
On the Cost of Agent-awareness for Negotiation Services

Andrea Giovannucci1 and Juan A. Rodrı́guez-Aguilar1

Artificial Intelligence Research Institute, IIIA
Spanish Council for Scientific Research, CSIC

08193 Bellaterra, Barcelona, Spain
{andrea,jar}@iiia.csic.es

Abstract. Significant advances in the development of agent technology have
spurred the development of agent-oriented information systems (AOIS). Nonethe-
less, accounts on the benefits and shortcomings of state-of-the-art agent technol-
ogy when employed for the deployment of AOIS for electronic commerce are
scant. The purpose of this work is to report on a case study that attempts at shed-
ding some light on this matter.

1 Introduction

While a significant number of agent-based applications for electronic commerce has
been presented to the agent community during the last years, little attention has been
devoted to analysing the practical benefits and shortcomings of agent technology when
applied to such domain. To the best of our knowledge little effort has been devoted
to study the applicability of state-of-the-art agent technology to develop actual-world
e-commerce applications. In particular, we believe that it is necessary to assess the
computational cost added by agent technology in this type of applications so that we
can diagnose the improvements required by state-of-the-art agent technology.

For this purpose we report on a case study that intends to shed some light on this
matter. We depart from iBundler (fully described in [1]), an agent-aware negotiation
service for combinatorial negotiations designed to be employed as: (1) an open agent
platform within the Agentcities.RDT1 (http://www.agentcities.org/EURTD) project that
could be discovered, communicate, and offer services to any FIPA compliant agent
(http://www.fipa.org); (2) an agent façade to Quotes[2], a commercial negotiation tool,
to allow for the participation of third-party business agents in actual-world procure-
ment events. In both cases, our aim has been to study the computational cost of agent
awareness for the iBundler negotiation service so that its users are aware of the type of
negotiation scenarios that iBundler can acceptably handle when buying and providing
agents are involved. This exercise has also included the determination of those general
or domain-dependent measures that can help reduce the cost of the service.

At this aim, we have measured the performance in time and memory of iBundler
through a wide range of artificially generated negotiation scenarios. For each scenario
we sampled at several stages both the time and memory that iBundler employed to han-
dle it. We have interestingly observed that the management of ontologies is a rather

1 The Agentcities.RDT project’s objectives were to create an on-line, distributed test-bed to ex-
plore and validate the potential of agent technology for future dynamic service environments.

delicate issue that actually causes a significant overload. Furthermore, we have also ob-
served that the design of highly expressive, compact bidding languages can definitely
help cut down the computational cost for any agent-aware negotiation service consider-
ing combinatorial scenarios.

The paper is organised as follows. First, section 2 briefly reviews the literature con-
cerning scalability and applicability of agent technology. Section 3 succinctly intro-
duces iBundler. Section 4 deals with the description of the evaluation scenarios arranged
to evaluate iBundler. In section 5 we present and thoroughly discuss the test results. Fi-
nally, section 6 discusses some conclusions deriving from the results’ analysis.

2 Related work

The applicability analysis of agent technology in the literature primarily focuses on
scalability issues as robustness, system performance with large populations of agents
and ontology engineering. Brazier et al. [3] address the problem of scalability in nam-
ing services and location services. Besides, they analyse the concept of scalability in
multi agent systems (MAS) and discuss scalability for many existing multi-agent frame-
works. Deters [4] studies the problems derived from large number of agents running in
a MAS, agent resource consumption, the exchange of great number of messages, iden-
tifying agent hosting and message routing as bottle-necks. Furthermore, he performs
some scalability experiments. An important result in [4] is that the main deficiencies
of JESS (http://herzberg.ca.sandia.gov/jess/) derive from serialisation processes. Kahn
investigates how timing of sequential agent registration and lookup varies as the total
number of registered agents increases in COABS [5]. The works in [6] and [7] analyse
robustness and fault tolerance, whereas [8] exemplifies ad-hoc, domain-dependent agent
technology scaling techniques. On the other hand, the literature on ontology scalability
focuses on three major issues: the size of ontology contents, the complexity of ontology
construction and knowledge re-usability ([9], [10]). In particular, Jarrar states that ex-
perience shows that ”unscalable solutions emerging from academic research often fails
at the industrial level” [9].

