ManyVal 2019

Book of Abstracts

Bucharest, Romania November 1-3, 2019

Table of Contents

1	Invited speakers	1
	The spectrum problem for Abelian l-groups and MV-algebras, A. Di Nola, G. Lenzi	3
	There Are Many Strict/Tolerant Logics, Melvin Fitting	4
	Stone Duality of Relations, Alexander Kurz, M. Andrew Moshier, and Achim Jung	8
	One-Variable Fragments of First-Order Many-Valued Logics, George Metcalfe	11
	Computing on AF C*-algebras, Daniele Mundici	12
	On Automated Reasoning in Classes of Algebras Related to Non-Classical Logics, Viorica Sofranie-Stokkermans	13
2	Contributed Talks	17
	Strictly join irreducible varieties of BL-algebras, Stefano Aguzzoli and Matteo Bianchi	19
	Gödel-Dummett logic, the category of forests, and topoi, Stefano Aguzzoli, Pietro Codara, and Vincenzo Marra	21
	A categorical duality for finite semilinear Hilbert algebras, Stefano Aguzzoli and Brunella Gerla	23
	Rosser's undecidability theorem for very weak (fuzzy) arithmetics, Guillermo Badia, Petr Cintula, and Andrew Tedder	25
	Type omission and saturation in models of fuzzy logics, Guillermo Badia and Carles Noguera	28
	A many-valued semantics for feasible knowledge, Libor Běhounek	31
	Sure-wins under coherence: geometry, MV-algebras and state theory, Stefano Bonzio, Tommaso Flaminio, and Paolo Galeazzi	34
	On paraconsistent extensions of degree-preserving Gödel logics with an involution,	
	Marcelo E. Coniglio, Francesc Esteva, Joan Gispert and Lluis Godo	37

A fuzzy semantic model for multi-agent probabilistic reasoning, Martina Daňková and Libor Běhounek	39
Stochastic processes in Riesz MV-algebras, Antonio Di Nola, Anatolij Dvurečenskij, Serafina Lapenta	42
Gödel algebras with operators and their logics, Tommaso Flaminio, Lluis Godo, and Ricardo O. Rodriguez	44
Generalizations of MV algebras, ortholattices and Boolean algebras, Afrodita Iorgulescu	46
An S5 Abelian Logic, George Metcalfe and Olim Tuyt	51
Dual Logic of Rational Agent and its Modal Extensions, Yaroslav Petrukhin	53
Combining probability distribution functions and membership functions using exponential operators, Mincoo Sularia	57
Tackling Spectra Problems via Duality: Two Concrete Examples,	97
Diego Valota	64

3 Associated Event

Aristotle's Sea Battle. The Common Root of Modal and Many-Valued Logic, Mircea Dumitru	69
Two New Solutions to Chisholm's Paradox, Graeme Forbes	71
Evans' Argument and Vague Objects, Graham Priest	73

67

Gödel algebras with operators and their logics

TOMMASO FLAMINIO¹, LLUIS GODO¹, AND RICARDO O. RODRIGUEZ²

¹ Artificial Intelligence Research Institute (IIIA - CSIC) Campus UAB, Bellaterra 08193, Spain {tommaso,godo}@iiia.csic.es ² UBA. FCEyN. Departamento de Computación. UBA-CONICET. Inst. de Invest. en Cs. de la Computación. Buenos Aires, Argentina. ricardo@dc.uba.ar

Fuzzy modal logic is an active and relatively recent area of research aimed at generalizing classical modal logic to the many-valued or fuzzy framework. This is usually done by considering a Kripke-style relational semantics in which both accessibility relations and evaluations of modal formulas (in each world) are allowed to take values in the real unit interval [0, 1], instead of the classical two-valued set {0, 1} (see [3, 4] for instance). In the recent contribution [5] we put forward a new, algebraic-oriented perspective to the area of fuzzy modal logic, and in particular to Gödel modal logic by defining and studying the class of *finite Gödel algebras with operators* (finite *GAOs* for short). These structures are obtained by expanding the language of Gödel algebras by means of two modal operators \diamond and \Box equationally described by the same axioms used to define these operators in Boolean algebras with operators (BAOs), see [2]: $\Box \top = \top$, $\diamond \bot = \bot$, $\Box(x \land y) = \Box x \land \Box y$ and $\diamond(x \lor y) = \diamond x \lor \diamond y$.

