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Abstract

In this paper we investigate extensions of Gödel and Nilpotent Minimum
logics by adding rational truth-values as truth constants in the language and
by adding corresponding book-keeping axioms for the truth-constants. We
also investigate the rational extensions of some parametric families of Weak
Nilpotent Minimum logics, weaker than both Gödel and Nilpotent Minimum
logics. Weak and strong standard completeness of these logics are studied in
general and in particular when we restrict ourselves to formulas of the kind
r → ϕ, where r is a rational in [0, 1] and ϕ is a formula without rational
truth-constants.
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1 Introduction

As Pavelka pointed out in [11], it seems natural to introduce truth values in
the language in order to be able to deal with partial truth. With this aim, he
obtained a many-valued logical system over Lukasiewicz logic whose language
contained as many truth constants as truth values, i.e. a truth constant r
for each real r ∈ [0, 1], and a number of additional axioms. Although this
Lukasiewicz logic extended with truth-constants, PL, is not strong complete
(like Lukasiewicz logic), Pavelka proved that it is complete in a different sense.
Indeed, he introduced a weaker notion of strong completeness based on the
degrees of provability and truth of a formula ϕ in an arbitrary theory T . The
truth degree of ϕ in T is defined as

|| ϕ ||T = inf{e(ϕ) | e evaluation model of T }

∗This is an expanded and revised version of a preliminar version of a paper which
appears in the proc. of IPMU’2004.
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and the degree of provability of ϕ in T as

| ϕ |T = sup{r | T ⊢PL r → ϕ}.

Pavelka proved that these degrees coincide. This kind of completeness, which
strongly relies in the continuity of Lukasiewicz logic truth functions, is usually
known as Pavelka-style completeness. Moreover he also proved that Pavelka-
style completeness is preserved if and only if the language is extended with
any connective whose corresponding truth-function on the real unit interval is
a continuous (real) function.

Later, Hájek [10] proved that Pavelka’s logic PL could be significantly simplified
while keeping the completeness results. Namely, Hájek’s system is an extension
of Lukasiewicz logic by only a countable number of truth-constants, r for each
rational r ∈ [0, 1], and by two additional axiom schemata to deal with the
truth-constants, called book-keeping axioms:

r&s↔ r ∗ s
r → s↔ r ⇒ s

where ∗ and ⇒ are the t-norm of Lukasiewicz and its residuum respectively. He
denoted this new system as RPL, for Rational Pavelka Logic, and proved the
same results that Pavelka proved for his system with continuously many truth-
constants. Moreover, in [10] it is proved that RPL is strong complete for finite
theories. Remark that the semantics of RPL is kept on the real unit interval [0,
1].

Similar rational extensions for other popular fuzzy logics can be obviously de-
fined, but Pavelka-style completeness cannot be obtained since Lukasiewicz is
the only fuzzy logic with continuous truth-functions in the real unit interval
[0, 1]. For instance, in [10] Hájek defines an extension of G∆, the extension of
Gödel logic with Baaz’s Delta operator, with a finite number of rational truth-
constants. Later, in [4] the authors define logical systems obtained by adding
(rational) truth-constants to G∼ (Gödel logic with an involutive negation) and
to Π (Product logic) and Π∼ (Product logic with an involutive negation). For
the first system, RGL∼, usual strong completeness is proved for finite theories,
while for the second systems, RΠL and RΠL∼, it is possible to prove Pavelka-
style completeness provided an infinitary inference rule is added to overcome the
problem that the residuum of the product t-norm is not continuous at the point
(0, 0). Finally also notice that in [1] standard completeness of Gödel logic with
rational truth-constants is stated. Although the result holds true (see Section
3), the proof given there has some flaws.

Another different approach to reasoning with partial degrees of truth is the
framework of abstract fuzzy logics developed by Gerla [7] based on the notion
of fuzzy consequence or deduction operators over fuzzy sets of formulas, where
the membership degree of formulas are interpreted as lower bounds on their
truth degrees.
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In this paper we investigate the expansions with rational truth-constants, à la
Pavelka, of several extensions of the so-called Weak Nilpotent Minimum logic
WNM. WNM was introduced in [3] as the axiomatic extension of MTL by the
following axiom,

(WNM) (ϕ&ψ → 0) ∨ (ϕ ∧ ψ → ϕ&ψ)

and proved to be standard complete with respect to the family of WNM t-
norms and their residua. WNM t-norms are left-continuous t-norms defined
from a weak negation function n and the minimum t-norm in the following way

x ∗n y =

{

0, if x ≤ n(y)
min(x, y), otherwise

Well-known particular cases of WNM t-norms are the minimum t-norm (when
n is Gödel negation) and Fodor’s nilpotent t-norm (when n(x) = 1 − x).

In the first part of the paper we investigate the extensions of Gödel logic G and
Nilpotent minimum logic NM with rational truth-constants similar to RPL, that
we shall call respectively RG and RNM, and we prove different completeness
results, in the usual sense, for RG and for RNM. In the second part of the paper
we generalize the results to some particular extensions of the Weak Nilpotent
minimum logic WNM.

The paper is structured as follows. In next section we give a general formal ac-
count of algebraic semantics for the expansions of usual fuzzy logics with rational
truth-constants. This is done by means of Blok and Pigozzi’s theory of alge-
braization of propositional logics. Sections 3 and 4 are devoted to the rational
extensions of Gödel and Nilpotent Minimum logics and different completeness
results for them. In the first part of Section 5 we consider three different WNM
logics and prove their standard completeness. The rest of the section is devoted
to several standard completeness results for the rational expansions of these
logics. We conclude with some final remarks.

2 Preliminaries

Our general logical framework for this section will be that of MTL and its
axiomatic extensions. MTL logic was defined in [3] as a propositional logic in
the language L = {&,→,∧, 0}. We will denote by FmL the set of well-formed
formulas built over the language L and a countable set of propositional
variables. Axioms of MTL are:
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(A1) (ϕ→ ψ) → ((ψ → χ) → (ϕ→ χ))
(A2) (ϕ&ψ) → ϕ
(A3) (ϕ&ψ) → (ψ&ϕ)
(A4) (ϕ ∧ ψ) → ϕ
(A5) (ϕ ∧ ψ) → (ψ ∧ ϕ)
(A6) (ϕ&(ϕ→ ψ)) → (ϕ ∧ ψ)

(A7a) (ϕ→ (ψ → χ)) → ((ϕ&ψ) → χ)
(A7b) ((ϕ&ψ) → χ) → (ϕ→ (ψ → χ))

(A8) ((ϕ→ ψ) → χ) → (((ψ → ϕ) → χ) → χ)
(A9) 0 → ϕ

The rule of inference of MTL is modus ponens.

In the frame of MTL extensions, other usual connectives are definable, in par-
ticular 1 is ϕ→ ϕ, ¬ϕ is ϕ→ 0, ϕ∨ψ is ((ϕ→ ψ) → ψ)∧ ((ψ → ϕ) → ϕ), and
ϕ↔ ψ is (ϕ→ ψ) ∧ (ψ → ϕ).

In [3] an algebraic semantics for MTL was given, based on the notion of MTL-
algebras, i.e. bounded integral commutative residuated lattices satisfying the
prelinearity equation: (x → y) ∨ (y → x) ≈ 1. Let MTL be the variety of all
MTL-algebras.

Definition 1. Given Γ ∪ {ϕ} ⊆ FmL, we define:

If A ∈ MTL, Γ �A ϕ iff for all evaluations v in A, we have v(ϕ) = 1 whenever
v(ψ) = 1 for all ψ ∈ Γ.

Γ � ϕ iff for all A ∈ MTL we have Γ �A ϕ.

Then, one can prove this theorem of strong completeness for MTL logic:

Theorem 2. If Γ ∪ {ϕ} ⊆ FmL, then

Γ � ϕ iff Γ ⊢MTL ϕ.

