ę �a� and f pa _
b, ωq Ę �b� and f pa, ωq Y f pb, ωq Ę f pa _ b, ωq. Then, by Remark 3.7, ω .lpa | a _ bq, ω .lpb | a _ bq. Moreover, since 
f pa, ωq Y f pb, ωq Ę f pa _ b, ωq, we have that for some α P f pa, ωq Y f pb, ωq, α R f pa _ b, ωq. Without loss of generality, 
assume α P f pa, ωq. Now, consider c “

Ž

p f pa _b, ωqq. Clearly c P A and for all x P f pa _b, ωq, x ď c so that x P �c�, whence 
f pa _ b, ωq Ď �c�. Therefore, by Remark 3.7, ω ,lpc | a _ bq; however, since α R f pa _ b, ωq by assumption, then α ę c. 
And so, ω .lpc | aq, hence ω .lpc | bq [lpc | aq, thus ω .lpc | a _ bq ñlppc | bq [ pc | aqq. Therefore, the condition 
(L3) does not hold in patpCpAqq, Rq contradicting the definition of Lewis algebra. l

It follows from the proof of Lemma 3.8 that, indeed, seriality and centering are consequences of the fact that Lewis 
algebras satisfy (L2). Also, a partial version of the converse statement holds, as shown by the following.

Lemma 3.9. Let A be a finite boolean algebra and R a binary relation on atpCpAqq. If R satisfies seriality and centering, the algebra 
pCpAq, lq satisfies lpa | Jq “ pa | Jq.

Proof. Consider ω P atpCpAqq such that ω ď lpa | Jq. Then, for all ω1 such that ωRω1 , ω1 ď pa | Jq. Since, by seriality, 
Rrωs ‰H, take a ω1 P Rrωs. By assumption, it holds that ω1 ď pa | Jq, thus ω1r1s ď a. By centering, ω1r1s “ωr1s, hence it 
8
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holds that ωr1s ď a. So, ω ď pa | Jq, therefore lpa | Jq ď pa | Jq. Now, consider ω P atpCpAqq such that ω ď pa | Jq. Then, 
ωr1s ď a. By seriality, Rrωs ‰H. Then, take ω1 P Rrωs; by centering ω1r1s “ ωr1s, then ω1r1s ď a. Therefore ω1 ď pa | Jq. 
Since ω was taken arbitrarily in Rrωs, then for all ω˚ P Rrωs, ω˚ ď pa | Jq. Hence, ωďlpa | Jq, and so pa | Jq ďlpa | Jq. 
Therefore, lpa | Jq “ pa | Jq. l

The content of the two previous lemmas is hence recapped by the following.

Corollary 3.10. Let A be any finite boolean algebra. Then the boolean algebra with operators pCpAq, lq satisfies lpa | Jq “ pa | Jq iff 
its corresponding frame patpCpAqq, Rq is such that R satisfies seriality and centering.

Lemma 3.8 (3) provides a first description of equation (L3) on Lewis frames. However, for a more comprehensive char-
acterization of (L3) that we anticipated in Remark 3.2 we will need to introduce additional combinatorial tools that will be 
developed in the next Subsection 3.2 below. Our desired characterization will be proved in Theorem 3.14 below.

3.2. A better understanding of the sphericity condition

Let us start fixing a generic frame F “ patpCpAqq, Rq based on the set of atoms of a boolean algebra of conditionals. Let ω
be an atom of CpAq and, as in Notation 3, let Rrωs be the set tω1, . . . , ωku of elements of atpCpAqq that are accessible via R
from ω. For the sake of clarity and recalling that every atom of CpAq is uniquely identified with a string of length |atpAq| “ n
of atoms of the original algebra A, let us denote by Rrωs the k ̂ n matrix whose generic element ai, j is ωir js P atpAq (see 
Notation 2). Notice that, if the frame F satisfies seriality and centering, i.e., by Corollary 3.10 its associated algebra pCpAq, lq
satisfies (L2), then Rrωs is nonempty and its first column c1 has for supporting set c1 “ tωr1su. From now on, we will 
always assume that F satisfies seriality and centering. Before introducing the main definition of this section, let us fix some 
additional notation:

- For every matrix M, M denotes the set of its elements;
- If C and D are matrices with the same number of rows, then C ¨D denotes the juxtaposition of C and D.

Moreover, for all i “ 1, . . . , k and j “ 1, . . . , n we will denote by:

- ri the ith row of Rrωs and by ri the set of its elements;
- c j the jth column of Rrωs, while c j stands for the set of its elements.

For every ω P atpCpAqq, consider the general construction defined by the following steps:

Step 1. Take c1, the first column of Rrωs and let |c1| “m1, i.e. assume that the first column of Rrωs contains m1 elements 
of atpAq. Then, call C1 the submatrix of Rrωs whose columns are, in the order, c1, . . . , cm1 .

Step 2. If m1 “ n, necessarily C1 “ Rrωs since they have the same columns. Then, stop the construction. Otherwise consider 
the first column, in the usual order of t1, . . . , nu, of Rrωs that does not appear in C1, i.e., cm1`1 and let |cm1`1| “m2.
• If m1 `m2 ě n, then take C2 to be the submatrix of Rrωs with columns cm`1, . . . , cn and the construction stops.
• Otherwise, if m1 `m2 ă n define C2 to be the submatrix of Rrωs with columns cm1`1, . . . , cm1`m2 .

Step t. (inductively). If m1 `m2 ` . . .`mt´1 “ n, C1 ¨ C2 ¨ ¨ ¨Ct´1 “ Rrωs. In such a case, stop the construction. Otherwise 
take the column cm1`m2`...`mt´1`1 and set |cm1`m2`...`mt´1`1| “mt .
• If m1`m2` . . .`mt´1`mt ě n take Ct be the submatrix of Rω with columns cmt `1, . . . , cn and stop the construction.
• Otherwise, if m1`m2` . . .`mt´1`mt ă n, define Ct to be the submatrix of Rrωs with columns cm1`m2`...`mt´1`1,

. . . , cm1`m2`...`mt´1`mt .

Since for every ω P atpCpAqq the matrix Rrωs has finitely many columns, the above procedure stops and it outputs a 
partition Cω “ tC1, C2, . . . , Ctu of Rrωs into submatrices of the same.

Definition 3.11. Let F “ patpCpAqq, Rq, ω P atpCpAqq and Rrωs be as above. Then we say that Rrωs is sliceable if the partition 
Cω “ tC1, . . . , Ctu is such that

(˚) for all l “ 1, . . . , t , calling cl is the first column of Cl , we have that for every row r of Cl , cl “ r.

In such case, we also say that Cω is a slice partition of Rrωs. We say that F is sliceable if, for all ω P atpCpAqq, Rrωs is 
sliceable.

To clarify the above definition and the introduced construction, let us consider the finite boolean algebra A with atoms 
tα1, . . . , α6u and let ω P atpCpAqq be such that ωr1s “ α1. Let us consider the following two cases:
9
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Fig. 1. On the left-hand-side, the sliceable matrix Rrωs defined as in the above case 1; on the right-hand-side the matrix R1rωs that is not sliceable because, 
for instance, c2 “ tα2, α5u, but the first row r of the submatrix C2 contains α3 and it does not contain α5.

1. Rrωs “ txα1, α2, α3, α4, α5, α6y, xα1, α3, α2, α4, α6, α5y, xα1, α4, α2, α3, α5, α6yu

2. R1rωs “ txα1, α2, α3, α4, α5, α6y, xα1, α2, α3, α4, α6, α5y, xα1, α5, α2, α3, α4, α6yu

Notice that for Rrωs is the following 3 ̂ 6 matrix:

¨

˝

α1 α2 α3 α4 α5 α6
α1 α3 α2 α4 α6 α5
α1 α4 α2 α3 α5 α6

˛

‚

and Cω is the following:

• C1 “ xα1, α1, α1y and it satisfies the first condition of p˚q;
• C2 has for columns xα2, α3, α4y, xα3, α2, α2y and xα4, α4, α3y. Its rows hence are xα2, α3, α4y; xα3, α2, α4y and 
xα4, α2, α3y. Each row is indeed a permutation of its first column xα2, α3, α4y of C2 so satisfying (˚);

• C3 has columns xα5, α6, α5y and xα6, α5, α6y. Again its rows are xα5, α6y, xα6, α5y and xα5, α6y. So, C3 satisfies (˚) as 
its rows only contain α5 and α6.

Moreover C1 ¨ C2 ¨ C3 “ Rrωs. Thus, Cω is a slice partition of Rrωs.
Now, let us consider the R1rωs case. R1rωs is the following 3 ̂ 6 matrix:

¨

˝

α1 α2 α3 α4 α5 α6
α1 α2 α3 α4 α6 α5
α1 α5 α2 α3 α4 α6

˛

‚

and Cω is computed as follows:

• C1 has only one column xα1, α1, α1y, so m1 “ 1;
• C2 is as follows: since c2 “ xα2, α2, α5y, |c2| “ 2 “m2, whence C2 has for columns c2 itself, plus xα3, α3, α2y. This fact 

already tells us that Cω is not a slice partition of R1rωs because the first row of C2 has for elements α2 and α3, while 
its first column also contains α5.

• The first column of after C2 is hence c4 “ xα4, α4, α3y. Again |c4| “ 2 “ m3 and hence C3 has for columns c4 and 
xα5, α6, α4y. Notice again that the first column of C3 does not contain α5 that however appears in its first row.

• The next column of R1rωs after C3 is hence c6 “ xα6, α5, α6y. Notice that |c6| “ 2 so that m1 `m2 `m3 ` 2 “ 7 ą 6
whence C4 has c6 as unique column and the procedure stops.

From what we observed in the construction of C2, Cω is not a slice partition of R1rωs.
Fig. 1 is meant to clarify such property, graphically.
The next result is a direct consequence of the definition of sliceable matrix of the kind Rrωs and, more precisely, of the 

construction of Cω described above.

Remark 3.12. Notice that it follows from the property (˚) of Definition 3.11 that Cω “ tC1, . . . , Ctu is a slice partition of 
Rrωs iff for all l “ 1, . . . , t , all rows of Cl are permutations of the first column c of Cl .

The construction introduced insofar and the notion of sliceability allow us to fully characterize the sphericity property 
of a frame F “ patpCpAqq, Rq—recall Lemma 3.8 (3)—in terms of sliceable matrices. First, we need to show a preliminary 
technical result that will help in the proof.
10
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Lemma 3.13. Let F “ patpCpAqq, Rq be a frame and let ω P atpCpAqq such that Rrωs is not sliceable. In particular let l be the first 
index, in the natural order, for which there exists a row r P Cl and cl ‰ r. Then the following properties hold:

1. |cl| ě 2;
2. There exists αi, j P r such that αi, j R cl;
3. For all αi, j as in (2), there exists αx,y P cl such that y ‰ j and αx,y does not appear in the jth row of Rrωs before αi, j .