The duality between finite Gödel algebras and finite forests (see [1]) leads us to introduce the dual structures of GAOs as triples ($\mathbf{F}, R_{\Diamond}, R_{\Box}$), where $\mathbf{F} = (F, \leq)$ is a finite forest, while R_{\Diamond} and R_{\Box} are binary (crisp) relations on \mathbf{F} satisfying suitable conditions of (anti-)monotonicity in their first argument. These structures are called *forest frames*. The main result of [5] shows that, any finite GAO ($\mathbf{A}, \Diamond, \Box$) uniquely determines a forest frame ($\mathbf{F}_{\mathbf{A}}, Q_{\Diamond}, Q_{\Box}$) which, in turn, uniquely defines a GAO ($\mathbf{S}_{\mathbf{F}_{\mathbf{A}}}, \delta_{\Diamond}, \beta_{\Box}$) which is isomorphic to the original one.

The aim of this contribution is to present our representation for finite Gödel algebras with operators and to present further research lines in this direction. In particular, we first discuss on a possible way to extend of the same to the whole family of Gödel algebras with operators (the so defined variety will be denoted by \mathbb{GAO}) and secondly we present a logic, denoted by $\mathbb{GK}_{\Diamond,\Box}$ being its syntactic counterpart. As for the last two proposals:

(1) We introduce the class of *linear Esakia frames* as the relational dual of Gödel algebras with operators. These are obtained by endowing a linear Esakia space $\mathbf{E} = (E, \leq, \tau)$ (i.e., an Esakia space where (E, \leq) is a forest) by two binary relations R_{\diamond} and R_{\Box} satisfying the same properties of forest frames. By using these relational models we will present a generalization of the aforementioned isomorphic representation theorem to the whole class of Gödel algebras with operators.

(2) The logical counterpart of the variety GAO of Gödel algebras with operators is a system $\mathbf{GK}_{\diamond,\Box}$ which can be equivalently regarded as the modal intuitionistic logic $\mathbf{IntK}_{\diamond,\Box}$ (see [6]) added with the prelinearity axioms $(\varphi \to \psi) \lor (\psi \to \varphi)$. We will prove that $\mathbf{GK}_{\diamond,\Box}$ has the finite model property and, as consequence of the fact that Gödel algebras with operators and linear Esakia frames shares the same tautologies, we will finally show that $\mathbf{GK}_{\diamond,\Box}$ is sound and complete w.r.t. both these classes of models.

Acknowledgments The authors acknowledge partial support by the SYSMICS project (EU H2020-MSCA-RISE-2015 Project 689176). Further, Flaminio acknowledges partial support by the Spanish Ramon y Cajal research program RYC-2016-19799. Flaminio and Godo acknowledge partial support by the Spanish FEDER/MINECO project TIN2015-71799-C2-1-P (RASO). Rodriguez was partially funded by the projects UBA-CyT 20020150100002BA and PICT/O N° 2016-0215.

References

- S. Aguzzoli, S. Bova, B. Gerla, Free Algebras and Functional Representation for Fuzzy Logics. Chapter IX of the *Handbook of Mathematical Fuzzy Logic* - Volume 2. P. Cintula, P. Hájek, C. Noguera Eds., Studies in Logic, vol. 38, College Publications, London, pp. 713–791, 2011.
- [2] P. Blackburn, M. de Rijke, Y. Modal Logic. Cambridge University Press, 2001.
- [3] X. Caicedo, R. O. Rodriguez, Bi-modal Gödel logic over [0, 1]-valued Kripke frames Journal of Logic and Computation 25(1): 37–55, 2015.
- [4] D. Diaconescu, G. Metcalfe, L. Schnüriger, A Real-Valued Modal Logic. Logical Methods in Computer Science 14(1): 1–27, 2018.
- [5] T. Flaminio, L. Godo, R. O. Rodriguez, A representation theorem for finite Gödel algebras with operators. Proceedings of WoLLIC 2019, LNCS, Springer. Forthcoming, 2019.
- [6] F. Wolter, M. Zakharyaschev, Intuitionistic Modal Logic. In Logic and Foundations of Mathematics, (A. Cantini, E. Casari and P. Minari. eds), Synthese Library, Kluwer: 227 – 238, 1999.