But this result can be improved by means of the equational consequence:

Definition 3. Let EqL be the set of L-equations and let ∆ ∪ {ϕ ≈ ψ} ⊆ EqL.
We define the equational consequence by:

∆ �MTL ϕ ≈ ψ iff for all A ∈ MTL and for all evaluations v in A, we have
v(ϕ) = v(ψ) whenever v(α) = v(β) for all α ≈ β ∈ ∆.

Theorem 4. The relation of derivability in the system MTL and the equational
consequence in the variety MTL are mutually translatable:

1. For every Γ ∪ {ϕ} ⊆ FmL, Γ ⊢MTL ϕ iff {ψ ≈ 1 : ψ ∈ Γ} �MTL ϕ ≈ 1

2. For every ∆ ∪ {ϕ ≈ ψ} ⊆ EqL,
∆ �MTL ϕ ≈ ψ iff {α↔ β : α ≈ β ∈ ∆} ⊢MTL ϕ↔ ψ .

In addition, each one of these translations is the inverse of the other, that is:
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3. ϕ ≈ ψ �MTL ϕ↔ ψ ≈ 1 and ϕ↔ ψ ≈ 1 �MTL ϕ ≈ ψ

4. ϕ ⊢MTL ϕ↔ 1 and ϕ↔ 1 ⊢MTL ϕ .

Therefore, MTL is an algebraizable logic in the sense of Blok and Pigozzi (see
[2]) whose equivalent algebraic semantics is the variety MTL. Thus, using the
general theory of [2], all axiomatic extensions of MTL are also algebraizable in
this strong sense. Namely, if L denotes the extension of MTL by a given set of
axiom schemata Σ, the equivalent algebraic semantics of L is the subvariety of
MTL defined by the translation of the formulas in Σ into equations. We will
refer to the algebras of this subvariety as L-algebras.

There is another useful kind of completeness result for MTL, completeness with
respect to the totally ordered algebras (we will call them ’chains’):

Theorem 5. [3] Each MTL-algebra is isomorphic to a subdirect product of
MTL-chains.

As a consequence, Theorem 2 remains valid if the logical consequence |= in
Definition 1 is restricted to evaluations over MTL-chains. This is also true for
every axiomatic extension of MTL.

Now we will consider the algebraization of fuzzy logics with constant symbols
for the rationals. The new language we will use is RL = L∪{r : r ∈ Q∩ (0, 1)},
the expansion of L with new constant symbols, one for every rational in (0, 1).

Definition 6. Let L be MTL or any axiomatic extension of MTL and let ∗
be a left-continuous t-norm and ⇒ its residuum such that [0, 1]∗ = 〈[0, 1], ∗,⇒
,min,max, 0, 1〉 is an L-algebra and such that the set of rational numbers Q∩[0, 1]
is closed under ∗ and ⇒. By RL(∗) we will denote the propositional logic in the
language RL obtained by adding to L the so-called ’book-keeping axioms’:

r&s↔ r ∗ s

r ∧ s↔ min(r, s)
(r → s) ↔ r ⇒ s

for every r, s ∈ Q ∩ [0, 1].

RL(∗)-algebras are structures A = 〈A,&,→,∧,∨, {rA : r ∈ Q ∩ [0, 1]}〉 such
that:

1. 〈A,&,→,∧,∨, 0
A
, 1

A
〉 is a L-algebra,

2. for every r, s ∈ Q ∩ [0, 1] :

rA&sA = r ∗ sA

rA ∧ sA = min(r, s)
A

rA → sA = r ⇒ sA .

Given Γ ∪ {ϕ} ⊆ FmRL, we define Γ �A ϕ iff for all evaluations e in A (i.e.

such that e(r) = rA), we have e(ϕ) = 1
A

whenever e(ψ) = 1
A

for all ψ ∈ Γ.
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When A = [0, 1] and rA = r for all r ∈ Q∩ [0, 1], we say that A is the standard
RL(∗)-algebra1.

Using [2], it is easy to prove that RL(∗) is an algebraizable logic whose equiva-
lent algebraic semantics is the variety of RL(∗)-algebras. Also, using standard
techniques, we obtain completeness of RL(∗) with respect to linearly ordered
RL(∗)-algebras.

Theorem 7. For any Γ ∪ {ϕ} ⊆ FmRL, Γ ⊢RL(∗) ϕ iff Γ |=A ϕ for all RL(∗)-
chains A.

If L∗ is an extension of MTL such that is standard complete with respect the
left-continuous t-norm ∗, then for simplicity we will write RL∗ instead of RL∗(∗).

Since these logics are expansions of MTL, sharing modus ponens as the only
inference rule, they have the same local deduction-detachment theorem as MTL
has. In fact the proof for MTL also applies here.

Theorem 8. Let Γ ∪ {ϕ, ψ} ⊆ FmRL be such that Γ, ϕ ⊢RL(∗) ψ. Then, there

is a natural k ≥ 1 such that Γ ⊢RL(∗) ϕ
k → ψ.

Using this, we can prove the following proposition about conservative extensions:

Proposition 9. If L is weak standard complete w.r.t. [0, 1]∗, then RL(∗) is a
conservative extension of L.

Proof: Let Γ ∪ {ϕ} ⊆ FmL be such that Γ ⊢RL(∗) ϕ. Then, there is a finite set
Γ0 ⊆ Γ such that Γ0 ⊢RL(∗) ϕ, hence, by the previous theorem, there is k ≥ 1

such that ⊢RL(∗) (&Γ0)k → ϕ. Since RL(∗)-algebras are an algebraic semantics,

we have �A (&Γ0)k → ϕ where A is the standard L(∗)-algebra. Hence, using
that these formulas are written in L, �[0,1]∗ (&Γ0)k → ϕ, thus, by weak standard

completeness ⊢L (&Γ0)k → ϕ and, finally, Γ ⊢L ϕ.2 2

In the definition of RL(∗) we could wonder what happens if we consider an
isomorphic t-norm ◦ instead of ∗. In that case, we would obtain a different logic
(actually, the book-keeping axioms of RL(◦) are different from those of RL(∗)),
but both logics are translatable one to another as the following theorem proves.

Theorem 10. Let L be MTL or an extension of it, and let ∗, ◦ be two left-
continuous t-norms such that [0, 1]∗ and [0, 1]◦ are L-algebras and such that the
rationals numbers form a subalgebra of both algebras. Suppose that there is an
isomorphism3 from ∗ to ◦ such that for every rational number r, F (r) is also

1Notice that in such a case & and ∗ necessarily coincide (hence → and ⇒ as well),
since they coincide on the rationals and are left-continuous t-norms.

2We thank Petr Cintula for showing us this proof.
3That is, an order preserving bijection F : [0, 1] → [0, 1] such that x◦y = F−1(F (x)∗

F (y)) for all x, y ∈ [0, 1].
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rational. For any ϕ ∈ FmRL we write ϕ(r1, . . . , rn) to explicitely denote that the
truth-constants r1, . . . , rn appear in ϕ, and for every ϕ(r1, . . . , rn) ∈ FmRL we
define τ(ϕ(r1 , . . . , rn)) := ϕ(F (r1), . . . , F (rn)). Then τ is a translation between
RL(∗) and RL(◦), i. e., for every Γ ∪ {ϕ} ⊆ FmRL, Γ ⊢RL(∗) ϕ iff τ [Γ] ⊢RL(◦)

τ(ϕ).