Proof. (1) is trivial by construction of Cω . As for (2), indeed, if cl ‰ r it might be the case that there exists β P cl and β R r. 
However, if this is the case, then, by cardinality argument and the construction of Cl , there it must also be β1 P r such that 
β1 R cl .

Hence, let us prove (3). By way of contradiction, assume that there exists αi, j P r that does not belong to cl and for which, 
for all β P cl , they appear in the jth row before the ith column. Now, since Cl is the first submatrix of Rrωs for which (˚) 
fails, all these β ’s cannot appear before cl in the indexing of Rrωs, for otherwise there would exists a Ch with h ă l where 
p˚q fails contradicting the minimality of l. Thus, these β ’s must necessarily belong to r and before αi, j . This implies that r
has length at least |cl| ̀ 1 as it contains all the elements of cl plus αi, j that does not belong to cl by assumption. This is in 
contradiction with the construction of Cω and hence of Cl . l

Now we can prove the anticipated characterization result.

Theorem 3.14. A frame F “ patpCpAqq, Rq satisfies sphericity iff F is sliceable.

Proof. See the Appendix. l

We can hence conclude this section with the following useful corollary that summarizes the results contained in Theo-
rem 3.14 above and Corollary 3.10.

Corollary 3.15. A boolean algebras with operators pCpAq, lq is a Lewis algebra iff its associated frame patpCpAqq, Rq is serial, centered, 
and sliceable.

4. The logic of Lewis algebras

In this section, we focus on an extension of Lewis logic C1, denoted as C1` , which captures the formulas of L ` that 
are valid in Lewis algebras. Specifically, the logic C1` will be introduced in the next Subsection 4.1 along with its sphere-
based semantics: total sphere models. Then, in Subsection 4.2 we will demonstrate how to define canonical models from 
total models and establish the completeness of C1` with respect to these canonical models.

4.1. The logic C1` and its sphere models

Let us start by introducing a canonical way to evaluate the formulas of the language CF in a Lewis algebra. In fact, as 
pointed out in [19] for the case of boolean algebras of conditionals, logical evaluations in this setting differ from evaluations 
in algebraic logic where variables are mapped in an algebra and compound formulas are evaluated by compositionality. 
Here, the notion of evaluation requires a slightly more tricky treatment, as the binary operator |̋ has to be interpreted 
using a combination of the binary conditional operator | and the unary modal operator l.

Definition 4.1. Let φ be a formula in L ` and let LpAq “ pCpAq, lq be any Lewis algebra. Then a LpAq-evaluation of L ` is 
a map e : L ` ÑLpAq satisfying the following conditions:

1. On classical formulas φ, e is a truth-functional classical valuation to A such that, if φ is satisfiable, then epφq ‰K3;
2. If φ “ pϕ |̋ ψq is a basic counterfactual formula, epϕ |̋ ψq “lpepϕq | epψqq;
3. If φ is a compound formula containing occurrences of |̋ , its truth value is computed by truth-functionality from its 

components and boolean operations.

We say that a formula φ is valid in a Lewis algebra LpAq (and we write LpAq |ù φ) if epφq “J for every LpAq-evaluation e. 
Further, φ is a L-tautology if LpAq |ù φ for all LpAq P L.

3 Notice that our additional requirement for satisfiable formulas not to be evaluated in K, allows us to extend e to counterfactual formulas as in 2 below. 
Also, it forces the cardinality of the algebra A to be at least that of the Lindenbaum algebra of L . More of this will be explained in Section 4.2 below.
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Notice that in the above definition, with a slight abuse, we identify A with its isomorphic copy A | J in CpAq. This is the 
reason why e stands for both the evaluation of classical formulas in A (case 1 in the definition above) and the evaluation of 
purely counterfactual formulas in LpAq (cases 2 and 3).

It is now easy to show that the class L of Lewis algebras does not provide a complete semantics for Lewis original logic 
C1. To see this, recall that Lewis introduces a particular counterfactual connective that he calls the might-counterfactual (see 
[38]):

ϕ |̨ ψ :“�p�ϕ |̋ ψq

Let us recall from [38] that, if pI, S , vq is a sphere model and i P I , then i , ϕ |̨ ψ if for all S PSi , vpψq X S ‰H
implies that vpϕq X vpψq X S ‰H.

This connective is meant to represent conditional statements of the form if [antecedent] were the case then [consequent] 
might be the case. Lewis observes that, in his semantics and in the non-vacuous case, i.e. when the antecedent ψ is assumed 
to be satisfiable, the “would-counterfactual”, ϕ |̋ ψ , implies the corresponding “might-counterfactual”, ϕ |̨ ψ (see [38, p.80]). 
Lewis himself claimed that this principle is acceptable given his understanding of counterfactuals. Let us start by proving 
the following

Proposition 4.2. The logic C1 does not prove pϕ |̋ ψq Ñpϕ |̨ ψq.

Proof. By Theorem 2.3 it is sufficient to show that pϕ |̋ ψq Ñ �p�ϕ |̋ ψq fails in a sphere model. Consider the sphere 
model 	 “ pI, S , vq such that for some propositional variable p, vppq “H. Then, for an arbitrary i P I , it is the case that 
i , pJ|̋ pq but i .�pK|̋ pq. l

However, by Proposition 3.3 (4) and noticing that for every LpAq-evaluation e,

epϕ |̨ ψq “ ep�p�ϕ |̋ ψqq “ �lp�epϕq | epψqq “ �l�pepϕq | epψqq “�pepϕq | epψqq,

pϕ |̋ ψq Ñ pϕ |̨ ψq is a L-tautology. Therefore, Lewis algebras do not provide a complete semantics for C1. We hence need 
to consider the next axiomatic extension of it.

Definition 4.3. The logic C1` is the axiomatic extension of C1 obtained by the axiom

(D) pϕ |̋ ψq Ñpϕ |̨ ψq.

Before showing the completeness of C1` with respect to L and under LpAq-evaluations, let us characterize the (proper) 
subset of sphere models that satisfy the above axiom (D). Let us start with the following definition.

Definition 4.4. Let L be the language of classical logic with n propositional variables. A sphere model pI, S , vq is said to 
be total for L (or simply total when L is clear) if, for all i P I and for all satisfiable formula ϕ PL ,

ď

Si X vpϕq ‰H.

An immediate consequence of the definition of total sphere models is that, in a similar way to what we required in 
Definition 4.1, every satisfiable formula ϕ is mapped by v in a non-empty set.

Theorem 4.5. A sphere model 	 “ pI, S , vq satisfies (D) iff 	 is total. As a consequence, C1` is sound and complete with respect to 
total sphere models.

Proof. Consider a total sphere model 	 “ pI, S , vq and formulas ϕ, ψ PL with ψ satisfiable. Take an arbitrary i P I; by 
the totality condition we know that 

Ť

Si X vpψq ‰H. Assume i , pϕ |̋ ψq, then, by totality, there is a S PSi such that 
vpψq X S Ď vpϕq. This implies that for all S PSi , if vpψq X S ‰H then vpϕq X vpψq X S ‰H, hence i , ϕ |̨ ψ .

For the other direction, let us assume, by way of contradiction, that 	 “ pI, S , vq is a total sphere model, but for 
some i P I , i . pϕ |̋ ψq Ñ pϕ |̨ ψq for some ϕ, ψ P L with ψ satisfiable. Then i , ϕ |̋ ψ and i . ϕ |̨ ψ . Since 	 is total, 
vpψq X

Ť

Si ‰H; hence we have that there are S, S1 PSi such that vpψq X S Ď vpϕq and vpψq X S1 Ę vpϕq. However, Si
is nested, whence either S Ď S1 or S1 Ď S , in both cases we reach a contradiction. l

4.2. From total to canonical models

Let us start considering the finitely many propositional variables p1, p2 . . . , pn on which our language L is defined. 
In every total sphere model pI, S , vq, for all pair of variables pk ‰ pt , one necessarily has that vppkq ‰ vpptq. Indeed, if 
vppkq “ vpptq for some k ‰ t , by definition of v , one would have
12
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vppk ^�ptq “ vppkq X pIzvpptqq “ vppkq X pIzvppkqq “H

and hence, although pk ^ �pt is clearly satisfiable, vppk ^ �ptq X Si “ H, in contradiction with Definition 4.3. More 
precisely, the following holds.

Proposition 4.6. Let pI, S , vq be a total model for L . Then, for any pair of satisfiable and not logically equivalent formulas ϕ, ψ
of L , vpϕq Ę vpψq and vpψq Ę vpϕq. In other words, for all ϕ, ψ that are satisfiable and not logically equivalent, there exist two 
distinct i, j P I such that i P vpϕqzvpψq and j P vpψqzvpϕq.

Proof. Assume, by contradiction, that for two satisfiable and not logically equivalent formulas ϕ, ψ of L, vpϕq Ď vpψq. Then, 
since ϕ and ψ are satisfiable and not logically equivalent, ϕ ^�ψ and ψ ^�ϕ are satisfiable. However, vpϕ ^�ψq “H. 
Also, vpψq Ď vpϕq implies vpψ ^�ϕq “H contradicting the very definition of total model. l

As an immediate consequence of the above result, we have the following.

Corollary 4.7. For every total model pI, S , vq for L with n propositional variables, |I| ě 2n.

Proof. Assume, by contradiction, that |I| ă 2n . In L there are exactly 22n
formulas, up to logical equivalence, and there are 

exactly 2n valuations of L to t0, 1u. Then, and since vpKq “H, by a cardinality argument, there would be at least two 
satisfiable and not logically equivalent formulas ϕ and ψ for which vpϕq “ vpψq. Thus, pI, S , vq would not be total for L
by Proposition 4.6. Contradiction. l

Now we want to show that every total model for L can be made in a canonical model for L , i.e. a sphere model on the 
set L of classical valuations from L to t0, 1u that is also total for L . To do so, let us start from a total model pI, S , vq
for L . Define the relation ” on I as follows: for all i, j P I ,

i ” j iff @ϕ PL , i P vpϕq iff j P vpϕq. (2)

Let us point out the following: given a language L on n variables p1, . . . , pn , let us denote by M the set of minterms of 
L , that is to say, formulas of the form

n
ľ

i“1

p˚
i

where, for all i, p˚
i is either pi or �pi . Thus, |M| “ 2n . Moreover, if pI, S , vq is total, for all minterms mi, m j PM, if 

mi ‰m j , then vpmiq X vpm jq “H. For otherwise, one would have vpmi ^m jq “ vpKq ‰H. Moreover, 
Ť2n

i“1 vpmiq “ I . In 
other words tvpmiq |mi PMu is the finest partition of I .