Thus, we believe that it is an urging necessity to report on practical deployments of
actual-world agent-based applications in order to: (1) progressively derive best method-
ological practices; and (2) assess the improvements required by state-of-the-art agent
technologies to be adopted at industry level. Particularly since much of the research
effort on agent technology does not consider the application of widely employed agent
frameworks and programming tools to real-world problems.

We consider iBundler as representative of the main trends on the state-of-the-art
agent programming tools and platforms. Firstly, because it is based on the FIPA spec-
ification standard, that is surely the most widely adopted by the agent community2.
Secondly, the considerations emerging from the experiments derived in this paper are

2 OGM (www.ogm.org) is another standardisation effort based on CORBA IDL interface. This
solution is efficient for agent migration and client-server applications, but less suitable than
FIPA-compliant platforms for peer-to-peer applications. For an interesting comparison refer to
[11].

related to the FIPA nature of the agent platform, not to a particular JADE implementa-
tion. Thus, the results in section 5 are not limited to the JADE framework, being valid
for all the FIPA-compliant agent frameworks.

3 iBundler An Agent-aware Negotiation Service

Consider the problem faced by a buying agent when negotiating with providing agents.
In a negotiation event involving multiple, highly customisable goods, buying agents
need to express relations and constraints between attributes of different items. More-
over, it is common practice to buy different quantities of the very same product from dif-
ferent providing agents, either for safety reasons or because offer aggregation is needed
to cope with high-volume demands. This introduces the need to express business con-
straints on providing agents and the contracts they may have assigned. Not forgetting
the provider side, providing agents may also wish to impose constraints or conditions
over their offers. These may be only valid if certain configurable attributes (e.g. quan-
tity, delivery days) fall within some intervals, or assembly and packing constraints need
to be considered. Once a buying agent collects all offers, he is faced with the burden
of determining the winning offers. It would be desirable to relieve buying agents from
solving such a problem. iBundler is an agent-aware decision support service that makes
headway in this direction by acting as a combinatorial negotiation solver (solving the
winner determination problem) for both multi-item, multi-unit negotiations and auc-
tions. Thus, the service can be employed by both buying agents and auctioneers in
combinatorial negotiations and combinatorial reverse auctions[12] respectively. To the
best of our knowledge, iBundler represents the first agent-aware service for multi-item
negotiations, since agent services have mostly focused on infrastructure issues related
to negotiation protocols and ontologies.

The iBundler service has been implemented as an agency composed of agents that
cooperatively interact to offer a negotiation support service. A fundamental aspect of
iBundler is that it was not only intended as a stand-alone agent-aware service. iBundler
was also designed to become the agent façade of the commercial sourcing tool Quotes
[2] with the aim of providing a higher level of automation to external parties. In this
manner, the negotiations run through Quotes allow for the participation of both human
and software buyers and providers. However, while human buyers and providers ne-
gotiate via web-based interfaces, buying and providing agents owned by third parties
can also negotiate through the service whenever they incorporate protocols and the on-
tology required by iBundler. In this work we do not address security issues, such as
buyers and providers trusting a central server. It could be considered as a next step in
the deployment of an actual-world negotiation service.

