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Abstract—In this paper we propose a fuzzy modal logic for
conditional probability that allows to represent and reason about
the probability of not only basic conditional expressions of the
form “ϕ given ψ”, written (ϕ | ψ), but also compound conditional
sentences such as “ϕ given ψ and γ given χ”, written (ϕ | ψ) ∧
(γ | χ), and more in general, any Boolean combination of basic
ones. In order to formalize compound conditional formulas we
will adopt the recently defined Logic for Boolean Conditionals
(LBC) and hence formalize conditional probability as a simple
(unconditional) probability of conditional sentences. In addition
to such basic fuzzy modal logic for the probability of compound
conditionals, we will also present some extensions and prove that
each of them is sound and complete w.r.t. to a suitable class of
probabilistic models. Furthermore, we will prove how to recover
the usual interpretation of conditional probability, showing that,
under minimal requirements, in these logics the probability of a
basic conditional (ϕ | ψ) can be safely taken as the conditional
probability of ϕ given ψ, i.e. as the ratio P (ϕ ∧ ψ)/P (ψ).

Index Terms—Conditional probability; Compound conditional;
Fuzzy logic; Fuzzy modal logic.

I. INTRODUCTION

Fuzzy sets-based models and numerical uncertainty models,
although sharing the feature of evaluating sentences in a totally
ordered scale, usually the real unit interval [0, 1], account for
radically different notions of gradualness. From a formal point
of view, these differences can be easily grasped if we consider
their corresponding logics: fuzzy logics and uncertainty logics
(in particular probability logics), respectively. In fact, while the
former are truth-functional, i.e. the truth-value of a compound
formula like ϕ ∨ ψ only depends on the truth-values of its
components ϕ and ψ, the latter are not, since, for instance,
the probability of ϕ ∨ ψ cannot be computed only from the
probability of ϕ and the probability of ψ (it is also needed to
know what is the probability of ϕ ∧ ψ).

Despite these differences, however, probability logics can
be properly handled in a fuzzy logical setting by expanding
the language of a fuzzy logic with a unary modality P (·) and
interpreting, for every classical formula ϕ, the modal formula
P (ϕ) as “ϕ is probable”. Clearly, P (ϕ) is a fuzzy proposition,
whose truth-degree can be taken as the probability of ϕ. More
precisely, the fuzzy modal logic FP(Ł), as firstly introduced
in [11] and improved in [10], extends the language of Łukasi-
ewicz logic Ł by the modal operator P (·) and uses the ground
logic Ł to express the basic properties of a probability function.

In particular, it is worth to recall that the finite additivity
of P can be expressed in FP(Ł) by using the Łukasiewicz
connective ⊕ whose standard interpretation is the truncated
sum: for all x, y ∈ [0, 1], x⊕y = min{1, x+y}. Very recently,
in [1] the authors have studied in depth the relationship of
this fuzzy logic-based approach to more traditional probability
logics after Halpern et al. see e.g. [13].

In addition to simple probability, the paper [8] presents the
logic FP(ŁΠ) to deal with conditional probability by consider-
ing, instead of Ł, the stronger logic ŁΠ. Such formalism can be
roughly regarded as the expansion of Łukasiewicz logic by the
connectives of product conjunction � and product implication
→Π. The standard semantics of � and→Π interprets them, re-
spectively, by the usual product · and the function x→Π y = 1
if x ≤ y and x→Π y = y/x otherwise. Thus, if P (ψ) is not
zero, the conditional probability P (ϕ | ψ) can be written in
FP(ŁΠ) as P (ψ) →Π P (ϕ ∧ ψ) and hence interpreted in its
semantics as P (ϕ∧ψ)/P (ψ). A related approach can be found
in [9], where Popper conditional probabilities are formalised
in a similar setting.

In this paper we propose a fuzzy modal logic FP(LBC,ŁΠ)
for conditional probability that extends FP(ŁΠ) in the expres-
sive power. In particular, FP(LBC,ŁΠ) formalizes conditional
events by the recently defined logic LBC (Logic of Boolean
Conditionals) for conditional events. The latter allows to
represent not only basic conditional expressions “ϕ given ψ”,
written (ϕ | ψ), but also compound conditional sentences such
as “ϕ given ψ and γ given χ”, written in LBC as (ϕ | ψ)∧(γ |
χ), or more in general, any Boolean combination of basic
ones [5]. For each of such (basic and compound) conditional
sentences, FP(LBC,ŁΠ) permits to represent and reason about
their probability. Thus, the conditional probability of “ϕ given
ψ” is treated in FP(LBC,ŁΠ) as the unconditional probability
of the basic conditional formula (ϕ | ψ).