The relation introduced in (2) is an equivalence on I and we will henceforth denote by I” the quotient set I{” .

Proposition 4.8. If pI, S , vq is a total sphere model for L and ” the equivalence relation in (2), then for all i, j P I , i ” j iff there 
exists a (unique) mintem m PM such that i, j P vpmq.

Proof. (ñ). Assume that i ” j. Then, by definition, for all formula ϕ , i P vpϕq iff j P vpϕq. Assuming, by contradiction, that 
for all minterm m, either i or j does not belong to vpmq. Since tvpmq |m PMu is a partition of I , we immediately have a 
contradiction.

(ð). Assume that i ı j. Therefore, there exists a formula ϕ such that either (1) i P vpϕq and j R vpϕq, or (2) i R vpϕq
and j P vpϕq. Further, assume without loss of generality that ϕ is satisfiable. All satisfiable formulas of L are uniquely 
displayable as a join of minterms, that is to say, for all satisfiable formula ϕ , there are minterms mϕ1 , . . . , mϕkϕ

such that

ϕ “

kϕ
ł

t“1

mϕt .

Therefore, if (1) is the case, and since the vpmq’s are pairwise disjoint, there is a 1 ď h ď kϕ such that (1) happens for 
vpmϕh q. Thus j R vpmϕh q. If (2) is the case, reasoning as above, we see that i R vpmϕh q. l

Corollary 4.9. Let pI, S , vq be a total model for L . Then, |I”| “ 2n. More precisely, the map that associates to each ris P I” the 
minterm m such that vpmq “ t j P I | j P risu is a bijection between I” and M.

Proof. Immediate from Proposition 4.8. l
13



G. Rosella, T. Flaminio and S. Bonzio Artificial Intelligence 323 (2023) 103970
Fig. 2. The sphere systems Si1 (on the left) and Sri1s (on the right). In the picture on the left, dashed circles represent the equivalence classes of ” on I .

Since minterms from L are in bijection with the set L of classical valuation of L to t0, 1u and, in turn, to the set of 
atoms of the n-generated free algebra L, the latter are in bijection with I” . Moreover, we can now define a valuation map 
v” : L ÑPpI”q as follows: for every classical formula ϕ , v”pϕq “ �ϕ�, the set of classical models of ϕ . Indeed, for all ϕ ,

v”pϕq “ tris P I” : i P vpϕqu. (3)

Now that we have defined I” and v” , what is left to show is how sphere systems adapt to equivalence classes of worlds. 
To this end, let i P I and let Si be the sphere system centered in i. Let us display as usual Si as tS1 “ tiu, S2, . . . , Stu so 
that S1 Ă S2 Ă . . .Ă St . Then, define

Sris “ tpS1q” “ trisu, pS2q” “ tr j2s : j P S2u, . . . , pStq” “ tr jts : jt P Stuu.

Notice that

1. For all pSq” PSris , ris P pSq”;
2. trisu PSris .

Therefore, if 	 “ pI, S , vq is a total sphere model for L , we can define 	” “ pI”, S”, v”q, where S” clearly stands for 
tSris : ris P I”u. Given (1) and (2) above, to prove that 	” is a sphere model, it is left to show that for all ris P I” , Sris is 
nested. This claim is shown in the next result where we will also show that 	” is total as well.

Proposition 4.10. For a total sphere model 	 “ pI, S , vq, its associated canonical sphere model 	” “ pI”, S”, v”q is a total 
sphere model.

Proof. To show that 	” “ pI”, S”, v”q is a sphere model, we must show that each system of spheres is nested. For 
ris” P I” consider pSq”, pS1q” PSris . Since 	 is a sphere model, we have that either S Ď S1 or S1 Ď S . If the former is 
the case, then, by definition of pSq” and pS1q” , we have that pSq” Ď pS1q” . Analogously, if the latter is the case, then 
pS1q” Ď pSq” .

Now, consider a satisfiable formula ϕ P L and take any ris P I . We know that Sris “ tpSq” : S PSiu. By the totality of 
	, we have that 

Ť

Si X vpϕq ‰H, and so we immediately get that 
Ť

Sris X v”pϕq ‰H. Hence 	” is total. l

The following example is meant to clary the “effect” of the equivalence relation ” on any total sphere model for a 
language with two propositional variables.

Example 4.11. Let L be the language of classical propositional logic on two variables p and q. Let pI, S , vq be a total 
sphere model for L with I “ ti1, . . . , i6u and consider vpp ̂ qq “ ti1, i3u, vp�p ̂ qq “ ti4, i5u, vpp ̂ �qq “ ti2u and 
vp�p ̂ �qq “ ti6u so that, according with Proposition 4.8, ri1s “ ri3s “ ti1, i3u, ri2s “ ti2u, ri4s “ ri5s “ ti4, i5u and ri6s “
ti6u.

Furthermore, let Si1 “ tti1u, ti1, i3, i4, i5u, ti1, i2, i3, i4, i5, i6u “ Iu. Therefore,

Sri1s “ ttri1su, tri1s, ri4su, tri1s, ri2s, ri4s, ri6su “ I”u.

Fig. 2 provides a graphical explanation.
Also notice that the sphere system Si3 “ tti3u, ti1, i3, i4, i5u, ti1, i2, i3, i4, i5, i6u “ Iu is such that Sri3s “Sri1s . In other 

words the map that assigns, for every i P I , Si ÞÑSris is not injective in general.
14
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Furthermore, the following holds.

Theorem 4.12. For a total sphere model 	 “ pI, S , vq, consider its associated canonical model 	” “ pI”, S”, v”q. For all formulas 
� P CF, and for all i P I we have:

i ,� iff ris ,�

As a consequence, the logic C1` is complete with respect to canonical models.

Proof. The proof can be easily obtained by induction on the complexity of �. We show the (unique interesting) case 
� “ pϕ |̋ ψq for exemplification.

pñq Assume i , pϕ |̋ ψq, then, by totality, there is a S PSi such that H ‰ vpψq X S Ď vpϕq. Now, by the construction of 
	” , consider S” “ tr js | j P Su, v”pψq “ trhs | h , ψu, and v”pϕq “ trks | k , ϕu. By induction hypothesis, we have that 
for all k P vpψq, rks , ψ , and so, for all rks P v”pψq X S” , rks , ψ . Analogously, since vpϕq” “ tr js | j , ϕu, by induction 
hypothesis, we have that for all j P vpϕq, r js , ϕ . Now, by assumption H ‰ vpψq X S and so, by construction and what 
we just proved above, it holds that H ‰ v”pψq X S”; analogously, since vpψq X S Ď vpϕq, we have that vpψq” X pSq” Ď
vpϕq” . Hence, ris , pϕ |̋ ψq.
pðq is similar to the previous one and left to the reader. l

5. Getting Lewis algebras from sphere models, and back

The intuitive connection between Lewis algebras, sphere models, and Lewis frames that has been briefly presented in 
the above section is made clear here. In this section, we show how to construct sphere models from of Lewis algebras and 
vice-versa. We will restrict our attention to a proper subclass of spheres—we will call them universal—that are defined as 
follows.

Definition 5.1. A sphere model pI, S , vq is universal if it satisfies the following property:

(F) for all i P I , 
Ť

Si “ I .

In the next Subsection 5.1 we present a way to define universal sphere systems from Lewis algebras. To do so, we first 
need to go through a finer description of Lewis frames and provide a more informative characterization of the effect that 
the property of sphericity described in the above Lemma 3.8 (3) has on them. Then, in Subsection 5.2, we go backward and 
define Lewis algebras from sphere systems. Finally, in Subsection 5.3, we will apply these ideas and constructions, together 
with the results of the previous Section 4, to prove that the logic C1` is sound and complete with respect to Lewis algebras.

5.1. From Lewis algebras to universal sphere models

Now we are in a position of showing how to define sphere models from of Lewis algebras, through Lewis frames. The 
idea can be roughly outlined as follows: given a Lewis algebra LpAq “ pCpAq, lq, consider its dual Lewis frame FLpAq “

patpCpAqq, Rq and pick an element ω P atpCpAqq. By Corollary 3.15, Rrωs is nonempty and for all ω1 P Rrωs, ωr1s “ω1r1s P
atpAq. Thus, we can convert Rrωs in a sphere system Sωr1s on atpAq, centered in ωr1s thanks to the fact that FLpAq is 
sliceable (see Definition 3.11). However, to get a Lewis sphere model pI, S , eq, and for the construction to be well-defined, 
a sphere system Si must be associated with each i P I (and only one!) on which Si is centered. On the other hand, in the 
dual frame FLpAq there are several atoms of CpAq, say ω1, ω2, . . . , ωpnq , such that ω1r1s “ ω2r1s “ . . .“ ωpnqr1s and with 
possibly different accessible worlds. For this reason, to obtain only one sphere system centered in one atom of A, to each 
Lewis algebra LpAq, and hence to its Lewis frame FLpAq , we need to adopt a choice function χ that selects, for each α atom 
of A, an (unique) atom ω of CpAq among those for which ωr1s “ α. Formally,

χ : atpAq Ñ atpCpAqq, (4)

α ÞÑω, such that ωr1s “ α.

In detail, let LpAq “ pCpAq, lq be a Lewis algebra and let χ : atpAq Ñ atpCpAqq be a choice function as in (4). Define 	χ

LpAq

to be the system

	
χ
LpAq

“ patpAq,S q

where:

1. atpAq is the set of atoms of the original algebra A;
15
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Fig. 3. A graphical representation of the sphere systems Sα1 defined by the matrix Rrωs, where ωr1s “ α1, determined by a Lewis algebra.

2. S “ tSαuαPatpAq and, for all α P atpAq, let χpαq be the (unique) atom of CpAq selected by χ (its first component 
is α). Then, let Rrχpαqs be the matrix built from Rrχpαqs, and let c1, . . . , ct be its columns that determine the slice 
partition tC1, . . . , Ctu of Rrχpαqs as ensured by Theorem 3.14. Then, define

Sα “ ttc1u, tc1 Y c2u, . . . , tc1 Y c2 Y . . .Y ctuu.

The construction is exemplified in Fig. 3.

Proposition 5.2. For every Lewis algebra LpAq and every choice function χ : atpAq Ñ atpCpAqq, the system S is a sphere system, i.e., 
for all α P atpAq, Sα is centered in α, nested, and α P S for all S PSα . Furthermore, it satisfies that 

Ť

Sα “ atpAq, i.e., patpAq, S q
is universal.

