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Abstract. The drive to extend the Web by taking advantage of auto-
mated symbolic reasoning (the so-called Semantic Web) has been dom-
inated by a traditional model of knowledge sharing, in which the focus
is on task-independent standardisation of knowledge. It appears to be
difficult, in practice, to standardise in this way because the way in which
we represent knowledge is strongly influenced by the ways in which we
expect to use it. We present a form of knowledge sharing that is based
not on direct sharing of “true” statements about the world but, instead,
is based on sharing descriptions of interactions. By making interaction
specifications the currency of knowledge sharing we gain a context to in-
terpreting knowledge that can be transmitted between peers, in a manner
analogous to the use of electronic institutions in multi-agent systems. The
narrower notion of semantic commitment we thus obtain requires peers
only to commit to meanings of terms for the purposes and duration of
the interactions in which they appear. This lightweight semantics allows
networks of interaction to be formed between peers using comparatively
simple means of tackling the perennial issues of query routing, service
composition and ontology matching. A basic version of the system de-
scribed in this paper has been built (via the OpenKnowledge project);
all its components use established methods; many of these have been
deployed in substantial applications; and we summarise a simple means
of integration using the interaction specification language itself.

1 Introduction

To coordinate the sharing of knowledge in an automated way on a large scale is
an aim shared by many areas of computing. In some areas the challenge of scale
is especially difficult because the environment for knowledge sharing is open,
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in the sense that we cannot prescribe which programs will choose to interact
in sharing knowledge. One solution to this problem would be to develop so-
phisticated agent architectures to make individual programs more adaptive and
resilient. In practice, however, the architectures of most internet-based systems
are not specifically agent-oriented. A second approach, and the one taken in
this paper, is to take the approach adopted in electronic institutions and use a
formal model of the intended interaction in different social contexts in order to
provide the necessary constraints on interaction and synchronisation of message
passing. We motivate our approach by comparison to the aspirations of semantic
web systems but, in Section 6, we discuss the relevance of our approach across
a broader range of large scale coordination systems.

Semantic Web efforts encourage designers to specify pages and programs in
a knowledge representation language. What fundamentally distinguishes the Se-
mantic Web from traditional knowledge representation is not the formal repre-
sentations of pages and programs but the way these representations are used
in automated processing. The use we have in mind is to improve the accuracy
of Web searches and to allow components (especially those that are programs
operating as Web services) to be connected automatically rather than simply be
discovered individually. It simplifies our explanation, without loss of generality,
if we think of all components (pages and programs) as peers1 capable of sup-
plying information in some formal language: a page supplies information about
that page; a program generates information, perhaps requiring input informa-
tion in order to do so (we return to the data-centric versus process-centric view
in Section 6.1). This way of attempting to share knowledge between peers en-
counters elementary problems, familiar from traditional software and knowledge
engineering:

– When two different components supply exactly the same formal expression
this does not imply that they mean the same thing. Conversely, when they
supply different formal expressions they may mean the same thing. In tradi-
tional knowledge (and software) engineering we avoid this problem by reach-
ing a consensus amongst component designers on an ontology. To obtain an
ontology one needs an oracle to decide which formal terms to use. There
are only two sources of oracle: human or mechanical. Neither source scales
well. Human oracles can only agree in small groups for narrow tasks or do-
mains. Mechanical oracles need to acquire domain knowledge via automated
learning methods, none of which has scaled beyond narrow tasks or domains.

– Only some combinations of components work well together, even when the
meanings of their appropriate inputs and outputs correspond, because of as-
sumptions made deep within the design of components. In traditional knowl-
edge (and software) engineering this problem is detected through integration

1 We use the word “peer” in this paper simply to underline that no component is
given special authority over others, other than via the manner in which components
interact with humans and with each other. We use “peer” rather than “agent” in
order to emphasise that the programs we coordinate need not be built to an agent
architecture.
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testing: by running assemblies of components comprising the system and
checking for defects such as range errors (where the type of an input is
correct but its value is outside the range anticipated by the component’s
designers). It is infeasible to test all ranges for all variables for all compo-
nents so integration testing only covers some small subset of the possible
interactions.

– Components may fail without warning, either because they are removed or
as a consequence of their environment. Traditionally this problem is solved
by ensuring that the components are in a shared, controlled environment.
No such controls are available in an open environment, in which we may not
always know who, what or where are our peers.