In addition, we will present extensions of FP(LBC,ŁΠ)
that capture a more refined notion of probability functions. For
FP(LBC,ŁΠ) and each of its extensions, we prove soundness
and completeness results w.r.t. suitable classes of probability
models.

This paper is organized as follows. Section II gathers
extensive preliminaries: on the Logic for Boolean Conditionals
(LBC) in Subsection II-A; on the ground propositional logic
ŁΠ in Subsection II-B; and on the fuzzy modal logic for
conditional probability FP(ŁΠ) in Subsection II-C. In Section



III we will define the probability logic for compound condi-
tionals FP(LBC,ŁΠ). In the same section we will consider the
class of separable models and prove completeness. Moreover,
we will show that, for every basic conditional (ϕ | ψ)
such that ψ has positive probability, the logic FP(LBC,ŁΠ)
proves that the modal formula P (ϕ | ψ) is equivalent to
P (ψ) →Π P (ϕ ∧ ψ) and hence, in every separable model,
P (ϕ | ψ) is interpreted as the ratio µ(ϕ ∧ ψ)/µ(ψ). A first
extension of FP(LBC,ŁΠ), namely the logic FP(LBC,ŁΠ)+,
will be defined in Section IV and there we will show it
to be complete w.r.t. to a subclass of separable models
called positive separable models. Section V deals with the
logic FP(LBC,ŁΠ)+

c , a further extension meant to capture
the behavior of the so-called canonical extensions to C(A)
of positive (unconditional) probabilities on A in [5]. For
FP(LBC,ŁΠ)+

c we prove soundness and completeness w.r.t.
to the proper subclass of positive separable models that will be
called canonical in that section. Conclusions and future work
on this subject will be discussed in the final Section VI.

II. PRELIMINARIES

A. The logic LBC

In this section we recall from [5] the Logic of Boolean
Conditionals (LBC). The idea is to consider basic conditional
formulas of the form (ϕ | ψ) as primitive objects that can be
freely combined with Boolean connectives. A difference with
the so-called measure-free conditionals is that the combination
of two basic conditionals need not be another basic condi-
tional, only in some special cases specified in the axioms of the
logic. Indeed, formulas of LBC correspond to Boolean combi-
nations of basic conditional formulas (ϕ | ψ), where ϕ,ψ are
classical propositions. In more detail, let L be a propositional
language built from a finite set of propositional variables
p1, p2, . . . , pk and classical logic connectives ∧,∨,¬,→,↔.
We will denote by `CPL derivability in Classical Propositional
Logic. Based on L, we define the language LBC of conditionals
by the following stipulations:

- Basic (or atomic) conditional formulas, expressions of the
form (ϕ | ψ) where ϕ,ψ ∈ L and such that 6`CPL ¬ψ,
are in LBC.

- Further, if Φ,Ψ ∈ LBC, then ¬Φ,Φ ∧ Ψ ∈ LBC.1 Other
connectives like ∨, → and ↔ are defined as usual.

Note that we do not allow the nesting of conditionals, as
usually done in the vast literature on the modal approaches
to Conditional Logics Actually, purely propositional formulas
from L can also be considered to be part of LBC since, as
a matter of fact, any proposition ϕ can be identified with
the conditional (ϕ | >), where > is an abbreviation for ψ∨¬ψ.

Definition 2.1: The Logic of Boolean conditionals (LBC for
short) has the following axioms:

1We use the same symbols for connectives in L and in LBC without danger
of confusion.

(CPL) For any tautology of CPL, the formula resulting from a
uniform replacement of the variables by basic condition-
als.

(A1) (ψ | ψ)
(A2) ¬(ϕ | ψ)↔ (¬ϕ | ψ)
(A3) (ϕ | ψ) ∧ (δ | ψ)↔ (ϕ ∧ δ | ψ)
(A4) (ϕ | ψ)↔ (ϕ ∧ ψ | ψ)
(A5) (ϕ | ψ) ↔ (ϕ | χ) ∧ (χ | ψ), if `CPL ϕ → χ and

`CPL χ→ ψ
(R1) from `CPL ϕ→ ψ derive (ϕ | χ)→ (ψ | χ)
(R2) from `CPL χ↔ ψ derive (ϕ | χ)↔ (ϕ | ψ)

(MP) Modus Ponens: from Φ and Φ→ Ψ derive Ψ

The notion of proof in LBC, `LBC , is defined as usual from
the above axioms and rules.

