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ABSTRACT
Smart devices, such as smart speakers, are becoming ubiquitous,
and users expect these devices to act in accordance with their prefer-
ences. In particular, since these devices gather and manage personal
data, users expect them to adhere to their privacy preferences. How-
ever, the current approach of gathering these preferences consists
in asking the users directly, which usually triggers automatic re-
sponses failing to capture their true preferences. In response, in
this paper we present a collaborative !ltering approach to predict
user preferences as norms. These preference predictions can be
readily adopted or can serve to assist users in determining their
own preferences. Using a dataset of privacy preferences of smart
assistant users, we test the accuracy of our predictions.
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1 INTRODUCTION
Arti!cial intelligence (AI) technologies are making their way into
our daily lives and into our homes. We have grown accustomed
to using our devices to call friends, set reminders, or check the
weather.However, for these technologies to be adopted and trusted
by users, theymust act as users expect, and this problem is especially
apparent in the area of privacy preferences. Studies show that users
are deeply concerned about how their data is being collected online
[10]. Interestingly, while they expect AI to act as they desire, they
are unwilling to spend time setting their preferences. For example,
despite users’ concerns about privacy, studies show that they ignore
or blindly accept cookie banners [8] and privacy policies in social
networks [16]. Furthermore, in social networks, a large proportion
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of users do not change default privacy settings [9]. This can be
explained as a result of privacy fatigue [4], the sensation of loss
of control and futility over protecting one’s privacy. This leads to
privacy cynicism, when users do not adopt a privacy protecting
behaviour even if they are concerned about their privacy [6]. Thus,
the current approach of directly asking the user when a preference
is unknown but needed fails to capture the user’s true preferences.
Additionally, continual questioning prevents users from achieving
their objectives with the device. In response, this paper advocates
for an approach that can understand user preferences with less user
involvement, in turn bringing more importance to user interactions
whenever such preferences are needed.

A particular platform in which capturing privacy preferences is
challenging and yet essential is that of smart speakers and other
smart personal assistants. These devices have bene!ted from wide-
spread early adoption, and it is estimated that 500 million units
were installed in the last quarter of 2021 [23]. Nonetheless, the early
adoption of these technologies means that they still have several
vulnerabilities that pose a threat to the security and privacy of their
users [5]. Indeed, there have already been cases reported in which
smart assistants have not functioned as expected; for example, a
smart speaker recorded and sent a private conversation without
the user’s consent [27]. These situations hinder user trust in the
technology and can ultimately lead users to limit the functionalities
of the devices used, or even to adopting coping mechanisms [1].

This paper describes an alternative approach that addresses the
issues outlined above. The critical observation underpinning our
approach is that smart devices are just one part of a larger ecosystem
(e.g. see [5] for a description of the ecosystem of smart speakers),
and they interact and share data with agents like services, apps,
and other devices. For example, a smart watch might send a voice
recording to a smart speaker, or might share the wearer’s heart rate
with a health app. In this respect, we can understand this ecosystem
as a multi-agent system in which the use of norms can help to
regulate these interactions, implementing privacy preferences.

Norms can e"ectively summarise complex privacy preferences
into simple sets of regulations, as shown by Abdi et al. [2], who
gathered over 800 privacy preferences on data transmissions, yet
produced just 17 norms. Moreover, although here we assume no
knowledge of the domain, if such knowledge is available there exist
techniques to generalise norms (see [13, 14] for an example) or !nd
and resolve inconsistencies among them [26]. Furthermore, norms
are also used by people, and are naturally understood by them,
representing a good base upon which to construct explanations.
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This can be used not only to generate explanations for a user if
something unexpected happens, but also to tailor interactions with
a user to validate predicted norms. Norms are regarded as expected
patterns of behaviour [28], causing agents (each component in the
smart device ecosystem) to coordinate better and function more
e#ciently. As an example with smart devices, imagine a service
knows in advance the privacy norms of a user with regard to each
component of the ecosystem. If this service needs to interact with
other components, it can use the user’s norms to adapt its behaviour
to avoid violating norms or to avoid performing unregulated trans-
missions of information, which might require consent.

As informally outlined in [18], we can exploit the large user
bases of smart devices to use knowledge of previously speci!ed
privacy preferences to infer new preferences or to assist users
in specifying their preferences. In particular, we aim to exploit
similarities between users to make privacy preference predictions
using collaborative !ltering [7]. E"ectively, we see the smart device
ecosystem as a multi-layered multi-agent system. The lower level
represents themulti-agent system associatedwith a single user (that
is, the user’s device, and the other devices, skills, and services that
can be accessed from it). The higher level is that of the multi-agent
system composed of all the users. Our approach is centred on the
norm creation stage in the lower level multi-agent systems related
to each user. Therefore, each device user has its own associated set
of norms, and all agents within its lower level multi-agent system,
be they devices, skills, or other services, are informed and a"ected
by the norms whenever they want access to the user’s personal
data. While many researchers have studied di"erent approaches to
constructing norm systems, like norm synthesis [12, 13] or norm
emergence [17, 21, 24], we are not aware of any similar approach
like the collaborative !ltering presented here.

In taking this approach, we make the following contributions.
• Formalisation of the problem of predicting norms to ensure
that computational behaviour aligns with user preferences.
This is divided into two subproblems, namely preference
approximation (predicting unknown user preferences) and
norm inference (inferring norms from predicted preferences).

• Formalisation of preference prediction functions. We provide
a speci!c example of this type of function based on the
preferences of similar users.

• Inference of norms from the predicted preferences, and speci-
!cation of di"erent methods to do so based on the con!dence
of the prediction or other variables.

The paper is structured as follows: Section 2 formalises the core
problems we aim to address in the paper. In Section 3 we detail the
process of predicting preferences. We then use these predictions
to infer norms in Section 4. Section 5 is dedicated to validate our
!ndings. In Section 6 we discuss related work. Finally, in Section 7
we discuss conclusions and future work.

2 PROBLEM DEFINITION
Consider a set of users𝐿 and a set of agents𝑀𝑁, such that 𝑂𝑁𝐿 ↑ 𝑀𝑁
is the agent (i.e. the smart device) of 𝑃 ↑ 𝐿 1. Consider also a

1To simplify, and without loss of generality we assume that for each 𝐿 ↑ 𝑀 there is
only one 𝑁𝑂𝐿 ↑ 𝑃𝑂. Note that if one user had more than one device, we could consider
a mock second user.

