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Abstract
The starting point of this paper are the works of Hájek and Vychodil on the axiomatization of truth-
stressing and -depressing hedges as expansions of Hájek’s BL logic by new unary connectives. They
showed that their logics are chain-complete, but standard completeness was only proved for the
expansions over Gödel logic. We propose weaker axiomatizations over an arbitrary core fuzzy
logic which have two main advantages: (i) they preserve the standard completeness properties of
the original logic and (ii) any subdiagonal (resp. superdiagonal) non-decreasing function on [0, 1]
preserving 0 and 1 is a sound interpretation of the truth-stresser (resp. depresser) connectives.
Hence, these logics accommodate most of the truth hedge functions used in the literature about of
fuzzy logic in a broader sense.

Keywords: Mathematical Fuzzy Logic, Standard completeness, Truth hedges, T-norm based
logics.

1. Introduction

In pragmatics, hedges are linguistic terms used to mitigate the impact of an utterance (see
e.g. [19]). Their usage in fuzzy logic goes back to Lakoff [28], where they can be not only mitigating
but also strengthening modifiers. As pointed out in [29], Lakoff was actually concerned with the
logical properties of words and phrases like rather, largely, very, in their ability “to make things
fuzzier or less fuzzy”. In accordance with Lakoff’s main concern, however, the term hedge has
later been defined [6] as “a particle, word or phrase that modifies the degree of membership of
a predicate or a noun phrase in a set; it says of that membership that it is partial or true only
in certain respects, or that it is more true and complete than perhaps might be expected”. This
definition encompasses hedges in the sense of both stressers or depressers depending on whether
they strengthen or soften the impact or the meaning of an utterance.1 Typical examples are
adjectives as in:

They lost a terrible amount of money (stresser),
They lost an insignificant amount of money (depresser),

IThe investigation presented in this paper started with some preliminary results in the conference paper [17], that
later were also collected in the Handbook contribution [15, Section 3], and is now presented in its final and complete
form.

1This terminology is customary in fuzzy logic papers; in other sources, like [19] stressers are called ‘intensifiers’,
while ‘hedge’ only refers to depressers.
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or adverbs in:

Messi is definitely a better player than Maradona ever was (stresser),
Messi is slightly a better player than Maradona ever was (depresser).

Clauses can act as hedges too, for example:

I think you should reinstall the operating system of your computer, I know what I’m talking
about (stresser),
I’m not an expert, but I think you should reinstall the operating system of your computer
(depresser).

Other clauses acting as hedges are those which directly refer to the truth of some sentence like it
is very true that, it is quite true that, it is more or less true that, it is slightly true that, etc. Any
sentence with a hedge, of any grammatical category, can be translated into one using clauses of
the latter kind. In this formulation they have been represented in fuzzy logic systems (in broad
sense) as functions from the set of truth values (typically the real unit interval) into itself that
modify the meaning of a proposition by being applied to the membership function of the fuzzy set
underlying the proposition (see [39]). More specifically, in the setting of mathematical fuzzy logic,
Hájek proposes in a series of papers [23, 22, 21] to understand them as truth functions of new unary
connectives, a kind of modal modifiers or truth modifiers, called truth-stressing or truth-depressing
hedges depending on whether they reinforce or weaken the meaning of the proposition they are
applied to. The intuitive mathematical interpretation of a truth-stressing (resp. depressing) hedge
on a chain of truth-values is a subdiagonal (resp. superdiagonal) non-decreasing function preserving
0 and 1. The class of such functions will be called hedge functions from now on.

This paper builds upon previous works, mainly those by Hájek [22, 21] and Vychodil [38], on the
axiomatization of truth-stressing (resp. depressing) hedges as expansions of BL logic (and of some
of their prominent extensions, like  Lukasiewicz or Gödel logics) by a new unary connective vt, for
very true, and another one st, for slightly true, respectively. The logics they define are shown to be
algebraizable and to enjoy completeness with respect to the classes of chains of their corresponding
varieties, however not any BL-chain expanded with hedge functions are models of them, or in other
words, belong to the corresponding varieties. Moreover, the defined logics are not proved to enjoy
standard completeness in general, except for the case of logics over Gödel logic. One of the main
reasons for both problems is the presence in the axiomatizations of the well-known modal axiom
K for the vt connective,

vt(ϕ→ ψ)→ (vt ϕ→ vt ψ),

which puts quite a lot of constraints on the hedges to be models of these logics with no natural
algebraic interpretation.

Particular classes of truth-stressers have been also addressed in the literature. For instance,
the well-known projection operator 4 (introduced independently by Monteiro in the context of
intuitionistic logic [31] and by Baaz in the context of Gödel-Dummett logics [1]) is a limit case of a
truth-stresser since, over a chain, it maps 1 to 1 and all the other elements to 0, and the intuitive
interpretation would be it is definitely true that.

