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Abstract. Time series are ubiquitous, and a measure to assess their
similarity is a core part of many systems, including case-based reason-
ing systems. Although several proposals have been made, still the more
robust and reliable time series similarity measures are the classical ones,
introduced long time ago. In this paper we propose a new approach to
time series similarity based on the costs of iteratively jumping (or mov-
ing) between the sample values of two time series. We show that this
approach can be very competitive when compared against the aforemen-
tioned classical measures. In fact, extensive experiments show that it can
be statistically significantly superior for a number of data sources. Since
the approach is also computationally simple, we foresee its application as
an alternative off-the-shelf tool to be used in many case-based reasoning
systems dealing with time series.

1 Introduction

Data in the form of time series pervades almost any scientific domain [9, 11]. Ob-
servations that unfold over time usually represent valuable information subject
to be analyzed, classified, predicted, or interpreted [4, 8, 10]. Real-world examples
include financial data (e.g. stock market fluctuations), medical data (e.g. elec-
trocardiograms), computer data (e.g. log sequences), or motion data (e.g. geolo-
cation of moving objects). Dealing with time series represents a challenge for
these and many other scientific domains.

Dealing with time series has also been a challenge for the case-based reason-
ing (CBR) community. Apart from the two workshops on time series prediction
held in the 2003 and 2004 International Conferences on CBR [6, 7], several CBR
systems have coped with cases involving time series or sequential information.
Xiong and Funk [22] presented a CBR system managing symbolic time series
from a medical domain. Their approach was based on the identification of key
sub-sequences and on the transformation of the original time series into a more
compact representation. In a preliminary work [3], the authors demonstrated the
value of incorporating knowledge discovery techniques to CBR and, in partic-
ular, the value of the technique they used to extract significant sub-sequences,
which allowed them to automatically discover non-trivial regularities. Montani
et al. [13] used the discrete Fourier transform (DFT) in their CBR system to



reduce the comparison of (entire) time series to just the first Fourier coefficients,
and also to implement indexing structures for the time series. Other CBR sys-
tems reduce the dimensionality by transforming the time series using temporal
abstractions [1] or hierarchical symbol abstractions [21]. A further interesting
approach dealing with time series is the CASEP2 system [23], which was pro-
posed as a hybrid system that, combining CBR and artificial neural networks,
performed time series classification in an efficient way. Also related to time se-
ries is the Ceaseless CBR model introduced by Mart́ın and Plaza [12], which
processes a continuous data stream holding several problem descriptions.

A core issue when dealing with time series is determining their pairwise simi-
larity, i.e. the degree to which a given time series resembles another one. In fact,
a time series dissimilarity (or similarity) measure is central to many mining,
retrieval, classification, and clustering tasks [4, 10]. However, deriving a measure
that correctly reflects time series dissimilarities is not straightforward. Apart
from dealing with a high dimensionality (time series can be roughly considered
as multi-dimensional data), the calculation of such measures needs to be fast,
robust, and efficient. Moreover, there is the need for generic dissimilarity mea-
sures, so that they can be readily applied to any data set, being this application
the final goal or just an initial approach to a given task.

With years, several time series dissimilarity measures have been proposed.
However, it seems that the most common measures, proposed long time ago, turn
out to be the most competitive ones [10, 20]. Wang et al. [20] perform an extensive
comparison of classification accuracies for 13 different time series dissimilarity
measures across 38 contrasting data sources (we also refer the interested reader
to [20] for pointers to the original references proposing or using such measures
in the context of mining time series data). After reporting the results, one of the
main conclusions of the study is that, despite of the new proposals, the Euclidean
and dynamic time warping (DTW) [14, 15] dissimilarity measures are extremely
difficult to beat, remaining two of the most robust, simple, generic, and efficient
measures.

In this paper we propose a new time series dissimilarity measure based on
minimum jump costs (MJCs). The main idea behind this measure is that it re-
flects the cumulative cost of iteratively ‘jumping’ from one time series to the
other, starting at the beginning of a time series until the end of any of them is
reached, and without going backwards. As it will be shown by extensive and rig-
orous experiments, MJC clearly outperforms the Euclidean distance. Moreover,
we will see that MJC can statistically significantly outperform DTW for a num-
ber of data sets. This, jointly with the computationally simple operations behind
MJC, makes it a good candidate measure to be incorporated to any standard
toolkit for time series similarity, retrieval, or classification and, by extension, to
any case-based reasoning system dealing with time series.

