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Abstract: Electronic institutions (EIs) have been proposed as 
a means of regulating open agent societies. EIs define the 
rules of the game in agent societies by fixing what agents are 
permitted and forbidden to do and under what circumstances. 
And yet, there is the need for EIs to adapt their regulations to 
comply with their goals despite coping with varying 
populations of self-interested agents. This paper focuses on 
the extension of EIs with autonomic capabilities to allow 
them to yield dynamical answer to changing circumstances 
through the adaptation of their norms and their performative 
structure.
Keywords: autonomic electronic institutions, multiagent 
systems, adaptation. 

1. Introduction 

The growing complexity of advanced information systems in 
the recent years, characterized by being distributed, open and 
dynamical, has given rise to interest in the development of 
systems capable of self-management. Such systems are 
known as self-* systems [21], where the * sign indicates 
variety of properties: self-organization, self-configuration, 
self-diagnosis, self-repair, etc. A particular approximation to 
the construction of self-* systems is represented by the vision 
of autonomic computing [18], which constitutes an 
approximation to systems with minimal human interference. 
Some of the many characteristics of autonomic systems are: it 
must configure and reconfigure itself automatically under 
changing (and unpredictable) conditions; it must aim at 
optimizing its inner workings, monitoring its components and 
adjusting its processings in order to achieve its goals; it must 
be able to diagnose the causes of its eventual malfunctions 
and repair itself; it must act in accordance to and operate into 
heterogeneous and open environment. 

In what follows it is argued that are EIs [7] particular type 
of self-* system. When looking at computer-mediated 
interactions Electronic Institutions (EI) can be regarded as 
regulated virtual environments wherein the relevant 
interactions among participating agents take place. EIs have 
proved to be valuable to develop open agent systems [17]. 
However, the challenges of building open systems are still 
considerable, not only because of the inherent complexity 
involved in having adequate interoperation of heterogeneous 
agents, but also because the need for adapting regulations to 
comply with institutional goals despite varying agents’ 

behaviors, particularly, when these are self-interested. 
The main goal of this work consists in studying how to 

endow an EI with autonomic capabilities that allow it to yield 
dynamical answer to changing circumstances through the 
adaptation of its regulations. Among all the characteristics 
that define an autonomic system the paper will focus on the 
study of self-configuration as pointed out in [18] as second 
characteristic: “An autonomic computing system must 
configure and reconfigure itself under varying (and in the 
future, even unpredictable) conditions. System configuration 
or “setup” must occur automatically, as well as dynamic 
adjustments to that configuration to best handle changing 
environments”. 

The paper is organized as follows. Section introduces the 
notion of autonomic electronic institution as an extension of 
the classic notion of electronic institution along with general 
model for adaptation based on transition functions. Section 3 
details how these functions are automatically learned. Section 
4 details case study to be employed as scenario wherein to 
test the model presented in Section 2. Section 5 provides 
some preliminary, empirical results. Finally, Section 6 
summarizes some conclusions and outlines paths to future 
research. 

2. Autonomic Electronic Institutions 

The idea behind EIs [24] is to mirror the role traditional 
institutions play in the establishment of “the rules of the 
game”–set of conventions that articulate agents’ interactions– 
but in our case applied to agents (be them human or software) 
that interact through messages whose (socially relevant) 
effects are known to interacting parties. The essential roles 
EIs play are both descriptive and prescriptive: the institution 
makes the conventions explicit to participants, and it warrants 
their compliance. EIs involve conceptual framework to 
describe agent interactions as well as an engineering 
framework [1] to specify and deploy actual interaction 
environments. 

In general, an EI regulates multiple, distinct, concurrent, 
interrelated, dialogic activities, each involving different 
groups of agents playing different roles. For each activity, 
interactions between agents are articulated through agent 
group meetings, the so-called scenes, that follow well-defined 
interaction protocols whose participating agents may change 
over time (agents may enter or leave). More complex 
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activities can be specified by establishing networks of scenes 
(activities), the so-called performative structures. These 
define how agents can legally move among different scenes 
(from activity to activity) depending on their role. 

Although EIs can be regarded as the computational 
counterpart of human institutions for open agent systems, 
there are several aspects in which they are nowadays lacking. 
According to North [25] human institutions are not static; 
they may evolve over time by altering, eliminating or 
incorporating norms. In this way, institutions can adapt to 
societal changes. Nonetheless, neither the current notion of 
EI in [7] nor the engineering framework in [1] supports norm 
adaptation so that an EI can self-configure. Thus, in what 
follows, it is studied how to extend the current notion of EI in 
[7] to support self-configuration. 

First of all, notice that in order for norms to adapt, we 
believe that a “rational” view of EIs must be adopted 
(likewise the rational view of organizations in [8]) and thus 
consider that EIs seek specific goals. Hence, EIs continuously 
adapt themselves to fulfill their goals. Furthermore, we 
assume that an EIis situated in some environment that may be 
either totally or partially observable by the EI and its 
participating agents. 