!nite number of elements 𝑄 = {𝑅1, . . . , 𝑅 |𝑄 | } over which users
have preferences. These elements will commonly be actions an
agent can perform, but can also be more complex, for example
containing the context in which an action happens (e.g. “share if
the user is noti!ed”). For generality purposes, we do not specify the
formalisation of these elements since, for the problem de!nition
(and our proposed resolution), it is not necessary. This not only
allows our notation to be kept simple, but it also allows us to de!ne
the preference domain with as much or as little complexity as
needed. Given an element 𝑅 ↑ 𝑄 , we assume the user’s preference
towards 𝑅 is a number in [↓1, 1], where 1 means the user totally
approves of 𝑅 , -1 means the user totally disapproves of 𝑅 , and 0
means neutrality towards 𝑅 . Note that we can make this assumption
without loss of generality as we can always transform any user
preferences into [↓1, 1]2

For each user 𝑃 and agent 𝑂𝑁𝐿 , we consider the following tuples
of preferences.

• The user’s preference pro!le 𝑆𝐿 represents the real prefer-
ences of user 𝑃 ↑ 𝐿 . Note that 𝑆𝐿 ↑ [↓1, 1] |𝑄 | , and the
𝑇𝑅𝑆 position in the tuple represents the preference of user 𝑃
towards element 𝑅𝑇 .

• The agent’s preference pro!le 𝑆𝑁𝑂𝐿 represents the prefer-
ences of user 𝑃 known by agent 𝑂𝑁𝐿 . This tuple has the same
structure as 𝑆𝐿 , but unlike 𝑆𝐿 , this tuple has gaps of knowl-
edge. We represent an unknown preference as ↔, therefore
𝑆𝑁𝑂𝐿 ↑ ( [↓1, 1] ↗ {↔}) |𝑄 | .

Having introduced these elements, we now present a running
example with smart personal assistants, which we use throughout
the paper to illustrate the concepts we introduce.

E!"#$%& 1. We consider users 𝑃1,𝑃2 and 𝑃3, who have smart
personal assistants 𝑂𝑁𝐿1 ,𝑂𝑁𝐿2 and 𝑂𝑁𝐿3 respectively. We consider three
elements over which users have preferences: sharing data with the
AI assistant manufacturer (𝑅1), with internet provider (𝑅2), and with
developers of third party skills (𝑅3). When it comes to the user’s real
preferences, we have: 𝑆𝐿1 = (↓1,↓1,↓1), 𝑆𝐿2 = (↓1,↓1,↓1), 𝑆𝐿3 =
(1,↓1, 1). As for the agent’s known preferences, we have: 𝑆𝑁𝑂𝐿1 =
(↓1,↓1,↔), 𝑆𝑁𝑂𝐿2 = (↓1,↔,↓1), 𝑆𝑁𝑂𝐿3 = (1,↔, 1).

Finally, we de!ne a process to complete preferences, noted as
𝑈𝑉𝑊𝑆 . This process takes 𝑆𝑁𝑂𝐿 and completes it, producing 𝑆↘𝑁𝑂𝐿 ↑
[↓1, 1] |𝑄 | . Note that in [↓1, 1] |𝑄 | we can assess distances between
preference tuples (which are points in the space). With this in mind,
we can formalise the !rst problem we address in this paper.

D&’. 1 (P(&’&(&)*& "$$(+!,#"-,+) $(+.%&#). Consider the
space [↓1, 1] |𝑄 | , and 𝑋𝑇𝑌 a distance function in this space, the pref-
erence approximation problem consists of !nding the process 𝑈𝑉𝑊𝑆 ,
with the aim of minimising the distance 𝑋𝑇𝑌 (𝑆𝐿 , 𝑆↘𝑁𝑂𝐿 ).

E!"#$%& 2. The process to complete preferences could be, for exam-
ple, asking the users about their preferences directly. For example, user
𝑃1 interacts with a third party skill that requires unknown preferences
and therefore asks the user about them. The user might want to use

2On the one hand, numerical preferences can be re-scaled into [↓1, 1], because the
number of users and the number of elements is !nite and therefore preferences will
always be bounded. On the other hand, ordinal preferences will also be bounded and
can be transformed into numerical preferences in [↓1, 1].
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the skill and responds a"rmatively automatically (against their real
preferences), thus 𝑆↘𝑁𝑂𝐿1 = (↓1,↓1, 1). Then, considering the euclidean
distance, we would have 𝑋𝑇𝑌 (𝑆𝐿1 , 𝑆

↘
𝑁𝑂𝐿1

) = 2, which means that, in
this case, this process can be improved.

Our !nal aim is to align agent behaviour to user preferences. To
that end, we resort to norms to regulate how each agent𝑂𝑁𝐿 behaves.
Note that there is no standard de!nition of norm; for example, [29]
considers rewards and punishments in norms, whereas [12] ignores
these and instead considers the context of application of the norm.
In our case, we use a very simple de!nition of norm in support
of generality, as a more complex de!nition would require domain
knowledge which would hinder the applicability of our approach.

D&’. 2 (N+(#). Given an element 𝑅 ↑ 𝑄 , a norm is a structure
𝑍 (𝑅), where 𝑍 ↑ {𝑎𝑏𝑐, 𝑎𝑑𝑏 }, where 𝑎𝑏𝑐(𝑅) is the norm prohibiting 𝑅 ,
whereas 𝑎𝑑𝑏 (𝑅) is the norm permitting 𝑅 .

Having de!ned our notion of norm, we can now de!ne the
second problem we address in this paper, as follows:

D&’. 3 (N+(# ,)’&(&)*& $(+.%&#). Given an agent 𝑂𝑁𝐿 ↑ 𝑀𝑁
and its completed preferences 𝑆↘𝑁𝑂𝐿 , the norm inference problem con-
sists of enacting preferences in 𝑆↘𝑁𝑂𝐿 as norms, such that when follow-
ing them, the agent will behave as expected by user 𝑃.

E!"#$%& 3. Supposing we correctly completed the preferences of
user 𝑃3 (𝑆↘𝑁𝑂𝐿 = (1,↓1, 1)), our aim would be to !nd a way to encode
these preferences as norms, those close to 1 into permission norms, and
those close to -1 into prohibition norms. In this case, 𝑎𝑑𝑏 (𝑅1), 𝑎𝑏𝑐(𝑅2),
and 𝑎𝑑𝑏 (𝑅3).