– Even without the problems above, theoretical results (e.g. [8]) show that
in general it is impossible to guarantee consistently shared common knowl-
edge in asynchronous distributed systems. The engineering solution to this
problem is to provide mechanisms for establishing synchronisation between
appropriate components, but for this we must have a frame of reference to
bound the synchronisation - otherwise synchronisation itself falls foul of the
general consistency problem.

As an example, suppose we want to find the addresses of expert researchers on
wave energy in Scotland. A conventional Web search using Google doesn’t find
this information easily because the information about who is an expert is hard to
infer from conventional Web pages and the large number of pages discussing wave
energy tend to swamp out the few home pages of expert researchers and their
groups. A semantic web approach might do better if appropriate information
services could be combined. Suppose that an expert finding service does exist
and it offers to supply as output a set, S, of names of specialists if given as input a
request for experts in some country, X , and discipline, D. A simple specification
of this service (made much simpler then, say, an OWL-S, specification since we
need only a simple example here) might be this:

service : expert finder
input : request experts(country(X), discipline(D))

output : specialists(X, D, S)
operation : get experts(X, D, S)

Suppose also that two address finding services exist in Scotland, allowing one
to send a request for the address of a person with a given name, P , and receive
an address, A, for him or her. One of these services is run by a UK address
company (uk address); the other by the University of Edinburgh (univ ed).
Both, by coincidence, have identical specifications:

service : address finder
input : request address(person(P ))

output : address(P, A)
operation : get address(P, A)
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A semantic web search engine could not obtain the set of addresses we require
using only these service specifications (assuming that the specifications connect
to actual services via some grounding mechanism not discussed here) because it
is missing some vital functionality:

Functionality 1. Interaction specification: Wherever there is distributed com-
putation there is an issue of control over message passing between services. The
expert finder service supplies a set, S, of names of experts but the address finder
service deals with individual names. Something must infer that we should take each
element of S and pass it to the address finder, collecting the results.We cannot al-
ways infer this by examining only the types and values of variables - just like normal
programming, someone or something must supply the necessary control structure.

Functionality 2. Interaction coordination: We need to know that some form
of interaction involving expert finder and address finder would be useful for
the task. Notice that our task is not, and could not be, specified with the services
because the engineers of those services could not be assumed to predict all the
possible tasks of which they might be a part. To provide any automation we
must separately obtain a formal description of the interaction we might need.
And this description will most likely be provided using language terms that are
different from those used by the services which want to interact with a given
service. Some mechanism must make sure that the services are fed appropriate
information. The variable, D, in the expert finder service will need to be bound
to the name of some scientific discipline that the service recognises and it is
unlikely to recognise all conceivable discipline descriptions. Will it accept “wave
energy”? We don’t know simply by looking at the type of the variable.

We have described major problems associated with the aspiration of semantic
web efforts. These are traditional engineering problems but their traditional so-
lutions do not apply in open environments. The key to solving these, we shall
argue, is in making specifications of interactions an integral part of knowledge
exchange between peers. In Section 2 we summarise a compact but expressive
formal language for specifying and computing interactions. We then describe
the basic mechanisms needed to support this computation in an open environ-
ment: ontology alignment (Section 3.1), discovery (Section 3.2) and visualisation
(Section 3.3). Section 4 then combines these elements within a minimal model
of interaction, shareable between peers. Finally, since we view this as an evolu-
tionary manifesto, in Section 6 we compare our approach to the major existing
paradigms.

2 Interaction Specification

The functional requirement we must satisfy here is: given that a peer has been
given a model of interaction, use this computationally to control its own be-
haviour and communicate to other relevant peers the behaviours expected of
them for this interaction.
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Model := {Clause, . . .}
Clause := Role :: Def

Role := a(Type, Id)
Def := Role |Message | Def then Def | Def or Def

Message := M ⇒ Role |M ⇒ Role← C |M ⇐ Role | C ←M ⇐ Role
C := Constant | P (Term, . . .) | ¬C | C ∧ C | C ∨ C

Type := Term
Id := Constant | V ariable
M := Term

Term := Constant | V ariable | P (Term, . . .)
Constant := lower case character sequence or number
V ariable := upper case character sequence or number

Fig. 1. LCC syntax

From previous implementations by the authors using the system described be-
low, there are several different ways in which a peer might exploit an interaction
model with a precise computational behaviour:

– It might simply run this model locally, sending messages to other peers but
not allowing them to be privy to the broader picture of interaction contained
in the model. This is a traditional server-based style of coordination.

– It might distribute appropriate components of the model to those peers with
which it interacts, on the assumption that each of them will separately run
that component - producing a distributed computation.