In [5] it is shown that the Lindenbaum algebra correspond-
ing to LBC, that is, the algebra of LBC-formulas modulo
logical equivalence, is a certain type of Boolean algebra,
called Boolean algebra of conditionals, which is finite if the
set propositional variables is so, that is our case. Then, the
algebra is atomic and its set of atoms are conjunctions of basic
conditionals of length n− 1, where n = 2m with m being the
number of propositional variables, of the following form:

(α1 | >) ∧ (α2 | ¬α1) ∧ . . . ∧ (αn1 | ∧i=1,n−2 αi),

where α1, . . . , αn−1 are propositional atoms of the Linden-
baum algebra of the underlying propositional language L.

The semantics of the LBC logic is based on sequences
w = 〈w1, . . . , wn〉 of pairwise different propositional inter-
pretations for the underlying language L, in such a way that
w satisfies a conditional (ϕ | ψ), written w |=LBC (ϕ | ψ), if
wi |=CPL ϕ for the lowest index i such that wi |= ψ.

B. The logic ŁΠ

The ŁΠ is a powerful fuzzy logic system that suitably
combines the connectives from Łukasiewicz logic with the
connectives of Product fuzzy logic [4]. The language of
the ŁΠ logic is built in the usual way from a countable
set of propositional variables, three binary connectives →L

(Łukasiewicz implication), � (Product conjunction) and →Π

(Product implication), and the truth constant 0̄. A truth-
evaluation is a mapping e that assigns to every propositional
variable a real number from the unit interval [0, 1] and extends
to all formulas as follows:

e(0̄) = 0, e(ϕ� ψ) = e(ϕ) · e(ψ)
e(ϕ→L ψ) = min(1− e(ϕ) + e(ψ), 1),

e(ϕ→Π ψ) =
{

1, if e(ϕ) ≤ e(ψ)
e(ψ)/e(ϕ), otherwise

.

The truth constant 1 is defined as ϕ →L ϕ. In this way we
have e(1) = 1 for any truth-evaluation e. Moreover, many
other connectives can be defined from those introduced above:

¬Lϕ is ϕ→L 0̄
¬Πϕ is ϕ→Π 0̄,
ϕ ∧ ψ is ϕ&(ϕ→L ψ),
ϕ ∨ ψ is ¬L(¬Lϕ ∧ ¬Lψ),



ϕ⊕ ψ is ¬Lϕ→L ψ,
ϕ⊗ ψ is ¬L(¬Lϕ⊕ ¬Lψ),
ϕ	 ψ is ϕ&¬Lψ,

ϕ↔L ψ is (ϕ→L ψ)&(ψ →L ϕ),
∆ϕ is ¬Π¬Lϕ,
∇ϕ is ¬Π¬Πϕ,

with the following interpretations:
e(¬Lϕ) = 1− e(ϕ),

e(¬Πϕ) =
{

1, if e(ϕ) = 0
0, otherwise

,

e(ϕ ∧ ψ) = min(e(ϕ), e(ψ)),
e(ϕ ∨ ψ) = max(e(ϕ), e(ψ)),
e(ϕ⊕ ψ) = min(1, e(ϕ) + e(ψ)),
e(ϕ⊗ ψ) = max(0, e(ϕ) + e(ψ)− 1),
e(ϕ	 ψ) = max(0, e(ϕ)− e(ψ)),

e(ϕ↔L ψ) = 1− |e(ϕ)− e(ψ)|,

e(∆ϕ) =
{

1, if e(ϕ) = 1
0, otherwise

,

e(∇ϕ) =
{

1, if e(ϕ) > 0
0, otherwise

.

The logic ŁΠ is defined Hilbert-style as the logical
system whose axioms and rules are the following:2

(i) Axioms of Łukasiewicz Logic:
(ii) Axioms of Product Logic

(iii) The following additional axioms relating Łukasiewicz
and Product logic connectives:

(¬) ¬Πϕ→L ¬Lϕ
(∆) ∆(ϕ→L ψ) ≡ ∆(ϕ→Π ψ)
(LΠ) ϕ� (ψ 	 χ) ≡ (ϕ� ψ)	 (ϕ� χ)

(iv) Deduction rules of ŁΠ are modus ponens for→L (modus
ponens for →Π is derivable), and necessitation for ∆:
from ϕ derive ∆ϕ.

C. The probability logic FP(ŁΠ)

This final section on preliminaries is on the probability
logic FP(ŁΠ) (FP for Fuzzy Probability), introduced in [8] and
defined as a sort of modal extension with a unary operator P (·)
over the fuzzy logic ŁΠ described in the previous section. This
logic allows for reasoning about the probability of classical
propositions.

Actually, the propositional language L is extended by a
fuzzy unary modal operator P . If ϕ is a proposition of L,
then Pϕ is a modal proposition whose intended reading is
that “ϕ is probable”, and whose truth-degree will be taken as
the probability of ϕ.