3 PREFERENCE PREDICTION
In this section we consider how to predict a user’s preference to-
ward an element 𝑅 for which we don’t know their preference. To do
so, we will infer preferences from similar users. As argued above,
we can assume that users who share similar views on known prefer-
ences will also share similar views on unknown ones. Our aim is to
formally de!ne a separation measure between users so that we can
build predictions based on a set of users deemed similar enough.
This can be an aggregation of the preferences of similar users over
the element in question. First, however, we must introduce some
preliminary notation and de!nitions and, to simplify, we reuse the
notation introduced above. Given a user 𝑃 ↑ 𝐿 with corresponding
agent 𝑂𝑁𝐿 and an element 𝑅 ↑ 𝑄 , we note the real preference of 𝑃
towards 𝑅 as 𝑆𝐿 (𝑅), the known preference of 𝑃 towards 𝑅 by agent
𝑂𝑁𝐿 as 𝑆𝑁𝑂𝐿 (𝑅), and the preference of𝑃 towards 𝑅 by agent 𝑂𝑁𝐿 after
the prediction process as 𝑆↘𝑁𝑂𝐿 (𝑅). First, we de!ne common known
preference elements. Given a pair of users, the common known
preference elements are those elements for which we know both
users’ preferences, and can be used to measure their separation.

D&’. 4 (C+##+) /)+0) $(&’&(&)*& &%&#&)-1). Consider two
users 𝑃1,𝑃2, their agents 𝑂𝑁𝐿1 ,𝑂𝑁𝐿2 , and the users’ known preferences
𝑆𝑁𝑂𝐿1 and 𝑆𝑁𝑂𝐿2 . We call the common known preference elements of
𝑂𝑁𝐿1 and 𝑂𝑁𝐿2 , the set of elements for which we know both agents’
preferences. If 𝑆𝑁𝑂𝐿1 = (𝑆11, . . . , 𝑆

|𝑄 |
1 ) and 𝑆𝑁𝑂𝐿2 = (𝑆12, . . . , 𝑆

|𝑄 |
2 ),

this is formalised as:

𝑒 (𝑂𝑁𝐿1 ,𝑂𝑁𝐿2 ) = {𝑅𝑇 |𝑆𝐿1 (𝑅𝑇 ), 𝑆𝐿2 (𝑅𝑇 ) ω ↔}

With these preliminary de!nitions, we now turn to formalising a
measure of separation between users. While we can de!ne distance
functions in the space of real user preferences [↓1, 1] |𝑄 | , our aim
here is to assess distances between users with only partial knowl-
edge of their preferences. Therefore, we want to de!ne a distance
in the space of known preference tuples ( [↓1, 1]↗ {↔}) |𝑄 | , though
in this case we do not want a strict distance function, but a more
relaxed version of a distance function. Consider, for example, the
points (1,↔, . . . ,↔) and (↔, . . . ,↔, 1), where a distance function
would have to assign a distance between these two points, but there
are no commonly known preferences between them, so we choose
not to assign a distance in this case. In other words, the separation
between two users should only depend on their commonly known
preferences. Hence, instead of de!ning a formal distance we de!ne
a function, called a preference separation function, for which we
require similar properties to those of distances, albeit more relaxed.

D&’. 5 (P(&’&(&)*& 1&$"("-,+)). Given a set of pairs of users
with common elements 𝐿𝑈𝑉𝑊 = {(𝑃,𝑃 ≃) ↑ 𝐿 ⇐ 𝐿 |𝑒 (𝑃,𝑃 ≃) ω ⇒}, a
user separation measure is a function 𝑌𝑑𝑆 : 𝐿𝑈𝑉𝑊 → R that measures
the separation of two users (𝑃1,𝑃2) ↑ 𝐿𝑈𝑉𝑊 , based on their known
preferences by the agent (i.e. 𝑆𝑁𝑂𝐿1 and 𝑆𝑁𝑂𝐿2 ). This function must
satisfy the following properties:

• Dependence of commonly known preferences: 𝑌𝑑𝑆 (𝑃1,𝑃2)
only depends of 𝑆𝑁𝑂𝐿1 (𝑅) and 𝑆𝑁𝑂𝐿2 (𝑅), ⇑𝑅 ↑ 𝑒 (𝑂𝑁𝐿1 ,𝑂𝑁𝐿2 )

• No-negativity: 𝑌𝑑𝑆 (𝑃1,𝑃2) ⇓ 0.
• Symmetry: 𝑌𝑑𝑆 (𝑃1,𝑃2) = 𝑌𝑑𝑆 (𝑃2,𝑃1).
• Zero separation for equal known common preferences:
𝑌𝑑𝑆 (𝑃1,𝑃2) = 0 ⇔ 𝑆𝑁𝑂𝐿1 (𝑅) = 𝑆𝑁𝑂𝐿2 (𝑅)⇑𝑅 ↑ 𝑒 (𝑂𝑁𝐿1 ,𝑂𝑁𝐿2 ).

• Triangle inequality for known commonpreferences:Given
a third user𝑃3, if we note𝑒 = 𝑒 (𝑂𝑁𝐿1 ,𝑂𝑁𝐿2 ), then 𝑌𝑑𝑆 (𝑃1,𝑃2) ↖
𝑌𝑑𝑆

!!
𝑋 (𝑃1,𝑃3) + 𝑌𝑑𝑆

!!
𝑋 (𝑃3,𝑃2). where 𝑌𝑑𝑆

!!
𝑋 is the separation

function restricted to only the common elements of 𝑂𝑁𝐿1 and
𝑂𝑁𝐿2 (i.e. applying 𝑌𝑑𝑆 as if 𝑄 = 𝑒).

As argued earlier, the !rst property ensures that user separation
only depends on the commonly known preferences of the users.
The next four properties correspond to the properties of distances
adapted to our case, as follows. First, we require that the sepa-
ration measure is positive, as 0 is the closest possible separation,
disallowing negative separations. Second, this function must be
symmetric as the separation between two preferences should be
the same no matter the order. Third, two users have separation of
0 if and only if their commonly known preferences are the same.
This property is more general than 𝑌𝑑𝑆 (𝑃1,𝑃2) = 0 ⇔ 𝑃1 = 𝑃2 as
we do not want to take into account what happens with not com-
monly known preferences. The fourth property is a general version
of the triangle inequality where we only consider the commonly
known preferences. Again, we want to be more general because we
want to disregard preferences for which we do not have complete
knowledge of both users. To illustrate, we provide an example of
such a function, which we call cumulative user separation.

D&’. 6 (C2#2%"-,3& 21&( 1&$"("-,+)). The cumulative user
separation function is a function 𝑌𝑑𝑆+ : 𝐿𝑈𝑉𝑊 → R that, for users
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(𝑃1,𝑃2) ↑ 𝐿𝑈𝑉𝑊 and respective agents 𝑂𝑁𝐿1 ,𝑂𝑁𝐿2 , assesses their sepa-
ration as follows:

𝑌𝑑𝑆+(𝑃1,𝑃2) =
∑

𝑌𝑀 ↑𝑋 (𝑁𝑂𝐿1 ,𝑁𝑂𝐿2 )
|𝑆𝑁𝑂𝐿1 (𝑅𝑇 ) ↓ 𝑆𝑁𝑂𝐿2 (𝑅𝑇 ) |

Proving that 𝑌𝑑𝑆+ satis!es the properties inDe!nition 5 is straight-
forward, but omitted due to space constraints.