Figure 1 depicts the components of the iBundler agency (along with the fundamen-
tal connections of buying and providing agents with the service):
[Logger agent]. It manages the access to the iBundler agency from outside.
[Manager agent]. Agent devoted to providing the solution of the problem of choosing
the set of bids that best matches a user’s requirements. There exists a single Manager
agent per user (buyer or auctioneer), created by the Logger agent, offering the following
services: brokering service to forward buyersŕequirements (RFQs) to selected providers

SOLVER

MANAGER TRANSLATOR

LOGGER

IBUNDLER
AGENCY

BUYER
(auctioneer)

PROVIDER#1 PROVIDER#2 PROVIDER#n

Fig. 1. Architecture of the iBundler Agency

capable of fulfilling them; collection of bids; winner determination in a combinatorial
negotiation/auction; and award of contracts on behalf of buyers. Furthermore, the man-
ager agent is also responsible for: bundling each RFQ and its bids into a negotiation
problem in FIPA-compliant format to be conveyed to the Translator agent; and to ex-
tract the solution to the negotiation problem handled back by the Translator agent.
[Translator agent]. It creates a representation of the negotiation problem in a format
understandable by the Solver departing from the FIPA-compliant description received
from the Manager. It also translates the solution returned by the Solver into an object of
the ontology employed by user agents.
[Solver component]. The iBundler component itself extended with the offering of
a language for expressing offers, constraints, and requirements. The specification is
parsed into a Mixed Integer Programming (MIP) formulation and solved using available
MIP solvers (a version using ILOG CPLEX; and another version using using a Java MIP
modeller that integrates the GNU (www.gnu.org) Programming Kit GLPK. The Solver
component is complete in the meaning that if an optimal solution exists, it will find it.
If the problem has a set of Pareto-optimal, equivalent solutions, the solver component
will return only one solution, which one depending on the underlying branch-and-bound
algorithm ([13]).

Our design manages to separate concerns among the three members of the agency.
On the one hand, the Manager is strictly devoted to coordination. It represents the façade
of the service. Besides, since every negotiation requested by a buyer makes the agency
create an instance of the Manager, the service can cope with asynchronous and multiple
accesses to the service. The Translator agent is in charge of relieving both Managers and
Solver from the burden of translating FIPA-compliant specifications into the language
required by Solver. Notice that the fact of having only one Translator agent represents
a bottle-neck in the overall process when many buyers access the service concurrently.
Such limitation could be overcome by creating multiple instances of Translator Agents
and Solvers on different machines. Anyway in this work we focused on the service

performances in managing big size negotiation scenarios, not on multiple concurrent
accesses to the service. We leave such issue as a possible future development.

Figure 2 depicts the interaction protocol involved in the interplay of buyers and pro-
vides with iBundler. It is expressed in AUML (Agent Unified Modelling Language)[14]
following the FIPA interaction protocol library specification compiled in [15]. Observe
that the specification in figure 2 involves four roles, namely: buyer, manager, translator,
and provider. Whereas multiple agents can act as providers, the remaining roles can
be uniquely adopted by a single agent each. Notice too that the iBundler interaction
protocol is composed of several interleaved interaction protocols:
[IP-RFQ] Held between a buyer and the manager agent created by the Logger agent
after registration. The buyer delivers an RFQ to his manager agent requesting to obtain
the optimal set of offers from the available providers. In case it is not possible to obtain
a solution to the problem, the received response is an empty bid set.
[IP-CFP] Prior to delivering the optimal set of offers, the manager interacts with the
available providers to request their offers under the rules of this CFP interaction pro-
tocol. If no offers are received the manager refuses to deliver the optimal set of offers
in the context of the IP-RFQ interaction protocol. Otherwise, the manager agrees on
providing the service and proceeds ahead by starting out an instance of the IP-Request-
Solution interaction protocol. The protocol winds up with the notification of contract
awards to selected providers according to the buyer’s decision. In the case in which no
optimal solution could be found, the buyer is sent an empty bid set and the IP-CFP pro-
tocol is ended communicating a Reject-Proposal to each provider involved. Notice that
the manager mediates between buyer and providers.
[IP-Request Solution] This interaction protocol held between the manager and the
translator agent within the iBundler agency aims at calculating the optimal set of offers
considering the offers submitted by providers, along with the buyer’s requirements and
constraints. The result delivered by the translator is further conveyed by the manager to
the buyer in the context of the interleaved IP-RFQ interaction protocol.
[IP-AWARD] At the end of the IP-RFQ interaction protocol the buyer obtains the op-
timal set of offers. He may request also to receive all offers. Thereafter, if the buyer
received a non-empty optimal set of offers (k > 0 in figure 2), the buyer initiates the
IP-AWARD interaction protocol in order to request the manager to award contracts to
selected providers. Observe that the contract award distribution is autonomously com-
posed by the buyer, and thus the buyer may decide to either ignore or alter the optimal
set.