The language of FP(ŁΠ) is defined as follows. Formulas of
FP(ŁΠ) are of two types:
• Non-modal: they are exactly the (classical) formulas of L,

i.e. those built from a set V ar of propositional variables
{p1, p2, . . . pn, . . . } using the classical binary connectives
∧ and ¬. Other connectives like ∨ and → are defined
from ∧ and ¬ in the usual way. We shall denote them by
lower case Greek letters ϕ, ψ, etc.

2This definition, proposed in [3], is actually a simplified version of the
original definition of LΠ given in [4].

• Modal: they are built from elementary modal formulas of
the form Pϕ, where ϕ is a non-modal formula, using the
connectives of ŁΠ (→L, �, →Π). We shall denote them
by upper case Greek letters Φ, Ψ, etc.

These are all the formulas of FP(ŁΠ). Notice that nested
modalities, among other things, are not allowed.

Axioms and rules of FP(LBC,ŁΠ) are as follows:
(CPL) All axioms and rules of classical propositional logic

restricted to classical, non-modal, formulas;
(ŁΠ) All axioms and rules of ŁΠ for modal formulas;
(P) The following axioms and rules for the modality P :

for all propositions ϕ,ψ ∈ L,
(P1) P (ϕ→ ψ)→L (P (ϕ)→L P (ψ))
(P2) P (¬ϕ)↔L ¬P (ϕ)
(P3) P (ϕ ∨ ψ)↔L [P (ϕ)⊕ (P (ψ)	 P (ϕ ∧ ψ))]

(Nec) if `CPL ϕ, derive P (ϕ).
Models of FP(ŁΠ) are probability Kripke structures K =
〈W, e, µ〉, where:
• W is a non-empty set of possible worlds;
• e : V ×W → {0, 1} provides for each world a Boolean

(two-valued) evaluation of the proposition variables, that
is, e(p, w) ∈ {0, 1} for each propositional variable p ∈
V ar and each world w ∈W ; and

• µ : 2W → [0, 1] is a finitely additive probability measure
on a Boolean algebra of subsets of W such that for each
p, the set {w | e(p, w) = 1} is measurable (cf. [10] 8.4.1).

A truth evaluation e is extended to non-modal formulas in the
classical way, to elementary modal formulas as follows:

e(Pϕ,w) = µ({w ∈W | e(ϕ,w) = 1}),

and to compound modal formulas by using the truth-functions
of the ŁΠ logic.

Soundness and completeness of the logic FP(ŁΠ) w.r.t. to
the class of probability Kripke models is proved in [8]: if
T ∪ {Φ} is a finite set of FP(ŁΠ)-formulas, then T proves Φ
in FP(ŁΠ) iff for any probability Kripke model K = (W, e, µ)
and any world w ∈ W , e(Φ, w) = 1 whenever e(Ψ, w) = 1
for all Ψ ∈ T .

III. PROBABILITY LOGIC OVER CONDITIONALS

In this section we define a logic to reason about the
probability of basic and compound conditionals over the fuzzy
logic ŁΠ. In the same line as with the logic FP(ŁΠ) described
in Section II-C, we extend the language of LBC with a fuzzy
(unary) modal operator P , so that, for every basic conditional
(ϕ | ψ), the intended meaning of a formula P (ϕ | ψ) is that the
conditional “ϕ given ψ” is probable, and that the truth-degree
of P (ϕ | ψ) is the probability of the conditional “(ϕ | ψ)”. The
relation of this probability to the usual notion of conditional
probability of ϕ given ψ will become clear later.

The logic FP(LBC,ŁΠ) is obtained by replacing, in the
definition of FP(ŁΠ), classical logic for events by the con-
ditional logic LBC defined as in Section II-A. Formulas of
FP(LBC,ŁΠ) are of two types:



- Conditional formulas are formulas of the logic LBC,
that is, basic conditionals of the form (ϕ | ψ) for all
classical formulas ϕ and ψ such that ψ is not a classical
logic contradiction (in other words, 6`CPL ¬ψ) and compound
conditional formulas obtained as Boolean combinations of
basic ones. Compound conditional formulas will be denoted
as Φ,Ψ, . . .;

- Modal formulas: for every (basic or compound) condi-
tional formula Φ, P (Φ) is an atomic modal formula. Com-
pound modal formulas are combinations of atomic ones by
means of the ŁΠ connectives.

Thus, for instance, P (ϕ | ψ), P ((ϕ | ψ) ∧ (γ | δ)) and
P ((ϕ | ψ) ∧ (γ | δ)) →L P (χ | τ) are compound modal
formulas for all classical formulas ϕ,ψ, γ, δ, χ, τ such that
6` ¬ψ, 6` ¬δ, 6` ¬τ . However, neither (ϕ | ψ) →L P (γ | δ)
nor P ((ϕ | ψ) ⊕ P (χ | τ)) are well formed formulas in this
language.