The remaining of the paper is organized as follows. We first present some
scientific background by outlining the calculation of the Euclidean and DTW
dissimilarity measures (Sec. 2). The description of the MJC dissimilarity measure
comes next (Sec. 3). We then explain our evaluation methodology and present



the obtained results (Secs. 4 and 5, respectively). A conclusion section ends the
paper (Sec. 6).

2 Scientific Background

Across years, several dissimilarity measures have been proposed, the most simple
ones being variants of the Lp norm,

dLp
(x,y) = p

√√√√ M∑
i=1

(xi − yi)p, (1)

where p is a positive integer, M is the length of the time series, and xi and
yi are the i-th element of time series x and y, respectively. Usually p = 2,
yielding the Euclidean distance, one of the first generic dissimilarity measures
proposed for time series [2]. In case x and y were not of the same length, one
can always re-sample one to the length of the other, an approach that works
well for many data sources [10]. The Euclidean distance is one of the most used
and efficient time series dissimilarity measures. Indeed, its accuracy may be very
difficult to beat in some scenarios, specially when the length of the time series
increases [20]. Nonetheless, we believe that such affirmation needs to be carefully
assessed with extensive experiments and under broader conditions, considering
different distance-exploiting algorithms.

Another classical option for computing the dissimilarity between two time
series is dynamic time warping (DTW) [14, 15]. DTW belongs to the group of
so-called elastic dissimilarity measures [10, 20], and works by optimally aligning
(or ‘warping’) the time series in the temporal dimension so that the accumulated
cost of this alignment is minimal. In its most basic form, this cost can be obtained
by dynamic programming, recursively applying

Di,j = δ(xi, yj) + min {Di,j−1, Di−1,j , Di−1,j−1} (2)

for i = 1, . . . ,M and j = 1, . . . , N , being M and N the lengths of time series x
and y, respectively. Except for the first cell, which is initialized to D0,0 = 0, the
matrix D is initialized to Di,j = ∞ for i = 0, 1, . . . ,M and j = 0, 1, . . . , N . In
the case one deals with uni-dimensional time series, the sample (or local) dissim-
ilarity function δ() is typically taken to be the square of the difference between
xi and yj , i.e. δ(xi, yj) = (xi − yj)2. In the case we deal with multidimensional
time series or we have some domain-specific knowledge, the sample dissimilarity
function δ() must be chosen appropriately, although many times the Euclidean
distance is used.

The final dissimilarity measure between time series x and y typically cor-
responds to the total accumulated cost dDTW(x,y) = DM,N . A normalization
of dDTW(x,y) can be performed on the basis of the alignment of the two time
series, which is found by backtracking from DM,N to D0,0 [14]. However, in pre-
liminary analysis we found the normalized variant to be equivalent, or sensibly
less accurate, than the unnormalized one.



Several constrains can be applied in the computation of D. A common oper-
ation is to introduce a window parameter w [15], such that the recursive formula
of Eq. 2 is only applied for i = 1, . . . ,M and

j = max{1, i′ − w}, . . . ,min{N, i′ + w}, (3)

where i′ is progressively adjusted for dealing with different time series lengths,
i.e. i′ = biN/Me, using b e as the round-to-the-nearest-integer operator. Notice
that if w = 0 and N = M , DM,N will correspond to the squared Euclidean
distance. Notice furthermore that when w = N we are using the unconstrained
version of DTW.

The introduction of constrains, and specially of the window parameter w,
generally carries some advantages [10, 14, 20]. For instance, they prevent from
‘pathological alignments’ (which typically go beyond the main diagonal of D)
and, therefore, they usually provide better dissimilarity estimates. In addition,
DTW constrains allow for reduced computational costs, since only a percentage
of the cells in D needs to be examined.

DTW stands as the main benchmark against to which new dissimilarity mea-
sures need to be compared with [20]. Very few measures have been proposed that
systematically outperform DTW for a number of different data sources. How-
ever, these measures are usually more complex than DTW, sometimes requiring
extensive parameter tuning of one or more parameters. Additionally, no careful,
rigorous, and extensive evaluation of the accuracy of these measures had been
initially done, and further studies fail to assess the statistical significance of their
improvement [20]. In this paper we pay special attention to all these aspects in
order to formally assess the benefits of the measure we propose.