In this paper we propose weaker axiomatizations over any core fuzzy logic for both the truth-
stressing and -depressing connectives not imposing any constraint on hedges other than the ones
we have mentioned above, and for which we can prove standard completeness.
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The paper is structured as follows. After this introduction, Section 2 introduces the previous
axiomatic approaches to hedges in fuzzy logic and provides the necessary logical and algebraic
preliminaries that are used in the rest of the paper. In Section 3 we propose a general axiomati-
zation for truth-stressers and present its main properties, including standard completeness results.
Section 4 proves several versions of the deduction theorem for some logics with truth-stressers and,
as a consequence, we obtain that their corresponding algebraic semantics is a variety. Sections 5
and 6 perform an analogous investigation for logics with truth-depressing hedges. In Section 7
we consider some further topics, namely the combination of stressers and depressers, the usage of
hedges in the presence of truth-constants, and first-order logics with hedges. Finally, in Section 8
we discuss alternative approaches in the literature.

2. Preliminaries

2.1. Hájek and Vychodil axiomatizations
As mentioned in the introduction, there are two main references when talking about the formal-

ization of truth hedges within the framework of mathematical fuzzy logic. The first one is Hájek’s
paper [21] where he axiomatizes over BL a logic for the hedge very true. The second one is the
paper by Vychodil [38] where he extends Hájek’s analysis to truth-depressing hedges. In the rest
of this section we overview these and some related logics and compare them with our proposal.

Hájek defines the logic BLvt as the expansion of BL with a new connective vt and the following
axioms

(VT1) vt ϕ→ ϕ,

(VT2) vt(ϕ→ ψ)→ (vt ϕ→ vt ψ),

(VT3) vt(ϕ ∨ ψ)→ (vt ϕ ∨ vt ψ).

and the following necessitation inference rule:

(NEC) necessitation for vt: from ϕ infer vt ϕ

Hájek proves that BLvt enjoys a local deduction theorem (see Section 4.3). Moreover, he defines
in the usual way a notion of BLvt-algebras, as expansions of BL-algebras with a unary operator
satisfying the new axioms and rule, and proves that the logic BLvt is complete with respect to the
class of linearly ordered BLvt-algebras. Completeness also extends to any axiomatic extension of
BL, but the issue of standard completeness is left as an open problem, except for the case of Gödel
logic for which it is proved.

In [38] Vychodil first introduces a logic combining both a truth-stresser and a truth-depresser.
Indeed the logic BLvt,st is defined as an expansion of Hájek’s BLvt logic with a new unary connective
“slightly true” denoted by st and with the following additional axioms

(ST1) ϕ→ st ϕ,

(ST2) st ϕ→ ¬ vt¬ϕ,

(ST3) vt(ϕ→ ψ)→ (st ϕ→ st ψ)
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Note that axioms (ST2) and (ST3) put into relation both connectives vt and st. Vychodil proves
the completeness of the system with respect to the class of all linearly-ordered BLvt,st-algebras
(defined in the obvious way); however, he does not discuss neither its standard completeness nor the
existence of some local deduction theorem. He also proposes two slightly different axiomatizations
(systems I and II) for the truth-depressing hedge slightly true alone. They are defined again as
expansions of BL with the unary connective st. Namely, system I has the following set of additional
axioms:

(ST1) ϕ→ st ϕ,

(ST4) ¬ st(0̄),

(ST5) st(ϕ→ ψ)→ (st ϕ→ st ψ),

while system II consists of the axioms (ST1), (ST4) and

(ST6) (ϕ→ ψ)→ (st ϕ→ st ψ),

Again chain-completeness for both systems is proved, but the issues of standard completeness
and (local) deduction theorem are left open.

All of these axiomatizations proposed by Hájek and Vychodil have an important common draw-
back: given a standard BL-chain and a hedge function (either stresser or depresser respectively)
the corresponding expanded chain is not necessarily an algebraic model of the proposed logic (as
it is in the fuzzy logic in broader sense). This is due to the requirement of the axiom (VT2) (in
Hajék’s system) or either (ST5) or (ST6) (in Vychodil systems)2 as the following examples show:

Example 1.

1. Suppose h is a truth-stressing hedge function on the standard  Lukasiewicz chain [0, 1] L such
that there are 0 < b < a < 1 such that h(a) = a and h(b) < b. If h(1− a+ b) = 1− a+ b− ε
and h(b) < b− ε, then h(a→ b) = h(1− a+ b) = 1− a+ b− ε > 1− a+ h(b) = h(a)→ h(b),
in contradiction with (VT2).
For instance, take a = 1

2 and b = 1
4 and the hedge function determined by the straight segments

joining the following points

〈0, 0〉, 〈14 ,
1
10〉, 〈

1
2 ,

1
2〉, 〈

3
4 ,

7
10〉, 〈1, 1〉.

Then we have h(a→ b) = h(3
4) = 7

10 >
1
2 + 1

10 = h(a)→ h(b).
Similar examples can be built for product t-norm with the necessary changes. But there are
also many examples satisfying the required properties like the ones given in Section 4.3.