Axioms and rules of FP(LBC,ŁΠ) are as follows:
(LBC) All axioms and rules of LBC restricted to conditional

formulas;
(ŁΠ) All axioms and rules of ŁΠ for modal formulas;
(P) The axioms and rules for the modality P are those for

FP(ŁΠ), but now for all conditional formulas Φ,Ψ ∈
LBC, plus a new rule (Sep):

(P1) P (Φ→ Ψ)→L (P (Φ)→L P (Ψ));
(P2) P (¬Φ)↔L ¬P (Φ);
(P3) P (Φ ∨Ψ)↔L [P (Φ)⊕ (P (Ψ)	 P (Φ ∧Ψ))];

(Nec) if `LBC Φ, derive P (Φ);
(Sep) if `CPL (ϕ→ χ) ∧ (χ→ ψ), derive

P ((ϕ | χ) ∧ (χ | ψ))↔L P (ϕ | χ)� P (χ | ψ).
The notion of proof according to these axioms and rules will
be denoted `FP . The axioms and rules of FP(LBC,ŁΠ) are
meant to capture the behavior of an unconditional, separable
probability measure on the Lindenbaum algebra of the logic
LBC. In fact, let us recall from [5] that, in particular, a
probability µ on a Boolean algebra of conditionals C(A) is
separable if for all a, b, c ∈ A\{⊥} such that a ≤ b ≤ c, then
µ((a | b)∧ (b | c)) = µ(a | b) ·µ(b | c). As we will show later
on, separability is captured by the rule (Sep) above.

In what follows Ω will denote the set of Boolean interpre-
tations for the variables V ar, and Seqn(Ω) will denote the set
of sequences of n pairwise different interpretations from Ω.

Definition 3.1: A probability LBC-Kripke model is a struc-
ture C = 〈W, e, µ〉 where
• W is a set of worlds;
• e : W → Seqn(Ω) maps every world w ∈W to a LBC-

evaluation e(w) = w ∈ Seqn(Ω);
• µ is a probability on 2e[W ], where e[W ] = {e(w) | w ∈
W} ⊆ 2Seqn(Ω).

Each LBC-Kripke model C = 〈W, e, µ〉 induces a probabil-
ity on LBC formulas in the natural way, in particular for each
basic conditional (ϕ | ψ) we define:

µ(“(ϕ | ψ)”) = µ({w ∈ Seqn(Ω) | w ∈W,w |= (ϕ | ψ)}, 3

3Without danger of confusion, we will write µ(ϕ | ψ) for µ(“(ϕ | ψ)”)).

and similarly for every compound conditional. Notice that,
when e[W ] = Seqn(Ω), the Boolean algebra 2e[W ] on which
µ is defined, actually is the Lindenbaum algebra of LBC. It
was proved in [5, Theorem 7.3] that such Lindenbaum algebra
is isomorphic to C(L), that is, the conditional algebra gener-
ated by L, the Lindenbaum algebra of classical propositional
logic. Thus, every LBC-Kripke model determines a probability
measure µ on C(L).

Definition 3.2: A probability LBC-Kripke model C =
〈W, e, µ〉 is called separable when

µ((ϕ | ψ) ∧ (ψ | χ)) = µ(ϕ | ψ) · µ(ψ | χ) (1)

for every ϕ,ψ, χ such that `CPL (ϕ → ψ) ∧ (ψ → χ) and
6`CPL ¬ψ.

An immediate consequence of the definition above is that
every µ of a separable model, satisfies µ(ϕ | >) = µ((ϕ |
ψ) ∧ (ψ | >)) = µ(ϕ | ψ) · µ(ψ | >) for all ϕ,ψ such that
`CPL ϕ→ ψ and 6` ¬ψ. Note that the first equality is due to
Axiom (A5) of LBC.

Given a formula F of FP(LBC,ŁΠ) and a separable model
S = 〈W, e, µ〉, the evaluation of F in S at w ∈ W is
inductively defined by the following stipulations:
• If F is a conditional formula Φ, then ‖Φ‖S,w = w1(Φ) ∈
{0, 1}, where e(w) = 〈w1, w2, . . .〉;

• If F = P (Φ) is atomic modal, then ‖P (Φ)‖S,w = µ(Φ);
• If F is compound modal, then ‖F‖S,w is computed

by evaluating its atomic components and then by using
the truth-functionality of the connectives of ŁΠ in the
standard algebra [0, 1].