3 Minimum Jump Costs Dissimilarity

We now detail the calculation of the minimum jump costs (MJC) dissimilarity
measure. The main idea behind MJC is that, if a given time series x resembles
y, the cost of iteratively ‘jumping’ between their samples should be small. In
other words, if x and y are similar, we could only draw short lines between them
when placed on the same time axis. Intuitively, these jumps (or lines) should
be iteratively done from the beginning of the time series until we reach an end,
otherwise we would be discarding some possibly relevant parts of the time series.
Similarly, if we kept jumping (or drawing lines) both forward and backwards, we
could be iterating an infinite number of times. Thus we force to jump (or draw)
in the forward direction only. Finally, since we want a single number reflecting
the global dissimilarity between x and y, the most straightforward solution is to
add the costs of performing a jump (or the lengths of the lines). A more formal
definition follows.

Let x = x1, . . . xM and y = y1, . . . yN be two time series of potentially differ-
ent lengths M and N , respectively. We define the minimum jump costs (MJC)
dissimilarity measure dXY as the cumulative minimal cost for iteratively jumping



from one time series to the other, i.e.

dXY =
∑
i

c
(i)
min, (4)

where c
(i)
min is the cost of the i-th jump, which should be minimal. Supposing that

for the i-th jump we are at time step tx of time series x and that we previously
visited time step ty − 1 of y,

c
(i)
min = min

{
c
ty
tx , c

ty+1
tx , c

ty+2
tx , . . .

}
, (5)

where c
ty+∆
tx is the cost of jumping from xtx to yty+∆ and ∆ = 0, 1, 2, . . . is an

integer time step increment such that ty + ∆ ≤ N . Notice that we can only go
forward, i.e. we cannot visit time series samples before tx or ty. After a jump is
made, tx and ty are updated accordingly, i.e. tx becomes tx + 1 and ty becomes
ty +∆+ 1. This way we enforce that no time step position is repeated and that
the iterative algorithm does not go backwards. As mentioned, the formulation
of Eq. 5 corresponds to a jump from time series x to y. In case we want to jump
from y to x, only tx and ty need to be swapped in Eq. 5. We start the iterations
at tx = 1, considering ty = 1, and jump between x and y until an end of a time
series is reached, i.e. until tx = M or ty = N .

To define a jump cost c
ty+∆
tx we consider the temporal and the magnitude

dimensions of the time series. Therefore we define

c
ty+∆
tx = (φ∆)2 + δ(xtx , yty+∆), (6)

where φ represents the cost of advancing in time and δ() is the magnitude dissim-
ilarity function, which we take to be δ(xtx , yty+∆) = (xtx−yty+∆)2, equivalently
to what we do with DTW (Eq. 2). We set φ proportional to the standard devi-
ation σ expected for the time series,

φ = β
4σ

min{M,N}
, (7)

and introduce the parameter β ∈ [0,∞), β ∈ R, which controls how difficult is
to advance in time. A value of β = 0 implies no cost (φ = 0), whereas values of
β → ∞ imply that only samples at time stamp ty will be considered (∆ = 0,
see Eq. 6). This latter case makes dXY equal to the squared Euclidean distance
between x and y.

Finally, notice that dXY is asymmetric. Depending whether we start at x1 or
y1 we will obtain different values. To obtain a symmetrized dissimilarity measure
we use

dMJC(x,y) = min {dXY, dYX} , (8)

where dXY and dYX are the cumulative MJCs obtained by starting at x1 and y1,
respectively. Measures dXY, dYX, and by extension dMJC(x,y) can be considered
as elastic measures [20].
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Fig. 1. Example of the recursive jumps performed between time series x and y. The
algorithm starts with time series x at tx = 1 (x1) and ends when tx = M or ty = N
(x20 in the example).

Fig. 1 helps explaining the calculation of dXY. Suppose that we are at sample
x5 and that we previously jumped from y5 to x4 (hence the values of tx = 5 and
ty = 6). We now want to jump to time series y again. In addition, we want the
cost of the jump to be minimal. Therefore, we evaluate Eq. 6 for all possible
ty + ∆, i.e. for ∆ = 0, 1, . . . , 14 (from time steps 6 to 20). With that we obtain
that the best jump option is y7 (∆ = 1). After the jump we update tx to 6 and
ty to 8, the next time steps that will be considered in the following iteration.