2. Take any truth-depressing hedge function over the standard  Lukasiewicz chain [0, 1] L different
from the identity, and take any point a ∈ (0, 1) such that h(a) > a. Then h(a→ 0) = h(¬a) ≥
¬a > ¬h(a) = h(a)→ 0 = h(a)→ h(0), in contradiction with both (ST5) and (ST6).3

2These axioms are analogous to the K axiom in modal logics (with the modal operator appearing in the place of
the symbol for the truth hedge) and will be studied in Section 4.3.

3The same result is valid for any IMTL-chain since the proof only uses the fact that the negation is involutive.

4



3. Take the truth-depressing hedge function over the standard product chain [0, 1]Π defined by
straight lines with end points 〈0, 0〉, 〈12 ,

3
4〉 and 〈1, 1〉. Then we have

h(3
4 →

1
4) = h(1

3) = 1
2 ,

while
h(3

4)→ h(1
4) = 7

8 →
3
8 = 3

7 <
1
2 ,

contradicting (ST5).

The examples above prove that, in general, both Hájek and Vychodil axiomatics do not cover
all hedge functions. In particular, in the case of  Lukasiewicz logic, while Hájek’s approach still
covers a quite reasonable class of truth-stressing hedge functions, the only truth-depressing hedge
function admitted by Vychodil’s axiomatization is the identity function. The reason seems to be
that truth-stressers are similar to necessity operators in modal logic while truth-depressers are
similar to possibility operators, and only necessity operators satisfy the axiom K in modal logic.
Therefore, (VT2), despite its shortcomings, still seems more reasonable than (ST5) or (ST6).

2.2. Some preliminaries on fuzzy logics
In this section we gather from [4, 10, 11] some necessary results we use in the rest of the paper.

All unexplained definitions can be found in these sources.
Let L be a logic in a language L. We say that L is a Rasiowa-implicative logic (c.f. [35]) if there

is a binary (either primitive or definable by a formula) connective → of its language such that:

(R) `L ϕ→ ϕ,
(MP) ϕ,ϕ→ ψ `L ψ,
(T) ϕ→ ψ,ψ → χ `L ϕ→ χ,
(Cong) ϕ→ ψ,ψ → ϕ `L c(χ1, . . . , χi, ϕ, . . . , χn) → c(χ1, . . . , χi, ψ, . . . , χn)

for each n-ary c ∈ L and each i < n,
(W) ϕ `L ψ → ϕ.

Every finitary Rasiowa-implicative logic is algebraizable in the sense of Blok and Pigozzi [5]
and its equivalent algebraic semantics, the class of L-algebras, is a quasivariety; call it L. Every
L-algebra satisfies x → x = y → y for any x, y, and hence the language can be expanded by a
definable constant 1 = p → p. Then, the algebraizability gives the following strong completeness
theorem:

For every set Γ ∪ {ϕ} of formulae, Γ `L ϕ iff for every A ∈ L and every A-evaluation e,
e(ϕ) = 1A, whenever e[Γ] ⊆ {1A}.

Every L-algebra A is naturally endowed with a preorder relation by setting for every a, b ∈ A:
a ≤A b iff a →A b = 1A. A is called an L-chain if ≤A is a total order.4 L is called a semilinear
logic iff it is strongly complete with respect to the semantics given by L-chains or, equivalently, if
every L-algebra is representable as subdirect product of L-chains.

4For the sake of a lighter notation, from now on we will drop the super-indexes in the algebra operations whenever
no confusion is possible.
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Many systems informally referred to as fuzzy logics in the literature are actually finitary
Rasiowa-implicative semilinear logics. Well known examples are the three main fuzzy logics (see
e.g. [20]) G (Gödel logic), Π (Product logic) and  L ( Lukasiewicz logic), BL and SBL (the logic
of all (strict) continuous t-norms, see [20, 8]), WNM and NM ((Weak) Nilpotent Minimum logic,
see [14]) and MTL, IMTL and SMTL (the logic of all (involutive, strict) left-continuous t-norms,
see [14, 27, 13]).5 A big class of fuzzy logics which are finitary, Rasiowa-implicative and semilin-
ear, and contain the mentioned prominent examples, are the so-called core fuzzy logics: axiomatic
expansions of MTL satisfying (Cong) for any possible new connective.

All core fuzzy logics enjoy a form of local deduction-detachment theorem, while some of them
enjoy a globla form. We define these notions in general, because we will consider later other forms
of them.

Definition 1. Let L be a Rasiowa-implicative logic. We say that L enjoys the local deduction-
detachment theorem with respect to a set of unary terms DT if, for every set of formulae Γ∪{ϕ,ψ},
it holds that Γ, ϕ `L ψ iff there is a term t ∈ DT such that Γ `L t(ϕ) → ψ. We say that
L enjoys the global deduction-detachment theorem if the equivalence holds in general for a fixed
formula t.

As usual, ϕn will be used as a shorthand for ϕ& n. . . &ϕ, where ϕ0 = 1. Using this notation one
can write the following local deduction theorem for core fuzzy logics:

Proposition 2 (Local deduction-detachment theorem for core fuzzy logics). Let L be a core fuzzy
logic. For each set of formulae Σ ∪ {ϕ,ψ} it holds:

Σ, ϕ `L ψ iff there is n ∈ N such that Σ `L ϕ
n → ψ.