Notice that if F is modal, then ‖F‖S,w does not depend on
the world w. Finally, the truth-degree of F in C is defined as
‖F‖S = infw∈W ‖F‖S,w.

Definition 3.3: If T ∪ Φ is a set of modal formulas, Φ
logically follows from T , written T |=SFP Φ, when for all
separable probability LBC-Kripke model S, if ‖F‖S = 1 for
every F ∈ T , then ‖Φ‖S = 1 as well.

Next, we prove that FP(LBC,ŁΠ) is sound and complete
with respect to the class of separable models. Its proof, a main
part of which will follow from a general result we will recall
below, is based on the fact that the logic for events, LBC is
locally finite. This means that the Lindenbaum algebra CL
over a finite set of variables is finite. Indeed, as proved in
[5, Theorem 7.3], CL is isomorphic to C(L) to the Boolean
algebra of conditionals of the Lindenbaum algebra of classical
logic, on the same set of variables.

Theorem 3.1: The logic FP(LBC,ŁΠ) is sound and com-
plete for deductions from probabilistic modal formulas w.r.t.
to the class of separable models.

Proof: Soundness of (P1), (P2), (P3) and (Nec) follows
directly from [10, Lemma 8.4.5.]. Thus, let us show that (Sep)
holds in every separable model. If (ϕ → χ) ∧ (χ → ψ) is a
theorem of classical logic and ψ is not a contradiction, then
‖P ((ϕ | χ)∧ (χ | ψ))‖S = ‖P (ϕ | χ)‖S · ‖P (χ | ψ)‖S in any
separable model S = 〈W, e, µ〉, because µ satisfies Equation
(1) above, and hence S satisfies P ((ϕ | χ) ∧ (χ | ψ)) ↔L

P (ϕ | χ)� P (χ | ψ).



As for completeness, we will show that 6`FP F implies
6|=SFP F , for any modal formula F . By either adapting the
completeness proofs in [8], [11] or adapting the general result
proved in [6, Theorem 20 (1)], together with the fact that LBC
is locally finite and ŁΠ is finitely strong standard complete, we
can show that deductions in FP(LBC,ŁΠ) can be translated to
deductions in ŁΠ by considering atomic modal formulas PΦ
as new ŁΠ propositional variables pΦ. Indeed, it holds that,
for any modal formula G, `FP G iff T `ŁΠ G∗, where G∗ is
the translation of G with the new variables, and T consists of
the following three sets of formulas:
(i) T0 = {H∗ : H is an instance of axioms (P1), (P2), (P3)}

(i)i T1 = {pΨ : ψ is an LBC-theorem}, that translates the
rule (Nec), and

(iii) T2 = {p(ϕ|χ)∧(χ|ψ) ↔L pϕ|χ � pχ|ψ : `CPL (ϕ → χ) ∧
(χ→ ψ) and 6`CPL ¬χ}, that translates the rule (Sep).

Then by the finite-strong completeness of ŁΠ,4 if F is not a
theorem of FP(LBC,ŁΠ), there is a ŁΠ-evaluation v, model
of the sets T0, T1, T2 and v(F ) < 1. Then one can define
the probability Kripke model S = (W, e, µ), where W =
Seqn(Ω), e(w, p) = w1(p) for any propositional variable p,
and µ(Φ) = v(Φ) for any conditional formula Φ, and show
that ‖F‖S = v(F ) < 1, that is, S is a countermodel of F .
Thus, it is left to prove that µ is separable. Indeed, in particular
v is a model of T2, that means v(pϕ|χ � pχ|ψ) = v(pϕ|χ) ·
v(pχ|ψ) = µ(ϕ | χ) · µ(χ | ψ), for all those conditionals
(ϕ | χ), (χ | ψ) such that `CPL (ϕ → χ) ∧ (χ → ψ) and
6`CPL ¬χ. Thus, µ is separable and the claim is settled.

We end this section by noticing that in a separable LBC-
Kripke model, a formula P (ϕ | ψ) is evaluated by its
corresponding conditional probability.

Corollary 3.1: For every basic conditional (ϕ | ψ), the
following deduction holds in FP(LBC,ŁΠ):5

∇P (ψ | >) `FP P (ϕ | ψ)↔L (P (ψ | >)→Π P (ϕ∧ψ | >))

IV. POSITIVE SEPARABLE MODELS

In this section we will consider a first extension of the logic
FP(LBC,ŁΠ) that allows to deal with positive probabilities on
basic conditionals of the form (ϕ | >).

Definition 4.1: The logic FP(LBC,ŁΠ)+ is the schematic
extension of FP(LBC,ŁΠ) obtained by adding the rule

(Pos) if 6`CPL ¬ϕ, derive ∇P (ϕ | >).
The effect of axiom (Pos) is to force the probability of

non-contradictory classical propositions ϕ (once identified as
conditionals (ϕ | >)) to be strictly positive. Therefore, it is
relatively easy to see that the following holds.