– It might use the model as a form of script which it passes entire to the
next peer with which it needs to interact - producing complex interactions
amongst many peers via pairwise interactions between peers.

None of these computational models is optimal. Server or script based com-
putation keeps the interaction model in one piece, giving advantages in imposing
constraints on interaction that apply across groups of peers. On the other hand,
a server based computation means that peers other than the one acting as server
have little control over the course of the interaction; while a script based com-
putation only works for interactions that can be deconstructed into a series of
pairwise interchanges. Since no winning execution strategy is known, it makes
sense to use an interaction modelling language that has a semantics independent
of any one of these strategies but that is capable of being executed by any of
them.

The need to supply this sort of information has been recognised by many in
the semantic web community. The most direct solution is to specify the process
of service combination, and the roles undertaken by the services in that process,
in an executable language. We give in Figure 2 a specification for our running
example in one such language: the Lightweight Coordination Calculus (LCC)
which is the core language used in the OpenKnowledge project. Figure 1 defines
the syntax of LCC. An interaction model in LCC is a set of clauses, each of which
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a(expert locator(X, D, L), C) ::
request experts(X,D) ⇒ a(expert finder, E) then
specialists(X,D, S) ⇐ a(expert finder, E) then
a(address collector(S, L), C)

a(address collector(S, L), C) ::
request address(P ) ⇒ a(address finder, F )← S = [P |Sr] ∧ L = [A|Lr] then
address(P,A) ⇐ a(address finder, F ) then
a(address collector(Sr, Lr), C)

or

null ← S = [] ∧ L = []

a(expert finder, E) ::
request experts(X,D) ⇐ a(expert locator(X, D, L), C) then
specialists(X,D, S) ⇒ a(expert locator(X, D, L), C)← get experts(X,D, S)

a(address finder, F ) ::
request address(P ) ⇐ a(address collector(S), C) then
address(P,A) ⇒ a(address collector(S), C)← get address(P,A) then
a(address finder, F )

Fig. 2. Example interaction model

defines how a role in the interaction must be performed. Roles are described by
the type of role and an identifier for the individual peer undertaking that role.
The definition of performance of a role is constructed using combinations of
the sequence operator (‘then’) or choice operator (‘or’) to connect messages
and changes of role. Messages are either outgoing to another peer in a given role
(‘⇒’) or incoming from another peer in a given role (‘⇐’). Message input/output
or change of role can be governed by a constraint defined using the normal
logical operators for conjunction, disjunction and negation. Notice that there is
no commitment to the system of logic through which constraints are solved -
so different peers might operate different constraint solvers (including human
intervention).

Returning to the example of Figure 2, each of the four clauses defines the
message passing behaviour of a role in the interaction. The first clause defines
the role we wish some peer (identified by name C) to perform: that of a locator
for experts which, given a country, X and a discipline, D, identifies a list of
addresses, L. To undertake this role, C must send a message to an expert finder,
E, requesting names of experts and then receive a set of names, S from E before
taking the role of an address collector. The second clause defines the address
collector role which involves recursing through the set of names, requesting, and
then receiving, an address for each from an address finder, F . The third and
fourth clauses define our earlier expert finder and address finder services in
terms of the message passing required by each of them. Note that these make
specific commitments to the temporal behaviours of the services in our interac-
tion (for instance we prescribe that an expert finder is contacted only once in
this interaction while an address finder may be contacted many times).
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It is not the task of this paper to explain LCC in detail or to justify its use
rather than some other process specification language (for that argument see
[16]). For our current purposes, the salient features of LCC are:

– It is an executable specification language, providing the features common
to such languages (such as variables, data structures and recursion). All of
these were needed to deal with even our simple running example.

– Despite its specificity in terms of data and control structure, so we know
precisely how we want our services to interact, there remain obstacles to
achieving that interaction:
• Which specific terms will work when communicating between services?

This is discussed in Section 3.1.
• How do we know which actual services to use? In our LCC specification

the variables E and F are unbound but messages must be sent to specific
services. This is discussed in Section 3.2.

• What happens if our peers are human operated? For example, the oper-
ation get experts(X, D, S) in the third clause of Figure 2 might involve
asking a human who the experts are. At that point the human needs to
know enough of the interaction’s context to give an informative reply
(see Section 3.3).

Principle 1. Interaction models are declarative, executable specifications that
may be understood independently of any particular peer or execution model. The
conditions under which they are run, however, requires more run-time support
than a traditional executable specification language.