Proof: Suppose 〈ϕ1, . . . , ϕn−1, ϕn = ϕ〉 is a proof in RL(∗) of ϕ from Γ. It is
sufficient to show that 〈τ(ϕ1), . . . , τ(ϕn−1), τ(ϕn) = τ(ϕ)〉 is a proof in RL(◦)
of τ(ϕ) from τ [Γ]. Take any i ≤ n. If ϕi is an axiom, then τ(ϕi) it is also
an axiom. Observe that since F is an isomorphism for the pairs (∗, ◦), hence
also for (⇒∗,⇒◦), the translation by τ of a book-keeping axiom of RL(∗) is a
book-keeping axiom of RL(◦)). It is also clear that if ϕi ∈ Γ, then τ(ϕi) ∈ τ [Γ],
and if ϕi is obtained by Modus Ponens, then also τ(ϕi) is obtained by Modus
Ponens. 2

3 Standard completeness results for RG and
RNM

From now on we will consider two particular logics of the type RL(∗), namely
for L being Gödel logic G and Nilpotent Minimum logic NM. Gödel logic is the
well-known extension of Hájek’s BL logic with the contraction axiom:

ϕ→ ϕ&ϕ (G)

which forces the equivalence of the connectives & and ∧. G is strong complete
w.r.t. the standard G-algebra [0, 1]G = 〈[0, 1],min,⇒G, 0, 1〉, defined by taking
∗ = min. ⇒G is its residuum, i.e. x ⇒G y = 1 if x ≤ y, x ⇒G y = y,
otherwise. This is actually the only G-algebra on [0, 1]. Moreover G has the
usual deduction theorem. Nilpotent Minimum logic NM was defined in [3] as
the axiomatic extension of MTL with the following axioms:

¬¬ϕ→ ϕ (Inv)
(ϕ&ψ → 0) ∨ (ϕ&ψ → ϕ ∧ ψ) (WNM)

NM is standard complete with respect to any NM-algebra on [0,1] (all are iso-
morphic), in particular with respect to the NM-algebra [0, 1]NM defined by the
so-called nilpotent minimum t-norm [6], defined as

x ∗NM y =

{

min(x, y), if x > 1 − y
0, otherwise

and its residuum

x⇒NM y =

{

1, if x ≤ y
max(1 − x, y), otherwise
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NM has a weaker form of deduction theorem, namely Γ, ψ ⊢NM ϕ iff Γ ⊢NM

(ψ&ψ) → ϕ, for any Γ ∪ {ϕ, ψ} ⊆ FmL.

In the following we will simplify the notation and we shall write RG for RG(min)
and RNM for RNM(∗NM ) and we will denote by [0, 1]RG and [0, 1]RNM their
corresponding standard algebras.

Next Theorems 13 and 14 prove weak standard completeness for RG and RNM
logics. But first we need to show how RG-chains and RNM-chains look like.

Lemma 11. For any RG-chain A = 〈A,&,→,∧,∨, {rA : r ∈ Q ∩ [0, 1]}〉 there
exists a real α ∈ [0, 1] such that:

(i) rA = 1
A

for any rational r > α, and
(ii) if α > 0, then rA < sA for any rationals r < s < α.

Proof: Assume that for two rationals r < s we have that rA = sA. Then, on the

one hand sA → rA = 1
A

, but on the other hand, s⇒G rA = rA, thus by the

book-keeping axioms we have rA = 1
A

, and hence r′
A

= 1
A

for each rational

r′ > r as well. Finally take α = inf{r | rA = 1
A
}. Notice that α can be 0 in

the special case that for all rationals r 6= 0, rA = 1
A

. 2

Lemma 12. For any RNM-chain A = 〈A,&,→,∧,∨, {rA : r ∈ Q ∩ [0, 1]}〉
there exists a real α ∈ [12 , 1] such that:

(i) rA = 1
A

for any rational r > α,

(ii) rA = 0
A

for any rational r < 1 − α, and
(iii) if α > 1

2 , then rA < sA for any rationals r and s such that 1 − α < r <
s < α.

Proof: Due to the book-keeping axioms, any RNM-chain has a negation fixpoint,

which is 1
2

A

. Moreover if for two rationals 1
2 < r < s we have rA = sA,

then, on the one hand sA → rA = 1
A

, and on the other hand, s⇒NM rA =

max(1 − s, r)
A

= rA, which imply, by the book-keeping axioms, that rA = 1
A

,

and hence r′
A

= 1
A

for each rational r′ > r as well. Then taking α = inf{r |

rA = 1
A
} (i) becomes obvious. (ii) and (iii) easily follow from the involutiveness

of the negation. Finally notice that it is possible that inf{r | r > 1
2 , r

A = 1
A
} =

1
2 . 2

Notice that Lemma 12 is a natural consequence of previous Lemma 11 taking
into account that a NM-chain is always isomorphic to a rotation of a Gödel hoop
in the sense of Jenei [9].

Theorem 13. ⊢RG ϕ if and only if �[0,1]RG
ϕ

Proof: The soundness part is trivial as usual. To prove completeness, suppose
0RG ϕ, then by completeness of RG w.r.t. the RG-chains, there exist a countable
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RG-chain C and an evaluation e over C such that e(ϕ) <C 1
C
. We have to show

there is an evaluation e′ on the standard algebra [0, 1]RG such that e′(ϕ) < 1.

Let X = {e(ψ) | ψ subformula of ϕ} ∪ {0
C
, 1

C
}.

Let α = min{r | r = 1 or r subformula of ϕ with rC = 1
C
}. Clearly α > 0. Let

g be an order-preserving injection of X into [0, α] satisfying g(rC) = r for r a

subformula of ϕ with r < α and, furthermore, g(1
C
) = α.

Then we define an RG-evaluation e′ on the standard RG-algebra [0, 1] as follows:
for all propositional variable p, e′(p) = g(e(p)) if p appears in ϕ and e′(p) = 1
otherwise. Then e′ is extended to RG-formulas as usual (of course with e′(r) = r
for each rational r).

Claim. For each ψ subformula of ϕ,

(1) if e(ψ) = 1
C

then e′(ψ) ≥ α,

(2) if e(ψ) < 1
C

then e′(ψ) = g(e(ψ)) < α.

The claim is clear for variables and for truth-constants r subformulas of ϕ. The
induction step for ∧ is trivial. Let us consider the case of →. If e(γ → δ) =

e(δ) < 1
C

then e′(δ) = g(e(δ)) < α. Now if e(γ) = 1
C

then e′(γ) ≥ α and

e′(γ → δ) = e′(δ) < α; and if e(γ) < 1
C

then e′(γ) = g(e(γ)) > g(e(δ)) = e′(δ),

thus again e′(γ → δ) = e′(δ) < α. On the other hand, assume e(γ → δ) = 1
C
,

thus e(γ) ≤ e(δ). If e(δ) = 1
C

then e′(γ → δ) ≥ e′(δ) ≥ α. And if e(δ) < 1
C

then e′(γ) = g(e(γ)) ≤ g(e(δ)) = e′(δ) and e′(γ → δ) = 1 ≥ α. This proves the
claim.

This also finishes the proof of the theorem; indeed, since e(ϕ) < 1
C
, then e′(ϕ) <

1 as required.

2

Theorem 14. ⊢RNM ϕ if, and only if, �[0,1]RNM
ϕ.

Proof: The proof can be done in a analogous way to the previous theorem for

RG, with some necessary changes. Assume e(ϕ) < 1
C

over a countable RNM-

chain C and let X = {e(ψ), nC(e(ψ)) | ψ subformula of ϕ} ∪ {0
C
, 1

C
}. Let

α = min{r | r = 1 or r subformula of ϕ with rC = 1
C
}. Clearly α > 0.5. We

define then an order-preserving injection g : 〈X,≤C〉 →֒ 〈[1 − α, α],≤〉 which
is strictly increasing and negation preserving over the elements of X and such

that g(rC) = r for all rC ∈ X \ {0
C
, 1

C
} and, furthermore, g(1

C
) = α and

g(0
C
) = 1 − α. Take into account that the negation is involutive and thus the

strict order is preserved by negation. Then, an RNM-evaluation e′ over the
standard RNM-algebra can be defined by putting for any propositional variable
p: e′(p) = g(e(p)) if p appears in ϕ and e′(p) = 1 otherwise. Notice that if x is a
propositional variable or a truth constant belonging to X , then e′(x) = g(e(x)).