Proof. The proof is straightforward by the construction of Sα . In particular, the fact that Sα is centered in α is implied by 
the centered property of FLpAq and nested by definition. As for the extra property that 

Ť

Sα “ atpAq, it depends on the fact 
that each Sα is nonempty because FLpAq is serial, plus the characterization of the atoms of CpAq as complete sequences of 
atoms of A. l

To conclude the construction, let e be an LpAq-evaluation as in Definition 4.1. Thus, we define v from the variables 
of L to PpatpAqq in the usual way: for every variable p, vppq “ tα P atpAq : α ď eppqu. Notice that, since PpatpAqq is 
isomorphic to A, we can directly define vppq “ eppq without danger of confusion and any loss of generality. Also, notice 
that v extends in a straightforward way to compound classical formulas. Moreover, if ψ is a satisfiable formula, for all 
α P atpAq, 

Ť

Sα X vpψq ‰H because of condition (1) of Definition 4.1 and the fact that patpAq, S q is universal. Therefore, 
	

χ

LpAq
“ patpAq, S , vq is universal and total for L . Moreover the following holds.

Proposition 5.3. Let LpAq be a Lewis algebra, let e be an LpAq-evaluation, χ : atpAq Ñ atpCpAqq a choice function and 	χ

LpAq
the 

sphere model defined as above. Then, for every formula � of L ` , and every α P atpAq, χpαq ď ep�q iff α , ep�q.

Proof. See the Appendix. l

5.2. From total sphere models to Lewis algebras

We now show how to reverse the construction defined above and hence exhibit how to define Lewis algebras starting 
from total sphere models.

Let us hence fix a sphere model 	 “ pI, S , vq that is total for L and let 	” “ pI”, S”, v”q be the canonical sphere 
model built from 	 as in Subsection 4.2. Recall that 	” is universal and that I” can (and will be) identified with the 
set L of all classical evaluations of L to t0, 1u. Thus, if L has n propositional variables, |I”| “ |L | “ 2n . With no 
surprises, we fix A “ PpI”q, the powerset of I . Thus, up to isomorphism, A is the Lindenbaum-Tarski algebra of classical 
logic for L and atpLq “ tα1, . . . , α2nu. We will henceforth identify I” with atpLq. For every α P atpLq, we consider the set 
16
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of all maximal paths from α, the center of Sα , along the spheres of Sα , defined as follows: first of all, let us display Sα as 
usual as a collection of subsets of atpLq, i.e.,

Sα “ tS1, S2, . . . , Stu,

with S1 “ tαu. Then, a maximal path (a path henceforth) through Sα is a list

π “ xα, s2,1, . . . , s2,|S2ztiu|, . . . , st,1, . . . st,|St z
Ť

jăt S j |
y,

for s2,1, . . . , s2,|S2ztiu| P S2ztiu, and . . . , st,1, . . . st,|St z
Ť

jăt S j |
P Stz 

Ť

jăt S j .

Since 	” is universal, each path has length |atpLq|. For every α P atpLq, let PathpSαq be the (finite) collection of all the 
paths that can be defined through Sα . Notice that, for each π P PathpSαq, π r1s “ α.

In other words, each path contains, with no repetition, all the elements of atpLq, whence tPathpSαq : α P atpLqu is a 
subset of atoms of CpLq.

Finally, let us define R Ď atpCpLqq ̂ atpCpLqq by the following stipulation: for all ω P atpCpLqq,

Rrωs “ PathpSωr1sq. (5)

In other words, all atoms of CpLq whose first component is α access through R to all the atoms that are paths through Sα . 
Thus, we call F	 the frame patpCpLqq, Rq. Let us prove the following.

Proposition 5.4. For every total sphere model 	 “ pI, S , vq, F	 “ patpCpLqq, Rq is a Lewis frame and hence its associated algebra 
LpLq “ pCpLq, lq is a Lewis algebra.

Proof. By Corollary 3.15, we only need to show that F	 “ patpCpLqq, Rq is serial, centered, and sliceable. The first two 
properties are indeed easy to show because, for all α P atpLq, there is a nonempty Sα PS that is centered in tαu. Thus, 
let us show that F	 is sliceable.

For that, recall from (5) that for all ω P atpCpLqq, Rrωs “ PathpSωr1sq so that the matrix Rrωs can be displayed as 
follows:

• The first column c1 of Rrωs is just xωr1s, ωr1s, . . . , ωr1sy;
• Take now the second column c2. This is made of all the second elements of each path that belong to PathpSωr1sq. In 

other words, the set c2 of elements appearing in such column is S2zS1.
• Moreover, each row of C2 is just a permutation of the elements in c2. In other words, adopting the notation introduced 

in the above Subsection 5.1, C2 “ c2.
• The same argument then applies to the first new column c|S2zS1|`1, and hence C|S2zS1|`1 “ c|S2zS1|`1 until reaching 

the end of Rrωs.

Thus, tC1, C2, C|S2zS1|`1, . . . , C|St zSt´1|`1u is a slice partition of Rrωs. A similar partition can be determined for all ω P
atpCpAqq and hence F	 is sliceable. l

In [38], Lewis showed how to define, for every sphere model pI, S , vq, a system pI, tĺiuiPI , vq where, for every i P I , 
ĺi is a total preorder on I that is induced by the sphere system Si PS . For the reader who is familiar with total preorder 
models, it is worth noting that a similar construction, leading to Lewis frames and consequently to Lewis algebras from 
total sphere systems, could have been performed by first considering the total preorder model associated with a total 
sphere model and then directly defining maximal paths of the form Pathpĺiq from (an appropriate quotient of) each total 
preorder pI, ĺiq.

To exemplify the presented construction, we apply it to the example introduced in Fig. 3.

Example 5.5. Consider a universal sphere system on I “ t1, 2, . . . , 6u and S1 displayed (see Fig. 4) as

S1 “ tS1 “ t1u, S2 “ t1,2,3,4u, S3 “ t1,2,3,4,5,6uu.

The 12 possible paths that we can consider in S1, and that we write on the atoms α1, . . . , α6 of A, have the following 
generic form

π “ xα1,αs2,1 ,αs2,2 ,αs2,3
loooooooomoooooooon

PS2zS1

, αs3,1 ,αs3,2
loooomoooon

PS3zpS2Ytα1uq

y

17
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Fig. 4. The nested spheres of S1 “ tS1 “ t1u, S2 “ t1, 2, 3, 4u, S3 “ t1, 2, 3, 4, 5, 6uu and two paths through it that respectively corresponds to the atoms 
xα1, α2, α3, α4, α5, α6y (solid arrows) and xα1, α4, α3, α2, α5, α6y (dotted arrows).

As we did also at the end of the previous Subsection 5.1, let us now show how to define a LpLq-evaluation e from the 
evaluation v of the starting total model 	. This is indeed quite immediate because, as done in Subsection 5.1, for every 
propositional variable p, define eppq “ v”ppq “ rps P L. Again this definition maps variables into L “ PpI”q “ PpL q. 
Moreover, if ψ is any classical satisfiable formula, epψq “ v”pψq is not empty because 	” is total. In the following result, 
and thanks to the identification I” “ atpLq, we bijectively index the atoms of L with the elements ris of I” .

Proposition 5.6. Let 	 “ pI, S , vq be a total sphere model for L and let � be a formula of L ` and LpLq “ pCpLq, lq the Lewis 
algebra determined by 	. Then i ,� iff for all ω such that ωr1s “ αris , ωď ep�q.

Proof. See the Appendix. l

Let us conclude this subsection by noting some additional properties that will be used in Section 7. Specifically, it is 
worth remarking that in this subsection, to define a Lewis algebra from a total sphere model, it has been necessary to pass 
through a canonical model because their set of worlds is identifiable with the set of atoms (i.e., logical valuations) of the 
Lindenbaum-Tarski algebra on which our construction is based. Therefore, the same construction of a Lewis algebra LpAq
can be performed starting from a total sphere model 	 whose set of possible worlds is atpAq itself. The same construction 
we presented for the case of canonical models and defining Lewis algebras of the form LpLq can be adapted to this scenario.

Proposition 5.7. Let A be a finite boolean algebra and let patpAq, S , vq be a total sphere model. Then, the relation R defined as in (5)
on atpAq is serial, centered, and sliceable. As a consequence, the algebra pCpAq, lq, where l is defined by R is a Lewis algebra.

Also notice that for every formula � from L ` and α P atpAq, one has that α ,� iff ω ď ep�q for every ω P atpCpAqq
such that ωr1s “ α and where e is the LpAq-evaluation defined mapping the variables of L as eppq “ vppq. Thus, the 
following also easily holds.

Corollary 5.8. Let A be a finite boolean algebra, let 	 “ patpAq, S , vq be a total sphere model for L and let � be a formula of L ` . 
Also let LpAq “ pCpAq, lq be the Lewis algebra determined by 	. Then for all α P atpAq, α , � iff for all ω such that ωr1s “ α, 
ωď ep�q.

5.3. Completeness

Recall from Subsection 4.2 that to every total sphere model 	 we can associate a canonical model 	” “ pI”, S”, v”q. 
Now, by Proposition 5.4 and the above theorem, 	” determines a unique Lewis algebra having, for a domain, the boolean 
algebra of conditionals built from PpI”q, where I” is identifiable with the set L of all classical evaluations of L to 
t0, 1u. In other words, and up to isomorphism, PpI”q is the Lindenbaum-Tarski algebra L of classical logic for the language 
L with respect to which 	 and 	” are total. Moreover, by (3), the evaluation v” actually maps, via such identification, 
every classical formula ϕ to its equivalence class rϕs P L. This observation justifies the following.

Definition 5.9. A Lewis algebra is said to be canonical for L (or simply canonical) if it is in the form pCpLq, lq where L is 
the Lindenbaum-Tarski algebra of classical logic for L . The canonical evaluation of L ` to pCpLq, lq is that one assigning 
each variable p of L to its equivalence class rps P L and that, in particular, evaluates pϕ |̋ ψq to lprϕs | rψsq.

We have now all the needed results and constructions allowing us to prove soundness and completeness of the logic 
C1` (defined in the previous Section 4) with respect to Lewis algebras and canonical evaluations.

Theorem 5.10. The logic C1` is sound and complete with respect to canonical Lewis algebras and canonical evaluations.

Proof. Soundness holds in general as all axioms and rules of C1` holds in every Lewis algebra LpAq and under any LpAq-
evaluation. Thus, they hold in particular in canonical algebras under canonical evaluations.
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As for completeness, assume that φ is a formula from L ` such that C1` & φ. Then, by Theorem 4.5 there exists a 
sphere model 	 that is total for L that does not satisfy φ and by Theorem 4.12 also 	” does not satisfy φ. Since 	” has 
a universal frame, by Proposition 5.6, its associated algebra LpLq “ pCpLq, lq does not satisfy φ. Finally, from what we just 
remarked above, the Lewis algebra associated with 	” is canonical, and the evaluation that does not validate φ is canonical 
as well. This concludes the proof. l

6. Imaging probabilities as belief functions and probability on modal algebras

In this section, we introduce and review the basic properties of imaging probabilities and belief functions that are 
required for Section 7. Before getting into the details, let us briefly recap that the imaging rule (hereafter referred to as 
imaging) is a technique introduced by Lewis in [39] for updating an a priori probability distribution P over possible worlds 
(in algebraic terms, atoms of a boolean algebra) upon learning that an event b has occurred. Classical Bayesian conditioning 
is in fact a special form of imaging where the probabilities assigned to the atoms that are not below b are redistributed 
uniformly among the atoms that are below b.