3 Interaction Coordination

The functional requirement we must satisfy here is: given a peer with no knowl-
edge of how to interact with others to perform some task, obtain for it a descrip-
tion of an appropriate interaction.

One way to do this might be through synthesis, either fully automated (e.g.
[4]) or interactive (e.g. [12]), so that peers could compose appropriate service
clusters for whatever task arises. Although an important means of initiating
some kinds of interaction specification, synthesis is unlikely to be the main source
of this functionality for three reasons. First, as in Section 1, the specifications
we need are non-trivial to synthesise automatically and would require specialist
expertise to synthesise interactively. Second, synthesis can be time consuming
and peers in a semantic web are likely to need fast responses. Third, and per-
haps most importantly, sharing information about useful interactions is a way to
propagate experience about effective knowledge sharing - so obtaining a model
of interaction that has been widely used and is popular with one’s peers may in
many cases be better (and much easier) than building one from scratch. We now
consider two key enablers for this from of sharing: dynamic ontology matching
and peer-to-peer interaction model sharing.
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3.1 Dynamic Ontology Matching

In our introduction we argued that traditional methods of ontology matching
do not scale to open knowledge sharing systems. Our focus on interaction has
not, however, eradicated the issue. Instead, we have a different form of ontology
matching problem to consider: matching terms that appear dynamically in the
course of an interaction. Being autonomously and independently defined inside
each peer, most of these terms will be semantically heterogeneous. Thus, while
one peer could have expert finder as its service role, the others could have
person finder, expertICT finder, expert broker, and so on. Notice that while
the first and the fourth role denote services which are essentially equivalent,
the second is more general than expert finder, while the third is less general.
It is a fact that these terms are always used in the context of some local, a
priori defined, often left implicit, ontological description of the world. And this
influences not only the specific equivalent terms used to describe a concept but
also the level of generality of the concept itself.

The solution we propose is to construct semantic mappings (e.g. more or less
general, equivalent to, disjoint from) existing between the terms used during in-
teraction. One such example is the mapping 〈expert finder, person finder, LG〉,
stating that expert finder is less general (LG) than person finder. These map-
pings are those defined and used in C-OWL [14]. Their main advantage over “syn-
tactic mappings”, namely mappings which return an affinity measure in the
interval [0,1] (see, e.g., the mappings constructed by the state of the art system
COMA [9]), is that the information carried by the semantic relation can then be
exploited in many ways, for instance when fixing mismatches (see “Term match-
ing” below).

We discover semantic mappings, using the method implemented in the S-
Match system [7]. This is applied in at least three different phases:

– Role matching: Aligns the different ways in which roles are described when
initiating or joining an interaction. An example is the mapping
〈expert finder, person finder, LG〉.

– Term matching: Aligns (structured) terms within the clause defining a role
in order to undertake an interaction. An example is matching get address,
which in one peer could take two arguments (e.g. name of a person and
his/her address) and in another three arguments, where the third argument
(e.g. Type of Comm) could discriminate whether we need an address for
personal or work communication.

– Query / Answer matching: Takes place when running an interaction model
and deals with the semantic heterogeneity arising from the statement of a
query and in the values returned in its answers. For example, an interaction
model specifying that the address finder needs to look up the address for
Stephen Salter by invoking the get address(′Stephen Salter′, A) operation
is not guaranteed (as we are with the ontology of messages) to match per-
fectly to the operation the peer actually can perform. Perhaps the operation
used by the peer is find address and the surname is expected first (as in
′Salter, Stephen′).
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The kind of (semantic) matching that we need here differs from the previous
approaches in that it is not done once and for all, at design time on stati-
cally defined ontologies, but, rather, it is performed at run-time. This moves the
problem of ontology (and data) integration, widely studied in the literature, to
the problem of ontology coordination. As discussed in [6], the problem of data
and ontology coordination is characterised by various new difficulties (beyond
the obvious requirement of very fast response times). Coordination is dynamic so
exactly what needs to be coordinated depends on what is interacting. Peers have
partial knowledge of their network so cannot always predict which other peers
will interact with them. Ontology matches made in this way without prior con-
sensus are therefore intended to support query answer sets that are good enough
for the interaction in hand but not necessarily complete or always correct.