With this in mind, it can be observed that according to [7] 
an EI is solely composed of: dialogic framework establishing 
the common language and ontology to be employed by 
participating agents; performative structure defining its 
activities along with their relationships; and set of norms 
defining the consequences of agents’ actions. From this 
follows that further elements are required in order to 
incorporate the fundamental notions of goal, norm 
configuration, and performative structure configuration as 
captured by the following definition of autonomic electronic
institution.

Definition 1. Given finite set of agents A, we define an 
Autonomic Electronic Institution (AEI) as tuple <P S, N, DF,
G, Pi,Pe,Pa, V, > where: 

PS stands for performative structure; 
N stands for finite set of norms; 
DF stands for dialogic framework; 
G stands for finite set of institutional goals; 
Pi = i1,...,is stands for the values of finite set of 
institutional properties, where ij  IR, 1 j  s contains 
the value of the j-th property; 
Pe = e1,...er stands for the values of the environment 

properties, where each ej is vector, ej
jnIR  1 j r

contains the value of the j-th property; 
Pa = a1,...,an stands for the values that characterize the 
institutional state of the agents in A, where aj = 

mjj aa ,,
1

 1 j n stands for the institutional state of 
agent Aj ; 
V stands for finite set of reference values; and 
: N × G × V  N stands for normative transition 

function that maps set of norms into new set of norms 
given set of goals and set of values for the reference 
values; and 
: PS × G × V  PS stands for performative structure 

transition function (henceforth referred to as PS 
transition function) that maps performative structure into 

new performative structure given set of goals and set of 
values for the reference values. 

Notice that major challenge in the design of an AEI is to 
learn normative transition function, , along with a PS
transition function, , that ensure the achievement of its 
institutional goals under changing conditions. Next, the new 
elements composing an AEI are dissected. 

Agents participating in an AEI have their social 
interactions mediated by the institution according to its 
conventions. As consequence of his interactions, only the 
institutional (social) state of an agent can change since an 
AEI has no access whatsoever to the inner state of any 
participating agent. Therefore, given finite set of participating 
agents A = {A1,...,An} where n  IN, each agent Ai A can 
be fully characterized by his institutional state, represented as 
tuple of observable values 

mii aa ,,
1

 where 
jia IR, 1 

j m. Thus, the actions of an agent within an AEI may 
change his institutional state according to the institutional 
conventions. 

The main objective of an AEI is to accomplish its goals. 
For this purpose, an AEI will adapt. We assume that the 
institution can observe the environment, the institutional state 
of the agents participating in the institution, and its own state 
to assess whether its goals are accomplished or not. Thus, 
from the observation of environment properties (Pe),
institutional properties (Pi), and agents’ institutional 
properties (Pa), an AEI obtains the reference values required 
to determine the fulfillment of goals. Formally, the reference 
values are defined as vector V = v1,...,vq where each vj

results from applying function hj upon the agents’ properties, 
the environmental properties and/or the institutional 
properties; vj = hj (Pa, Pe , Pi), 1 j q.

Finally, regarding institutional goals, an example of 
institutional goal for the Traffic Regulation Authority could 
be to keep the number of accidents below given threshold. In 
other words, to ensure that reference value satisfies some 
constraint.

Formally, lets define the goals of an AEI as finite set of 
constraints G = {c1, ..., cp} where each ci is defined as an 
expression gi(V)  [mi, Mi] where mi, Mi IR, stands for 
either  or  and gi is function over the reference values. 
In this manner, each goal is constraint upon the reference 
values where each pair mi and Mi defines an interval 
associated to the constraint. Thus, the institution achieves its 
goals if all gi(V) values satisfy their corresponding constraints 
of being within (or not) their associated intervals. 

2.1 Norm Transition 

An AEI employs norms to constrain agents’ behaviors and to 
assess the consequences of their actions within the scope of 
the institution. Although there is plethora of formalizations of 
the notion of norm in the literature, this paper adheres to 
simple definition of norms as effect propositions as defined 
in [12]: 

Definition 2. An effect proposition is an expression of the 
form 

A causes F if P1,...,Pn
where is an action name, and each of F, P1,...,Pn (n 0) is 
fluent expression. About this proposition we say that it 
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describes the effect of on and that P1,...,Pn are its 
preconditions. If 0, ’if’ disappears and the effect proposition 
simply becomes causes . From this definition, changing norm 
amounts to changing either its pre-conditions, or its effect(s), 
or both. Norms can be parameterized, and therefore we 
propose that each norm Ni  N, i = 1,...,n, has set of 
parameters i

i

mN
mi

N
i pp IR,, ,1, . Hence, changing the 

values of these parameters means changing the norm. In fact 
this parameters correspond to the variables in the norm 
transition function that will allow the institution to adapt 
under changing situations. 