Algorithms 1 and 2 provide the implementation details for the whole dis-
similarity calculation. Notice that we do not need to compute all possible costs,
thanks to the introduction of the monotonically increasing term φ∆ which, fur-
thermore, can be precomputed. Notice also that since dXY is cumulative, an
early abandoning strategy can be additionally implemented to speed-up com-
putations [10]. This way, if only the first nearest neighbor of a time series was
required, we would only accumulate costs until we reached the smallest dbestXY

found so far, exiting the process before its end since the current cumulative
cost dXY could not be smaller than dbestXY . See [10] for more details about this
procedure.

4 Evaluation Methodology

The efficacy of a time series dissimilarity measure is commonly evaluated by the
classification accuracy it achieves [10, 20]. For that, the error ratio of a distance-
based classifier is calculated for a given labeled data set, understanding the error
ratio as the number of wrongly classified items divided by the total number of
tested items. The standard choice for the classifier is the one nearest neighbor
(1NN) classifier. Following [20], we can enumerate several advantages of using



Algorithm 1 dXY(x,y)

Input: Time series x = x1, . . . xM and y = y1, . . . yN
Output: Cumulative MJC dissimilarity measure dXY

1: tx, ty ← 1
2: dXY ← 0
3: while tx ≤M and ty ≤ N do
4: dXY ← dXY+cmin(x,tx,y,ty)
5: if tx > M or ty > N then
6: break
7: end if
8: dXY ← dXY+cmin(y,ty,x,tx)
9: end while

10: return dXY

Algorithm 2 cmin(x,tx,y,ty)

Input: Time series x = x1, . . . xM and y = y1, . . . yN ; time indices tx and ty
Output: Minimum jump cost cmin; updated tx and ty
1: cmin ←∞
2: ∆,∆min ← 0
3: while ty +∆ ≤ N do
4: c← (φ∆)2

5: if c ≥ cmin then
6: if ty +∆ > tx then
7: break
8: end if
9: else

10: c← c+ (xtx − yty+∆)2

11: if c < cmin then
12: cmin ← c
13: ∆min ← ∆
14: end if
15: end if
16: ∆← ∆+ 1
17: end while
18: tx ← tx + 1
19: ty ← ty +∆min + 1
20: return cmin



this approach. First, the error of the 1NN classifier critically depends on the dis-
similarity measure used. Second, the 1NN classifier is parameter-free and easy to
implement. Third, there are theoretical results relating the error of a 1NN clas-
sifier to errors obtained with other classification schemes. Fourth, some works
suggest that the best results for time series classification come from simple near-
est neighbor methods. We refer to [20] and references therein for more details
about these aspects.

To asses a classifier’s error, out-of-sample validation needs to be done. In
our experiments we follow a two-fold cross-validation scheme [16] with bal-
anced data sets (same number of items per class). We repeat the validation
10 times and report average error ratios. To assess the statistical significance
of the difference between two error ratios we employ the Friedman’s test [5], a
non-parametric two-way analysis of variance that deals with dependent samples.
We use p < 0.05 and apply the Bonferroni adjustment to compensate for mul-
tiple experiments [16]. Therefore, using k folds, r repetitions, and s data sets,
the actual p∗-value corresponds to p∗ < 1 − krs

√
1− p. Hence, with our setting,

p∗ < 7.124 · 10−5.
We perform experiments with 36 different time series data sets from the UCR

time series repository [11]. This is the world’s biggest time series repository,
and some authors estimate that it makes up to more than 90% of all publicly-
available, labeled data sets [20]. It comprises synthetic, as well as real-world
data sets, and also includes one-dimensional time series extracted from two-
dimensional shapes [11]. The 36 data sets considered here practically correspond
to the totality of the UCR repository. Only 4 data sets were discarded prior to
and independently from the present work. Within the 36 data sets, the number
of classes ranges from 2 to 50, the number of time series per data set ranges
from 56 to 9,236, and time series lengths go from 24 to 1,882 samples (a total of
728,611,296 samples from 51,888 time series have been processed). For further
details on these data sets we refer to the cited references.

Before performing the experiments, all time series from all data sets were
Z-normalized so that they had zero mean and unit variance. Furthermore, in the
training phase of our cross-validation we performed an in-sample optimization
of the measures’ parameters. This optimization step consisted of a grid search
within a suitable range of parameter values. For DTW we used 30 linearly-spaced
integer values of w ∈ [0, 0.25N ] plus w = N (the unconstrained DTW variant).
For MJC we used 30 linearly-spaced real values of β ∈ [0, 25] plus β = 1010 (in
practice corresponding to the squared Euclidean distance variant of β → ∞).
After the grid search, the parameter value yielding to the best in-sample error
ratio was kept for out-of-sample testing.