Nevertheless, some prominent fuzzy logics in enriched languages may fail to be core fuzzy logics
because they may need some additional inference rules to describe the behavior of their additional
connectives. Important examples are expansions with Baaz’s Delta connective (see [1]). For in-
stance, in the case of MTL, the expansion MTL4 is obtained by enriching the language with the
unary connective 4 and adding to the Hilbert-style system of MTL the deduction rule of necessi-
tation (from ϕ infer 4ϕ) and the following axiom schemata:

(41) 4ϕ ∨ ¬4ϕ
(42) 4(ϕ ∨ ψ)→ (4ϕ ∨4ψ)
(43) 4ϕ→ ϕ
(44) 4ϕ→44ϕ
(45) 4(ϕ→ ψ)→ (4ϕ→4ψ)

The importance of these expansions has justified the introduction and usage of the class of 4-
core fuzzy logics: axiomatic expansions of MTL4 satisfying (Cong) for any possible new connective.
Again, this is a subclass of semilinear Rasiowa-implicative logics. They satisfy the global deduction-
detachment theorem in the following way:

Proposition 3 (Global deduction-detachment theorem for core fuzzy logics for 4-core fuzzy log-
ics). For each set of formulae Σ ∪ {ϕ,ψ} it holds:

Σ, ϕ `MTL4 ψ iff Σ `MTL4 4ϕ→ ψ.

5For an introduction to t-norm based fuzzy logics see e.g. [4].
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Now we recall a couple of definitions and results about disjunction connectives, for they provide
a useful characterization of semilinearity.

A (primitive or definable) binary connective ∨ is called a disjunction in L whenever it satisfies:
(PD) ϕ `L ϕ ∨ ψ and ψ `L ϕ ∨ ψ,
(PCP) If Γ, ϕ `L χ and Γ, ψ `L χ, then Γ, ϕ ∨ ψ `L χ.

Given a disjunction ∨ and a finitary inference rule (R) : Γ ` ϕ (axioms are taken as rules with
Γ = ∅), we define the ∨-form of (R), denoted as (R∨), as the rule Γ ∨ p ` ϕ ∨ p, where p is an
arbitrary propositional variable not appearing in Γ ∪ {ϕ}.
Proposition 4. [11] Let L1 be a logic with a disjunction ∨ and let L2 be an expansion of L1 by a
set of finitary rules C. Then, ∨ is a disjunction in L2 iff (R∨) holds in L2 for each (R) ∈ C. In
particular, ∨ is a disjunction in any axiomatic expansion of L1.
Proposition 5. [11] Let L be a finitary Rasiowa-implicative logic with a binary connective ∨
satisfying (PD). Consider the following two properties:

(P∨) `L (ϕ→ ψ) ∨ (ψ → ϕ),
(MP∨) ϕ→ ψ,ϕ ∨ ψ `L ψ and ϕ→ ψ,ψ ∨ ϕ `L ψ.

Then the following are equivalent:
(i) ∨ is a disjunction and satisfies (P∨),
(ii) L is semilinear and satisfies (MP∨)

As mentioned before, core fuzzy logics are semilinear, hence they are strongly complete with
respect the class of their chains. However, this completeness may be sometimes refined to special
subclasses of chains. We will use the following notions of completeness with respect to a given class
of chains.
Definition 6 (KC, FSKC, SKC). Let L be a core fuzzy logic and let K be a class of L-chains.
We say that L has the (finitely) strong K-completeness property, (F)SKC for short, when for
every (finite) set of formulae T and every formula ϕ it holds that T `L ϕ iff e(ϕ) = 1A for each A-
evaluation such that e[T ] ⊆ {1A} for every L-algebra A ∈ K. We say that L has the K-completeness
property, KC for short, when the equivalence is true for T = ∅.

Of course, the SKC implies the FSKC, and the FSKC implies the KC. When K is the class
of all chains whose support is the real unit interval [0, 1] we will denote it as R, call its elements
as real chains, and we will speak about real completeness properties. The SKC and FSKC have
traditionally been proved by showing an embeddability property, namely by showing in the first case
that every countable L-chain is embeddable into K, and in the second case by showing that every
countable L-chain is partially embeddable into K (i.e. for every finite partial of a countable L-chain
there is a one-to-one mapping into some member of K preserving the defined operations). In [9] it
was shown that these sufficient conditions are also necessary and so they provide characterizations
for these completeness properties.
Theorem 1 (Characterization of completeness properties). Let L be a core fuzzy logic and K a
class of L-chains. Then:

• L has the SKC iff every countable L-chain is embeddable into some member of K.

• If the language of L is finite, then L has the FSKC iff every countable L-chain is partially
embeddable into K.
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3. Truth-stressers: a general axiomatization

In order to solve the problems with the axiomatization of truth-stressers and depressers pro-
posed by Hájek and Vychodil mentioned in Section 2.1, in what follows we will make use of available
results decribed in Section 2.2 to obtain a simple and general axiomatizations with intuitive prop-
erties and nice completeness results. To begin with let us consider the case of truth-stressers.