2.2 PS Transition 

As mentioned above, an EI involves different groups of 
agents playing different roles within scenes in performative 
structure. Each scene is composed of coordination protocol 
along with the specification of the roles that can take part in 
the scene. Notice that we differentiate between institutional 
roles (played by staff agents acting as the employees of the 
institution) and external roles (played by external agents 
participating in the institution as users). Furthermore, it is 
possible to specify the number of agents than can play each 
role within a scene. 

Given performative structure, it is necessary to choose the 
values that are aimed at changing in order to adapt it. This 
involves the choice for set of parameters whose values will 
be changed by the PS transition function. In our case, we 
choose as parameters the number of agents playing each role 
within each scene. This choice is motivated by our intention 
to determine the most convenient number of institutional 
agents to regulate given population of external agents. 

Scenes can be parameterized, and therefore, we propose 
that each scene in the performative structure, Si PS, i =
1,...,t, i

i

qR
qi

R
i pp IN,, ,1,  has set of parameters where R

jiP,

stands for the number of agents playing role rj in scene Si.

3. Learning Model 

Adapting EIs amounts to changing the values of their 
parameters. This paper proposes to learn the norm transition 
function ( ) and the PS transition function ( ) by exploring 
the space of parameter values in search for the ones that best 
accomplish goals for given population of agents. In this 
manner, if it is possible to automatically adapt an EI to the 
global behavior of an agent population, then, it becomes also 
possible to repeat it for number of different agent populations 
and thus characterize both  and .

Fig. 1 describes how this learning process is performed for 
given population of agents (A) using an evolutionary 
approach. We have an initial set of individuals I1,...,Ik ,
where each individual represents the set of norm and role 
parameters defined above { N

m
N pp

1,11,1 ,, ,..., 
N

mn
N
n n

pp ,1, ,,  , R
q

R pp
1,11,1 ,, ,..., R

qt
R
t t

pp ,1, ,,  }. Each 

individual represents specific AEI configuration, and 
therefore, the institution uses each configuration to perform 
simulation with the population of agents A. The 
corresponding configuration can then be evaluated according 
to fitness function that measures the satisfaction degree of 

institutional goals (configuration evaluation). Finally, the 
AEI compiles the evaluations of all individuals in order to 
breed new generation from the best ones configuration
adaptation. This process results with new set of individuals 
(New configurations) to be used as next generation in the 
learning process. 

Fig. 1. Example of a step in EI adaptation using an 
evolutionary approach. 

4. Case Study: Traffic Control 

Traffic control is a well-known problem that has been 
approached from different perspectives, which range from 
macro simulation for road net design [27] to traffic flow 
improvement by means of multi-agent systems [22]. This 
paper tackles this problem from the Electronic Institutions 
point of view, and therefore, this section is devoted to specify 
how traffic control can be mapped into Autonomic Electronic 
Institutions.

In this manner, the Traffic Regulation Authority is 
considered to be an Autonomic Electronic Institution, and 
cars moving along the road network are regarded as agents 
interacting inside a traffic scene. Considering this set-up, 
traffic norms regulated by Traffic Authorities can therefore 
be translated in a straight forward manner into norms 
belonging to the Electronic Institution. Norms within this 
normative environment are thus related to actions performed 
by cars (in fact, in our case, they are always restricted to that). 
Additionally, norms do have associated penalties that are 
imposed to those cars refusing or failing to follow them. In 
our case study, we assume that the Traffic Authority is 
always aware of norm violations: cars may or may not 
respect rules, but they are not able to avoid the consequences 
of their application. Furthermore, our Electronic Institution is 
able to change norms based on its goals – just as traffic 
authorities do modify their traffic rules– and, therefore, it is 
considered to be autonomic. 

Our AEI sets up a normative environment where cars do 
have a limited amount of credit (just as some real world 
driving license credit systems) so that norm offenses cause 
credit reductions. The number of points subtracted for each 
traffic norm violation is specified by the sanction associated 
to each norm, and this sanction can be changed by the 
regulation authority (that is, our AEI) if its change leads –or 
contributes to– the accomplishment of goals. Eventually, 
those cars without any remaining points are forbidden to 
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circulate. On the other hand, we assume a non-closed world, 
so expelled cars are replaced by new ones having the total 
amount of points. 

Getting into more detail, this paper focuses on a two-road 
junction. It is a very restrictive problem setting, but it is 
complex enough to allow us to tackle the problem without 
losing control of all the factors that may influence the results. 
In particular, no traffic signals (neither yield or stop signals 
nor traffic lights) are considered, therefore, cars must only 
coordinate by following the traffic norms imposed by the AEI. 
Our institution is required to define these traffic norms based 
on general goals such as minimization of the number of 
accidents or deadlock avoidance. 