In the next Subsection 6.1 we review some key properties of imaging and place them in our algebraic framework. We 
also present an alternative approach to imaging inspired by a remark made by Dubois and Prade in [14, §3.B]. Briefly, their 
proposal is to consider the updated mass outside the realm of Bayesian probability and treat it as a mass function in the 
sense of Dempster-Shafer theory of evidence. We will adopt this approach and therefore need to recall how to handle 
masses and belief functions, which are the mathematical models used in Dempster-Shafer theory of evidence, within a 
modal algebraic framework. This will be discussed in Subsection 6.2.

6.1. A non-Bayesian imaging

We have just recalled that the imaging rule is a method introduced by Lewis to redistribute an a priori probability, upon 
learning that a certain event has occurred. In this rule, if α is a world that does not satisfy b, its probability is added to 
that of the unique world (as per Lewis’ original formulation) α1 that satisfies b and is the closest4 world to α. This idea 
has been further extended by Gärdenfors to a more general setting where the set of worlds closest to α is not necessarily 
a singleton [23]. In such cases, if α1, . . . , αt are the closest worlds to α that satisfy b, the probability Ppαq is shared among 
these αi ’s in proportion to their closeness.

More formally and contextualizing these ideas within the bounds of the framework of the present paper, let A be a 
(finite) boolean algebra with atoms α1, . . . , αn and patpAq, S , vq be a sphere model on atpAq. Also, let P be a probability 
distribution on atpAq and b P A1 . Let us assume, without loss of generality that b “

Žt
i“1 αi (with t ď n), while �b “

Žn
j“t`1 α j so that αi ď b for all i “ 1, . . . , t and α j ę b for all j “ t ` 1, . . . , n. For every j “ t ` 1, . . . , n let Cbpα jq “

tα j1 , . . . , α jk j
u be set of the closest atoms to α j that are below b, i.e., for all j, the sphere system S j “ ttα ju, S2, . . . , S pu

is such that

1. there is Sh PS j , α j1 , . . . , α jk j
P Shz 

Ťh´1
l“1 Sl;

2. α j1 , . . . , α jk j
ď b;

3. for all α P
Ťh´1

l“1 Sl , α ę b.

Gärdenfors’ imaging rule defines, starting from the original distribution P , the updated Pb assigning Pbpα jq “ 0 for each 
j “ t ` 1, . . . , n, and for all i “ 1, . . . , t , Pbpαiq “ Ppαiq if for all j “ t ` 1, . . . , n, αi ‰ α jl , Pbpαiq “ Ppαiq ̀ λ jl Ppα jl q if 
there exists j “ t ` 1, . . . , n such that αi “ α jl and where the parameters λ jl are such that 

řk j

l“1 λ jl “ 1.
Besides Gärdenfors’ definition, imaging can be approached in a formally different way. To explain this second idea, let us 

recall the following quote by Dubois and Prade taken from [14, §3.B] and whose notation has been adapted to our current 
setting.

[...] Instead of sharing Ppαq among the atoms αi ď b, a less committed update is to allocate Ppαq to b itself (and none 
of its subsets). In that case, the imaging process produces a basic probability assignment in the sense of Dempster’s view 
of belief functions. But this type of update is not consistent with Bayesian probabilities because the result of imaging is 
a family of probability distributions, not a unique one.

In other words, one can think of defining Pb by reassigning the probability of the atom α to that element of the algebra 
that is defined as the join of the atoms below b and that are more similar to α, i.e., Cbpαq adopting the above notation. 
Fig. 5 is intended to provide a graphical comparison between these two approaches.

4 Of course, closest with respect to a given system of spheres.
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Fig. 5. A slice of the boolean algebra with 6 atoms: an element b by which we apply the imaging rule, an atom α that is not below b, and the two atoms 
α1 and α2 (circled) that are below b and are the closest atoms to α, according to some sphere model. On the left-hand side, Gändenfors imaging: the 
probability Ppαq is proportionally added to the probabilities of the atoms α1 and α2 . On the right-hand side, following Dubois and Prade, the whole mass 
Ppαq is allocated to α1 _ α2 .

In the rest of this paper, we will indeed follow this latter approach inspired by Dubois and Prade that, at best of the 
authors’ knowledge, has not been further explored in the literature. Further details will be provided in Section 7, where we 
apply it to our specific setting.

6.2. Probabilities, modalities, and belief functions on finite boolean algebras

We assume that the reader is acquainted with probability functions on boolean algebras and, in the atomic case, with 
probability distributions on their atoms. This section is intended to introduce and discuss belief and mass functions, the 
mathematical models of Dempster-Shafer theory of evidence [12,47] and their interplay with probabilities and normal modal 
operators.

Belief functions on boolean algebras can be introduced in several equivalent ways. Probably, the most common definition 
is the following (see [12,13,30]).

Definition 6.1. A belief function on a boolean algebra A is a map Bel : A Ñr0, 1s satisfying the following properties:

(B1) BelpJq “ 1;

(B2) Bel

˜

n
ł

i“1

ai

¸

ě

n
ÿ

i“1

ÿ

t JĎt1,...,nu:| J |“iu

p´1qi`1Bel

¨

˝

ľ

jP J

a j

˛

‚ for n “ 1, 2, 3, . . . and a1, . . . , an P A.

A belief function Bel is said to be normalized if BelpKq “ 0.

In the same way probabilities (over finite algebras) can be characterized in terms of distributions on atoms belief func-
tions on boolean algebras are fully described in terms of mass functions as follows. Let A be any finite boolean algebra. 
A mass function on A is a map m that assigns to each element a of A, a real number such that mpKq “ 0 and 

ř

aPA mpaq “ 1. 
Given a mass function m on A, the map

Belpaq “
ÿ

bďa

mpbq (6)

is a belief function and every belief function on A arises in this way. The elements of A that have a strictly positive mass 
are called focal elements and they are those that contribute to defining Bel as in (6).

Besides the axiomatic approach to belief functions we recalled in the above Definition 6.1, there exists a way to introduce 
these uncertain models that is more appropriate for us and that consists in defining Bel by combining a probability function 
P and a normal modal operator l. Although this latter approach has been followed by several scholars [27,31] (see also the 
more recent papers [15,25]), it is less known. It is hence convenient to recall its pillars.

Let pA, lq be a finite boolean algebra with a normal operator l satisfying

(D) lx ď�x

and let patpAq, Rq be its associated dual (serial) Kripke frame. As usual, for all α P atpAq, let us denote by Rrαs “ tα1 P

atpAq : αRα1u. Notice that for every α P atpAq, Rrαs can be identified with the element 
Ž

Rrαs of A. Also observe that, 
since R is serial, Rrαs ‰H (and hence Rrαs ąK once regarded as element of A), for all α.

For every probability P : A Ñr0, 1s, let us define mP : A Ñr0, 1s as follows: for all a P A,

mP paq “
ÿ

Rrαs“a

P pαq. (7)
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Proposition 6.2. Let A be a finite boolean algebra and P a probability function on A. Then the map mP : A Ñ r0, 1s is a normalized 
mass function. In other words, 

ř

aPA mP paq “ 1 and mP pKq “ 0.

Proof. By seriality, for all α P atpAq, Rrαs ‰H. Thus, mP pKq “ 0 by definition of mP . Indeed, a necessary condition for 
mP paq ą 0, and hence for a to be focal, is that a “ Rrαs for some α P atpAq.

Now, consider the binary relation „ on atpAq defined by α„α1 iff Rrαs “ Rrα1s. That is an equivalence relation, rαs„
indicates the class of α under „, while atpAq„ will stand for the quotient set, so that mP pRrαsq “

ř

α1Prαs„
Ppα1q. There-

fore
ÿ

αPatpAq

mP pRrαsq “
ÿ

rαs„PatpAq„

ÿ

α1Prαs„

P pα1
q “

ÿ

αPatpAq

P pαq “ 1. l

The following is meant to clarify the above result.

Example 6.3. Let A be the boolean algebra with five atoms tα1, α2, α3, α4, α5u, P a probability on A, and l the modal 
operator on A whose associated accessibility relation R is

R “ tpα1,α2q, pα1,α3q, pα2,α2q, pα2,α3q, pα3,α4q, pα4,α4q, pα5,α2q, pα5,α3qu.

Notice that R is serial. Indeed all Rrαs are not empty as Rrα1s “ Rrα2s “ Rrα5s “ tα2, α3u and Rrα3s “ Rrα4s “ tα4u. 
Thus, α1„α2„α5 and α3„α4. By (7),

mP ptα2,α3uq “
ÿ

Rrαs“tα2,α3u

P pαq “ P pα1q ` P pα2q ` P pα5q

and

mP ptα4uq “
ÿ

Rrαs“tα4u

P pαq “ P pα3q ` P pα4q.

Moreover, for all a ‰ α2 _ α3 and a ‰ α4, mP paq “ 0. Thus,

ÿ

aPA

mP paq “mP ptα2,α3uq `mptα4uq “

5
ÿ

i“1

P pαiq “ 1.

Summing up, by Proposition 6.2, every probability on a finite boolean algebra A and every modal operator l on A
satisfying (D), determine a mass function mP on A and hence a belief function BelP : A Ñ r0, 1s defined as usual from mP : 
for all a P A,

BelP paq “
ÿ

bďa

mpbq.

Therefore the following immediately holds.

Corollary 6.4. Let pA, lq be a finite boolean algebra with an operator satisfying (D). Let patpAq, Rq be the Kripke frame associated to 
pA, lq. For every probability P on A, the map BelP on A such that for all a P A,

BelP paq “
ÿ

bďa

ÿ

Rrαs“b

P pαq (8)

is a belief function on A whose focal elements are all of the form Rrαs for some α P atpAq.

There is another, yet equivalent, way to define a belief function from a probability P and a modal operator l satisfying 
(D) on A. It consists in defining BelP : A Ñr0, 1s as follows: for all a P A,

BelP
paq “ P plaq. (9)

Indeed, the fact that l is normal and satisfies (D) is enough to prove that BelP is a normalized belief function. Moreover, 
the following holds:

Proposition 6.5. Let pA, lq be a finite boolean algebra with operators satisfying (D) with associated Kripke frame patpAq, Rq, and let 
P be a probability on A. Then, BelP “ BelP .
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Proof. Recall that for all a P A,

la“
ł

tα P atpAq : @α1
P atpAq, pαRα1

q ñ pα1
ď aqu “

ł

tα P atpAq : Rrαs ď au. (10)

Thus, by (8), (9) and (10) we can prove that
ÿ

bďa

ÿ

Rrαs“b

P pαq “ P
´

ł

tα P atpAq : Rrαs ď au
¯

.