Let L be a core fuzzy logic, and consider Ls the expansion of L with a new unary connective s
(for stresser) defined by the following additional axioms:6

(VTL1) sϕ→ ϕ,

(VTL2) s 1,

and the following additional inference rule:

(MONs) from (ϕ→ ψ) ∨ χ infer (sϕ→ sψ) ∨ χ.

If we denote by `Ls the notion of deduction defined as usual from the above axioms and rules,
one can easily show the following syntactical properties.

Lemma 7. In Ls the following deductions are valid:

(i) `Ls ¬ s 0,

(ii) ϕ→ ψ `Ls sϕ→ sψ,

(iii) ψ `Ls sψ,

(iv) sϕ, ϕ→ ψ `Ls sψ.

(v) sϕ, s(ϕ→ ψ) `Ls sψ.

(vi) ϕ ∨ ¬ϕ `Ls ϕ↔ sϕ

Proof. (i) It follows directly from (VTL1) taking ϕ = 0.

(ii) It follows directly from (MONs) taking χ = 0.

(iii) It follows directly from (ii) taking ϕ = 1 and using (VTL2).

(iv) Very easy using (ii) and modus ponens.

(v) It follows from (iv), (VTL1) and modus ponens.

(vi) One direction is indeed axiom (VTL1). For the other direction, an easy proof by cases
suffices: clearly ϕ `Ls sϕ and hence ϕ `Ls ϕ → sϕ as well; on the other hand, trivially
¬ϕ `Ls ϕ→ sϕ.

6Observe that (VTL1) coincides with Hájek’s (VT1).
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Notice that (iv) is a kind of stronger version of the modus ponens rule: if ϕ implies ψ, and ϕ
is very true, then one can derive that ψ is very true as well. It must also be noted that our logics
retain in the form of (v) a deductive version of the K-like axiom used in precedent axiomatizations
of logics with hedges.

On the other hand, (ii) shows that (Cong) is satisfied for the new unary connective too. There-
fore, Ls is a finitary Rasiowa-implicative logic and its equivalent algebraic semantics is the class of
Ls-algebras.

Definition 8. An algebra A = 〈A,&,→,∧,∨, 0, 1, s〉 of type 〈2, 2, 2, 2, 0, 0, 1〉 is an Ls-algebra if it
is an L-algebra expanded by a unary operator s : A → A (truth-stressing hedge) that satisfies, for
all x, y, z ∈ A,

(1) s(1) = 1,

(2) s(x) ≤ x,

(3) if (x→ y) ∨ z = 1 then (s(x)→ s(y)) ∨ z = 1.

Knowing this description of the algebraic semantics, we can prove that the logic Ls is a conser-
vative expansion of L in the following strong sense.

Proposition 9 (Conservative expansion). Let L be the language of L. For every set Γ ∪ {ϕ} of
L-formulae, Γ `Ls ϕ iff Γ `L ϕ.

Proof. One implication is trivial. For the other one, assume that Γ 0L ϕ. Then there exists an
L-chain A and an A-evaluation e such that e[Γ] ⊆ {1} and e(ϕ) 6= 1. A can be expanded to an
Ls-chain A′ e.g. by defining s(1) = 1 and s(a) = 0 for every a ∈ A \ {1}. Then A′ and e provide a
counterexample in the expanded language showing that Γ 0Ls ϕ.

The class of Ls-algebras forms a quasivariety, call it Ls. Notice that if 〈A,&,→,∧,∨, 0, 1〉 is
a totally ordered L-algebra and s : A → A is any non-decreasing mapping such that s(1) = 1
and s(a) ≤ a for any a ∈ A, then the expanded structure 〈A,&,→,∧,∨, 0, 1, s〉 is an Ls-chain.7
In other words, in Ls-chains the quasiequation (3) turns out to be equivalently expressed by this
simplified form: if x → y = 1 then s(x) → s(y) = 1, and this condition simply expresses that s is
non-decreasing.

Moreover, since the rule (MONs) is closed under ∨-forms, we know by Proposition 4 that ∨
remains a disjunction in the expanded logic. On the other hand, since (P∨) was already valid in
L, by Proposition 5 we obtain that Ls is also semilinear and hence it is complete with respect to
the semantics of all Ls-chains.

Theorem 2. Ls is complete with respect to the class of all Ls-chains.

Corollary 10. In Ls the following deductions are valid:

(vi) `Ls s(ϕ ∨ ψ)↔ sϕ ∨ sψ,

(vii) `Ls s(ϕ ∧ ψ)↔ sϕ ∧ sψ.

7Observe that these three simple conditions required for s would be not enough to define an Ls-chain in case Ls

would have been defined with the additional axiom K as in [21].
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Proof. Both properties are easily checked on Ls-chains.