We model the environment as a grid composed by road 
and field cells. Road cells define 2 orthogonal roads that 
intersect in the center (see Fig. 2). Discretization granularity 
is such that cars have the size of a cell. As Section 4.2 details, 
our model has been developed with the Simma tool [20]. 
Although the number of road lanes can be changed 
parametrically, henceforth we assume the 2-lane case. Next 
subsections are devoted to define this “toy problem” and 
present our solution proposal in terms of it. But before that, 
some nomenclature definitions are introduced: 

Fig. 2. Grid environment representation of a 2-lane road 
junction. 

Ai: an agent i, agents correspond to cars. 
t: time step. Our model considers discrete time steps, also 
known as ticks. Time is necessary for sequentiality
considerations (i.e., time ordering). 
( Jx0 , Jy0 ): top left cell inside the road junction area. 
(Jx, Jy): size in x, y of our road junction area. Thus, Jx×Jy
is the total amount cells inside the junction. If we 
consider 2-lane roads, then (Jx, Jy) = (2, 2). 
J: inner road junction area J = {(x, y) | x [ Jx0 , Jx0 +

Jx  1], [ Jy0 , Jy0  + Jy  1]}. Considering the 4 J cells in 

the junction area of Fig. 2: J = {( Jx0 , Jy0 ), ( Jx0 + 1,
Jy0 ), ( Jx0 , Jy0  + 1), ( Jx0 + 1, Jy0  + 1)}. 

JBE: Junction Boundary Entrance, set of cells surrounding 
the junction that can be used by cars to access it. They 
correspond to cells near by the junction that belong to 
incoming lanes. Fig. 2 depicts JBE  = {( Jx0 , Jy0  1), (

Jx0  1, Jy0  + Jy  1), ( Jx0 +  Jx  1, Jy0  + Jy, ( Jx0 +  Jx,
Jy0 ))}. Nevertheless, the concept of boundary is not 

restricted to adjacent cells: a car can be also considered 
to be coming into the junction if it is located one –or 
even few– cells away from the junction. 
( t

ix , t
iy ) position of car Ai at time t, where (x, y) IN x IN 

stands for cell in the grid. 
( t

ixh , t
iyh ): heading of car Ai, which is located in (x, y) at 

time t. Heading directions run along x, y axes and are 
considered to be positive when the car moves right or 
down respectively. In our orthogonal environment, 
heading values are: 1 if moving right or down; 1 if left 
or up; and 0 otherwise (i.e., the car is not driving in the 
axis direction). In this manner, car4’s heading on the 
right road of Fig. 3 is (-1, 0). 

Fig. 3. Priority to give way to the right (Simma tool 
screenshot).

4.1 AEI Specification 

4.1.1 Environment 

As mentioned above, we consider the environment to be grid. 
This grid is composed of cells, which can represent roads or 
fields. The main difference among these two types is that 
road cells can contain cars. Indeed, cars move among road 
cells along time. 

Fig. 2 depicts 8 grid example. The top left corner of the 
grid represents the origin in the x, axes. Thus, in the example, 
cell positions range from (0, 0) in the origin up to (7, 7) at the 
bottom-right corner. Additionally, cell is road if one of its x, 
coordinates belong to inner junction area (see previous 
definition). 

This grid environment is defined as: 
Pe = (x, y, , r, dx, dy) | 0  x maxx, 0  y maxy,

P(A), r  [0, 1], dx  [ 1, 0, 1], dy  [ 1, 0, 1]
being x and y the cell position,  defines the set of agents 
inside the grid cell (x, y), indicates whether this cell 
represents a road or not, and, in case it is road, dx and dy stand 
for the lane direction, whose values are the same as the ones 
for car headings. Notice that the institution can observe the 
environment properties along time, we use t

eP  to refer the 
values of the grid environment at specific time t. This 
discretized environment can be observed both by the 
institution and cars. The institution observes and keeps track 

230 Bou et al / Norm Adaptation of Autonomic Electronic Institutions with Multiple Goals



of its evolution along time, whilst cars do have locality 
restrictions on their observations. 

4.1.2 Agents 

Lets consider A = A1, ..., An to be finite set of n agents in the 
institution. As mentioned before, agents correspond to cars 
that move inside the grid environment, with the restriction 
that they can only move within road cells. Additionally, 
agents are given an account of points which decreases with 
traffic offenses. The institution forbids agents to drive 
without points in their accounts. 

The institution can observe the Pa = a1,...,an agents’ 
institutional properties, where 

ai = xi, yi, hix, hiy, speedi, indicatori, offensesi, accidentsi,

distancei, pointsi

These properties stand for: car Ai’s position within the 
grid, its heading, its speed, whether the car is indicating 
trajectory change for the next time step (that is, if it has the 
intention to turn, to stop or to move backwards), the norms 
being currently violated by Ai, whether the car is involved in 
an accident, the distance between the car and the car ahead of 
it; and, finally, agent Ai’s point account. Notice that the 
institution can observe the agent properties along time, we 
use t

ia to refer the agent Ai’s properties at specific time t. 