The following example illustrates the concepts introduced so far,
in context of the scenario introduced in Example 1.

E!"#$%& 4. We assess the separation between 𝑃1 and the other
users. For both 𝑃2 and 𝑃3, we have 𝑒 (𝑂𝑁𝐿1 ,𝑂𝑁𝐿2 ) = 𝑒 (𝑂𝑁𝐿1 ,𝑂𝑁𝐿3 ) =
{𝑅1}, as for 𝑃1 we know preferences over 𝑅1 and 𝑅2, but for the other
users we know preferences over 𝑅1 and 𝑅3, but not 𝑅2. Thus, in this case
the cumulative separation is 𝑌𝑑𝑆+(𝑃1,𝑃2) = 0 and 𝑌𝑑𝑆+(𝑃1,𝑃3) = 2.

Given a user for which we want to predict a preference over
𝑅 , we can gather a set of similar users for which we know their
preferences over 𝑅 considering their separation with regard to the
original user. With this set of similar users, we can then predict the
targeted preference by aggregating the preferences of similar users
towards that element. With this aim, we de!ne the set of similar
users. Since we build this set to make predictions, we must require
that we know the preference of the users in the set with regard to
the targeted element. Ideally, similar users should be those with
separations less or equal to a maximum 𝑓 . However, since our aim
is to use similar users to build predictions, we require a minimum
number of similar users 𝑔 (those with the least separation), so that
predictions are founded on a reasonable number of users.

D&’. 7 (𝑓𝑔41,#,%"( 21&(1). Given a user 𝑃, an element 𝑅 , and pa-
rameters 𝑔 ↑ N and 𝑓 ↑ R, we call 𝑓𝑔-similar users the set 𝑕𝑇𝑊𝑍

𝑎 (𝑃, 𝑅)
of similar users to𝑃, such that they have preferences over 𝑅 , and which
contains at least the 𝑔 most similar users and all users that are closer
than 𝑓 (in terms of separation). Hence, if 𝑖 (𝑅) = {𝑃 |𝑆𝑁𝑂𝐿 (𝑅) ω ↔} is
the set of users for whomwe know their preference over 𝑅 , we formalise
𝑕𝑇𝑊𝑍

𝑎 (𝑃, 𝑅) = 𝑕𝑇𝑊𝑍 (𝑃, 𝑅) ↗ 𝑕𝑇𝑊𝑎 (𝑃, 𝑅), where:
• 𝑕𝑇𝑊𝑍 (𝑃, 𝑅) = {𝑃 ≃ ↑ 𝑖 (𝑅) |𝑌𝑑𝑆 (𝑃,𝑃 ≃) ↖ 𝑓} is the set of users
with known preference over 𝑅 who have a separation with 𝑃
less or equal to 𝑓 .

• 𝑕𝑇𝑊𝑎 (𝑃, 𝑅) = {𝑃1, . . . ,𝑃𝑎 ↑ 𝑖 (𝑅) |𝑌𝑑𝑆 (𝑃,𝑃1) ↖ · · · ↖ 𝑌𝑑𝑆 (𝑃,𝑃𝑎 )
and ↙𝑃 ≃ ↑ 𝑖 (𝑅) \ {𝑃1, . . . ,𝑃𝑎 }s.t. 𝑌𝑑𝑆 (𝑃,𝑃 ≃) < 𝑌𝑑𝑆 (𝑃,𝑃𝑎 )} is
the set of the 𝑔 closer users to 𝑃 with known preference over 𝑅 .

Using the set of similar users, we can predict the targeted prefer-
ence, for which we use a prediction function, de!ned as follows.

D&’. 8 (P(&’&(&)*& $(&5,*-,+) ’2)*-,+)). A preference predic-
tion function is a function 𝑆𝑏𝑑 : 𝐿⇐𝑄 → [↓1, 1] which, given a pair of
a user𝑃 ↑ 𝐿 and elements 𝑅 ↑ 𝑄 , predicts the preferences of𝑃 towards
𝑅 . Given 𝑔 ↑ N and 𝑓 ↑ R, this function must depend only on the pref-
erences towards 𝑅 of similar users to 𝑃, {𝑆𝑁𝑂𝐿≃ (𝑅) |𝑃 ≃ ↑ 𝑕𝑇𝑊𝑍

𝑎 (𝑃, 𝑅)}

We provide an example of a preference prediction function called
average preference prediction function. This function builds a pre-
diction of the preference of 𝑃 towards 𝑅 as the average of the pref-
erences over 𝑅 of similar users to 𝑃. Formally:

D&’. 9 (A3&("6& $(&’&(&)*& $(&5,*-,+) ’2)*-,+)). Given a
separation measure 𝑌𝑑𝑆 , the average preference prediction function

𝑆𝑏𝑑𝑁𝑏𝑂 : 𝐿 ⇐ 𝑄 → [↓1, 1], takes a user 𝑃 ↑ 𝐿 (with 𝑆𝑁𝑂𝐿 (𝑅) = ↔)
and an element 𝑅𝑇 ↑ 𝑄 , and predicts the preference of 𝑃 towards 𝑅 in
[↓1, 1], as follows:

𝑆𝑏𝑑𝑁𝑏𝑂 (𝑃, 𝑅) =
∑
𝐿≃ ↑𝑐𝑇𝑊𝑁

𝑂 (𝐿,𝑌) 𝑆𝑁𝑂𝐿≃ (𝑅)
|𝑕𝑇𝑊𝑍

𝑎 (𝑃, 𝑅) |
We continue with the following illustration of a prediction.

E!"#$%& 5. We want to predict the preference of 𝑃1 with regard
to 𝑅3. Considering the separations found in Example 4, we aim at
selecting the similar users. To do so, we require at least one user (i.e.
𝑔 = 1) and we consider them similar if the separation is less than
0.5 (i.e. 𝑓 = 0.5), then 𝑕𝑇𝑊𝑍=0.5

𝑎=1 (𝑃1, 𝑅3) = {𝑃2}. Then, to predict
the preference of 𝑃1 towards 𝑅3, we average the preferences of the
similar users towards 𝑅3. In the case of Example 4, the result would
be 𝑆𝑏𝑑𝑁𝑏𝑂 (𝑃1, 𝑅3) = ↓1

Given a prediction function, we can complete the unknown
preferences of the user as follows.