Claim. For each ψ which is either a subformula of ϕ or the negation of a
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subformula of ϕ,

(1) if e(ψ) = 1
C
, then e′(ψ) ≥ α,

(2) if 0
C
< e(ψ) < 1

C
, then 1 − α < e′(ψ) = g(e(ψ)) < α,

(3) if e(ψ) = 0
C
, then e′(ψ) ≤ 1 − α. Therefore, in particular, e′(ϕ) < 1.

This is proved again by induction on the complexity of ψ. It is clear for vari-
ables and for truth-constants. The induction step for ¬ is also straightforward.
Suppose ψ = γ&δ.

If e(ψ) = 1
C
, then e(γ) = e(δ) = 1

C
, hence e′(γ), e′(δ) ≥ α, so e′(ψ) ≥ α.

If 0
C
< e(ψ) < 1

C
, then e(ψ) = e(γ) ∧ e(δ) and e(γ) > ¬e(δ). Suppose, for

instance, e(γ) ≤ e(δ). So, e(ψ) = e(γ) and e′(γ) = g(e(γ)) ∈ (1 − α, α). We
distinguish two cases:

(a) if e(δ) = 1
C
, then e′(δ) ≥ α. Therefore, e′(ψ) = e′(γ)&e′(δ) = e′(γ)∧e′(δ) =

e′(γ) = g(e(γ)) = g(e(ψ)) ∈ (1 − α, α).

(b) if e(δ) < 1
C
, then e′(δ) = g(e(δ)) ∈ (1 − α, α). Since g is increasing,

e′(γ) ≤ e′(δ). Moreover, since 1
C
> e(γ) > e(¬δ) > 0

C
, we obtain e′(γ) > e′(¬δ)

also applying the monotonocity of g. Thus e′(ψ) = e′(γ)&e′(δ) = e′(γ)∧e′(δ) =
e′(γ) = g(e(γ)) = g(e(ψ)) ∈ (1 − α, α).

If e(ψ) = 0
C
, then e(γ) ≤ ¬e(δ). Now we distinguish three cases:

(a) if e(γ) = 0
C
, then e′(γ) ≤ 1 − α, so e′(ψ) ≤ 1 − α.

(b) if 0
C
< e(γ) ≤ ¬e(δ) < 1

C
, then e′(γ) ≤ ¬e′(δ), so e′(ψ) = 0 ≤ 1 − α.

(c) 0
C
< e(γ) ≤ ¬e(δ) = 1

C
, then e(δ) = 0

C
, so e′(δ) ≤ 1−α and e′(ψ) ≤ 1−α.

2

4 On finite strong standard completeness for
RG and RNM

G and NM are strongly standard complete4 for arbitrary theories, hence, by
Proposition 9, RG and RNM are conservative extensions of G an NM respec-
tively. On the other hand RG and RNM are not strong standard complete for
arbitrary theories, even for finite theories. Namely, for any rational 0 < r < 1
and any propositional variable p, r 0RG p but it trivially holds that r �[0,1]RG

p
since there is no evaluation which is a model of r. The same is also true for
RNM. Looking at this example, one could think that the reason of failure is that
the theory used, T = {r}, is somewhat special, in the sense that it is not sat-
isfiable. So we could try to check whether strong standard completeness holds
restricted to satisfiable theories. Unfortunately, being satisfiable is not a suffi-
cient condition either for strong standard completeness, even for Pavelka-style
completeness, as the following example shows.

Example 1. Let T = {r ∨ p}, where 0 < r < 1 and p is a propositional

4In [10] it is proved for G and an analogous proof shows the completeness of NM.
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variable. It is clear that T is satisfiable for any evaluation e such that e(p) =
1, and that T �[0,1]RG

p. But again T 6⊢RG p since if so, by the deduction
and weak standard completeness theorems for RG, it should also be true that
�[0,1]RG

(r ∨ p) → p, which is false for any evaluation with e(p) < r. Moreover
Pavelka-style completeness also fails. Namely, it is clear that,

|| p ||T = inf{e(p) | e(r ∨ p) = 1} = 1

but
| p |T = sup{s | T ⊢RG s→ p} = 0.

To prove this last equality take into account that again by the deduction and
weak standard completeness theorems for RG, T ⊢RG s→ p iff �[0,1]RG

(r∨p) →
(s → p) and this only holds true for s = 0. Indeed, if s 6= 0, take an evaluation
such that e(p) = 0, then e((r ∨ p) → (s → p)) = r ⇒G 0 = 0. 5

The same example is also valid for RNM. If T ⊢[0,1]RNM
p were true, then

we would have �[0,1]RNM
((r ∨ p)&(r ∨ p)) → p, but this is false (take e such

that e(p) = 0 and r > 0.5). For Pavelka-style completeness notice that similar
arguments to the case of RG lead to || p ||T = 1 and | p |T≤ 1 − (r ∗NM r). 2

Finally we will prove that RG is strongly standard complete if we restrict our-
selves to formulas of the type r → ϕ, where ϕ is a formula without rational
truth-constants (a formula of G), and expressing that ϕ is true at least to the
degree r. This type of formulas are also commonly denoted in the fuzzy logic
setting as pairs (ϕ, r). We shall also adopt this notation from now on. Notice
that Gerla’s fuzzy sets of formulas [7] exactly correspond to sets of this kind of
formulas.

We want to show that the following equivalence holds true:

{(ψi, ri) | i = 1, 2, .., n} ⊢RG (ϕ, s)
if and only if

{(ψi, ri) | i = 1, 2, .., n} �[0,1]RG
(ϕ, s)

To prove this result we need some previous results and lemmas. Actually, due
to the fact that RG enjoys the (syntactical) deduction theorem and to the weak
standard completeness, one can easily notice that proving the above restricted
(finite) strong standard completeness for RG amounts to prove the following
semantical version of the deduction theorem:

{(ψi, ri) | i = 1, 2, .., n} �[0,1]RG
(ϕ, s)

if, and only if,
�[0,1]RG

(
∧

i=1,2,..,n(ψi, ri)) → (ϕ, s).

5Notice that these negative results are also valid for any logic standard complete
with respect to a continuous t-norm defining a SBL-algebra, because in such a logic the
generalized deduction theorem (like in BL) holds and the negation is Gödel negation.
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Accordingly, in what follows we prove this.

Lemma 15. Let a ∈ (0, 1] and define a mapping fa : [0, 1] → [0, 1] as follows:

fa(x) =

{

1, if x ≥ a
x, otherwise

Then fa is a morphism with respect to the standard Gödel truth functions.
Therefore, if e is a G-evaluation of formulas, then ea = fa ◦ e is another G-
evaluation.

Proof: We have to prove: (i) fa(0) = 0, (ii) fa(min(x, y)) = min(fa(x), fa(y)),
and (iii) fa(x ⇒G y) = fa(x) ⇒G fa(y). (i) is obvious and (ii) is also easy
immediate since fa is a non-decreasing function. So let us prove (iii). We
consider two cases:

Case A : x ≤ y, x ⇒G y = 1. In this case, fa(x) ≤ fa(y) as well, hence
fa(x⇒G y) = f(1) = 1 = fa(x) ⇒G fa(y).

Case B : x > y, x⇒G y = y. Now we distinguish the following three sub-cases:

B.1 : a ≤ y < x, fa(x ⇒G y) = 1. In this case fa(x) = fa(y) = 1 and
hence fa(x) ⇒G fa(y) = 1;

B.2 : y < a ≤ x, fa(x ⇒G y) = y. In this case fa(x) = 1, fa(y) = y and
hence fa(x) ⇒G fa(y) = y;

B.3 : y < x < a, fa(x ⇒G y) = y. In this case fa(y) = y, fa(x) = x, and
hence fa(x) ⇒G fa(y) = y.