This form of dynamic semantic matching might at first sight seem a harder
problem than conventional static matching. We can, however, utilise our coordi-
nation framework to turn it into a more limited, easier problem. From Principle 1,
interaction models are shareable resources. So too are mappings used with them.
This cuts down the number of new mappings that are needed as models are re-
used. Furthermore, the context in which mappings are constructed is much more
limited than with traditional ontology mapping. Since the purpose of mappings
is to ensure that a specific interaction model functions correctly then the only
issue is whether the meaning associated with the particular use of an operation
required of a peer corresponds to an operation it can do. This is a much less de-
manding task than the general task of mapping entire ontologies between peers,
for two reasons. First, we need consider only the fragment of the ontology that
applies to a specific interaction. Second, the commitments we make in a mapping
can be weaker and more easily judged: for instance, mapping “visit to Italy” to
“holiday trip” may make perfect sense for an interaction with a holiday service
even though the mapping does not hold in general.

Principle 2. Models of interactions are developed locally to peers. However,
they must be shared in order to achieve interaction coordination. This is achieved
by dynamically matching, at run time, terms in theinteraction models. This hap-
pen both when synthesising them and when running them to answer specific
queries. Dynamic semantic matching does this by considering the terms in the
context (defined as a local ontology) of the involved peers.

3.2 Interaction Model Sharing and Discovery

The obstacle to a peer wishing to acquire an interaction model in an open system
is knowing who to ask and how to ask. We cannot expect a peer to know all
other peers or to know the details of an interaction. We can expect, however,
that each peer knows about some distributed discovery service(s) and that each
peer knows some features of the interaction in which it is willing to participate.
These features need not be complex - keyword matching may suffice. In our
running example, a peer with no knowledge of how to find addresses of experts
might ask the discovery service for interaction models described by the keywords
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{expert, address}. The task of the semantic discovery system is then to locate
interaction models with these features and peers that want to participate in
these interactions across the peer network.

Principle 2 separates interaction models from services, with the advantage
that interactions can be shared. To make them work, however, they must con-
nect to specific services. This requires choice. In our running example we must
choose, when binding F (the address finder) whether we use uk address or
univ ed? That may depend on the names suggested as wave energy experts
by the expert finder service. If ’Stephen Salter’ were a name suggested then
univ ed might be the best choice (since Salter is a professor at Edinburgh). If
not, then uk address might be a better bet because it is more general. Hence
the context set by earlier interactions conditions subsequent choices of services.

There are three (non–exclusive) ways to tackle this issue:

Sharing of experience between peers: The most direct way to overcome
problems like those above is (like traditional Web search engines) to re-
fer to records of past experience. If we know, for example, that someone else
had used the LCC specification in our example successfully with the variable
bindings E = e find, F = univ ed, X = ′Scotland′ and D = ′wave energy′

then if we were to ask a similar query we might follow a similar binding pat-
tern. A detailed description of the method currently used for this appears
in [2].

Using the semantic discovery service: To facilitate ranking of peers or in-
teraction models, the semantic discovery service can calculate and main-
tain statistical information about keywords and contexts from all interaction
models and all peers in the system. A description of the semantic discovery
service appears in [19].

Collaborative recommendation of interaction models and services: By
identifying emergent groups amongst peers, based on sharing of interaction
models between peers, groups of users that are likely to use services under
similar contexts can be inferred. In addition we can require that the local
ontologies of peers in the same cluster (or at least those segments relevant to
the candidate interaction protocols) can be automatically mapped to each
other. In this setting the problem of choosing the best candidate component
is reduced to collaborative filtering. The appropriateness of interaction mod-
els retrieved by the system and specific services can be assessed based on
the frequency of their use within the community, while the added mapping
requirement can ensure that the input parameters will be provided in the
format expected by the service.

Principle 3. The choice of interaction models and peers to occupy roles in them
is determined by a distributed discovery service. Evidence of role performance in
interactions may be routed to this service. Interaction models in need of role
performers and role performers in need of related interaction models consult this
service.

In recent years, a wide variety of resource discovery systems have been proposed
and developed. Most of them, like UDDI and Napster, support attribute-based
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retrieval. Their major disadvantage is that they are centralised approaches. To
alleviate these problems, many peer-to-peer indexing systems have been pro-
posed, and basic methods such as distributed hash tables, latent semantic in-
dexing and semantic overlays have been developed.

We assume that data or services are described through sets of terms which
we call descriptions and that the system contains a large number of such de-
scriptions. Our routing methods extend the work described in [18] to provide
statistical information about terms. Initially, peers use a distributed hash table
to muster data and group descriptions by term. Since we make no assumptions
of shared ontologies, different terms may be used for similar concepts. In [17] a
method for automatic word sense discrimination is proposed. Words (or in our
case terms) and their senses are represented in a real-valued high-dimensional
space where closeness in the space corresponds to semantic similarity. As input
for this method we use the descriptions for each term. From the representations
of terms in the high-dimensional space, we can then extract information about
term generality, term popularity, related terms and homonyms.