Theorem 4.1: The logic FP(LBC,ŁΠ)+ is sound and com-
plete w.r.t. the class of positive separable LBC-Kripke models,
i.e. models S = 〈W, e, µ〉 in which µ is a positive probability

4For our purposes, T can be considered to be finite, because the Linden-
baum Boolean algebra of LBC is finite, that is, there are only finitely-many
non-logically equivalent basic conditionals (ϕ | ψ), and hence only finitely-
many non-logically equivalent formulas in T .

5Recall from Section II-B that the interpretation of the connective ∇ is
∇(x) = 1 if x > 0, and ∇(x) = 0 otherwise.

measure, that is to say, such that µ(Φ) > 0 for all conditional
formula Φ 6= ⊥.

Let us call basic modal formulas any combination of atomic
modal formulas of the form P (ϕi | ψi) with ŁΠ connectives.
If we restrict ourselves to this sublanguage of FP(LBC,ŁΠ),
we can in fact consider simpler probabilistic models.

Definition 4.2: A positive simple model is a pair P = 〈Ω, σ〉
where Ω is the set of Boolean interpretations for the base
language L, and σ is a positive probability measure on 2Ω.

Given a basic modal formula B and a positive model P =
〈Ω, σ〉, we interpret B in P as follows:
• If B = P (ϕ | ψ), then ‖P (ϕ | ψ)‖P = σ(ϕ∧ψ)

σ(ψ) ;
• If B is compound use again the truth functionality of ŁΠ

connectives interpreted in [0, 1].
Theorem 4.2: (1) For every positive separable LBC-Kripke

model S there exists a positive simple model P such that
‖B‖S = ‖B‖P for every basic modal formula B.
(2) Vice-versa, for every positive simple model P there exists
a positive separable LBC-Kripke model S such that ‖B‖P =
‖B‖S for every basic modal formula B.

Proof: As for (1), let us prove the clam for B = (ϕ | ψ).
The case of compound conditional formulas, indeed, follows
by truth-functionality of the connectives of ŁΠ. Given a
positive separable LBC-Kripke model S = 〈W, e, µ〉, define
σ(ϕ) = µ(ϕ | >) = µ({w ∈ W | w |= (ϕ | >)}. This is
a probability on Boolean formulas that can be identified as a
probability on 2Ω. Since µ is positive and separable, we have

µ(ϕ | ψ) =
µ(ϕ ∧ ψ | >)

µ(ψ | >)
=
σ(ϕ ∧ ψ)

σ(ψ)
.

On the other hand, (2) follows by adapting to our logical
setting a main result in [5, Theorem 6.13] stated in algebraic
terms. Indeed, in that theorem it is proved that, for any positive
probability P on an algebra of events A, there is a (plain)
probability µP on the algebra of conditional events C(A) such
that µP (a | b) = µ(a∧b)

µ(b) whenever b 6= ⊥. The proof is rather
involved and we refer the reader to [5] for full details.

V. A LOGIC FOR (CONDITIONAL) CANONICAL EXTENSIONS

As proved in [5] the atoms of a Boolean algebra of
conditionals C(A) can be fully characterized by the atoms
of the original algebra A and, in particular, if α1, . . . , αn are
the atoms of A, those of C(A) are conditional expressions of
the form

ωi = (αi1 | >) ∧ (αi2 | ¬αi1) ∧ . . . ∧ (αin−1 |
∧

j≤n−2

¬αij ).

Since the atoms of the Lindenbaum algebra of classical logic
(with, say, k variables x1, . . . , xk) are writable as minterms
αj =

∧
x∗i , for x∗i ∈ {xi,¬xi}, the atoms of C(L) are

expressible as above. To ease the reading, we will denote them
by ω1, ω2, . . .. Recall form [5] that, if classical logic is defined
on k propositional variables, there are (2k)! atoms of C(L).

Although not every probability measure on C(A) satisfies
all the axioms of a conditional probability, every positive
probability σ on the original algebra A, has an extension to



a positive probability µσ on C(A). These measures, called
canonical in [5] are such that, for every atom ωi of C(L),

µσ(ωi) = σ(αi1 | >)·σ(αi2 | ¬αi1)·. . .·σ(αin−1
|
∧

j≤n−2

¬αij ).