5 Results

A full account of the error ratios obtained with the Euclidean distance, DTW,
and MJC for the 36 data sets is provided in Table 1. A baseline consisting of
using a random dissimilarity measure is also reported. For that we draw a random



Table 1. Average error ratios for the 36 data sets used in the paper. The ∗ symbol
indicates that the dissimilarity measure is statistically significantly superior to all oth-
ers (see text). Best results are highlighted in bold, independently of their statistical
significance.

Data set Random Euclidean DTW MJC

50words 0.980 0.528 0.361 0.361

Adiac 0.972 0.374 0.378 0.365

Beef 0.802 0.487 0.495 0.458

CBF 0.670 0.018 0.001 0.001

ChlorineConcentration 0.667 0.116 0.111 0.115

CincECGTorso 0.750 0.003 0.000∗ 0.003

Coffee 0.498 0.017 0.036 0.054

DiatomSizeReduction 0.749 0.014 0.009 0.010

ECG200 0.496 0.126 0.133 0.138

ECGFiveDays 0.501 0.012 0.012 0.001∗

FaceFour 0.748 0.155 0.085 0.041

FacesUCR 0.929 0.171 0.069 0.044∗

Fish 0.851 0.194 0.196 0.119∗

GunPoint 0.505 0.079 0.027 0.013

Haptics 0.796 0.615 0.584 0.569

InlineSkate 0.856 0.558 0.521 0.432∗

ItalyPowerDemand 0.498 0.035 0.035 0.039

Lighting2 0.508 0.322 0.189∗ 0.284

Lighting7 0.850 0.428 0.260 0.345

MALLAT 0.873 0.021 0.017 0.018

MedicalImages 0.902 0.350 0.276 0.325

Motes 0.499 0.090 0.068 0.039∗

OliveOil 0.744 0.129 0.125 0.147

OSULeaf 0.840 0.434 0.395 0.296∗

SonyAIBORobotSurface 0.501 0.024 0.023 0.019

SonyAIBORobotSurfaceII 0.507 0.027 0.026 0.019

StarLightCurves 0.666 0.126 0.117 0.120

SwedishLeaf 0.933 0.220 0.157 0.124∗

Symbols 0.833 0.038 0.020 0.021

SyntheticControl 0.834 0.099 0.010∗ 0.035

Trace 0.748 0.210 0.001∗ 0.055

Two-Patterns 0.749 0.030 0.000∗ 0.001

TwoLeadECG 0.498 0.007 0.001 0.003

Wafer 0.504 0.004 0.004 0.005

WordsSynonyms 0.960 0.535 0.379 0.355

Yoga 0.496 0.082 0.071 0.061∗
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Fig. 2. Pairwise comparison between Euclidean and DTW dissimilarity measures. Val-
ues in the lower-right triangular part indicate better results for DTW (better results
for Euclidean distance would be scattered in the upper-left triangular part). Green
squares indicate statistically significant differences in error ratios (non-significant ra-
tios are denoted with red dots).

number from the uniform distribution between 0 and 1 and return this number
as the actual dissimilarity between two time series. The rest of the procedure is
the same as for the other dissimilarity measures tested.

First we compare the error ratios of the Euclidean and DTW dissimilarity
measures (Fig. 2). We observe that, with the considered data, DTW is usually
superior to the Euclidean distance. In 15 of the 36 data sets the error ratios
obtained for DTW are statistically significantly below the ones obtained for the
Euclidean distance. Notice though that for a few data sets the Euclidean distance
is slightly but not statistically significantly superior to DTW. This is due to the
fact that the optimization step fails to learn a better w parameter value, which
for these specific cases would have been w = 0.

We now turn our attention to the proposed measure based on MJCs (Fig. 3).
When comparing it with the Euclidean distance (Fig. 3 left) we find that MJC
is usually superior. In fact, we have an equivalent situation as we had when
comparing DTW and the Euclidean distance. In 17 of the 36 data sets the error
ratios obtained for MJC are statistically significantly below the ones obtained
for the Euclidean distance. Again, for the very same reason outlined before, the
Euclidean distance is slightly but not statistically significantly superior to MJC
in a few data sets.