D&’. 10 (C+#$%&-& $(&5,*-&5 $(&’&(&)*&1). Given a prefer-
ence prediction function 𝑆𝑏𝑑 and user 𝑃 with known partial prefer-
ences 𝑆𝑁𝑂𝐿 , the tuple of complete predicted preferences for the user is
𝑆↘𝑁𝑂𝐿 = (𝑆↘1𝑁𝑂𝐿 , . . . , 𝑆↘

|𝑄 |
𝑁𝑂𝐿 ), composed of the known preferences and

predictions of the unknown ones. Formally:

𝑆↘𝑇𝑁𝑂𝐿 =
{

𝑆𝑇𝑁𝑂𝐿 if 𝑆𝑇𝑁𝑂𝐿 ω ↔
𝑆𝑏𝑑 (𝑃, 𝑅𝑇 ) if 𝑆𝑇𝑁𝑂𝐿 = ↔

Note that in Example 5, the preference predicted along with the
known preferences form the complete predicted preferences for 𝑃1.

Using De!nition 10, we obtain the complete preferences of the
user from the already known preferences and the newly predicted
ones. This o"ers a solution to the preference approximation prob-
lem, and we show the validity of our approach in Section 5. First,
however, we tackle the norm inference problem in the next section.

4 NORM INFERENCE FROM PREDICTIONS
At this point, we can predict user preferences from similar users.
However, our broader aim is to build norms from these preferences
so that agents can follow them. This means transforming numerical
preferences in [-1, 1] into norms. In this section, we propose several
methods to perform this transformation and discuss under which
circumstances these methods would be appropriate to be used.

4.1 Hard thresholds
The simplest method we can use to transform numbers in [-1, 1]
into norms is through hard thresholds. Thus, we would consider
two thresholds 𝑓𝑑𝑒𝑆 , and 𝑓𝑑𝑓𝑒 that divide [-1, 1] into three blocks,
referring to (in the following order): prohibition, no norm, and
permission. Hence, for consistency, we require that the threshold of
prohibition must be on the negative side of the preferences interval,
and the permission threshold on the positive side, 𝑓𝑑𝑒𝑆 ↑ [↓1, 0],
and 𝑓𝑑𝑓𝑒 ↑ [0, 1]. Then, considering the completed preferences
𝑆↘𝑁𝑂𝐿 , we would build norm 𝑎𝑏𝑐(𝑅) if 𝑆 ↘𝑁𝑂𝐿 (𝑅) ↖ 𝑓𝑑𝑒𝑆 , no norm
if 𝑓𝑑𝑒𝑆 < 𝑆 ↘𝑁𝑂𝐿 (𝑅) < 𝑓𝑑𝑓𝑒 , or 𝑎𝑑𝑏 (𝑅) if 𝑓𝑑𝑓𝑒 ↖ 𝑆 ↘𝑁𝑂𝐿 (𝑅).

E!"#$%& 6. If we have thresholds 𝑓𝑑𝑒𝑆 = ↓0.25 and 𝑓𝑑𝑓𝑒 = 0.25,
then elements 𝑅 with preferences in [↓1,↓0.25] would be prohibited
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(𝑎𝑏𝑐(𝑅)), those in [↓0.25, 0.25] would not be regulated, and those in
[0.25, 1] would be permitted (𝑎𝑑𝑏 (𝑅)).

4.2 Thresholds based on prediction con!dence
Note that hard thresholds can be problematic when predictions are
not particularly accurate (for example, due to 𝑆𝑁𝑂𝐿 having many
unknown preferences). In this case, for unknown preferences that
are close to the threshold our prediction can easily fall on either side.
Thus, in these cases we can consider variable thresholds depending
on the con!dence of our predictions.

Here, we consider thresholds to be a function of prediction con-
!dence. If we consider con!dence to be a number in [0, 1], then
we formalise thresholds as functions: 𝑓𝑑𝑒𝑆 : [0, 1] → [↓1, 0] and
𝑓𝑑𝑓𝑒 : [0, 1] → [0, 1].

The remaining task now is to de!ne prediction con!dence. Note
that we would consider a prediction based on other very similar
agents, with very similar preferences, as being accurate, whereas a
prediction obtained from agents close in opinion but not entirely
similar, and whose preferences span over an array of options, likely
not very accurate. If we do not know the real preference we cannot
be entirely sure of the quality of predictions but con!dence gives
us an intuition on the quality of the data they are drawn from.
Formally, we de!ne a prediction con!dence function as follows.

D&’. 11 (C+)’,5&)*& ’2)*-,+)). A prediction con!dence func-
tion 𝑈𝑉𝑗𝑘 : 𝐿⇐𝑄 → [0, 1] is a function that takes a pair of user and el-
ement and gives the con!dence of prediction 𝑆𝑏𝑑 (𝑃, 𝑅) in [0, 1], where
0 means no con!dence and 1 is absolute con!dence. Note that in gen-
eral 𝑈𝑉𝑗𝑘 (𝑃, 𝑅) > 𝑈𝑉𝑗𝑘 (𝑃 ≃, 𝑅 ≃) should imply |𝑆𝑏𝑑 (𝑃, 𝑅) ↓ 𝑆𝐿 (𝑅) | <
|𝑆𝑏𝑑 (𝑃 ≃, 𝑅 ≃) ↓ 𝑆𝐿≃ (𝑅 ≃) |. In other words, a higher con!dence should
correlate with a better prediction (one closer to the real preference).

We provide an example prediction con!dence function called
𝑙𝑚-Con!dence based on the following two measures:

• The separation between 𝑃 and users in 𝑕𝑇𝑊𝑍
𝑎 (𝑃, 𝑅) (for some

separation measure 𝑌𝑑𝑆)
• The distribution of preferences of users in 𝑕𝑇𝑊𝑍

𝑎 (𝑃, 𝑅) to-
wards 𝑅 (i.e. their standard deviation).

We de!ne 𝑙𝑚-Con!dence as the weighted average of these two
measures where 𝑙 and 𝑚 are the weights.