4.1.3 Reference Values 

In addition to car properties, the institution is able to extract 
reference values from the observable properties of the 
environment, the participating agents and the institution. 
Thus, these reference values are computed as compound of 
other observed values. Considering our road junction case 
study, it is possible to identity different reference values: 

V = num_collisions, num_crashed, num_of fenses, 

num_blocked
where num_collisions indicates total number of collisions for 
the last tw ticks (0 tw  tnow): 

num_collisions = 
now

wnow
t

e

t

t

ttt Pe
ef )(    (1) 

being t
eP  the values of the grid environment at time t, te

the t component of element e t
eP  and 

11
{)( t

t

eif
otherwiseoef    (2) 

Similarly, num_offenses indicates the total number of 
offenses accumulated by all agents during last tw ticks (0 tw

 tnow):

num_of fenses = 
now

wnow

t

ttt

A

t

t
ifensesof

0
(3) 

Furthermore, num_crashed counts the number of cars 
involved in accidents for the last tw ticks: 

num_crashed = 
now

wnow

t

ttt

A

t

t
iaccidents

0
(4) 

And finally, num_blocked describes how many cars have 
been blocked by other cars for last tw ticks: 

num_blocked =
now

wnow

t

ttt

A

t
i,tablocked

0
)(  (5) 

where blocked(ai, t) is function that indicates if the agent ai is 
blocked by another agent aj in time t. 

blocked(ai, t) = 

otherwise

speedthatsoea

ehye

hxePeif

t
jj

t
iy

t
iy

t
ix

t
ix

t
e

t

tt

t

0

)0

&1&

&(1

 (6) 

being txe , tye , te  the xt, yt,, t components of element e
t

eP

4.1.4 Goals 

Goals are in fact institutional goals. The aim of the traffic 
authority institution is to accomplish as many goals as 
possible. The institution tries to accomplish these goals by 
defining set of norms (see Subsection 4.1.5). 

Institutional goals are defined as constraints upon a 
combination of reference values. Considering our scenario, it 
is possible to define restrictions as intervals of acceptable 
values for the previous defined reference values (V) so that 
the institution considers it has accomplished its goals if 
values are within their corresponding intervals. In fact, the 
aim is to minimize the number of accidents, the number of 
traffic offenses, as well as the number of blocked cars by 
establishing the list of institutional goals G as: 

G = g(num_collisions)  [0, MaxCollisions], 
g(num_of fenses)  [0, MaxOffenses], 
g(num_crashed)  [0, MaxCrashed], 
g(num_blocked)  [0, MaxBlocked]

Having more than one institutional goal requires to 
combine them. We propose an objective function [26] that 
favors high goal satisfaction while penalizing big differences 
among them: 

O(V) = 
G

t
iiiii MmVgfw

1
,,),((  (7) 

where 1 i  |G|, wi  0 are weighting factors such that wi
= 1, gi is function over the reference values, i  [0, 1] and is 
function that returns value f(x, [m, M], )  [0, 1] representing 
the degree of satisfaction of goal: 

f(x, [m, M], ) = 

Mx

e

Mmx
mM

mx

mx

e

mM
Mxk

mM
xmk

,)1(1  (8)

4.1.5 Norms 

Autonomic Electronic Institutions use norms to try to 
accomplish goals. Norms have associated penalties that are 
imposed to those cars refusing or failing to follow them. 
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These penalties can be parameterized to increase its 
persuasiveness depending on the agent population behavior. 

Considering road junction without traffic signals, priorities 
become basic to avoid collisions. We consider, as in most 
continental Europe, that the default priority is to give way to 
the right. This norm prevents car Ai located on the Junction 
Boundary Entrance (JBE to move forward or to turn left 
whenever there is another car Aj on its right. For example, car 
in Fig. 3 must wait for car on its right, which must also wait 
for car at the bottom JBE. The formalization in Table 1 can be 
read as follows: “if car Ai moves from position in JBE at time 
to its next heading position at time without indicating right 
turn, and if it performs this action when having car Aj at the 
JBE on its right, then the institution will fine Ai by decreasing 
its points by certain amount” (see Fig. 4). 

Table 1. Right priority norm. 

 Action  Pre-
conditions  

Consequence 

Right 
priority 

in(ai, JBE , t  1) in(ai,
( 1t

ix + 1t
ixh , 1t

iy +
1t

iyh ), t)
indicator(ai, right, t 

1)  

right(ai, aj,
t  1) 

points t
i =

points t
i

fineright

Fig. 4. Priority to give way to the right. 