Indeed, by the additivity of P , P p
Ž

tα P atpAq : Rrαs ď auq “
ř

Rrαsďa Ppαq. The latter clearly equals 
ř

bďa

ř

Rrαs“b Ppαq. 
Thus, BelP paq “ Pplaq “ BelP

paq. l

7. Imaging, belief and canonical extensions on Lewis algebras

After the above brief degression on belief functions, probabilities, and normal modal operators, we now return to our 
formal framework to demonstrate how the preceding results allow us to approach the uncertain quantification of counter-
factuals and represent the non-Bayesian imaging rule described in Subsection 6.1, using probabilities on Lewis algebras.

Let us first recall the general method of defining probability functions from a probability distribution on a set of models 
of a logical language (cf. [43] for a general reference and [22] for the special case of the probability of counterfactuals de-
scribed within causal models). Within our formal setting based on the language L ` , we introduce the following definition 
which explains what the probability of a counterfactual means in our context.

Definition 7.1. Let 	 “ patpAq, S , vq be a sphere model on the set of atoms of a given boolean algebra A and let P be a 
probability on A. For every counterfactual formula pϕ |̋ ψq of L ` , we define its probability as the value

βpϕ |̋ ψq “
ÿ

α,pϕ |̋ ψq

P pαq.

Now, let us describe in more detail the non-Bayesian imaging rule that we briefly discussed in the previous Subsection 6.1
and let us fix a finite boolean algebra with atoms tα1, . . . , αnu and a positive probability P on A. Also, let 	 “ patpAq, S , vq
be a total sphere model and let b be an element of A1 . For the sake of clarity, and as we did in Subsection 6.1, let us display 
b as the join of the atoms of A below it and assume, without loss of generality, that those are the first t atoms of A so that 
b “

Žt
i“1 αi and �b “

Žn
j“t`1 α j .

For every j “ t ` 1, . . . , n, let Cbpα jq be the set of closest atoms, among α1, . . . , αt , to α j as determined by a spheres 
model 	. Without danger of confusion and for all j “ t ` 1, . . . , n, we denote by the same symbol Cbpα jq that element of 
A being the join of the elements of Cbpα jq.

Now, define the map mb : A Ñr0, 1s as follows: for all a P A,

mbpaq “

$

&

%

P pαiq if a“ αi, i “ 1, . . . , t,
P pα jq if a“ Cbpα jq, j “ t ` 1, . . . ,n,

0 otherwise.
(11)

Notice that mbpα jq “ 0 for all j “ t ` 1, . . . , n and the probability of each such α j has been transferred, as a whole, to 
Cbpα jq P A. By construction, it is immediate to see that 

ř

aPA mbpaq “ 1 and, in particular 
ř

aďb mbpaq “ 1. Thus, mb is a 
mass function on A that induces a belief function Belb on A defined as in (6): for all a P A, Belbpaq “

ř

cďa mbpcq. For every 
pair of element a, b P A with b ‰K, we call Belbpaq the belief of a imaged by b.

Our first result of this final section shows that the probability of a counterfactual pa |̋ bq given as in Definition 7.1
coincides with the just defined belief of a imaged by b. To prove it, let us first define a notion of selection function that is 
similar to the one given in Definition 3.6, but is contextualized in the setting of sphere models.

Definition 7.2. Let A be a finite boolean algebra and let patpAq, S , vq be a sphere model on the set of atoms of A. Then we 
define the selection function f : atpAq ̂ A Ñ A as follows: for every β P atpAq and a P A, if S is the first sphere of Sβ (with 
respect to the total order of set-inclusion) that contains at least an atom α ď a, then

f pβ,aq “
ł

pS X �a�q.

In other words, f pβ, aq is that element of A defined as the disjunction of those atoms of A that are model of a and that 
appear first, in the order of spheres, in the sphere system Sβ centered in β .

Notice that f is indeed well-defined because every sphere model is universal in the sense of Definition 5.1, whence for 
all β a first sphere S PSβ that contains a model of a, always exists.

The next fact is indeed easy to prove and it immediately follows from the very definitions of the notions involved.
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Fact 2. Let A be any finite algebra, patpAq, S , vq be a sphere model and pa |̋ bq be a counterfactual. Then the following conditions 
hold:

1. For all β P atpAq, β , pa |̋ bq iff f pβ, bq ď a;
2. For every positive probability P on A and for all c P A, mbpcq “

ř

f pβ,bq“c Ppβq, where mb is defined as in (11).

We are now in the position of proving the anticipated result that connects the probability of a counterfactual pa |̋ bq with 
the belief of a imaged by b.

Theorem 7.3. For every finite boolean algebra A, spheres system patpAq, S , vq, and positive probability P on A, for all a P A and 
b P A1 ,

Belbpaq “ βpa |̋ bq.

Proof. By definition, βpa |̋ bq “
ř

α,pa |̋ bq Ppαq. By Fact 2 (1), the latter equals 
ř

f pα,bqďa Ppαq that in turn is equal to 
ř

cďa

ř

f pα,bq“c Ppαq. Now, by Fact 2 (2), 
ř

f pα,bq“c Ppαq “mapcq. Thus, we can conclude that

βpa |̋ bq “
ÿ

cďa

ÿ

f pα,bq“c

P pαq “
ÿ

cďa

mapcq “ Belbpaq. l

Now, let us turn our attention to Lewis algebras and their probability functions. First of all, recall from [19] that every 
positive probability P on a finite boolean algebra A can be canonically extended to CpAq, the boolean algebra of conditionals 
of A, by the following stipulation: pick any ω P atpCpAqq and recall that ω is uniquely associated to a complete list of atoms 
xα1, . . . , αny of A. Indeed,

ω “ pα1 | Jq [ pα2 | �α1q [ . . .[ pαn´1 | �α1 ^ . . .^�αn´2q.

Then, define the canonical extension of P to ω to be

μP pωq “ P pα1q ¨
P pα2q

P p�α1q
¨ . . . ¨

P pαn´1q

P p�α1 ^ . . .^�αn´2q
.

By [19, Lemma 6.8] the map μP is a positive probability distribution on atpCpAqq and hence it induces, as usual, a positive 
probability function on CpAq that we will indicate by the same symbol.

Now, let 	 “ patpAq, S , vq be a total sphere model on the atoms of the original algebra A. By Proposition 5.7, S
determines a normal operator l on CpAq such that LpAq “ pCpAq, lq is a Lewis algebra. With this machinery at hand, we 
hence have another way to define the probability of a counterfactual pa |̋ bq, interpreted in LpAq by lpa | bq, as

Prpa |̋ bq “μP plpa | bqq. (12)

By Proposition 6.5, the map BelμP : t P CpAq ÞÑ μP pltq is hence a belief function on CpAq. Moreover, if FLpAq “

patpCpAqq, Rq is the Lewis frame associated to LpAq, by Corollary 6.4 above we have that, for all t P CpAq,

BelμP ptq “
ÿ

sďt

ÿ

Rrωs“s

μP pωq “
ÿ

Rrωsďt

μP pωq. (13)

The next result is the main outcome of this final section, demonstrating that the two uncertain quantifications of counter-
factuals, namely the one of Definition 7.1 and the one in (12), are equivalent. This result, as stated in Theorem 7.3, confirms 
that the probability of a counterfactual pa |̋ bq is equal to the belief of the consequent a imaged by the antecedent b.

Theorem 7.4. For every positive probability P on a finite boolean algebra A and every total sphere model 	 “ patpAq, S , vq it holds 
that, for every a P A and b P A1 ,

BelμP pa | bq “μP plpa | bqq “ βpa |̋ bq “ Belbpaq.

Proof. By the above (13), BelμP pa | bq “
ř

Rrωsďpa|bq μP pωq and hence, since Rrωs ď pa | bq iff ωďlpa | bq, one has that

BelμP pa | bq “
ÿ

ωďlpa|bq

μP pωq.

Now, by Corollary 5.8, ωďlpa | bq iff ωr1s , pa |̋ bq in the sphere model 	. Thus, the above can be rewritten as
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BelμP pa | bq “
ÿ

α,pa |̋ bq

ÿ

ωr1s“α

μP pωq.

By [19, Lemma 6.12 (i)], 
ř

ωr1s“α μP pωq “μP pα | Jq “ Ppαq. Thus, by Theorem 7.3, one finally has that

BelμP pa | bq “
ÿ

α,pa |̋ bq

P pαq “ βpa |̋ bq “ Belbpaq.

This hence settles our claim. l

Remark 7.5 (Getting rid of positive probabilities). The assumption made in the above Theorem 7.4 concerning the positivity of 
the probability function P can be relaxed and we can assume to start directly with a conditional probability C on A, i.e., a 
function C : A  ̂ A1 Ñ r0, 1s satisfying the usual axioms that can be found in e.g. [30, Definition 3.2.3]. Indeed, as proved 
in [21], if C is a conditional probability on A, the canonical extension μC on CpAq can be defined just by assigning to the 
generic atom ω“ pα1 | Jq [ pα2 | �α1q [ . . .[ pαn´1 | �α1 ^ . . .^�αn´2q of CpAq, the value

μC pωq “ Cpα1 | Jq ¨ Cpα2 | �α1q ¨ . . . ¨ Cpαn´1 | �α1 ^ . . .^�αn´2q.

As it is proved in [21, Proposition 3], the map μC defined as above is a probability distribution on atpCpAqq, i.e. 
ř

ωPatpCpAqq μC pωq “ 1 and hence it naturally induces a unique finitely additive probability measure, still denoted by μC , 
on the algebra CpAq.

The key difference between starting with a positive probability P and a conditional probability C consists in the fact that 
while the canonical extension μP is positive as well, the extension μC might give 0 probability to some atom ω of CpAq. 
Thus, this latter might be regarded as a more general way to approach probability functions on CpAq. Notice that the main 
result presented in this section, namely Theorem 7.4, clearly holds if we define μC , instead of μP and, in particular, the 
function BelμC still is a belief function on CpAq. Also, the proof of the previous theorem can be straightforwardly arranged 
to prove that, if C is a conditional probability of A, and 	 “ patpAq, S , vq is a total sphere model, then it holds that, for 
every a P A and b P A1 ,

BelμC pa | bq “μC plpa | bqq “ βpa |̋ bq “ Belbpaq.

There, the probability P on A that defines β as in Definition 7.1 and Belb on A clearly is Cp¨ | Jq, i.e., the unconditional 
probability determined by C and that fixes the sure event J as antecedent.