D&’. 12 (𝑙𝑚4C+)’,5&)*&). Let 𝑌𝑑𝑆 be a separation measure as in
Def. 5 and 𝑕𝑇𝑊𝑍

𝑎 (𝑃, 𝑅) be the set of similar users to user 𝑃 (using 𝑌𝑑𝑆).
We can then de!ne the con!dence of prediction 𝑆 (𝑃, 𝑅) as:

𝑈𝑉𝑗𝑘𝑔,𝑕 (𝑃, 𝑅) = 1↓𝑙 ·min(
∑
𝐿≃ ↑𝑐𝑇𝑊𝑁

𝑂 (𝐿,𝑌) 𝑌𝑑𝑆 (𝑃,𝑃
≃)

|𝑕𝑇𝑊𝑍
𝑎 (𝑃, 𝑅) |

, 1)↓𝑚·min(𝑌𝑋 (𝑕𝑎), 1)

Where 𝑙, 𝑚 ↑ [0, 1], 𝑙 + 𝑚 = 1, 𝑌𝑋 refers to the standard deviation of
a set, and 𝑕𝑎 = {𝑆𝑁𝑂𝐿≃ (𝑅) |𝑃 ≃ ↑ 𝑕𝑇𝑊𝑍

𝑎 (𝑃, 𝑅)}.
Note that, in order to have con!dence between 0 and 1, we set

an upper bound of 1 to each of the two parts. The !rst part of
the 𝑙𝑚-Con!dence refers to the separation between the users for
the prediction, and the higher this separation, the less con!dence
in the prediction. In this case, we measure the average separation
between𝑃 and the users in 𝑕𝑇𝑊𝑍

𝑎 (𝑃, 𝑅). The second part refers to the
distribution of the real preferences of the similar users, hence the
more these preferences di"er, the lower con!dence in our prediction.
Here, we use the standard deviation of the preferences.

Once we have a con!dence function, we can use it to de!ne vari-
able thresholds to create norms from preferences. One possibility is
to favour the creation of norms whenwe have con!dent predictions,
while limiting their production when we have low con!dence. In
other words, we can consider variable thresholds that are closer
to the middle point (0) when con!dence is high, and closer to the
extremes (-1 and 1) when con!dence is low.

D&’. 13 (C+)’,5&)- )+(# -7(&17+%51). Given a con!dence
function 𝑈𝑉𝑗𝑘 (𝑃, 𝑅), we de!ne con!dent norm thresholds as𝑍𝑑𝑒𝑆 (𝑃, 𝑅) =
↓1 + 𝑈𝑉𝑖𝑗 (𝐿,𝑌)

3 , 𝑍𝑑𝑓𝑒 (𝑃, 𝑅) = 1 ↓ 2𝑈𝑉𝑖𝑗 (𝐿,𝑌)3 .

We use con!dent norm thresholds for our running example.
E!"#$%& 7. We want to infer a norm for 𝑃1 and element 𝑅3, in

Example 5 where we predicted a preference of ↓1. Note that, if we
consider 𝑙 = 1

2 , 𝑚 = 1
2 , in this case we have 𝑈𝑉𝑗𝑘𝑔,𝑕 (𝑃1, 𝑅3) = 1 (as

both parts of the function are 0). Hence, we would have 𝑍𝑑𝑒𝑆 (𝑈𝑉𝑗𝑘 ) =
↓ 2
3 , 𝑍𝑑𝑓𝑒 (𝑈𝑉𝑗𝑘 ) = 1

3 , and would infer 𝑎𝑏𝑐(𝑅3) in this case, because
↓1 < 𝑍𝑑𝑒𝑆 .

4.3 Thresholds based on other variables
Much like with prediction con!dence, threshold functions can also
depend on other relevant variables like the context of the elements
(assuming they have contexts). For generality purposes, we have
avoided de!ning formally any type of these variables, and have
considered them implicitly in each 𝑅 ↑ 𝑄 . However, in some appli-
cations it might be important to consider them when setting norm
thresholds. For example, if we want to avoid inappropriate actions
in sensitive contexts, we can consider the sensitivity of the context
as a variable to set the thresholds. Then, 𝑓𝑑𝑒𝑆 (𝑈) would be closer to
0 for contexts 𝑈 that are considered sensitive than for non-sensitive
ones. Formally, in this case, we would consider thresholds as func-
tions depending on multiple variables 𝑓𝑑𝑒𝑆 : 𝑛1 ⇐ 𝑛𝑖 → [↓1, 0]
and 𝑓𝑑𝑓𝑒 : 𝑛 ≃

1 ⇐𝑛 ≃
𝑊 → [0, 1], where we consider 𝑗 and𝑊 variables

respectively and𝑛1⇐𝑛𝑖 and𝑛 ≃
1 ⇐𝑛 ≃

𝑊 are the possible values of these
𝑗 and𝑊 variables. As for hard thresholds, we require that the 𝑓𝑑𝑒𝑆
and 𝑓𝑑𝑓𝑒 functions have ranges in [↓1, 0] and [0, 1] respectively.

4.4 The suitability of the di"erent approaches
The suitability of each of the previous approaches depends largely
on the domain of application. Apart from particular application
requirements, when deciding which method to apply we should
also consider the accuracy and distribution of predictions. To be
concise, we discuss this in relation to two general measures: the
average prediction distance from the real preference (denoted as
APD), as well as the standard deviation of these predictions (denoted
PSD). The average prediction distance tells us the accuracy of our
predictions, while the standard deviation gives us an indication
of the polarisation of predictions with regard to average distance.
These two measures lead to the following four di"erentiated cases:

• Low APD and low PSD: This is the ideal scenario in which
predictions work best, where any method is valid. Hard
thresholds are useful for cases that demand an easily ex-
plainable method. Function thresholds can also be useful,
especially if required by the application (for example, one
that explicitly demands consideration of environmental vari-
ables like context sensitivity when determining norms).
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• Low APD and high PSD: Here, the predictions seem accurate
but not reliable enough, so hard thresholds are best avoided.
Instead, the other approaches prevent norms being enacted
in cases of vague predictions coming from bad quality data.

• HighAPD and low PSD: Here the predictions are consistently
wrong, and consistently deviate from the truth. This case
should not usually arise and tells us that there is something
wrong with the prediction formula, so predictions should
not be used to build norms.

• High APD and high PSD: Here, the predictions are seem-
ingly random. This can be a consequence of insu#cient in-
formation (e.g., when known preferences are far fewer than
unknown ones). At this stage, norms could be built using
function thresholds, but if more information is collected this
scenario should then settle into one of the other three, and
norms would be selected using the relevant advice. Predic-
tions at this stage may not be reliable so the resulting norms
should be rebuilt once more information is known.

5 PROOF OF CONCEPT: PRIVACY NORMS FOR
SMART PERSONAL ASSISTANTS

In order to validate the preference prediction and norm inference
models presented here, we return to the problem of Smart Per-
sonal Assistants. We consider this case by virtue of the privacy
preferences dataset used by [2], which is available at [3].