iBundler’s ontology is founded on the following core concepts: RFQ, ProviderRe-
sponse, Problem, and Solution. As an example, figure 3 depicts -as shown by the On-
toviz Protégé plug-in (http://protege.stanford.edu)- the Problem ontological concept.
The RFQ concept is employed by buying agents to express their requests for bids (via
request in IP-RFQ). An RFQ is composed of a sequence of Request concepts, one per
requested item along with the buyer’s business rules expressed as constraints. On the
provider side, providers express their offers in terms of the ProviderResponse concept
(via a propose in IP-CFP), which in turn is composed of several elements: a list of Bid
concepts (each Bid allows to express a bid per either a single requested item or a bundle
of items) along with; constraints on the production/servicing capabilities of the bidding

buyer manager

request(RFQ)
cfp(RFQ)

j

refuse

propose

translator provider

refuse

agree

deadline

request

refuse

agree

inform(offers)

request(award)

refuse

agree

not-understood

[j>0][j=0]

failure

inform-result

inform-done

failure

inform-result

inform-done

inform

failure

reject-proposal

accept-proposal

IP-RFQ
IP-CFP

IP
Request
solution

IP-AWARD

iBUNDLER-Protocol

[k>0]

k

[k=0]
reject-proposal

reject-proposal

Fig. 2. iBundler Interaction Protocol

Fig. 3. Problem concept

provider (Capacity concept); and constraints on bundles of bids formulated with the
BidConstraint concept.

Once the manager agent collects all offers submitted by providers, he wraps up the
RFQ concept as received from the buyer along with the offers as ProviderResponse con-
cepts to compose the negotiation problem to be solved by the Solver component (via
request in IP-Request-Solution). Finally, the solution produced by the Solver compo-
nent is transformed by the translator agent into a Solution concept, that is handed over
to the manager (via inform-result in IP-Request-Solution). The Solution concept con-
tains the specification of the optimal set of offers calculated by Solver. Thus Solution
contains a list of SolutionPerProvider concepts, each one containing the bids selected
in the optimal bid set per provider, as a list of BidSolution concepts, along with the
provider’s agent identifier, as an AID concept. Each BidSolution in turn is composed of
a list of BidItemFixed concepts containing the number of units selected per bid along
with the bid’s total cost.

4 Evaluation Scenario

In this section we detail the way we conducted our evaluation. Firstly, we describe
how to generate artificial negotiation scenarios for testing purposes. Next, we detail the
different stages considered through our evaluation process.

4.1 Artificial Negotiation Scenarios

In order to evaluate the agent service performance, the times needed by iBundler to
receive an RFQ from a Buyer agent and to collect the different bids from providers is
considered of no interest. Because they depend on some uncontrolled variables (e.g. the
time needed by providers to send their bids and the network delay). Thus, our evaluation
starts from the moment at which all the required data (RFQ and bids) are available to
the Manager agent. We tried to simulate such an ideal situation generating multiple
datasets in separate files, each one standing for a different input negotiation problem
composed of FIPA messages, each one containing both an RFQ and the bids received
as a response to this. In this way we can use the file stream as if it was the incoming
message stream, and perform all the subsequent message manipulation as if the message
had been received from a socket.

Another important consideration has to do with the way we sampled time and mem-
ory. We established checkpoints through the process carried out by iBundler when solv-
ing a negotiation problem. Such checkpoints partition the process into several stages.
We observed time and memory at the beginning and at the end of these stages.