The interesting comparison though is between DTW and MJC (Table 1 and
Fig. 3 right). At a first sight, their error ratios look very similar. DTW’s error
ratio is lower than MJC’s in 16 of the 36 data sets and MJC’s is lower than
DTW’s in also 16 of the 36 data sets. However, if we just focus on statistically
significant results, MJC outperforms DTW in 8 of the 36 cases while DTW only
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Fig. 3. Pairwise comparison between Euclidean and MJC dissimilarities (left) and be-
tween DTW and MJC (right).

outperforms MJC in 5 of the 36 cases. This points towards a slight superiority
of MJC with respect to DTW.

From the error ratios reported with the considered data sets we see that
the Euclidean distance is never statistically significantly superior to DTW nor
to MJC (which is a clear consequence of the fact that both DTW and MJC
incorporate the Euclidean distance as a special case of their parameters value).
This reduces the comparison to DTW and MJC. Therefore, summarizing, we
see that MJC outperforms DTW in 8 of the 36 data sets (≈22%), that DTW
outperforms MJC in 5 of the 36 data sets (≈14%), and that for the remaining 23
data sets (≈64%) the error ratios are comparable within statistical significance.
The fact that MJC outperforms DTW for roughly 22% of the considered data sets
highlights the potential of the former and has clear implications for researchers
and practitioners dealing with new data, as such new data set could potentially
be one of the data sets where MJC statistically significantly outperforms the
classical DTW.

6 Conclusion and Discussion

We have presented a new approach to assess dissimilarities between time series
based on minimum jump costs (MJC). Beyond the novelty of the concept, we
have shown that it is computationally easy to implement (just a few lines of code)
and that further efficiency issues can be deployed. More importantly, we have
shown that the MJC dissimilarity measure is very competitive. Under rigorous
and extensive experiments we find that, in many situations, it can statistically
significantly outperform dynamic time warping, a dissimilarity measure which is
regarded as very difficult to beat. All these facts encourage the incorporation of



the MJC dissimilarity measure to the standard off-the-shelf toolkit for retrieving
and classifying time series data.

Intuitively, it seems clear that by deriving a data-specific dissimilarity mea-
sure targeted to a particular problem one would always outperform generic mea-
sures such as the Euclidean, DTW, or MJC. However, this does not preclude
considering these generic measures as part of an initial approach or assessment.
Furthermore, it could also well be the case that, for such a specific data set, the
derived, data-specific measure was comparable to or even less competitive than
the three measures considered here. In these cases, the usage of a potentially
complex data-specific dissimilarity measure could be difficult to justify.

We also notice that all considered time series dissimilarity measures are
‘global’ dissimilarity measures, i.e. they match whole time series. These are the
big majority of time series dissimilarity measures. However, measures consider-
ing ‘local’ or subsequence matches and their variants do also exist (see e.g. [18,
19]). Given a data set that needs of such local matches, a common operation to
still use global dissimilarity measures is to partition the whole time series into
multiple subsequences, either by exploiting some previous knowledge of the data
or simply by a brute-force moving window strategy. This partitioning increases
the number of comparisons between (sub)series and sometimes implies a further
operation to merge the result of such comparisons (e.g. by taking the mean or
the maximum similarity found [18, 19]).

In this contribution we do not specifically treat the case of multidimensional
time series. Indeed, all the considered data sets from the UCR time series repos-
itory are uni-dimensional. Nonetheless, one should notice that the multidimen-
sional case can be easily handled. One option could be to consider each compo-
nent or dimension as a single time series, calculate its dissimilarity, and finally
aggregate all such dissimilarities to form a global measure (potentially weighting
individual dissimilarities). However, one should notice that the formulation of
both DTW and MJC naturally incorporates the possibility to deal with multidi-
mensional time series, since they both use a sample (local) dissimilarity function
δ() (Eqs. 2 and 6), which may be problem-specific and adapted to the particular
nature of the considered time series.

The number of CBR systems that deal with time series data is increasing in
domains such as health care or industrial monitoring. Although an important
issue is the selection of the appropriate sample dissimilarity function δ(), the
availability of powerful, general-purpose measures for comparing time series is
required to speed-up the development of these CBR systems. In this research,
MJC has been evaluated in 36 data sets with time series of lengths ranging
from 24 to 1,882 samples. Although for some of the considered data sets the
time series are relatively long, they generally model a unique complex pattern.
Thus, we believe that the identification of key sub-sequences such as in [17, 22]
or the dimensionality reduction applied in [13] would not improve classification
performance in these data sets. Contrastingly, generic dissimilarity measures
such as the ones considered here can be very useful in data sets where, after



recurrent patterns have been identified, the resulting sub-sequences still need to
be compared.
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