3.3 Visualisation for User Interaction and Interaction Monitoring

There are two constraints in the interaction model for our running example of
Figure 2: get experts(X, D, S) in the third clause and get address(P, A) in the
fourth clause. We have assumed that each of these would be satisfied automati-
cally via a service call. Sometimes, however, constraints may need to be satisfied
by human interaction if all automated means of constraint satisfaction fail. A
variant of our example might involve the satisfaction of get experts(X, D, S) by
a human expert who expresses an opinion on the set, S, of experts in a given
country, X , in domain of expertise, D. When these interactive constraints must
be satisfied then it is necessary to link interaction model specifications to vi-
sualisation specifications (which then can be interpreted via a Web browser or
similar mechanism). There are several (non-exclusive) ways to do this:

– By carrying the visualisation specification with the interaction model. This
allows interaction model designers to customise visualisations to interactions.

– By providing alternative visualisation methods on peers. This allows limited
local customisation to account for style choices.

– By building customised visualisers for very heavily used interaction models.
This is appropriate for tasks where the visualisation is the inspiration for the
interaction model - for example if we wished to have a complex geospatial
visualisation on peers but maintain consistency across peers of information
viewed within that visualisation framework.

– By generating visualisation directly from the structure of an interaction
model. This is appropriate for tasks such as monitoring the state of an in-
teraction or investigating a failure - a facility not essential to all users but
essential for some.

Principle 4. Interaction models must permit versatility in visualisation: pro-
viding default visualisations for common structures but also allowing customisa-
tion of visualisation by both peers and interaction model designers. This can be
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achieved by adopting a standard, declarative markup language for visualisation
that each peer may interpret without needing to understand the deeper semantics
of the constraints themselves.

4 A Minimal, Most General Interaction Model

We have used the interaction model of Figure 2 as an illustrative example of the
various reasoning components needed for peer-to-peer discovery, sharing and
collaboration. This example is domain specific (as are most interactions) but we
can also specify more general forms of interaction. The most general of these
describes how a peer manages other interaction models.

Figure 3 gives a minimal specification of peer interaction (reduced to its
essentials to save space). It describes the key roles of a peer: discovery and
sharing of interaction models; and collaboration driven from interaction mod-
els communicated between peers. In the definition: P is an interaction model;
S is the state of the interaction in which the peer currently is engaged; O is
the set of onology mapping applying to S; M is a message; X , is the unique
identifier of a peer; locate(K,P) means the peer can find a P , described by
keyword list, K; add to interaction cache(P) adds P , to the cache known to
the peer; in interaction cache(P) select P , from the cache known to the peer;
match(M,P ,S,O, M ′,P ′,S′,O′) extends O, adapting (P ,S), to peer giving
(P ′,S′,O′); expand(M,P ,S,S′, M ′, Z) expands S given M , yielding M ′ sent
to per Z; and completed(M,P ′,S′) means thatM completes this interaction for
this peer.

a(peer,X) ::
(a(discoverer,X) or a(collaborator,X) or a(sharer,X)) then
a(peer,X)

a(discoverer,X) ::
descriptors(K) ⇐ a(discoverer, Y ) then
discovered(P) ⇒ a(discoverer, Y )← locate(K,P)

or

descriptors(K) ⇒ a(discoverer, Y ) then
add to interaction cache(P)← discovered(P) ⇐ a(discoverer,Y )

a(collaborator,X) ::
m(M,P ,S ,O) ⇐ a(collaborator, Y ) then

m(M ′,P ′′,S ′′,O′) ⇒ a(collaborator,Z)← match(M,P ,S ,O, M ′,P ′,S ′,O′) ∧
expand(M ′,P ′,S ′,P ′′,S ′′, Z)

or

m(M,P ,S ,O) ⇒ a(collaborator,Z)← routing(M,P ,S ,O, Z) or
null ← completed(M ′,P ′,S ′)

a(sharer,X) ::
share(P) ⇒ a(sharer,Y )← in interaction cache(P) or
add to interaction cache(P)← share(P) ⇐ a(sharer,Y )

Fig. 3. Interaction model for a basic peer
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Figure 3, of course, is not complete because it does not define important
aspects of routing, ontology matching, etc. that we discussed in earlier sections.
For these the reader is referred to the papers cited in appropriate earlier sections.
Our point here is that even the basic knowledge sharing operations of a peer can
be understood in terms of shareable interaction models.