In order to automate the testing it was necessary to develop a generator of artificial
negotiation scenarios involving multiple units of multiple items. The generator is fed
with mean and variance values for the following parameters: number of providers par-
ticipating in the negotiation; number of bids per provider (number of bids each provider
sends to the Manager agent); number of RFQ items (number of items to be negotiated
by the Buyer agent); number of items per bid (number of items within each bid sent
by a provider); number of units per item per bid; and bid cost per item. In this first
experimental scenario we did not generate neither inter-item nor intra-item constraints.

The generator starts by randomly creating a set of winning combinatorial offers.
After that, it generates the rest of bids for the negotiation scenario employing normal
distributions based on the values set for the parameters above. Thus, in some sense, the
negotiation scenario can be regarded as a set of winning combinatorial bids surrounded
by noisy bids (far less competitive bids). Notice that the generator directly outputs the
RFQ and bids composing an artificial negotiation scenario in FIPA format. In this man-
ner, both RFQ and bids can be directly fed into iBundler as buyers’ and providers’ agent
messages.

We have analysed the performance of iBundler through a large variety of negotiation
scenarios artificially generated by differently setting the parameters above. The data
representing each negotiation scenario are saved onto a file, named by a string of type
A.B.C.D, where A stands for the number of providers, B stands for the number of bids
per provider, C stands for the number of RFQ items, and D stands for the number of
items per bid. For instance, 250.20.100.20 represents the name of a dataset generated
for 250 providers, 20 bids per provider, 100 RFQ items, and 20 items per bid.

The artificial negotiation scenarios we have generated and tested result from all the
possible combinations of the following values:
Number of providers: 25, 50, 75, 100
Number of bids per provider: 5, 10, 15, 20
Number of RFQ items: 5, 10, 15, 20
Number of items per bid: 5, 10, 25, 50

4.2 Evaluation Stages

In order to introduce the evaluation stages that we considered, it is necessary to firstly
understand how JADE manipulates messages and ontological objects. In particular we
summarise the process of sending and receiving messages (for a complete description
refer to the JADE documentation). Figure 4 graphically summarises the activities in-
volved in sending and receiving messages. In the figure, the squared boxes represent
data, whereas the rounded boxes represent processes.

JADE agents receive messages as serialised objects in string format. JADE decodes
the string into a Java class, the ACLMessage JADE class (which represents a FIPA ACL
Message). One of these class fields is the content field, which usually contains either
the action to be performed or the result of a performed action. Next, JADE extracts the
content of the message. The content is once more a string, on which JADE needs to
perform an ontology check to decode it. As a result, a Java object representing the onto-
logical object is built upon the content field, guaranteeing that the ontological structure
is not violated.

As to the dual case, i.e. when a JADE agent sends a message, the process works the
other way around. JADE encodes the ontological object representing the communica-
tion content into a string, that sets the content field of the ACLMessage class. During
this process JADE verifies that the message content matches perfectly with an ontology
object. Once the content field is set, the agent sends the message: the ACLMessage
class is decoded into a string that is sent through a socket.

Serialized
Object
(String)

MESSAGE
DECODING

ACLMessage
(Java class)

CONTENT
DECODING

Ontology object
(Java class)

MESSAGE RECEPTION

MESSAGE SENDING

Ontology object
(java class)

ACLMessage
(Java class)

serialized
Object
(String)