8. Final remarks and future work

In this paper we have presented a logical and algebraic approach to counterfactuals aiming to provide new insights into 
their representation in terms of modal conditionals. In particular, we introduced a class of boolean algebras with operators, 
named Lewis algebras, consisting of a boolean algebra of conditionals [19] and a normal modal operator l satisfying suitable 
properties. In this way, we have shown that a counterfactual statement of the form pa |̋ bq can be expressed using the modal 
conditional formula lpa | bq. On the algebraic side, we obtained two main results: firstly, a general method to associate 
Lewis’ sphere models with Lewis algebras and vice-versa; second, the introduction of a logic for counterfactuals, denoted 
C1` , whose algebraic models precisely correspond to Lewis algebras. Furthermore, we focused on addressing the problem 
of uncertain quantification of counterfactual formulas in an appropriate way. In particular, we showed that the probability 
of a counterfactual pa |̋ bq can be described both by the belief of a imaged by b, and by the canonical extension of lpa | bq.

In addition to the technical results we have discussed, we believe that the methodology used in the present paper, which 
combines counterfactual reasoning and modal logic, has the potential to foster a deeper connection and cross-fertilisation 
between these well-established areas of research. In the following subsections we will provide final remarks and discuss 
possible research directions that we believe may be of particular interest.

8.1. Weakenings and extensions

The logic of Lewis algebras, denoted C1` in this paper, extends the Lewis logic C1 by a modal axiom very similar the 
typical axiom (D) of modal logic, pϕ |̋ ψq Ñpϕ |̨ ψq. It is worth noting that this axiom holds in Lewis algebras due to certain 
properties inherited from boolean algebras of conditionals (as seen in the proof of Proposition 3.3 (4)). In other words, (D) 
holds in any Lewis algebra as a consequence of our approach to counterfactuals as modal conditionals. Still semantically, (D) 
describes the fact that atoms of BACs (and hence possible worlds in Lewis frames) are complete lists of classical valuations, 
while its failure would imply that they are only partial lists

Beyond C1 and C1` , the literature on conditional and counterfactual reasoning encompasses a wide class of other logical 
formalisms (see for instance [38, p. 131]). Of particular interest are the logics that Lewis calls C0 and C2, between which 
C1 lies (called V, VCS and VC, respectively, in the terminology of [38]).
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• The logic C0 is the weakest logic in the hierarchy described in [38, p. 131]. Semantically, the sphere models with respect 
to which C0 is sound and complete are those which, compared with C1 spheres, have more than one element in the 
inner sphere. It follows by Lemma 3.9 that their algebraic models could be obtained by removing equation (L2) from 
the definition of Lewis algebras.

• The logic C2, extensively studied by Stalnaker in [48], coincides with Adam’s logic for indicative conditionals [1], rather 
than counterfactuals. On the algebraic level, models of C2 (or, more precisely, of a variant of C2 requiring possible 
worlds to be permutations of classical valuations) could be obtained from Lewis algebras by strengthening (L2) to 
require pa | bq “lpa | bq. Consequently, any Lewis algebra LpAq “ pCpAq, lq would turn out to be (term-)equivalent to 
the underlying BAC, CpAq. The logic having boolean algebras of conditionals as algebraic models have been studied in 
[19] and denoted by LBC, for Logic of Boolean Conditionals. Establishing whether C2 and LBC are equivalent in any sense 
remains an open problem.

Finally, let us comment on what we discussed in Sections 6 and 7. In particular, Theorem 7.4 shows that the probability 
of a counterfactual statement of the form pa |̋ bq is captured by the belief function BelμP of the conditional object pa | bq. It 
must be noted that based on a general result established in [19] (namely [19, Theorem 6.13]) within the realm of boolean 
algebras of conditionals, the canonical extension μP of a positive probability function P satisfies that μP pa | bq “ Ppa^bq

Ppbq
, 

indicating that the value assigned by μP to the conditional object pa | bq coincides with the conditional probability of “a
given b”. However, when dealing with counterfactual formulas, demonstrating that BelμP pa | bq coincides with (any form of 
defining, see [14] for an overview) the conditional belief of the event “a given b” remains an open problem and it seems to 
be far from trivial.

8.2. On nested conditionals

At the beginning of our algebraic analysis of counterfactual conditionals, we restricted the language to disallow nesting of 
the conditional symbol “|”. This limitation was justified by the fundamental construction of boolean algebras of conditionals, 
which, as originally defined in [19], only allows us to represent elementary objects of this nature.

However, the same construction of boolean algebras of conditionals does permit the representation of nested conditionals 
by applying the construction multiple times to an algebra like CpAq. We will now provide some intuitions on how this 
generalized construction can be established and discuss a couple of intriguing questions that naturally arise in this context.

Let A be a boolean algebra and let CpAq be its boolean algebra of conditionals as in Definition 2.5. The algebra CpCpAqq
is, by construction, the quotient FreepCpAq | CpAq1q{”C

where CpAq | CpAq1 is the set of expressions pc1 | c2q, where c1, c2 P

CpAq and c2 ‰K, and ”C is the congruence defined as in Subsection 2.2, but instantiated on elements of F reepCpAq | CpAq1q. 
Now, c1 and c2, as elements of CpAq, are boolean conditionals, i.e., boolean expressions constructed using basic conditionals 
like px | yq for px, yq P A ˆ A1 . For instance, if c1 “ pa1 | b1q and c2 “ pa2 | b2q, the pair pc1, c2q represents the nested
conditional expression ppa1 | b1q | pa2 | b2qq. Once the construction is completed, there are no inherent reasons to prevent 
further applications, allowing for an increase in the depth of nesting for the conditional operator.

In the case of Lewis algebras, and hence counterfactual conditionals, a similar intuition reveals that we can repeat the 
construction of LpAq to handle different depths of nested counterfactuals. This is possible because the construction leading 
to a conditional algebra CpAq does not require the original structure A to be boolean and it can be defined starting with a 
boolean algebra with operators, including Lewis algebras. Let us clarify this claim by outlining the necessary steps for this 
specific construction. Let A be any boolean algebra and let us proceed as follows:

1. First of all, we define a Lewis algebra LpAq “ pCpAq, lq built upon A.

2. Now, let pLpAq | LpAq1q be the set of formal expressions like pl1 | l2q for l1 P LpAq and l2 P LpAq1 . For instance, if 
l1 “lpa1 | b1q and l2 “lpa2 | b2q, pl1 | l2q “ plpa1 | b1q |lpa2 | b2qq belongs to pLpAq |LpAq1q.

3. Let FreepLpAq |LpAq1q be the free boolean algebra generated by the above pairs and let ”C be as in Subsection 2.2 and 
instantiated on elements of F reepLpAq |LpAq1q. Thus, CpLpAqq is defined as FreepLpAq | LpAq1q{”C

.

4. By construction CpLpAqq is a boolean algebra of conditionals. Thus, one can now consider LpLpAqq to be a Lewis algebra 
pCpLpAqq, l̂q where l̂ is a normal necessity operator, in general independent on the above l, on the boolean algebra 
CpLpAqq and satisfying (L1), (L2) and (L3) of Definition 3.1. As we briefly showed right after the definition of Lewis algebras, 
such a necessity operator always exists.

The generalized constructions briefly presented above define algebras that are reasonable candidates to serve as models 
for a logic of conditionals and counterfactuals in a language that permits controlled nesting of these operators. However, 
the increased complexity of these languages raises several issues that need to be addressed before we can assert that these 
structures effectively capture nested conditionals and counterfactuals. Among these issues, we believe the following two are 
of key importance:

(Q1) Are the properties forced by the congruence ”C enough for nested conditionals, or do we have to require some 
further equation to be satisfied in this more general case? For instance, an equation that we believe should hold among 
nested conditionals is the following ppa | bq | JCq “ ppa | Jq | pb | Jqq. Does this equality hold in CpCpAqq, or does it have to 
be required by extending ”C?
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(Q2) In defining LpLpAqq, we must take care of the interaction of two modal operators: an inner and an outer one. How do 
these necessity operators interact with each other? What kind of Kripke models arise in this multi-modal context?

8.3. Future research directions

Future research should begin with a more in-depth logical investigation of the framework presented above. Our focus 
has been on providing a semantics, based on Lewis algebras, for a variant of Lewis’s logic C1, which he claims to be 
the correct logic of counterfactuals. However, Lewis introduced a wide range of logics of conditionals (see [38]). Exploring 
whether the algebraic methodology developed in the present paper can be applied to these other systems is, in our opinion, 
an interesting line of research that we will aim at investigating in our future work. As we briefly mentioned earlier, by 
dropping axiom (L2) we could retrieve the logic C0` (i.e. C0+(D)). It is interesting to notice that our approach offers a 
unique perspective on the logic of conditionals: stronger or weaker logics than C1` can be explored using well-established 
modal logic techniques. Indeed, stronger or weaker constraints on the normal operator l might induce different logics 
of conditionals. Therefore, it would be interesting to explore which logic of conditionals emerges from imposing some of 
the axioms commonly adopted in modal logic. This work would help to clarify the connection between modal logic and 
counterfactual reasoning.

Another interesting topic is the study of logics weaker than C0. This latter corresponds to the weakest system considered 
by Lewis and its semantics consists of sphere models satisfying the “nestedness” condition (which corresponds to axiom (L3) 
in the framework of Lewis algebras) without any additional constraint. By dropping axiom (L3), we can obtain weaker logics 
than those considered by Lewis. To the best of the authors knowledge, a semantical exploration of these weaker systems 
has only been very recently initiated by some authors [50], using neighborhood semantics. The framework we introduced 
in this paper, could be easily applied to deepen this semantical exploration and provide intuitive algebraic models for those 
logics.

The open problem just discussed in the previous Subsection 8.1 will surely deserve to be further investigated. Part of 
our future research in the area of uncertain conditional measures will focus on determining if the present approach can be 
further generalized to other frameworks. Preliminary results in this direction are contained in [20] for the case of possibility 
and necessity measures. However, extending them to the case of belief functions and plausibility measures, or imprecise 
probabilities is still an ongoing research stream that seems to be far from having a straightforward solution.

To extend the present algebraic setting to the case of nested conditionals, according to what we just discussed in Sub-
section 8.2, questions (Q1) and (Q2) will surely need to receive an answer.

Another interesting line of research concerns counterfactuals and nonmonotonic reasoning. Indeed, our formalized coun-
terfactuals exhibit clear nonmonotonic behavior, as in Lewis algebra it might hold that lpa | bq ęlpa | b ̂ cq. Hence, we 
are not allowed to strengthen the antecedent of a counterfactual and maintain soundness. This property is not surprising, 
as it has already been observed for conditionals in [19]. However, the results of Section 7 and in particular Theorem 7.4, 
suggest that a new perspective on counterfactuals and nonmonotonic reasoning could be approached following [4] where 
the authors apply belief function theory to deal with several systems of nonmonotonic reasoning.