Where the predicate in(ai, Region, t) in Table 1 is equivalent 
to (x, y, t, r, dx, dy) t

eP so that (x, y) Region and ai
t

and right(ai, aj, t) is Boolean function that returns true if car 
Aj is located at JBE area on the right side of car Ai. For the 2-
lane JBE case in Fig. 2, it corresponds to the formula: 
( t

ix t
iyh + x

t
ix Jh , t

iy t
ixh + y

t
iyJh ) = ( t

jx , t
jy ).

Similarly, it is possible to define an additional norm that is 
somehow related to the previous ‘right priority norm’. Let’s 
name it ‘front priority norm’. It applies when two cars Ai, Aj
reach Junction Boundary Entrance areas (JBE) located at 
opposite lines, and one of them (Ai in Fig. 5) wants to turn 
left. Car Ai turning left may interfere Aj’s trajectory, and 
therefore, this norm assigns priority to Aj so that Ai must stop 
until its front JBE area is clear. Otherwise Ai will be punished 
with the corresponding finefront fee. 

Table 2 shows the formalization of this norm where 
front(ai, aj, t) is Boolean function that returns true if car Aj is 
located in front of car Ai at time t. In an orthogonal 
environment, this function can be easily computed by 

comparing car headings (( t
ixh , t

iyh ), ( t
jxh , t

jyh )) by means of 

the Boolean formula 1)( t
jy

t
iy

t
jx

t
ix hhhh .

Fig. 5. Priority to give way to the front. 

Table 2. Front priority norm. 

 Action Pre-conditions  Consequence 
Front
priority 

in(ai, JBE , t
1) in(ai, ( 1t

ix +
1t

ixh , 1t
iy + 1t

iyh ),

t)
indicator(ai, left, t 

1)

in(ai, JBE , t
1)
front(ai, aj , t
1

points t
i =

points t
i

finefront

4.1.6 Performative Structure 

As introduced in Section 2, an AEI involves different groups 
of agents playing different roles within scenes in a 
performative structure. Each scene is composed of 
coordination protocol along with the specification of the roles 
that can take part in the scene. Our case study particularizes 
the Performative Structure component so that we define it as 
being formed by single traffic scene with single agent role, 
i.e. agent cars. Regarding performative structure transition, ,
we do not exploit it in our current implementation of the 
traffic case study so that we just fix the number of car agents 
that interact within the scene. Nevertheless it could be done 
by defining new institutional agent roles contributing to the 
EAI goal fulfillment. 

4.2 Experimental Settings and Design 

As proof of concept of our proposal in Section 2, we have 
designed an experimental setting that implements the traffic 
case study. In this preliminary experiment we consider two 
institutional goals related to both num collisions and num
offenses reference values; and both right and front priority 
norms in Tables 1 and 2. Institutional goals are combined 
with the objective function introduced in Section 4.1.4, 
assuming both weights are equal to 0.5 so that both goals are 
considered to be equally important. On the other hand, norms 
are parameterized through its fines (i.e., points to subtract to 
the car falling to follow the corresponding norm). 

The 2-road junction traffic model has been developed with 
Simma [20], graphical MAS simulation tool shown in Fig. 3, 
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in such way that both environment and agents can be easily 
changed. In our experimental settings, we have modeled the 
environment as 16×16 grid where both crossing roads have 2 
lanes with opposite directions. Additionally, the environment 
is populated with 10 cars, having 40 points each. 

Our institution can observe the agents properties for each 
tick and can keep record of them in order to refer to past 
ticks. In fact, the institution usually determines traffic 
offenses by analyzing agent actions along time. Agent actions 
are observed through consecutive car positions and indicators 
(notice that the usage of indicators is compulsory for cars in 
this problem set up). During our discrete event simulation, 
the institution replaces those cars running out of points by 
new cars, so that the cars’ population is kept constant. Cars 
follow random trajectories at constant 1-cell/tick speed and 
they collision if two or more cars run into the same cell. In 
that case, the involved cars do remain for two ticks in that 
cell before they can start following new trajectory. 

Cars correspond to agents without learning skills. They 
just move, within the traffic scene, based on their trajectories 
and institutional norms. Agents have local information about 
their environment (i.e., grid surrounding cells) and know 
whether their next movements will violate norm and what 
fine will be thus applied. Agents decide whether to comply 
with norm based on three parameters: fulfill_prob , 

high_punishment, inc_prob . Being fulfill_prob  [0, 1] the 
probability of complying with norms that is initially assigned 
to each agent, high_punishment  IN the fine threshold that 
causes an agent to consider fine to be high enough to 
reconsider the norm compliance, and inc_prob  [0, 1] the 
probability increment that is added to fulfill_prob when the 
fine threshold is surpassed by the norm being violated. In 
summary, agents decide whether they keep moving 
regardless of violated norms or they stop in order to comply 
with norms based on probability that is computed as: 

fulfill_prob = 
hpfineprobincprobfulfill
hpfineprobfulfill

_
   (9) 

where hp is high punishment. 
Our goal is to adapt norms to agent behaviors by applying 