CONTENT
ENCODING

MESSAGE
ENCODING

Fig. 4. Message life cycle in JADE

Considering the process above, we sampled both the time and memory use through
the following stages of the iBundler’s solving process:
∆t1: JADE decodes all the FIPA messages contained in the data set file containing
the input negotiation problem, converting them into instances of the ACLMessage Java
class. ∆t2: the Manager agent composes the problem by creating an instance of the
Problem Java ontology class and setting its fields after merging the RFQ and the col-
lected bids. ∆t3: the ACLMessage to be sent to the Translator Agent is filled with the
Java class representing the Problem ontology class. At this stage an ontology check
occurs.
∆t4: the above-mentioned ACLMessage is now encoded by the Manager agent, and
subsequently sent to the Translator agent through a socket. Once received, the Transla-
tor agent decodes it into an ACLMessage class.
∆t5: the Translator agent extracts from the received message the Problem ontology
class containing the RFQ and all the collected Bids. Another ontology check occurs.
∆t6: this stage is devoted to the transformation of the Problem ontology class into a
matrix-based format to be processed by the Solver component.
∆t7: at this stage the Solver component solves the MIP problem using ILOG CPLEX.
∆t8: the output generated by Solver in matrix-based format is decoded by the Transla-
tor agent into the Solution ontology class.
∆t9: the Translator agent fills the response message with the Solution ontology class,
encodes the corresponding ACLMessage class, and sends it. Then, the Manager agent
decodes the message upon reception.
∆t10: the Manager agent extracts the Solution concept from the received ACLMessage
with a last ontology check.
∆t11: the solution is decomposed into different parts, one per provider owning an
awarded bid.
∆t12: the solution containing the set of winning offers is sent from the Manager agent
to the Buyer agent. Note that this object is small with respect to the original problem
since it only contains the winning bids.

5 Evaluation

In this section we give a quantitative account of the tests we run. Firstly, in section 5.1,
we analyse time performance, and secondly, in section 5.2 the memory use for all the
evaluation stages described above. In order to run our tests we employed the following
technology: a PC with a Pentium IV processor, 3.1 Ghz, 1 Gbyte RAM running a Linux
Debian (kernel v.2.6) operating system (http://www.debian.org); Java SDK 1.4.2.04
(http://java.sun.com); JADE v2.6; and ILOG CPLEX 9.0 (http://www.ilog.com).

5.1 Time performance

Next we show the variation in time performance per stage by varying the different
degrees of freedom available to create an artificial negotiation scenario. In particular,
we consider the following types of negotiation scenarios:

100.20.100.X: the number of items contained in a single bid varies (where X takes on
the 5,10,25, and 50 values).
100.X.100.50: the number of bids each provider sends varies (where X takes on the
5,10,15, and 20 values).
X.20.100.50: the number of providers varies (where X takes on the 25,50,75, and 100
values).

5
10

15
20 dt

1 dt
2 dt

3 dt
4 dt

5 dt
6 dt

7 dt
8 dt
9

dt
10 dt
11 dt
12

0

10

20

30

40

50

60

70

80

90

tim
e(

se
c.

)

Bids/
provider

dt1
dt2
dt3
dt4
dt5
dt6
dt7
dt8
dt9
dt10
dt11
dt12

Fig. 5. Time measures when varying the number of bids per provider.

Figure 5 depicts the time spent in each of the described stages, considering different
number of bids per provider. We experimented similar trends varying the number of
items and the number of providers3. These results suggest that the variables’ sensitivity
is similar in all cases, i.e. varying the number of items per bid, the number of providers
or the number of bids per provider leads to similar trends. Therefore, the stages that are
more time-consuming are quite the same in every possible configuration: for instance,
stage ∆t10 is always the most time consuming, no matter the parameter being varied.
Moreover, we can observe similar trends for the rest of stages (from ∆t1 to ∆t10).
Hence, it seems that the time distribution along the different stages can be regarded as
independent from the parameter setting.

Figure 6 illustrates the average percentage, over all the performed trials, of the total
time that each stage consumes. We observe that: (1) The ∆t1, ∆t3, ∆t4, ∆t5, ∆t9,

3 The way the times vary when increasing those parameters is not linear. Nonetheless we did not
deeply study this aspect, because the main issue for us was to assess the difference of these
times with respect to the solver component time by itself.

∆t10 stages are the most time-consuming (92% of the total time). Since these stages
involve ontology checking and message encoding and decoding, we can conclude that
these activities are a bottle-neck. (2) The solver time (∆t7) is almost a negligible part
of the total time. (3) Manipulating classes (stages ∆t2, ∆t6, ∆t8 and ∆t11) and solving
the combinatorial problem (∆t7) is not as time-consuming as encoding and decoding
messages and ontology objects.

dt1
18%

dt3
12%

dt4
16%dt5

16%

dt6
1%

dt7
7%

dt9
12%

dt10
18%

dt8
~0%

dt2
~0%

dt11
~0%

dt12
~0%

Fig. 6. Average times spent at the different evaluation stages.