One might wonder whether the corresponding equation (or equations) for monotonicity of s,
i.e. s(x ∧ y) = s(x) ∧ s(y) and s(x ∨ y) = s(x) ∨ s(y), may substitute the quasiequation (3) in the
definition of Ls-algebras. Notice first that over algebras satisfying (1) and (2) the equations for
monotonicity are not equivalent as the following example shows.8

Example 2. Consider the finite non-linear Gödel algebra defined over A = {0, a, b, c, 1} where 0
is the minimum, 1 is the maximum, c is the only atom, a∧ b = c, and a∨ b = 1. Consider the two
following truth-stresser mappings s1, s2 : A → A (which are clearly non-decreasing, subdiagonal
and preserve 1):

• Let s1(a) = s1(b) = s1(c) = s1(0) = 0 and s1(1) = 1. So defined, s1 satisfies the identity
s1(x ∧ y) = s1(x) ∧ s1(y), but it does not satisfy the monotonicity for the supremum, indeed
s1(a ∨ b) = s1(1) = 1 and s1(a) ∨ s1(b) = 0 ∨ 0 = 0.

• Let s2(x) = x for every x 6= c and s2(c) = 0. This mapping satisfies the monotonicity for the
supremum, s2(x∨ y) = s2(x)∨ s2(y), but not for the infimum since s2(a∧ b) = s2(c) = 0 and
s2(a) ∧ s2(b) = a ∧ b = c.

Now the question is whether the quasivariety Ls coincides with the variety V of expansions
of L-algebras satisfying the equations (1), (2) and the two monotonicity equations of s (observe
that both classes contain the same chains). In other words, does the logic Ls coincide with the
axiomatic expansion of L with the axioms s(ϕ ∨ ψ) ↔ sϕ ∨ sψ and s(ϕ ∧ ψ) ↔ sϕ ∧ sψ? The
answer is negative as shown by the following example.9

Example 3. Consider the following MTLs-algebra on the lattice over {0, a, b, c, d, e1} with the
ordering 0 < a < b < c < {d, e} < 1} specified by the following operations:

& 0 a b c d e 1
0 0 0 0 0 0 0 0
a 0 0 0 a a a a
b 0 0 0 a a b b
c 0 a a c c c c
d 0 a a c d c d
e 0 a b c c e e
1 0 a b c d e 1

x s(x)
0 0
a 0
b b
c c
d d
e e
1 1

This algebra satisfies the equations s(x∨y) = s(x)∨ s(y) and s(x∧y) = s(x)∧ s(y), but it does not
satisfy the quasiequation corresponding to the rule (MONs); indeed (b → a) ∨ e = d ∨ e = 1 while
(s(b)→ s(a)) ∨ e = (b→ 0) ∨ e = b ∨ e = e.

Another question is whether in the presentation of Ls the rule (MONs) could be substituted
by the following simpler rule: from ϕ→ ψ infer sϕ→ sψ. This is refuted by the next example.

8We thank Franco Montagna for pointing us this observation.
9We thank Félix Bou for pointing us this example. On the other hand, this example corrects a wrong one that

appeared in [15, Example 3.1.5].
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Example 4. If L is not classical propositional logic, then there must be an L-chain A with at least
three elements on its domain. Take any a ∈ A\{0A

, 1A}, consider the direct product algebra A×A,
and expand it to an algebra B with a unary operator s by putting s(x, y) = 〈x ∧ y, x ∧ y〉. An easy
computation shows that B is a model of the expansion of L with (VTL1), (VTL2) and the simplified
form of (MONs), but (MONs) itself is not sound. Indeed, we have (〈1, 1〉 → 〈1, a〉) ∨ 〈a, 1〉 =
〈1, a〉 ∨ 〈a, 1〉 = 〈1, 1〉, while (s(1, 1)→ s(1, a))∨ 〈a, 1〉 = (〈1, 1〉 → 〈a, a〉)∨ 〈a, 1〉 = 〈a, a〉 ∨ 〈a, 1〉 =
〈a, 1〉 6= 〈1, 1〉.

Similarly, inspired by the well-known presentation of logics with 4, one might also ask whether
(MONs) could be substituted by the globalization rule for s: from ϕ infer sϕ. The answer is again
negative as it is obvious using the last example.

Therefore, we have obtained an axiomatization for fuzzy logics Ls with stressing hedges which,
as shown by the previous examples, cannot be readily simplified. The next natural issue to consider
is whether the completeness of Ls can be restricted to some distinguished semantics of Ls-chains.
Capitalizing on the characterization of completeness properties (Theorem 1), we will see that Ls

has exactly the same good completeness properties as its underlying logic L.