5.1 Description of the dataset
The dataset contains the responses of 1737 participants in a survey
concerning privacy preferences when using Smart Personal Assis-
tants (SPAs). The questions in the survey3 ask participants how
acceptable it is to share data in a particular context. More speci!-
cally, the survey considers 15 data types (e.g. emails, banking data,
healthcare data, voice recordings) and presents 8 scenarios for each.
These scenarios or contexts consider di"erent recipients of the data
(e.g. parents, friends, visitors), the purpose of sharing the data, dif-
ferent conditions on data transmission, etc. Each scenario has a
di"erent number of associated questions, amounting to 55 for all 8
scenarios. Overall, the survey consists of 825 di"erent preference
questions, for each of which participants answer on a 1 to 5 Likert
scale (1 meaning the sharing of that datatype is completely unac-
ceptable in that context, and 5 meaning it is completely acceptable).
Participants did not answer all questions, with each participant
answering questions related to 4 scenarios for 6 datatypes (both
selected randomly). Note that di"erent scenarios have di"erent
amounts of associated questions, so participants responded to dif-
ferent questions and di"erent numbers of questions, ranging from
144 to 199, with an average of 170 questions answered.

5.2 Prediction validation
In this section we assess the accuracy of our predictions using the
previously described dataset4. We show that our predictions are
more accurate than random guesses and also more accurate than

3For our tests, we only use the main block of questions in the survey, so to not consider
data from questions on demographics, IUIPC, and security attitudes
4The code necessary to run these experiments can be found at: https://github.com/
secure-ai-assistants/norm-prediction

the preferences found by Abdi et al. in [2]. Finally, we record the
con!dence measure for each prediction and show that there is a
correlation between con!dence and prediction quality.

First, we describe the experiments on accuracy. Out of the 1737
participants, we selected 20% of participants (347) randomly to test
the accuracy of our predictions. The remaining 80% of participants
(1390) represent our base of knowledge to build predictions. For
each test participant, we randomly picked 20% of their answers as
the test set we sought to predict (this was an average of 35). We did
not consider all remaining answers to assess user similarity, but
instead used only 40% of answers (an average of 71), and applied this
reduction to all participants. To proceed, for each test participant
and answer to predict, we !ltered the pool of 1390 participants
to keep only those relevant; we needed to !lter out participants
who did not answer the question we aim to predict. In addition,
we discarded participants with less than 5 questions in common
with the test participant (as we wanted to !nding similar users with
a certain degree of reliability). Then, we assessed the separation
between users using the cumulative user separation measure of
Def. 6. Using this separation measure, we selected participants
similar to our test participant as in Def. 7, with 𝑓 = 0, and 𝑔 = 5. In
other words, we selected all users at distance 0, and then selected
those with the least distance until we had 5 participants. Then, we
predicted the test participant’s answers to the test questions using
the average preference prediction function (see Def. 9).

To test our prediction, we calculated the distance between our
predicted answer and the real answer, and collected all these dis-
tances for all test participants and test questions. Below, we report
the mean distance and the standard deviation. Apart from the ex-
periment considering all participants (which we now refer to as
the regular experiment) we wanted to test accuracy for two further
levels of di#culty. First, we hypothesised that participants that
responded similarly to all questions would be easiest to predict.
Thus, when selecting test participants we avoided those with small
standard deviations on their given answers (but retained them in
the pool of possible similar participants). Here, we required the stan-
dard deviation of any selected test participant to be no less than 1.
We repeated the experiments as explained above, and refer to this as
the medium hardness experiment. Second, to test the extreme case,
we selected the 100 participants with highest standard deviation
in their answers and repeated the experiments as explained above.
These are arguably the most di#cult participants to predict. By
selecting many of them, we limit the chances of !nding very similar
participants in the remaining pool (since, to be similar, they also
need to have a large standard deviation and therefore might have
been selected as test participants). We call this the hard experiment.

Table 1 provides the mean distance as well as the standard devi-
ation for each run of tests. We provide a histogram for the regular
experiments to better understand the distribution of distances be-
tween prediction and reality (the histograms for medium and hard
experiments are almost identical, so we omit them to save space).

The regular experiment resulted in 12007 predicted answers
with a mean distance from the real answer of 0.5954 and a standard
deviation of 0.6757. Figure 1 shows the distribution of these 12007
distances between prediction and reality. We can see that most
predictions fall within 0.25 of the real answer, while only a small
number of predictions have distances larger than 1 with regard

https://github.com/secure-ai-assistants/norm-prediction
https://github.com/secure-ai-assistants/norm-prediction
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Figure 1: Histogram of distances between our predictions
and the real preferences

to the real answer. The medium hardness experiment resulted in
12015 predicted answers5; as expected, the mean distance grows a
little to 0.6538 and the standard deviation to 0.7207. Overall, while
distances grow slightly, we can see that predictions are still of good
quality. Finally, the hard experiment resulted in 3461 predicted
answers6 with a mean distance of 0.7480 and a standard deviation
of 0.8707. While the mean distance has increased from the distance
of the regular experiment it has increased by less than 0.2. The
standard deviation has increased by almost 0.2, con!rming that the
predictions of these participants may lead to more outliers.

Thus, while increasing the di#culty of predictions slightly in-
creases the distance between the prediction and the real answer,
we have seen that our predictions are still reliable with the hardest
participants to predict. Furthermore, our predictions improve the
preferences presented by Abdi et al. in [2], which are the average
preferences for all participants in their survey. Most notably, our
model can capture preferences outside the majority view; for ex-
ample, Abdi et al. point out that people are less inclined to share
video call data with assistant providers (the average preference
for sharing this while being able to delete it is 2.44), yet in many
instances we correctly predicted favourable preferences towards
sharing. Table 2 shows the results of our experiments considering
their preferences, and as an additional point of reference, Table 3
provides results for the experiments with random predictions.

When it comes to con!dence, we tested how 𝑙𝑚-Con!dence cor-
relates with prediction quality (its closeness to the real preference)

5Di"erent experiments have di"erent numbers of predictions because we selected
as test answers 20% of a participants’ answers and di"erent participants answered
di"erent numbers of questions
6Note that the hard experiment has fewer predicted answers because it consists of 100
test participants instead of 347

Regular Medium Hard
Mean distance from real answer 0.5954 0.6538 0.7480
Standard deviation 0.6757 0.7207 0.8707

Table 1: Results for regular, medium and hard experiments

Regular Medium Hard
Mean distance from real answer 1.0437 1.0611 1.2895
Standard deviation 0.7069 0.7093 0.7765
Table 2: Results with preferences found by Abdi et al. [2]

using Spearman’s correlation coe#cient7. Note that the coe#cient
must be a negative number as we should have an inverse correlation
(the higher the con!dence, the lower the distance between the real
and predicted preferences). While our con!dence formula considers
two weights 𝑙 and 𝑚, these depend on each application and could
be adjusted at runtime to maximise correlation (i.e. to minimise
the correlation coe#cient). For regular experiments, we have a
correlation coe#cient of -0.67 with 𝑙 = 0 and 𝑚 = 1. With medium
hardness experiments, the minimum was -0.63 with 𝑙 = 0.01 and
𝑚 = 0.99. Finally, for hard experiments, the minimum was -0.74
when 𝑙 = 0.15 and 𝑚 = 0.85. We can therefore detect an inverse
correlation between con!dence and prediction quality. We also see
that in this case, con!dence largely depends on the distribution of
preferences from which the prediction is made, whereas the sep-
aration between the user and the similar users is not pertinent to
assess con!dence. Importantly, we see that our con!dence function
is more reliable for hard predictions. We believe this is because
since con!dence is always in [0,1] it is easier for it to correlate with
prediction quality in cases where the quality has more variability
(i.e. in the case of hard experiments).