In this section we will show how to further extend the logic
FP(LBC,ŁΠ)+ in order for its models to be defined by
canonical extensions µσ of this kind. In order to do that, let
us consider the following FP(LBC,ŁΠ)+-formulas:

(Cani) P (ωi)↔L P (αi1 | >)�. . .�P (αin−1
|
∧

j≤n−2

¬αij ),

where ωi = (αi1 | >) ∧ . . . ∧ (αin−1 |
∧
j≤n−2 ¬αij ), with

αi1 , . . . , αin being minterms of the propositional language L.
Definition 5.1: Let L be a propositional language with k

variables. Then, the logic FP(LBC,ŁΠ)+
c is the schematic

extension of FP(LBC,ŁΠ)+ obtained by adding the axioms
(Cani) for all i = 1, . . . , (2k)!

A separable model S = 〈W, e, µ〉 is canonical if there exists
a positive probability σ on Ω such that µ = µσ , i.e., µ is the
canonical extension of some positive σ on Ω.

Finally, we can prove that FP(LBC,ŁΠ)+
c is sound and

complete w.r.t. to canonical models.
Theorem 5.1: The logic FP(LBC,ŁΠ)+

c is sound and com-
plete with respect to the class of canonical models.

Proof: Following the lines we sketched in the proof of
Theorem 3.1, it is enough to show that a positive separable
model satisfies all the axioms (Cani) iff the model is canonical.

(Left-to-Right). Let S = 〈W, e, µ〉 be positive separable and
satisfying (Cani) for all i. Thus, ‖P (ωi)‖S =
‖P (αi1 | >)� . . .� P (αin−1 |

∧
j≤in−2

¬αj)‖S =
‖P (αi1 | >)‖S · . . . · ‖P (αin−1

|
∧
j≤in−2

¬αj)‖S =
µ(αi1 | >) · ldots · µ(αin−1

|
∧
j≤in−2

¬αj).
Since S is positive and separable, by Theorem 4.2 there

is a positive simple model P = (Ω, σ) such that, for every
basic conditional (ϕ | ψ), µ(ϕ | ψ) = σ(ϕ∧ψ)

σ(ψ) . In particular,

µ(αi1 | >) · . . . ·µ(αin−1
|
∧
j≤in−2

¬αj) =
αi1

1 ·
σ(αi2

∧¬αi1
)

σ(¬αi1
) ·

. . . ·
σ(αin−1

∧
∧

j≤in−2
¬αj)

σ(
∧

j≤n−2 ¬αij
) . Thus, µ = µσ and S is canonical.

(Right-to-Left). Conversely, if S is canonical, then (Cani)
holds in S by the very definition of canonical model and the
way formulas are interpreted in separable models.

In the light of the above argument, we can hence slightly
improve the result of Corollary 3.1 as follows.

Corollary 5.1: The following formulas are theorems of
FP(LBC,ŁΠ)+

c :
1) P (ϕ | ψ)↔L (P (ψ | >)→Π P (ϕ ∧ ψ | >));
2) P (ω)↔L [P (>)→Π P (αi1)� P (¬αi1)→Π P (αi2)

� . . . � P (
∧
j≤in−2

αj) →Π P (αin−1
)], for ω = (αi1 | >) ∧

(αi2 | ¬αi1)∧ . . .∧ (αin−1 |
∧
j≤n−2 αij ), where the αij ’s are

pairwise different minterms of the propositional language L.

VI. CONCLUSIONS

In this paper we have introduced fuzzy modal logics for
reasoning about the probability of compound conditionals,
the latter being Boolean combinations of basic conditionals

(ϕ | ψ) and formalized within the recently introduced Logic
for Boolean Conditionals LBC [5]. For each of the logics we
define, we have proved completeness w.r.t. suitable classes of
probability models, where a formula of the kind P (ϕ | ψ) is
evaluated by a (plain) probability µ(“(ϕ | ψ)”) of the condi-
tional formula (ϕ | ψ). We have shown that, if ψ 6`CPL ⊥,
this probability is in fact a conditional probability, and thus
evaluated by the ratio µ(“(ϕ ∧ ψ | >)”)/µ(“(ψ | >)”).

There are a number of issues on this subject left for future
work. Among them, we plan to investigate the relationship
of our probability logics for compound conditionals with
the approach developed by Sanfilippo et al. to probabilistic
inference with conjoined and iterated conditionals based on
a different notion of conditional, see e.g. [14], [15]. Another
topic of interest is the application of these logics to reason with
(semi-) fuzzy quantifiers [2]. In addition, we plan to investigate
complexity bounds for the SAT problem for FP(LBC,ŁΠ).
Although it seems reasonable to conjecture that logic to be
decidable, while the logics ŁΠ and FP(ŁΠ) are known to be
in PSPACE [12], the complexity of the logic LBC is not known
yet, and this latter non-trivial fact needs to be solved first.
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