So, in any of the subcases, fa(x⇒G y) = fa(x) ⇒G fa(y).

This ends the proof. 2

Theorem 16.

{(ϕ1, α1), . . . , (ϕn, αn)} |=[0,1]RG
(ψ, β) iff |=[0,1]RG

(
∧n

i=1(ϕi, αi)) → (ψ, β).

Proof: One direction is easy. As for the difficult one, it is enough to prove that
if there is an evaluation e which is not a model of (

∧n
i=1(ϕi, αi)) → (ψ, β), then

we can find another evaluation e′ which is model of {(ϕ1, α1), . . . , (ϕn, αn)} and
not of (ψ, β).

So let e be such that e((
∧n

i=1(ϕi, αi)) → (ψ, β)) < 1. If e is a model of
every (ϕi, αi) for i = 1, ..., n, then we can take e′ = e and the problem is
solved. Otherwise, there exists some 1 ≤ j ≤ n for which αj > e(ϕj) and thus
e((ϕj , αj)) = e(ϕj) < 1. Let J = {j | αj > e(ϕj)} and let a = e(

∧n
i=1(ϕi, αi)) =

min{e(ϕj) | j ∈ J}. Then the RG-evaluation e′ such that e′ = ea over the propo-
sitional variables does the job. Namely, by Lemma 15, over Gödel formulas we
have e′ = ea ≥ e, so e′ is still model of those (ϕi, αi)’s for i ∈ {1, . . . , n}\J . But
now, e′(ϕj) = 1 for every j ∈ J , so e′ is also a model of {(ϕ1, α1), . . . , (ϕn, αn)}.
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On the other hand, since e((
∧n

i=1(ϕi, αi)) → (ψ, β)) < 1, it must be β > e(ψ)
and a = e(

∧n
i=1(ϕi, αi)) > e(ψ). Now, by Lemma 15, e′(ψ) = ea(ψ) = e(ψ),

hence e′(ψ, β)) = e(ψ, β) < 1. Therefore we have proved the theorem. 2

After this last theorem, the announced result of finite strong completeness of
RG when restricted to formulas of the kind (ϕ, α) comes as an easy corollary.

Theorem 17. {(ψi, ri) | i = 1, 2, .., n} ⊢RG (ϕ, s) if, and only if, {(ψi, ri) | i =
1, 2, .., n} �[0,1]RG

(ϕ, s) .

Remark 1. Last theorem is valid for the restricted language of formulas of the
kind r → ϕ. The validity of these type of formulas expresses that r is a lower
bound for the truth value of ϕ. We might wonder whether an analogous theorem
could be also valid for formulas of the type ϕ→ r, whose validity expresses that
r is an upper bound for the truth value of ϕ. Unfortunately this is not true as
we can see with the following simple example. It is easy to check that

¬¬p → 0.3 |=[0,1]RG
p→ 0

since the premise is only true if e(p) = 0, while

6|=[0,1]RG
(¬¬p → 0.3) → (p→ 0)

since if e(p) = c for c > 0.3 an easy computation shows that e((¬¬p → 0.3) →
(p→ 0)) = 0.

Finally, we show that a similar, although a bit weaker, complenetess result holds
for RNM.

Lemma 18. Let a ∈ (1
2 , 1] and define a mapping fa : [0, 1] → [0, 1] as follows:

fa(x) =







1, if x ≥ a
0, if x ≤ 1 − a
x, otherwise

Then fa is a morphism with respect to the standard Nilpotent Minimum logic
truth functions. Therefore, if e is a NM-evaluation of formulas, then ea = fa ◦e
is another NM-evaluation.

Proof: Since ⇒NM is definable from ∗NM and the standard negation n(x) =
1− x, it is enough to prove: (i) fa(0) = 0, (ii) fa(x ∗NM y) = fa(x) ∗NM fa(y),
and (iii) fa(1 − x) = 1 − fa(x). (i) is obvious and (iii) is easy. As for (ii)
we consider the following cases. For x, y > 1

2 , x ∗NM y = min(x, y) and fa is
non-decreasing, so (ii) easily holds true. For x, y ≤ 1

2 , x ∗NM y = 0 and fa

is non-increasing, so fa(x ∗NM y) = fa(x) ∗NM fa(y) = 0. Finally, assume
x > 1

2 ≥ y. In this case a careful check shows that

fa(x ∗NM y) = fa(x) ∗NM fa(y) =

{

y, if y > max(1 − x, 1 − a)
0, otherwise.

Hence, the lemma is proved. 2
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Theorem 19. Let α1, . . . , αn ∈ (1
2 , 1]. Then:

{(ϕ1, α1), . . . , (ϕn, αn)} |=[0,1]RNM
(ψ, β) iff |=[0,1]RNM

(&n
i=1(ϕi, αi))

2 →
(ψ, β).

Proof: One direction is easy. As for the difficult one, it is enough to prove that
if there is an evaluation e which is not a model of (&n

i=1(ϕi, αi))
2 → (ψ, β), then

we can find another evaluation e′ which is model of {(ϕ1, α1), . . . , (ϕn, αn)} and
not of (ψ, β).

So let e be such that e((&n
i=1(ϕi, αi))

2 → (ψ, β)) < 1, i.e. e((&n
i=1(ϕi, αi))

2) >
e((ψ, β)). This means that:
(i) e((&n

i=1(ϕi, αi))
2) > 0, hence for all i we have e((ϕi, αi)

2) > 0, hence for all
i we have e((ϕi, αi)

2) = e((ϕi, αi)) = max(1 − αi, e(ϕi)) = e(ϕi) >
1
2 , and also

e((&n
i=1(ϕi, αi))

2) = minn
i=1 e((ϕi, αi));

(ii) e((ψ, β)) < 1, hence β > e(ψ) and e((ψ, β)) = max(1 − β, e(ψ)).
Therefore we are assuming an evaluation e such that minn

i=1 e((ϕi, αi)) >
max(1 − β, e(ψ)), with β > e(ψ).

If e is a model of every (ϕi, αi) for i = 1, ..., n, then we can take e′ = e and the
problem is solved. Otherwise, there exists some 1 ≤ j ≤ n for which αj > e(ϕj)
and thus e((ϕj , αj)) = max(1 − αj , e(ϕj)) = e(ϕj) < 1, the last equality due to
the fact that we are assuming max(1 − αj , e(ϕj)) > 1

2 and αj >
1
2 .

Let J = {j | αj > e(ϕj)} and let a = e((&n
i=1(ϕi, αi))

2) = min{e(ϕj) | j ∈ J}.
Then the RNM-evaluation e′ such that e′ = ea over the propositional variables
does the job. Namely, by Lemma 18, over NM-formulas χ such that e(χ) ≥
1 − a, we have e′(χ) = ea(χ) ≥ e(χ), so e′ is still model of those (ϕi, αi)’s for
i ∈ {1, . . . , n} \ J . Moreover now, e′(ϕj) = 1 for every j ∈ J , so e′ is also a
model of {(ϕ1, α1), . . . , (ϕn, αn)}.

On the other hand, since β > e(ψ) and e(ψ) < a, it turns out, due to Lemma 18,
that e′(ψ) = ea(ψ) ≤ e(ψ) and therefore β > e′(ψ) as well. So, e′((ψ, β)) < 1.
This ends the proof. 2

As in the case of RG, from this last result it follows the next restricted form of
finite strong standard completeness for RNM.

Theorem 20. Let α1, . . . , αn ∈ (1
2 , 1]. Then:

{(ϕ1, α1), . . . , (ϕn, αn)} ⊢RNM (ψ, β) iff {(ϕ1, α1), . . . , (ϕn, αn)} |=[0,1]RNM

(ψ, β).