Genetic Algorithms (GA) (Note 1) to accomplish institutional 
goals, that is, to maximize the objective function, which 
comprises both number of collisions and number of offenses. 
We propose to learn norms for different agent population 
behaviors by simulation as mentioned in Section 3. Once 
specified different agent populations, it is possible to run 
genetic algorithm per population. Therefore, norm adaptation 
is implemented as learning process of the “best” norm 
parameters. In our experiments, Genetic Algorithms run 15 
generations of 10 individuals. An individual corresponds to 
list of binary codifications of specific values for the right-
norm-penalty and front-norm-penalty institution parameters. 
Crossover among individuals is chosen to be singlepoint and 
mutation rate of 5% is applied. The fitness function for 
individual evaluation corresponds to the objective function 
described above, which is computed as an average of 5 
different 2000-tick-long simulations for each model setting 
(that is, for each set of parameters): 

O(V) = )
2
1,,0),_((

2
1 onsMaxCollisicollisionsnumgf  + 

)
2
1,,0),_((

2
1 sMaxOffenseoffensesnumgf  (10) 

where g(num_collisions) and g(num_of fenses) correspond to 
average values of both reference values averaged from 
different simulations; and f(x, [m, M ])  [0, 1] represents the 
goal satisfaction. 

5. Results 

From the experimental settings specified above, we have run 
experiments for three different agent populations. These 
populations are characterized by their norm compliance 
parameters, being fulfill_prob = 0.5 and inc_prob = 0.2 for 
the three of them whereas high_punishment varies from 5 for 
the first, to 10 for the second, up to 14 for the third (see Table 
3). 

Table 3.  Learning results for three different agent 
populations. 

Parameters  population1 population2 population3 
fulfill_prob  0.5 0.5 0.5 
hig_ punishment  5 10 14 
inc_prob  0.2 0.2 0.2 
Learned right fine  14 15 15 
Learned front fine  11 12 15 

Since both right and front priority norms contribute to reduce 
accidents, our AEI must learn how to vary its fine parameters 
to increase its persuasiveness for agents, and eventually, to 
accomplish the normative goals of minimizing the total 
number of collisions and the total number of offenses. Table 
3 shows the fine vectors that our AEI has learned for 
population1, population2, and population3 respectively: (14, 
11), (15, 12), and (15, 15), where the first parameter stands 
for fineright and the second one for finefront. Agent’s behavior 
is so that its probability of complying with norms increases –
by inc_prob– only when the fine is larger than 
high_punishment (see equation 9). Therefore, any fine value 
higher than the population’s high_ punishment value will 
have the same effect, and thus, will generate equivalent goal 
satisfaction degrees. As result, the AEI must learn the best 
combination of parameters (fineright and finefront) according to 
the 2-goal objective function and to the agents’ behavior. 

Henceforth, the obtained results allow us to state that the 
AEI succeeds in learning the norms that best accomplish its 
overall goal because both learned fines are larger than the 
population’s high_punishment value in all three cases. 

In order to further analyze the obtained results, next Figs. 
6 and 7 give some more detail about the performance of agent 
populations for different norm fine values. In particular, these 
figures illustrate the performance of agent population2 having 
high_punishment threshold equal to 10. Fig. 6(a) compares 
the number of collisions per 100 ticks when fines are (8, 8) 
with the resulting number of collisions when they are (15, 
12), which correspond to the previously learnt values for this 
population. Fig. 7(a) provides an analogous comparison, but 
for number of offenses instead. Similarly, second and third 
charts in Figs. 6 and 7 compare results for the same fine 
values of (8, 8) with fine values (11, 8) in second charts and 
with (8, 15) values in third charts. For all three cases in both 
figures, it can be observed that the number of collisions and 
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Fig. 6(a). (8, 8) fines vs. (15, 12). 

Fig. 6(b). (8, 8) fines vs. (11, 8). 

Fig. 6(c). (8, 8) fines vs. (8, 15). 
Fig. 6. Result comparison for different fine values in terms of 

number of collisions per 100 ticks along a 2000-tick 
simulation. 

the number of offenses for fines (8, 8) keep above the other 
ones both in average and along the curve that results from a 
simulation of 2000 ticks. Differences are greater for first 
charts, which compare with learnt fine values. As expected, 
the reason is that both values (8, 8) are smaller than the high_ 
punishment value for the second agent population (which is 
10), whereas both learnt fine values (15, 12) are greater than 
it. This implies agents to increment its probability of 
complying with norms. On the contrary, only one fine value 
is greater than the high_punishment value for second and 
third charts and, therefore, the decrease in the number of 
collisions and offenses is moderated. 