5.3 Evaluating inferred norms with real users
To test the norm inference process with real users we performed
a user study with the scenarios from [2] and the preference data
collected in [3], with the aim of validating user perceptions of our
predicted norms. Through Proli!c,8 we recruited 50 participants
matching the demographics of the original data set who answered
32 preference questions over 5 randomly selected scenarios from
[2, 3]. We then selected three unknown preferences at random and
made predictions for them, inferring the norms using the hard
thresholds function (see Section 4.1); if no norm was generated for
a preference we randomly selected another unknown preference9.
We also interleaved three control norms with the same structure but
randomly generated outcomes. Participants rated these norms using
5 point Likert items from completely inappropriate (1) to completely
appropriate (5) and could leave a text comment explaining their
reasoning. After discarding 3 incorrect responses to the included
attention check, the remaining 47 participants had an average age
7We cannot ensure that our data follows a normal distribution, hence Spearman’s is
the appropriate correlation test to use
8proli!c.co
9Note that this does not compromise our results as we only aim to validate the gener-
ated norms. If we do not predict a clear preference, our approach does not produce
any norm and instead we resort to other approaches (like asking for consent).

Regular Medium Hard
Mean distance from real answer 1.6083 1.578 1.8768
Standard deviation 1.0864 1.080 1.1286

Table 3: Results with random predictions

prolific.co
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Figure 2: Comparison between mean participant ratings of
predicted and control norms

of 37.5 (𝑜 = 13.8), and 49% identi!ed as women. The study was
approved by our Institutional Review Board (IRB).

Figure 2 shows the mean ratings of the 141 predicted and 141 con-
trol norms, showing a substantial improvement of predicted norms
over the control set. Overall we predicted 126 unique preferences
covering 15% of the original set. A follow up t-test (t=2.88, p=0.003)
con!rms that participants’ higher agreement with our predicted
norms compared to the control norms is statistically signi!cant,
with the prediction process eliminating almost a quarter (24%) of
the di"erence between the control ratings and the perfect accep-
tance score of 5. As in similar user studies (e.g., [25]), we emphasise
that it is very unlikely that even ground truth preferences would
receive a perfect score of 5 given the variability of self-ratings and
the tendency for participants to bring in outside context when
evaluating norms (as seen in accompanying text comments).

6 RELATEDWORK
Some previous approaches have addressed the problem of privacy
norms in AI assistants. For example, Abdi et al. [2] surveyed users
on how acceptable some information exchanges are under some
context (this survey produced the data we used for our experiments
[3]) and then crowd-sourced norms that aligned with their answers.
While this work is useful to understand the general preferences
of users towards privacy, it is restricted in terms of the scenarios
covered. Nonetheless, it could be useful as a default set of prefer-
ences when information about the user is sparse (e.g. when the
user !rst uses the assistant). The work of Zhan et al. [30] instead
proposes to construct AI assistant privacy norms using an approach
based on rule mining and machine learning (exploiting the idea of
contextual integrity [15]). Unfortunately, we cannot compare our
norm prediction approach with their approach as [30] reports test
results as percentages of accuracy which cannot be compared with
our acceptability rates. While this approach achieves an accuracy
of 70-80% it requires domain knowledge. In contrast our work in
this paper can customise norms to each user without the need for
specifying or formalising contexts. Note that the elements in our
set 𝑄 can be actions, or tuples of actions and contexts, and in both
cases our method is able to predict preferences and infer norms
without the need for additional knowledge of the elements in 𝑄 .

Closely related to this is the area of AI ethics and norms. We can
assume that morality in$uences a user’s preferences towards AI
so that, for example, a user that highly values privacy will be less
inclined to share data. Works like [19, 20] have investigated the
selection of norms with regard to their promotion of moral values
and preferences over these values. Similarly, [22] proposes to enact
those norms that will bene!t those state transitions leading to an
increase in value alignment with the considered values and prefer-
ences. In this direction, Montes et al. [11] describe how these norms
can be synthesised. While these approaches could produce privacy
norms (provided privacy is a value considered) we argue that in
practice this would not be possible since they require knowledge
that is hardly attainable by smart devices, like states of the world,
contexts, the user’s value preferences, or a measurement of value
alignment (with regard to privacy and other desirable values).

7 CONCLUSIONS
Collaborative !ltering is a useful tool in recommender systems.
For example, online stores use it to recommended products by con-
sidering purchases of similar users. This paper provides a novel
application of collaborative !ltering, with the aim of predicting user
preferences towards AI. However, our approach o"ers far more than
just recommending preferences to the user. Indeed, while users ex-
pect smart devices to act as they desire, constant interaction not
only annoys the user but fails to capture their true preferences.
Hence, our approach has two purposes: understanding user pref-
erences while minimising interaction, and bringing more value to
interactions regarding preferences by considering predictions. Thus,
coupling collaborative !ltering with norms allows us to both add a
component of explainability to user preferences, and to propagate
user preferences to other parts of the AI ecosystem. For example,
in the case of privacy in smart assistants, norms could govern the
management of data not only by the device itself but also for other
components of the ecosystem, like skills.

Admittedly, our approach requires large quantities of users and
partial preferences for each of these users to function properly, and
the more information the more accurate the predictions. Thus, our
approach might be better suited to smart devices with a reasonable
number of users. Even if the number of users is su#cient, it is
also possible that predictions could be unreliable. However, we can
detect this using a con!dence measure, such as that of De!nition 12.
Crucially, however, as the number of users grows, and as knowledge
of their preferences increases, low con!dence preferences can be
recalculated, which should increase the con!dence in the prediction.

In addition, we have assumed a single user for each device, but it
is unclear how this method would apply when multiple users share
the same device (for example, a family sharing a smart speaker).
This will be the subject of future work. Other interesting aspects
we plan to investigate include the addition of rewards or punish-
ments associated with norms (which could be derived from context
sensitivity), and how to produce explanations from norms.
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