5 The OpenKnowledge Kernel

The previous sections are language oriented - they discuss the issues tackled
in the OpenKnowledge project with respect to interaction models expressed
in LCC. Many different systems could address these issues but the first (to
our knowledge) actually to do is the OpenKnowledge kernel system, currently
available to download as open source Java code from www.openk.org. In this
section we briefly sketchthe main functional elements of the kernel system from
the point of view of the subscribe-bootstrap-run cycle through which interactions
are deployed. Readers with an interest in more detailed description of the kernel
are referred to the tutorial and manual sections of www.openk.org.

Interactions in OpenKnowldge take place via a cycle of subscription (when
peers say they want to take part in interactions); bootstrapping (to initiate a fully
subscribed interaction) and running (to perform the bootstrapped interaction):

Subscription to an interaction model: When a peer needs to perform a
task it asks the discovery service for a list of interaction models match-
ing the description of the task. Then, for each received interaction model,
the peer compares the (Java) methods in its local component library with
the constraints in the entry role in which it is interested. If the peer finds an
interaction model whose constraints (in the role the peer needs to perform)
are covered by these methods, then the peer can subscribe (via subscription
negotiator) to that interaction model in the discovery service. The subscrip-
tion, through a subscription adaptor, binds the Interaction Model to a set of
methods in the peer. A subscription can endure for only a single interaction
run or for many, possibly unlimited, interaction runs (for example, a buyer
will likely subscribe to run a purchase interaction once, while a vendor may
want to keep selling its products or services).

Bootstrapping an interaction: When all the roles in the interaction model
have subscriptions, the discovery service selects a random peer as a coordina-
tor. The coordinator then bootstraps and runs the interaction. The bootstrap
involves first asking the peers who they want to interact with, among all the
peers that have subscribed to the various roles, then creating a team of mu-
tually compatible peers and finally - if possible - asking the selected group
of peers to commit to the interaction.

Running an Interaction: This part of the cycle is handled by the randomly
chosen coordinator peer. The coordinator peer runs the interaction locally
with messages exchanged between local proxies of the peers. However, when
the coordinator encounters a constraint in a role clause, it sends a mes-
sage, containing the constraint to be solved, to the peer performing the
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role, The subscription adaptor on the peer calls the corresponding method -
found during the comparison at subscription time (see above). The peer then
sends back a message to the coordinator with the updated values of variables
and the boolean result obtained from satisfying the constraint. The kernel’s
matcher allows the components on the peer and the interaction models to
be decoupled. The peer compares the constraints in the roles in which it
is interested with the methods in its local components and creates a set of
adaptors that maps the constraint in the roles to similar methods.

The OpenKnowledge kernel is intended as the main vehicle for deploying LCC
and as the point of reference for programmers (particularly Java programmers)
who wish to extend on our framework. Although the current paper focuses on
issues connected to deployment of coordination in a peer to peer setting, an
equally important aspect of our use of interaction models is at the level of speci-
fication and analysis. Here we have found that by viewing interactions as share-
able specifications we can re-apply traditional formal methods in novel ways, for
example in model checking [13], matchmaking [10], dynamic ontology mapping
[3] and workflow [11]. In this activity it is crucial to have a compact, declarative
language in which we can specify interactions independent of the infrastructure
used to deploy them.

6 Comparison to Current Paradigms

In the main part of this paper we have motivated, through example, the use of
shared, explicit models of interaction to provide context for knowledge sharing.
We used the aspirations of the semantic web community as a focus for our
arguments but our approach has relevance more broadly across communities
involved in the coordination of knowledge sharing. We consider some of these
below.

6.1 The Data-Centric and Process-Centric Semantic Web

One view of the Semantic Web is data-centric, where nodes are data sources
with which we associate formal specifications of content. The onus is on curators
of data (or engineers of services supplying data) to author their specifications
appropriately so that generic systems can discover and use data, guided by this
additional information. The intention in doing this is to describe key aspects
of the semantics of content - so called, semantic annotations. The difficulty in
practise with using only semantic annotations is that to gain consensus on what
the annotations should be it is necessary for them to be used for practical pur-
poses by the peer group to which they are relevant. From this it follows that
the data-centric paradigm needs to be supported by a way of sharing patterns
of usage and knitting them into semantic annotations. The interaction models
described in this paper are a means of expressing such patterns. Peer-to-peer
routing makes it possible to share these on a large scale. Various forms of on-
tological alignment (including manual alignment) can then be applied to allow
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peers to select (and collectively reinforce) specific patterns of usage that work
when combining data.