Theorem 3 (Finite strong real completeness). Let L be a core fuzzy logic in a finite language. L
has the FSRC if, and only if, Ls has the FSRC.10

Proof. The implication from right to left follows directly from the fact that Ls is a conservative
expansion of L (Proposition 9). Assume now that L has the FSRC. Take any Ls-chain A =
〈A,&,→,∧,∨, 0, 1, s〉 and let B be a finite partial subalgebra of A. We have to show that there
exists a standard Ls-chain 〈[0, 1],∧,∨, ∗,⇒, s′, 0, 1〉 and a mapping f : B → [0, 1] preserving the
existing operations. By Theorem 1, using the necessity of the embeddability property, we know
that the s-free reduct of A is partially embeddable into a standard L-chain 〈[0, 1],∧,∨, ∗,⇒, 0, 1〉.
Denote this embedding by f and consider any non-decreasing and subdiagonal function s′ : [0, 1]→
[0, 1] satisfying s′(f(x)) = f(s(x)) for every x ∈ B such that s(x) ∈ B. There are obviously many
such functions s′ interpolating the set of points P = {〈f(x), f(s(x))〉 | x, s(x) ∈ B}, for instance
a piecewise linear interpolant. Another interpolant can be defined as follows: let 0 = z1 < . . . <
zn < 1 be the set of elements of [0, 1] such that 〈zi, x〉 ∈ P for some x and define s′(1) = 1 and, for
all z ∈ [0, 1),

s′(z) = f(s(xi)), if zi ≤ z < zi+1

where xi ∈ B is such that zi = f(xi). In any case s′ makes 〈[0, 1],∧,∨, ∗,⇒, s′, 0, 1〉 an Ls-chain
and f a partial embedding of Ls-chains.

Actually, this theorem can be generalized to arbitrary classes of L-chains and their s-expansions,
proved in a completely analogous way, and yielding a more general result.

Corollary 11. Let L be a core fuzzy logic in a finite language, K a class of L-chains, and Ks the
class of the Ls-chains whose s-free reducts are in K. Then L has the FSKC if, and only if, Ls has
the FSKsC.

10The assumption of a finite language is necessary to assure that the FSRC property is equivalent to the partial
embedding property result used in the proof. In fact, we do not know whether the theorem would hold without this
assumption.
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Observe that the implication from right to left in the last theorem and corollary does not
need the assumption of finiteness of the language. For the strong real completeness we obtain an
analogous result (which again does not need that assumption).

Theorem 4 (Strong real completeness). Let L be a core fuzzy logic. Then L has the SRC if, and
only if, Ls has the SRC.

Proof. Again one implication just follows from the fact that Ls is a conservative expansion of L.
For the converse one assume that L has the SRC. We have to show that any countable Ls-chain can
be embedded into a standard Ls-chain. Let A be a countable Ls-chain. By Theorem 1, we know
that the s-free reduct of A is embeddable into a standard L-chain B = 〈[0, 1], ∗,⇒,∧,∨, 0, 1〉.
Denote this embedding by f and define s′ : B → B in the following way: for each z ∈ [0, 1],
s′(z) = sup{f(s(x)) | x ∈ A, f(x) ≤ z}. So defined, s′ is a non-decreasing and subdiagonal
function such that s′(f(x)) = f(s(x)) for any x ∈ A and hence B expanded with s′ is a standard
Ls-chain where A is embedded.

Observe that the proof of the previous theorem can be repeated whenever the linear order of
the chains is complete. Therefore we obtain the following corollary.

Corollary 12. Let L be a core fuzzy logic, K a class of completely ordered L-chains, and Ks the
class of the Ls-chains whose s-reducts are in K. Then L has the SKC if, and only if, Ls has the
SKsC.

4. Deduction theorems and the variety problem

In Section 2.2 we have seen that if L is a core fuzzy logic, then Ls is a finitary Rasiowa-implicative
logic whose equivalent algebraic semantics is the quasivariety of Ls-algebras, Ls. Moreover, Ls is
a semilinear logic (complete with respect to chains of Ls). However, we do not know whether
Ls always forms a variety. In this section we present some families of logics Ls enjoying a local
(global) form of deduction-detachment theorem. As a consequence, by virtue of the next theorem,
we obtain that the quasivarieties associated to these families of logics are, in fact, varieties.

Theorem 5. Let L be a core fuzzy logic. Assume that Ls enjoys the local deduction-detachment
theorem with respect to a set DT . Then the class of Ls-algebras is a variety.

Proof. First observe that the local deduction-detachment theorem entails that for every t ∈ DT ,
`Ls t(1). Indeed, if p is a propositional variable and t ∈ DT , we have `Ls t(p)→ t(p), and by the
local deduction-detachment theorem, p `Ls t(p). By structurality, we have 1 `Ls t(1) and hence
`Ls t(1). Let A be another algebra obtain by adding a new element c to B4 such that a∨b = c < 1.

Now let K be the variety axiomatized by the following equations:

(a) an equational base of L,

(b) s(1) = 1,

(c) s(x) ∧ x = s(x),

(d) t((ϕ → ψ) ∨ χ) → ((s(ϕ) → s(ψ)) ∨ χ) = 1, for each ϕ,ψ, χ where t ∈ DT is their corre-
sponding deduction term.
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We check that the class of Ls-algebras coincides with K. If A ∈ Ls, it is clear that it satisfies all the
equations because they correspond to theorems of Ls. Conversely, take an algebra A ∈ K. By (a),
we know that its s-free reduct is an L-algebra. Since it also satisfies (b) and (c), we only have to
check the validity of the quasiequation: if (x→ y)∨z = 1 then (s(x)→ s(y))∨z = 1. Assume that e
is an A-evaluation and (e(x)→ e(y))∨ e(z) = 1. We know that (x→ y)∨ z `Ls (s(x)→ s(y))∨ z.
By the local deduction-detachment theorem, there is t ∈ DT such that `Ls t((x → y) ∨ z) →
(s(x) → s(y)) ∨ z, and hence A satisfies t((x → y) ∨ z) → (s(x) → s(y)) ∨ z = 1. From this, we
obtain t(1)→ (s(e(x))→ s(e(y))) ∨ e(z) = 1, and hence (s(e(x))→ s(e(y))) ∨ e(z) = 1.