Figure 8 depict the accumulated time spent on all stages for a collection of nego-
tiation scenarios, which we refer to as the total time. More precisely, figure 8 depicts
configurations whose total time lies between 30 and 50 seconds. It is conceivable to re-
gard them as the edge values, although it is a very arbitrary matter. Some observations
follow from analysing the figures above:

1. The agent-awareness of iBundler is costly. We observe that the percentage of total
time employed to solve the winner determination problem is small with respect to
agent related tasks.

2. Using the solver component we can easily solve problems of more than 2000 bids
in less than one minute, whereas the agent service can handle in reasonable time
less than 750 bids.

3. Therefore, small, and medium-size negotiation scenarios can be soundly tackled
with iBundler. Nonetheless, time performance significantly impoverishes when han-
dling large-size negotiation scenarios.

75
.2

0.
25

.1
0

10
0.

10
.5

0.
25

75
.1

0.
10

0.
50

50
.2

0.
10

0.
10

75
.1

5.
10

0.
50

10
0.

15
.1

00
.5

0

10
0.

20
.1

00
.2

5

10
0.

20
.1

00
.5

0

SOLVER

0
50

100
150
200
250
300
350
400
450

M
em
or
y(
M
by
te
s)

SOLVER
IBUNDLER AGENCY

Fig. 7. Memory consumption.

31
32

33
33

34
35
35

36
37
37

39
40
40
40

41
41
41
41

42
43

45
46

48

0 10 20 30 40 50 60

50.20.50.5

50.15.100.5

100.5.50.10

100.10.25.5

50.10.100.10

75.5.100.10

75.15.25.5

50.15.25.10

100.5.100.5

75.10.25.10

50.5.100.25

50.15.50.10

100.10.50.5

75.15.50.5

25.15.50.25

75.10.100.5

50.20.100.5

75.20.10.5

100.15.10.5

75.10.50.10

75.20.25.5

25.15.100.25

75.5.50.25

Total Time(sec.)

Fig. 8. Time performance for negotiation scenarios on the edge of acceptability

5.2 Memory Use

In this case we found similar results when comparing the Solver component with iBundler.
The amount of memory required in the worst case is quite the same for both cases. The
memory consumption in both cases is highly dependent on the ontology structure. It is
not surprising that the memory peak is similar in both cases, as the information quantity
to represent is actually the same. The biggest amount of information is used to represent
all the bids. Both Solver and JADE have to load in memory the information representing
a problem, namely an RFQ and the received bids (the former as a Java object and the
latter as a file containing matrices). Figure 7 compares the memory use for the iBundler
agency and Solver.

6 Conclusions

The tests we ran show that offering iBundler as an agent service implies a significant
time overload, while the memory use is only slightly affected. The main cause of such
an overload is related to the encoding and the decoding of ontological objects and mes-
sages. The message serialisations and deserializations, along with ontology checkings
heavily overload the system as the dimensions of the negotiation scenario grow. We
propose several actions to alleviate this effect. Firstly, we have observed that the main
amount of information is gathered in representing bids. Their presence in objects and
messages is the foremost cause of iBundler’s time overload. Thus, a suitable work-
around is to use, at ontology design time, a more synthetic bidding language, in which
bids can be expressed more concisely. For instance, introducing a preprocessing phase
in which equal (and even similar) bids are grouped, in order to obtain a more compact
representation. The resulting ontology would generate more tractable objects. Secondly,
it would be also helpful to improve the performances of the JADE modules devoted to
the ontology checking and serialisation processes. All in all iBundler can satisfactorily
handle small and medium-size negotiation scenarios. Thus, although the automation of
the negotiation process with agents helps in saving time in managing negotiations, the
scalability in terms of time response of iBundler is limited.