One could ask whether the conditions α1, . . . , αn ∈ (1
2 , 1] in the above theorem

are actually necessary. In fact this is so, as the following example shows. It is
easy to check that

{(p ∨ q, 0.7), (¬p, 0.35)} |=[0,1]RNM
(q, 0.7)

since for any evaluation e in [0, 1]RNM such that max(e(p), e(q)) ≥ 0.7 and
e(p) ≤ 0.65 necessarily it must be e(q) ≥ 0.7. On the other hand, it is also not
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difficult to check that

6|=[0,1]RNM
[(p ∨ q, 0.7)2&(¬p, 0.35)2] → (q, 0.7).

It is enough to take an RNM-evaluation e such that e(p) = 0.7 and e(q) = 0.6:
the left-hand side of the implication is evaluated to 0.65 while the right-hand
side is evaluated to 0.6.

Finally notice in this case the fact that negation is involutive implies the equiv-
alence between formulas ϕ → r and ¬r → ¬ϕ, which in turn implies that,
in contrast to what happens with RG, Theorem 19, and thus the finite strong
standard completeness as well, is also valid for formulas of type ϕ → r with
r ∈ [0, 1

2 ).

5 Three families of rational extensions of the
Weak Nilpotent logic

Weak Nilpotent Minimum logic was introduced in [3] as the axiomatic extension
of MTL by the following axiom,

(WNM) (ϕ&ψ → 0) ∨ (ϕ ∧ ψ → ϕ&ψ)

and proved to be standard complete with respect to the family of WNM t-
norms and their residua. WNM t-norms are left-continuous t-norms defined
from a weak negation function6 n and the minimum t-norm in the following
way

x ∗n y =

{

0, if x ≤ n(y)
min(x, y), otherwise

Well-known particular cases of WNM t-norms are the minimum t-norm (when
n is Gödel negation) and Fodor’s nilpotent t-norm (when n(x) = 1 − x).

WNM logic enjoys the same type of deduction theorem as NM logic, that is, it
holds that T ∪ {ϕ} ⊢WNM ψ iff T ⊢WNM ϕ&ϕ→ ψ.

The whole structure of the variety of WNM-algebras is still not known and there
is not a general result giving, for each WNM t-norm ∗, the axiomatic charac-
terization of the logic complete with respect to ∗ and its residuum, denoted
WNM∗. The lack of this axiomatics makes impossible to define in general its
corresponding rational logic RWNM∗ (using the notation introduced in the
preliminaries), with the exception of Gödel logic (G) and Nilpotent Minimum
logic (NM), both extensions of WNM logic, whose rational expansions have been
studied in the previous sections.

6A weak negation function is a mapping n : [0, 1] → [0, 1] such that n is decreasing,
n(0) = 1, n(1) = 0 and n(n(x)) ≥ x for all x ∈ [0, 1].
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Figure 1: WNM t-norms ∗c, ⋆c and ◦c, respectively.

In this section we first introduce three new axiomatic extensions of WNM, two
weaker than G and two weaker than NM, whose corresponding varieties are
proved to be generated by a WNM t-norm and hence they are suitable for
defining their rational expansions. We then prove the (weak) standard com-
pleteness of these rational expansions and finally, analogously to the cases of
RG and RNM, we prove they are strongly finite standard complete when the
language is restricted to formulas of type (ϕ, r).

5.1 Characterization of three subvarieties of WNM

We now introduce three classes of WNM t-norms. Let ∗c for any c ∈ [0, 1),
⋆c for any c ∈ [ 12 , 1) and ◦c for any c ∈ [ 12 , 1] be the WNM t-norms defined
respectively by the negation functions on [0, 1] n∗c

, n⋆c
and n◦c

given in Figure
1 and defined by,

n∗c
(x) =







1, if x = 0
c, if x ≤ c
0, otherwise

n⋆c
(x) =

{

1 − x, if x ∈ [0, 1 − c] ∪ (c, 1]
c, otherwise

n◦c
(x) =

{

1 − x, if x ∈ [0, 1 − c] ∪ [c, 1]
1 − c, otherwise

Remark 2. It is the case that for any c1, c2 > 0 the corresponding t-norms
∗c1

and ∗c2
are isomorphic, while for any 1 > c1, c2 > 1/2 the pairs of t-

norms ⋆c1
and ⋆c2

, and ◦c1
, and ◦c2

are also isomorphic7. However the limiting

7 Actually, the two families of t-norms {⋆c : c > 1/2} and {◦c : c > 1/2} are
also respectively isomorphic to those families of weak nilpotent minimums obtained
by distorting any involutive negation function n (instead of the standard negation
¬x = 1 − x) with a constant segment of value n(c) or c respectively in the interval
[n(c), c].

16



cases of these families behave different. Namely, when c = 0, ∗0 = min and
it is not isomorphic to any ∗c for c > 0. Similarly, for c = 1/2, we have
that ⋆1/2 = ◦1/2 = ∗NM (the nilpotent minimum t-norm), which is isomorphic
neither to ⋆c nor ◦c for c > 1/2. Finally, for c = 1, ◦1 = min, which is obvioulsy
not isomorphic to ◦c for any c < 1.

Next we define three corresponding axiomatic extensions of WNM logic. WNM∗

is the axiomatic extension of WNM by adding the axiom

(ϕ→ ϕ2) → ((ϕ ∧ ψ) → (ϕ&ψ)),

WNM⋆ is the axiomatic extension of WNM by adding the axiom

(¬¬ϕ→ ϕ) ∨ (¬¬ϕ↔ ¬ϕ),

and WNM◦ is the axiomatic extension of WNM by adding the axioms

(¬¬ϕ→ ϕ) ∨ (¬¬ψ → ψ) ∨ ((¬ϕ↔ ¬ψ) ∧ (¬ϕ→ ϕ))
(¬¬p(ϕ) → p(ϕ)) ∨ ((¬¬p(ψ) → p(ψ)) → (p(ϕ) → p(ψ)))

where p(χ) denotes χ ∨ ¬χ. Actually, Gödel logic is an axiomatic extension of
both WNM∗ and WNM◦, while Nilpotent Minimum logic NM is an axiomatic
extension of both WNM⋆ and WNM◦.

Next we will prove that, for any 0 < c < 1, WNM∗ is the logic of the t-norm
∗c, and for any 1/2 < c < 1, WNM⋆ and WNM◦ are the logics of ⋆c and ◦c

respectively.

Lemma 21. Let A be a WNM-chain . Then:

(i) A is a WNM∗-chain iff there exists an element c ∈ A such that the negation

in A is like n∗c
, i.e. ¬x = c for 0

A
< x ≤ c and ¬x = 0

A
for x > c.

(ii) A is a WNM⋆-chain iff it has a fixpoint c and it is such that the negation
is involutive except for a segment ending in c in which ¬ is constantly c.

(iii) A is a WNM◦-chain iff there exists an element d such that d ≤ ¬d and

that ¬ is involutive in the segments [0
A
, d] and in [¬d, 1

A
] and ¬x = d for

x ∈ (d,¬d].

Proof. (i) If ¬x = 0
A

for all x different from 0
A

, then ¬ is Gödel negation and

& = min. Otherwise assume there exists x ∈ A different from 0
A

such that ¬x >
0
A

, and let c = ¬x. Let us show that c = max{x ∈ A | x&x = 0
A
}. Indeed, if

c&c = n(x)&n(x) > 0 then, by the axiom of WNM∗, n(x)&x = x ∧ n(x) > 0,

contradiction. Hence c&c = 0
A

. On the other hand, if y&y > 0 then it must be
y > n(x) = c (otherwise, if y ≤ n(x), then y&y ≤ n(x)&n(x) = 0).

Moreover, by the axiom of WNM∗, if y > c, then y&x = x ∧ y for all x.
Altogether leads to have, for all x, y ∈ A:
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x&y =

{

x ∧ y, if x > c or y > c
0, otherwise

This proves (i).