The effect of high_punishment can also be appreciated in 
Fig. 8, which shows the overall goal function for population1. 
This 3D chart depicts all the values of the goal function using 
fineright and finefront parameters, in the 16 domain, that 
correspond to x and y axis. As it can be appreciated, 
discontinuity appears for and values higher than 5, which 
corresponds to the high punishment value for population1. In 
fact, the region defined for fineright, finefront > 5 includes 
maximal satisfaction degrees, and thus the genetic algorithm 
should provide solutions belonging to this area, which has 
been the case in our experiments. 

6. Discussion and Future Work 

Within the area of Multi-Agent Systems, adaptation has been 
usually envisioned as an agent capability. In this manner, 
works such as the one by Excelente-Toledo and Jennings [9] 
propose decision making framework that enables agents to 
dynamically select the coordination mechanism that is most 
appropriate to their circumstances. Hübner et al. [15] propose 
model for controlling adaptation by using the MOISE+ 
organization model. Agents in this model adapt their MAS 
organization to both environmental changes and their own 
goals. In [11] Gasser and Ishida presented general distributed 
problem-solving model which can reorganize its architecture, 
in [16] Ishida and Yokoo introduce two new reorganization 
primitives that change the population of agents and the 
distribution of knowledge in an organization, whereas 
Horling et al. [14] propose an approach where the members 
adapt their own organizational structures at runtime. On the 
other hand, it has been long stated [4] that agents working in 
common society need norms to avoid and solve conflicts, 
make agreements, reduce complexity, or to achieve social 
order. Both approaches –i.e. adaptation and norms– have 
been considered together by Lopez-y-Lopez et al. [19], where 
agents can adapt to norm-based systems and they can even 
autonomously decide its commitment to obey norms in order 
to achieve associated institutional goals. This adaptation from 
the point of view of agents in these related works is the most 
remarkable difference with the approach presented in this 
paper, which focuses on adapting the institution –that is, the 
authority issuing norms– rather than adapting the agents. 
Institution adaptation is accomplished by changing norms 
autonomously (as opposite to the work by Hoogendoorn et al. 
[13], which is based on design considerations). Therefore, we 
do not select norms at design stages as it is done by Fitoussi 
and Tennenholtz [10], who do it so by proposing the notions 
of minimality and simplicity as selecting criteria. They study 
two basic settings, which include Automated-Guided-
Vehicles (AGV) with traffic laws, by assuming an 
environment that consists of (two) agents and set of strategies 
available to (each of) them. From this set, agents devise the 
appropriate ones in order to reach their assigned goals 
without violating social laws, which must be respected. 

Regarding the traffic domain, MAS has been previously 
applied to it [5][6][22]. For example, Camurri et al. [2] 
propose two field-based mechanisms to control cars and 
traffic-lights. Its proposed driving policy guides cars towards 
their (forward) destinations avoiding the most crowded areas. 
On the other hand, traffic light control is based on linear 
combination between distance field and the locally perceived 
traffic field. Additionally, authors combine this driving 
policy and traffic light control in order to manage to avoid
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Fig. 7(a). (8, 8) fines vs. (15, 12). 

Fig. 7(b). (8, 8) fines vs. (11, 8). 

Fig. 7 (c) (8, 8) fines vs. (8, 15). 
Fig. 7. Result comparison for different fine values in terms of 
number of offences per 100 ticks along 2000-tick simulation. 

deadlocks and congestion. 
Traffic has also been widely studied outside the scope of 

MAS, for example, the preliminary work by [23] used 
Strongly Typed Genetic Programming (STGP) to control the 
timings of traffic signals within network of orthogonal 
intersections. Their evaluation function computed the overall 
delay. 

This paper presents AEI as an extension of EIs with 
autonomic capabilities. In order to test our model, we have 
implemented traffic AEI case study, where the AEI learns 
two traffic norms in order to fulfill its goals while adapting to 
different agent populations. We are currently working on 
extending the performative structure adaptation to include  

Fig. 8. Objective function. 

institutional agents with new role representing the Traffic 
Authority employees. They would be in charge of detecting 
norm violations so that we could refer to them as police 
agents. Each police agent would be able to detect only 
portion of the total number of norm violations that car agents 
actually do. Therefore, the number of police agents in the 
traffic scene would directly affect the number of detected 
norm violations, and thus, the overall quantity of penalties 
imposed to car agents. 

As future work, and since this basically represents 
centralized scenario, we plan to develop more complex traffic 
network, adopting decentralized approach such that the rules 
of regulatory institution are distributed across different areas 
(e.g., junctions). In this manner, rules may have different 
local scopes. Furthermore, different areas containing different 
rules are expected to coordinate and cooperate in order to 
ensure that the system’s performance fulfils the required 
reference values. On the other hand, we plan to extend the 
autonomic capabilities to other than self-configuration. In 
fact, additional research is required in order to extend both 
our traffic model and the institutional adaptation capabilities 
so that an autonomic electronic institution will not only learn 
the most appropriate norms for given agent population, but it 
will be able to adapt to any change in the population. 
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