Finally, a more philosophical-oriented future work will be directed towards understanding the intuitive interpretation of 
the modality l that we used in this paper to represent counterfactuals in combination with the conditional operator “|”. 
Indeed, although we managed to grasp some intuition behind the axioms of Lewis algebras (recall Remark 3.2), a complete 
understanding of how to read an expression of the kind lpa | bq is still lacking, yet we believe to be of interest and worth 
investigating.
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Appendix A. Technical proofs

Proof of Theorem 3.14. (ñ) By contraposition, assume that there is ω P atpCpAqq for which Rrωs does not admit a slice 
partition. Furthermore, assume that Cl is the first submatrix of Rrωs for which cl ‰ r for a row r of Cl . Then, by Lemma 3.13
(1) and (2) we know that cl contains (at least) two different elements αs ‰ αp and there exists αi, j such that αi, j P r but 
it does not appear in cl . Then, since cl is the first column of Rrωs that witness the failure of p˚q, αi, j does not belong to 
any other column that precedes cl in the order of columns of Rrωs. Moreover, by Lemma 3.13 (3), there exists an αx,y P cl
such that y ‰ j and αx,y does not appear in the jth row of Rrωs, before the ith column, i.e., αx,y does not appear in the 
jth row before αi, j .

Then, let a “ pαx,y_αi, jq and b “
Ž

pclztαx,yuq. Notice that �a� “ tαx,y, αi, ju and �b� “ clztαx,yu. Let f be the selection 
function as in Definition 3.6. Notice that,

f pa_ b,ωq “ tω1
ris P atpAq |ωRω1 and i is the smallest index s.t. ω1

ris ď a_ bu “ cl.

Clearly f pa _ b, ωq Ę �a� since αi, j R cl . Also f pa _ b, ωq Ę �b� since αx,y R �b�. Moreover, αi, j P f pa, ωq since αx,y does not 
appear before on the same j-th row as αi, j , and αi, j does not appear anywhere in Rrωs before cl . Hence, f pa, ωq Y f pb, ωq Ę
f pa _ b, ωq.

(ð) Assume that F is sliceable, and hence for all ω P atpCpAqq, Cω “ tC1, C2, . . . , Ctu is a slice partition of Rrωs. We 
now prove that for all ω P atpCpAqq and a, b P A, f pa _ b, ωq Ę �a� and f pa _ b, ωq Ę �b� implies that f pa, ωq Y f pb, ωq Ď
f pa _b, ωq. Notice that the conditions f pa _b, ωq Ę �a� and f pa _b, ωq Ę �b� are equivalent to the existence of α, β P atpAq
such that α, β P f pa _b, ωq and α P �a� and α R �b�, and β P �b� but β R �a�, i.e., α ď a ̂ �b and β ď b ̂ �a. We distinguish 
two cases:

(1) α, β are in the same Cl P Cω , more precisely, α, β P Cl . This means that α and β appears in each row of Cl by 
Remark 3.12. Now, α, β P f pa _ b, ωq, implies f pa _ b, ωq Ď Cl . Indeed, by way of contradiction, assume there is γ P f pa _
b, ωq such that γ R Cl . If γ P Cz for some z ą l, by definition of the selection function f , α or β would appear before 
γ on the same row, contradicting the assumption that γ P f pa _ b, ωq. Thus, assume that γ P Cz for some z ă l. In this 
case, by Remark 3.12 again, γ appears in each row of Cz , and so, it must appears before α (β), in the same rows as α
(β). This implies that α ‰ γ and β ‰ γ and α, β R f pa _ b, ωq, contradicting our assumption. So, f pa _ b, ωq Ď Cl . By an 
analogous reasoning and using the fact that α P �a� and α R �b�, and β P �b� but β R �a�, we can show that f pa, ωq Ď Cl
and f pb, ωq Ď Cl .

Let cl be the first column of Cl so that f pa, ωq Ď cl “ Cl , f pb, ωq Ď cl “ Cl , and f pa _ b, ωq Ď cl “ Cl . Hence, 
f pa, ωq, f pb, ωq, f pa _b, ωq are all subsets of cl . Therefore, it cannot exists γ P f pa _b, ωq but γ R f pa, ωq and γ R f pb, ωq
because if γ ď a _ b, then γ ď a, γ ď b and γ P cl . And this implies f pa, ωq Y f pb, ωq Ď f pa _ b, ωq.

(2) α, β are in two different submatrices in Cω , i.e. for some Cl ‰ Cp P Cω , α P Cl , and β P C p . Thus, β R Cl . By contra-
diction, we show that this case cannot hold. Indeed, and without loss of generality, assume l ă p, then, by definition of Cω , 
α appears in each row of Cl . By reasoning analogously to the case (1) above, we can show that f pa _ b, ωq Ď Cl . This leads 
to a contradiction with the fact that β P f pa _ b, ωq but β R Cl . l

Proof of Proposition 5.3. As usual let us denote by FLpAq “ patpCpAqq, Rq the Lewis frame (dually) associated to the Lewis 
algebra LpAq. Let us prove the claim by induction on the complexity of � and in particular, let us show the claim for the 
case � “ ϕ |̋ ψ . In particular, let epϕq “ a and epψq “ b so that ep�q “lpa | bq in LpAq.
(ñ) Let ω P atpCpAqq such that χpαq “ω and ωďlpa | bq and hence H ‰ f pb, ωq Ď �a�. By Corollary 3.15, the matrix set 
of matrices Cω “ tC1, . . . , Ctu is a slice partition of Rrωs. Now, notice that there exists 1 ď l ď t such that

(i) f pb, ωq Ď Cl , i.e., Cl X �b� ‰H;
(ii) for all 1 ď j ă l, �b� X C j “H;

(iii) for all γ P Cl , γ , b Ñ a, that is to say H ‰ �b� X Cl Ď �a�.

By definition and construction of the sphere model 	χ

LpAq
there exists S PSωr1s “Sα such that S “ Cl . Thus by (i)–(iii), 

H ‰ S X �b� Ď �a�, i.e., α , pa |̋ bq.

(ð) Let us assume that α , pa |̋ bq, so that there exists S PSα such that H ‰ �b� X S Ď �a�. As above, let us call ω the 
atom χpαq, whence Sα “Sωr1s . Again, let C1 ¨ ¨ ¨Ct be the slice partition of Rrωs as endured by Corollary 3.15. Then, by 
construction, there exists 1 ď k ď t such that S “

Ťk
i“1 Ci and hence

H‰ �b�X
k

ď

i“1

Ci Ď �a�. (A.1)

Now, if there exists u ą k such that f pb, ωq Ď Cu then we would have that for all 1 ď j ď u, C j X �b� “H contradicting 
(A.1). Thus, there must exist 1 ď zď k such that f pb, ωq Ď Cz . Indeed it holds that f pb, ωq Ď Cz X �b�. Thus, by (A.1),
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f pb, ωq Ď �b�X
k

ď

i“1

Ci Ď �a�.

In other words, ωďlpa | bq. l

Proof of Proposition 5.6. By induction on the complexity of the formulas. The base case is the only informative one. Assume 
� “lpϕ |ψq. Observe, once again, that we can identify PpIq and L, L “PpIq, via the isomorphism

ι : LÑ PpIq

rϕs ÞÑ vpϕq

to simplify the notation, for every X P PpIq, we will henceforth write XL instead of ι´1pXq. Notice that each i P I is 
univocally associated to a minterm mi (see Proposition 4.8 and Corollary 4.9), and so, for any X PPpIq,

XL
“

«

ł

iPX

mi

ff

Hence, we will identify elements of I with atoms of L and, in general, elements of PpIq with elements of L. Now consider 
a selection function f	 : I ˆPpIq Ñ I defined on 	 such that for all i P I and X PPpIq:

f	pi, Xq “mintS PSi | S X X ‰HuX X

Intuitively, f	pi, Xq selects the closest possible worlds to i belonging to X . Hence, the semantics of counterfactuals with 
respect to total sphere models can be reformulated as:

i , pψ |̋ ϕq if and only if f	pi, vpϕqq Ď vpψq. (A.2)

Notice that, by the isomorphism mentioned above, (A.2) can be rewritten as

i , pψ |̋ ϕq if and only if p f	pi, vpϕqqqL ď rψsq. (A.3)

Now, consider the Lewis frame F	 “ ppCpLqq, Rq induced by 	 and take the selection function f on F	 as in Definition 3.6. 
Notice that for every element a of L and all atoms ω of CpLq, f pa, ωq can be identified with the element p f pa, ωqqL of L. 
Hence, the semantics of counterfactuals on F	 can be reformulated once again as it follows: for all ω P atpCpLqq,

ω ď epψ |̋ ϕq if and only if p f prϕs,ωqqL ď rψs. (A.4)

Now, we will prove that for all formulas ϕ in L such that ϕ is satisfiable, it holds that

for all i P I and all ω such that ωr1s “ i, f	pi, vpϕqq “ f prϕs,ωq (A.5)

To prove this, consider any i P I and ω P pCpLqq such that ωr1s “ i. Since Si “ tS1, . . . , Stu, by definition of f	 , there 
will be a least index l such that f	pi, vpϕqq Ď Sl . More formally, by definition of f	 , there is a Sl PSi such that for all k ă l, 
f	pi, vpϕqq R Sk and vpϕq X Sk “H and Sl X vpϕq ‰H. By the construction put forward in Subsection 5.2 that leads from 
sphere models to Lewis frame, we know that there is a slice partition Cω “ tC1, . . . , Ctu of Rrωs such that for all 1 ďm ď t , 
Cm “ Sm . Hence, there is Cl such that vpϕq X Cl ‰H and for all k ă l, Ck X vpϕq “H. Namely, Cl X vpϕq “ f	pi, vpϕqq. 
Moreover, by sliceability, we also know that Cl “ c1

l where c1
l is the first column of the submatrix Cl . Notice, also, that rows 

of Cl are permutations of elements of c1
l , hence we have that:

f prψs,ωq “ tω1
r js P pLq |ωRω1 and j is the smallest index s.t. ω1

r js ď rψsu “ Cl X vpϕq. (A.6)

This equality holds since, by the definition of Cw and by the isomorphism between L and PpIq, there is no element x
in Rrωs appearing before c1

l and such that x ď rϕs. Moreover, we know that Cl “ c1
l X vpϕq ‰H and that rows of Cl are 

permutations of elements of c1
l .

As a corollary of the above equality (A.6), we get that (A.5) holds. Hence, by (A.2), (A.3), (A.4) and (A.5) we have that:

i , pψ |̋ ϕq ô f	pi, vpϕqq Ď vpψq ô f	pi, rϕsq
L
ď rψs ô f prϕs,ωqL ď rψs ôω ď epψ |̋ ϕq. l
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