(ii) If x = ¬¬x for all x then ¬ is involutive and A is a NM-chain. Otherwise
assume there exists x ∈ A such that x < ¬¬x, and let c = ¬x. Observe that
¬c = c since, by the axiom of WNM⋆, x < ¬¬x implies ¬c = ¬¬x = ¬x = c.
Hence also x ≤ ¬¬x = c. Let us show:

(1) If y < ¬¬y then ¬y = c.

proof: if y < ¬¬y then ¬y = ¬¬y, hence ¬y is a fix point of ¬ and thus
necessarily ¬y = c (since c is a fix point and at most there is one).

(2) If y > c then y = ¬¬y.

proof: if y > c then ¬y ≤ c. If ¬y < c then by (1) y = ¬¬y. If ¬y = c assume
y < ¬¬y, hence c = ¬y = ¬¬y > y, contradiction.

(3) If y < ¬y and ¬y 6= c then y = ¬¬y.

proof: otherwise, by the axiom of WNM⋆, it would be ¬¬y = ¬y, and hence
¬y = c, contradiction.

Therefore, ¬ is such that it is involutive on the set B = {x,¬x | x > c} and
¬x = c for x ∈ A \B. This proves (ii).

(iii) If x = ¬¬x for all x then ¬ is involutive and A is a NM-chain. Otherwise
assume there exists x ∈ A such that x < ¬¬x, and let d = ¬x and c = ¬d = ¬¬c.
Observe the following:

(1) By the first axiom of WNM◦, if y and z are such that y < ¬¬y and z < ¬¬z
then ¬y = ¬z = d. Moreover, if y < ¬¬y then ¬y ≤ y and reciprocally if
¬y > y then y = ¬¬y. If also follows that d < c. Otherwise, if d ≥ c then
¬x = d ≥ c = ¬¬x > x, contradiction.

(2) If y > c then y = ¬¬y.

proof: indeed, if y < ¬¬y then ¬y = d, hence y < ¬¬y = c, contradiction.

(3) If y = ¬¬y > ¬y and z < ¬¬z then z > y.

proof: this follows from the second axiom of WNM◦.

(4) If y > d then y > ¬y.

proof: If y > d then ¬y ≤ ¬d = c. Now assume y ≤ ¬y, then by (3) ¬y ≥ c,
hence ¬y = c, hence ¬¬y = ¬c = d < y, contradiction.

All these properties lead to have ¬ defined as follows: if d < x ≤ c then ¬x = d,
otherwise it is such that ¬¬x = x.

Corollary 22. Let A be a WNM-chain on [0, 1] and let ¬ be its negation.
Then:
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• A is a WNM∗-chain iff there exists c < 1 such that ¬ = n∗c
.

• A is a WNM⋆-chain iff there exists c ∈ [1/2, 1) such that ¬ is isomorphic8

to n⋆c
.

• A is a WNM◦-chain iff there exists c ∈ [1/2, 1] such that ¬ is isomorphic
to n◦c

.

Theorem 23. If + denotes ∗, ⋆ or ◦, the logic WNM+ is complete with respect
to each one of the following sets of chains:

(1) the linearly ordered WNM+-chains.

(2) the WNM+-chains over [0,1].

(3) the WNM+-chain over [0,1] defined by a t-norm +c, where 0 < c < 1 for
+ being ∗ and 1/2 < c < 1 for + being ⋆ or ◦.

Proof. We sketch the proof for WNM∗, the proofs for WNM⋆ and WNM◦

are similar. The first result (1) is a particular case of the general result about
all axiomatic extensions of MTL (see preliminaries). The proof of (2) is actu-
ally completely analogous with the obvious changes to the proof of standard
completeness of WNM given in [3]. Finally, from the last corollary, the only
WNM∗-chains on [0, 1] are those defined by the WNM t-norms ∗c, for c ∈ [0, 1).
But it is easy to prove that all t-norms ∗c with c > 0 are isomorphic and that
∗0 (= min) is isomorphic to the subalgebra of any of them defined on the subset
{0}∪(c, 1]. Thus any WNM∗-chain over [0,1] defined by a t-norm ∗c with c > 0
generates the whole variety of WNM∗-algebras. Hence (3) is proved.

Notice that, according to Footnote 7, in (3) of the above theorem we could also
consider other isomorphic t-norms for the cases of + being ⋆ and ◦.

5.2 Standard completeness of logics RWNM∗, RWNM⋆

and RWNM◦

Now we will consider rational expansions of the logics WNM∗, WNM⋆ and
WNM◦. To do so, as previously done, we add to the language as many truth-
constants as rationals in (0,1), and we add to the each one of these logics a set
of book-keeping axioms corresponding to one t-norm whose induced standard
algebra belongs to the corresponding variety of the logic. Actually, given any
of the three logics, we obtain a different rational expansion for each particular
t-norm used to define the book-keeping axioms, since these axioms are obvi-
ously different. However, for each one of these three logics, only two of their
rational expansions are really different, in the sense of Theorem 10 of not being
translatable. Namely, according to Remark 2 and Corollary 22, it will suffice

8In the sense of Trillas [12].
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for WNM∗ to consider the rational expansions RWNM∗(∗c) only for two t-
norms, ∗0 = min and one ∗c for some c > 0, while for the cases of WNM⋆

and WNM◦ it will suffice to consider the rational expansions RWNM⋆(⋆c) and
RWNM◦(◦c) only for the t-norm ⋆1/2 = ◦1/2 and for one pair of t-norms ⋆c

and ◦c respectively for some c > 1/2.

In order to prove standard completeness for these rational expansions, we start
with the following general lemma that describes how rational constants are
distributed in the linearly ordered algebras of these logics.

Lemma 24. Let + denote ∗, ⋆ or ◦, and let c be any suitable parameter defining
the t-norms ∗c, ⋆c or ◦c. For any RWNM+(+c)-chain A = 〈A,&,→,∧,∨, {rA :
r ∈ Q ∩ [0, 1]}〉 (hence satisfying the book-keeping axioms of +c) the following
conditions hold:

(i) The set R1 = {r ∈ Q | rA = 1
A
} is a right-closed interval with 1 as upper

bound.

(ii) The set R0 = {r ∈ Q | rA = 0
A
} coincides with n+c

(R1).

(iii) rA < sA for any rationals r < s not belonging to R1 ∪R0.

(iv) If r ∈ R1 then n+c
(r) < r. If r ∈ R0 then n+c

(r) ≥ r.

(v) If r < n+c
(r) then rA < ¬rA.

(vi) If r = n+c
(r) then rA = ¬rA.

(vii) If r > n+c
(r) then rA > ¬rA.

(v) If n+c
(r) = n+c

(s) then ¬rA = ¬sA.

(v) If r = n+c
(n+c

(r)) then rA = ¬¬rA.

Proof. Items (i), and (ii) and (iii) are generalizations of Lemmas 11 and 12 and
are proved very similarly. The rest of items are quite straightforward.

Let RWNM∗c
, RWNM⋆c

and RWNM◦c
be these logics respectively, where c is

any suitable parameter defining the t-norms ∗c, ⋆c or ◦c. Next result establishes
the (weak) standard completeness of the logics with respect to any WNM t-norm
of their corresponding families.

Theorem 25. If + denotes ∗, ⋆ or ◦, and c any suitable parameter defining the
t-norms ∗c, ⋆c or ◦c, then ⊢RWNM+c

ϕ if, and only if, �[0,1]+c
ϕ.

Proof: The proof for RWNM∗c
is very similar to that of Theorem 13 for RG

and the proof for RWNM⋆c
is very similar to that of Theorem 14 for RNM.

We will not repeat them at full detail here since the contructions are essentially
the same. Given that 0RWNM+

ϕ, there exists a countable RWNM+-chain C
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and an evaluation over C such that e(ϕ) < 1
C
, and the task is to define another

evaluation e′ over a RWNM+-chain on [0, 1] such that e′(ϕ) < 1. Let again

X = {e(ψ), nC(e(ψ)), nC(nC(e(ψ))) | ψ subformula of ϕ}∪{0
C
, 1

C
} and define

α = min{r | r = 1 or r subformula of ϕ with rC = 1
C
}. Note that α > c.