The need to represent potential interactions has long been recognised, hence
the process specification elements of OWL-S. In OWL-S, however, an interaction
process is associated with a service (and with its data) rather than being sep-
arately defined. By separating interaction specifications from data annotations
we obtain three crucial advantages:

– We no longer have to define generic processes for services. Instead we expect
to have many, perhaps very domain specific, interaction models that we then
align more narrowly with services.

– We no longer have to aim for broad ontological consensus across services
because data is used via narrow alignments.

– By losing the above two restrictions we are able to knit together services
with less sophisticated formal languages.

6.2 Web Service Architecture

Our approach is intended to complement and extend a traditional Web service
architecture by addressing a number of restrictions. The key extensions that we
are proposing, and the restrictions that they address, are summarised below:

– The Web Service Architecture, while distributed, is not inherently peer-to-
peer. In particular, there is no support for efficient routing of messages be-
tween services, service discovery is performed in a centralised manner using
registries, and there is the assumption that services will always be available
at a fixed location. In our Peer-based architecture we relax these restrictions.
We provide efficient query routing between components to prevent bottle-
necks, we support component discovery using distributed search techniques,
and we can cope with components that are not always available through
dynamic substitution.

– The lightweight interaction models that we define avoid problems associ-
ated with dynamic service composition. Our models define precisely how
interaction should be performed with individual components, and also how
composition of components should be performed. We do not rely upon com-
plex planning operations or require the construction of detailed workflows
by users, although our methods do not exclude these methods where appro-
priate.

– The basic Web services architecture does not contain any support for assess-
ing trust across services when conducting interactions. Because our methods
maintain explicit models of interaction to coordinate services we can apply
a repertoire of trust assessment methods to these: from evidence based or
provenance-based methods through to methods based on statistical analysis
(on groups of interactions) or social analysis (on groups of peers with shared
interactions). Importantly, we can associate different measures of trust with
appropriate interactions, since one measure will not fit all situations.
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6.3 Grids

In [1] three generations of grids are identified: first generation, where proprietary
solutions are aimed mainly at sharing computational resources of large super-
computing centres for high-performance applications; second generation, where
(through middleware and standardisation) grids have become more ubiquitous;
and third generation, which shifts to a service-oriented architecture, and the
use of meta-data to describe these services. In this third generation, services
are given well-defined, machine-processable meaning so as to enable autonomic
configuration of the grid and assembly of services - the so-called “semantic grid”
elaborated in [5].

Our approach is consistent with the semantic grid vision but without our
methods being predicated on sophisticated underlying Grid infrastructure. Tra-
ditional grid systems connect together specific services (or types of service) in
stable networks - the aim being to do as much as possible to make these networks
robust, secure and resistant to failure. We concentrate on specifying interactions,
which may take place with different combinations of services in an open, peer-
to-peer environment where the only essential infrastructure requirement is the
ability to pass messages between peers. In this sense, our aim is an “everyman’s
grid” in the sense that we aim to maintain integrity of interaction (a key grid
objective) without requiring specialist (centralised) infrastructure or computing
resources to do so and at a very low entry cost.

7 Conclusions

The need for coordinated interactions between software components is growing
quickly with the increase in numbers and diversity of programs capable of sup-
plying data on the Internet. Although multi-agent, semantic web and grid com-
munities have traditionally taken different approaches to tackling this problem,
we have argued in this paper that a substantial area within these communities
is (from a coordination point of view) a shared problem that may be tackled by
developing shareable, formal models of interaction. In Section 2 we described a
simple language (LCC) for this purpose. In Section 3 we described the demands
placed on this language for automated inference during knowledge sharing. To
conclude the language description, we use LCC to describe the bare essentials
of the peer interaction process; then in Section 5 we briefly describe the imple-
mented OpenKnowledge kernel system currently available from www.openk.org.
Finally, in Section 6, we compared this approach across semantic web, web service
and grid approaches to coordination. Our aim throughout has been to demon-
strate that a basic, common core of interaction specification is appropriate across
these areas.

The methods described in this paper have already been applied to a variety
of domains. For example, [20] describes how to use interaction models for exper-
iment specification in astrophysics and [15] describes a novel result in protein
structure prediction using our methods. Despite these early successes we still
have a long way to go before achieving these sorts of peer to peer coordination



Open Knowledge 17

routinely on a large scale. What we now know is that the basic infrastructure can
be built. What remains to be seen is whether this infrastructure has resonance
with the social settings in which people wish to share knowledge.
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