As future work we propose a comparison of iBundler with other distributed so-
lutions such as CORBA (http://www.corba.org) or JAVA RMI (http://java.sun.com).
Nonetheless, we should notice that agent technology offers a higher level of abstraction,
and thus we would lose the transparency and portability offered by the agent paradigm.

We conclude that, while agent technology adds a higher level of abstraction and
eases inter-platform communication, state-of-the-art agent technologies require further
improvements to tackle real-world domains.

Acknowledgments

This work has been funded by the Spanish Science and Education Ministry as part of the
Web-i2 (TIC-2003-08763-C02-00) and IEA (TIN2006-15662-C02-01) projects, and by
the Spanish Council for Scientific Research as part of the 20065 OI 099 project. Andrea
Giovannucci enjoys the BEC.09.01.04/05164 CSIC scholarship.

References

1. Giovanucci, A., Rodrı́guez-Aguilar, J.A., Reyes-Moro, A., Noria, F.X., Cerquides, J.: To-
wards automated procurement via agent-aware negotiation support. In: Third International
Joint Conference on Autonomous Agents and Multiagent Systems, New York (2004) 244–
251

2. Reyes-Moro, A., Rodrı́guez-Aguilar, J.A., López-Sánchez, M., Cerquides, J., Gutiérrez-
Magallanes, D.: Embedding decision support in e-sourcing tools: Quotes, a case study.
Group Decision and Negotiation 12 (2003) 347–355

3. Brazier, F., van Steen, M., Wijngaards, N.: On MAS scalability. In: Proceedings of Second
International Workshop on Infrastructure for Agents, MAS, and Scalable MAS, Montreal
(2001) 121–126

4. Deters, R.: Scalability & multi-agent systems. In: Proceedings of Second International
Workshop on Infrastructure for Agents, MAS, and Scalable MAS, Montreal (2001)

5. Kahn, M.L., Della Torre Cicalese, C.: COABS grid scalability experiments. Autonomous
Agents and Multi-Agent Systems 7(1-2) (2003) 171–178

6. Klein, M., Rodriguez-Aguilar, J.A., Dellarocas, C.: Using domain-independent exception
handling services to enable robust open multi-agent systems: The case of agent death. Au-
tonomous Agents and Multi-Agent Systems 7(1-2) (2003) 179–189

7. Fedoruk, A., Deters, R.: Improving fault-tolerance by replicating agents. In: AAMAS ’02:
Proceedings of the first international joint conference on Autonomous agents and multiagent
systems, ACM Press (2002) 737–744

8. Yoo, M.J.: An industrial application of agents for dynamic planning and scheduling. In:
AAMAS ’02: Proceedings of the first international joint conference on Autonomous agents
and multiagent systems, ACM Press (2002) 264–271

9. Jarrar, M., Meersman, R.: Scalability and knowledge reusability in ontology modeling. In:
Proceedings of the International conference on Infrastructure for e-Business, e-Education,
e-Science, and e-Medicine. Volume SSGRR2002s., Rome, SSGRR education center (2002)

10. Wache, H., Serafini, L., Garcı́a-Castro, R.: D2.1.1 survey of scalability techniques for rea-
soning with ontologies. Technical report, Knowledge Web (2004)

11. OMG, FIPA: OMG and FIPA standardisation for agent technology: competition or conver-
gence? http://www.cordis.lu/infowin/acts/analysys/products/thematic/agents/ch2/ch2.htm
(1999)

12. Sandholm, T., Suri, S., Gilpin, A., Levine, D.: Winner determination in combinatorial auction
generalizations. In: First Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS’02), Bologna (2002) 69–76

13. Hillier, F.S., Liberman, G.J. In: Introduction to Operations Research. Mc Graw Hill (2001)
576–653

14. Odell, J., van Dyke Parunak, H., Bauer, B.: Extending UML for agents. In: Proceedings of
the Agent-Oriented Information Systems Workshop, Austin, TX, 17th National Conference
on Artificial Intelligence (2000) 3–17

15. FIPA: FIPA interaction protocol library specification. Technical Report DC00025F, Foun-
dation for Intelligent Physical Agents (2003)