The previous Lemma 24 allows to define a strictly increasing injection

g : 〈X,≤C〉 →֒ 〈[n+c
(α), α],≤〉

which also preserves the negation in X and such that g(rC) = r for all rC ∈

X \ {0
C
, 1

C
} and, furthermore, g(1

C
) = α and g(0

C
) = n+c

(α). Then the
evaluation e′ we are looking for is defined by putting for each propositional
variable p, e′(p) = g(e(p)) if p ∈ X and e′(p) = 1 otherwise, together with
e′(r) = r for each rational r. The proof for RWNM◦c

is a slight modification
of the previous. 2

5.3 On finite strong standard completeness for RWNM∗,

RWNM⋆ and RWNM◦

Regarding the issue of strong (standard) completeness the situation is again
very similar to that for RG and RNM. Actually, the same examples given in
Section 4 also work, with slight adaptations, to show that the rational logics
RWNM∗, RWNM⋆ and RWNM◦ have neither (finite) strong standard com-
pleteness nor Pavelka-style completeness. Nevertheless, again as in the cases of
RG and RNM, these logics are (finite) strong standard complete if we restrict
ourselves to formulas of type r → ϕ. And again, due to the (syntactical) de-
duction theorem for WNM, to show these results it will be enough to prove the
following semantical counterpart of the deduction theorem for our logics.

Lemma 26. Let a ∈ (c, 1] and define a mapping fa : [0, 1] → [0, 1] as follows:

fa(x) =







1, if x ≥ a
0, if x ≤ n+c

(a)
x, otherwise

Then fa is a morphism with respect to the operations of the algebra [0, 1]+c
.

Therefore, if e is a WNM+c
-evaluation of formulas, then ea = fa ◦e is another

WNM+c
-evaluation.

Theorem 27. Let r1, . . . , rn ∈ (c, 1] and s ∈ [0, 1]. Then:
{(ϕ1, r1), . . . , (ϕn, rn)} |=[0,1]+c

(ψ, s) iff |=[0,1]+c
(&n

i=1(ϕi, ri))
2 → (ψ, s).

Proof: One direction is easy. As for the difficult one, it is enough to prove that
if there is an evaluation e which is not a model of (&n

i=1(ϕi, ri))
2 → (ψ, s), then

we can find another evaluation e′ which is model of {(ϕ1, r1), . . . , (ϕn, rn)} and
not of (ψ, s).
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Let e be an evaluation such that e((&n
i=1(ϕi, ri))

2 → (ψ, s)) < 1, i.e.
e((&n

i=1(ϕi, ri))
2) > e((ψ, s)). This means that:

(i) e((&n
i=1(ϕi, ri))

2) > 0, hence this is also valid for each i and thus
e((ϕi, ri)

2) = e((ϕi, ri)) > c and e((&n
i=1(ϕi, ri))

2) = minn
i=1 e((ϕi, ri)) > c;

(ii) e((ψ, s)) < 1, hence s > e(ψ) and e((ψ, s)) = max(1 − s, e(ψ)).
Therefore we are assuming an evaluation e such that minn

i=1 e((ϕi, ri)) >
max(1 − s, e(ψ)), with s > e(ψ).

If e is a model of every (ϕi, ri) for i = 1, ..., n, then we can take e′ = e and the
problem is solved. Otherwise, there exists some 1 ≤ j ≤ n for which rj > e(ϕj)
and thus e((ϕj , rj)) = max(1 − rj , e(ϕj)) = e(ϕj) < 1, the last equality due to
the fact that we are assuming max(1 − rj , e(ϕj)) > c and rj > c.

Let J = {j | rj > e(ϕj)} and let a = e((&n
i=1(ϕi, ri))

2) = min{e(ϕj) | j ∈
J}. Then the RWNM+-evaluation e′ such that e′ = ea over the propositional
variables does the job. Namely, by the corresponding transformation of Lemma
26, over RWNM+-formulas, e′ is a model of (ϕi, ri)’s for all i.

On the other hand, since s > e(ψ) and e(ψ) < a, it turns out, due to the
corresponding translation of Lemma 26, that e′(ψ) = ea(ψ) ≤ e(ψ) and therefore
s > e′(ψ) as well. So, e′((ψ, s)) < 1 and the proof is completed. 2

Finally, finite strong standard completeness results for RWNM∗, RWNM⋆

and RWNM◦, when restricted to formulas of the kind (ϕ, r), come as an easy
consequence as the last theorem. Next corollary summarizes these three results
(for + being any one of the three symbols ∗, ⋆ or ◦) with the restriction for the
values ri as in the corresponding theorem.

Corollary 28. {(ψi, ri) | i = 1, 2, .., n} ⊢RWNM+c
(ϕ, s) if, and only if,

{(ψi, ri) | i = 1, 2, .., n} �[0,1]+c
(ϕ, s) .

6 Conclusions and further work

Book-keeping axioms can be defined only when we have chosen a t-norm and its
residuum. Thus the process to create a new logic by adding truth constants has
only sense if the initial logic is “the” logic of a left continuous t-norm and its
residuum. RPL, RG (rational Gödel), RNM (rational Nilpotent Minimum) and
the examples of RWNM studied in the paper, have sense since  L, G and NM
and the consisered axiomatic extensions of WNM are “the” logics of Lukasiewicz
t-norm, of minimum t-norm, nilpotent minimum t-norm and of the t-norms ∗c,
⋆c and ◦c (and their residua) respectively. For example, RMTL has no sense
since MTL, the logic of all left-continuous t-norms and their residua, is the logic
of a family of t-norms and thus it is not determined what t-norm can be used
in the book-keeping axioms.

In [5], for each continuous t-norm ∗, the extension of BL, noted BL(∗), which is
standard complete with respect to the BL-algebra in [0, 1] defined by the con-
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tinuous t-norm ∗ and its residuum, is defined. Moreover an algorithm to obtain
a finite axiomatization of them is also given. This group of logics are suitable to
be extended with rational truth-constants by adding the corresponding book-
keeping axioms. In this way an interesting matter of future research could be
the definition and study the rational extensions of the logics BL(∗).

As for logics of left-continuous (but not continuous) t-norms, in this paper we
have also studied rational extensions of some of them. However, so far, few
logics standard complete with respect to a (non-continuous) left-continuous t-
norm and its residuum are known (see [13] for an interesting example of a logic,
called NM L, for a family of involutive non-continuous t-norms not belonging to
the weak nilpotent minimum family). It will be an interesting future task to
study the rational expansions of other left-continuous t-norm logics.
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solving some technical problems in the original proof of standard completeness
of RG. Authors acknowledge partial support of the Spanish project MULOG
TIN2004-07933-C03-01.

References

[1] B. De Baets, F. Esteva, J. Fodor and L. Godo. Systems of Ordinal Fuzzy
Logic with application to Preference Modelling. Fuzzy Sets and Systems 124(3),
2001, pp. 353-360.

[2] W. J. Blok and D. Pigozzi. Algebraizable logics. Mem. Amer. Math. Soc. 396,
vol 77, 1989.

[3] F. Esteva and L. Godo. Monoidal t-norm based Logic: Towards a logic for
left-continuous t-norms. Fuzzy Sets and Systems 124 (2001) 271–288.
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[10] P. Hájek. Metamathematics of Fuzzy Logic, Trends in Logic, vol.4 Kluwer, 1998.

23



[11] J. Pavelka. On Fuzzy Logic I, II, III. Z. Math. Logic Grunlag. Math 25 (1979)
45-52, 119-134, 447-464.

[12] E. Trillas. Sobre funciones de negación en la teoŕıa de conjuntos difusos.
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