4.1. Logics of a finite BL-chain and related cases
The first family we consider is that of the logics Ls where L is the logic of a finite BL-chain C

having n elements, i.e. C is an ordinal sum of copies of finite MV-chains ( Lk) and finite Gödel-chains
(Gr).

Lemma 13. Assume that a core fuzzy logic L is the logic of a finite BL-chain C, i.e. the class of
L-algebras is the variety generated by C. Then:

• L-chains are exactly the subalgebras of C.

• Given a BL-filter F of C its corresponding congruence defined ≡F can be described as: x ≡F y
iff either x = y or x, y ∈ F , i.e. the congruence classes are F and the singletons {x} for any
x /∈ F .

• The set of Ls-filters of C coincides with the set of BL-filters that are closed under s.

Proof. The first claim is a consequence of [12, Theorem 1], taking into account that every finite
BL-chain is subdirectly irreducible and the fact that any chain belonging to the variety generated
by a finite Gödel or MV-chain is a subalgebra of it.

The proof of the second statement is easy. Recall that if x ≥ y, then x ≡F y iff x → y ∈ F .
On the other hand, the filters of C are the principal filters generated by an element a that either
belongs to a Gödel component or is the bottom of an MV component. Thus, an easy computation
shows that x→ y ∈ F iff either x = y or x, y ∈ F .

In order to prove the third statement observe first that if F is an Ls-filter of C, then it is closed
under s since if a ∈ F , then 1→ a ∈ F and thus 1→ s(a) = s(a) ∈ F . For the converse, suppose
that F is a BL-filter closed under s and assume that a→ b ∈ F . If a ≤ b, by monotonicity we have
s(a) ≤ s(b) and hence s(a) → s(b) = 1 ∈ F . If a > b, we have a ≡F b and thus, by the previous
statement a, b ∈ F . Since F is closed under s, s(a), s(b) ∈ F and, again by the previous statement
s(a) ≡F s(b), which gives s(a)→ s(b) ∈ F .

Lemma 14. Let L be the core fuzzy logic of a finite BL-chain C. Then, in any Ls-algebra A, for
every principal Ls-filter Fi(ā) generated by an element ā ∈ A there is an element t(ā) such that
Fi(ā) = [t(ā), 1A].

Proof. Assume that C has n elements, k components in its ordinal sum decomposition, and m is
the maximum length of its MV components. If A is an Ls-algebra, then A can be embedded into
a direct product

∏
i∈I C (remember that any Ls-chain is a subalgebra of C). Given an element

ā ∈ A take the element t(ā) = (sn( k. . . sn(ām))m. . .)m. An easy computation shows that t(ā) is
idempotent and fixed by s. Then we can prove that Fi(ā) coincides with the principal lattice filter
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generated by t(ā). The proof follows from the following facts: (1) t(ā) ∈ Fi(ā), (2) if t(ā)i is the
i-projection of t(ā), then Fi(t(ā)i) = {x ∈ C | x ≥ t(ā)i} is the filter of C generated by t(ā)i, and
(3) by definition Fi(t(ā)) =

∏
i∈I Fi(t(ā)i) ∩A.

Theorem 6. Let L be the core fuzzy logic of a finite BL-chain C. Assume that C has n elements, k
components in its ordinal sum decompostion, and m is the maximum length of its MV components.
Consider the term t(p) = (sn( k. . . sn(pm))m. . .)m. Then the logic Ls enjoys the glocal deduction-
detachment theorem w.r.t. t(p), i.e. for every set Γ ∪ {ϕ,ψ} of formulae

Γ, ϕ `Ls ψ iff Γ `Ls t(ϕ)→ ψ.

Proof. The right-to-left direction follows easily from the observation that ϕ `Ls t(ϕ). Let us prove
the converse direction by a semantical reasoning using completeness, i.e. we assume Γ, ϕ |=Ls ψ and
we have to show Γ |=Ls t(ϕ)→ ψ. Take any Ls-chain A and any A-evaluation e such that e[Γ] ⊆
{1A}. Consider the matrix Ls-model 〈A, F i(e[Γ], e(ϕ))〉. By soundness e(ψ) ∈ Fi(e[Γ], e(ϕ)), i.e.
e(ψ) ∈ Fi(e(ϕ)) = [t(e(ϕ)), 1A]. Therefore, t(e(ϕ)) ≤ e(ψ) and so e(t(ϕ)→ ψ) = 1A.

Now, using Theorem 5, we immediately obtain the next corollary.

Corollary 15. If L is the logic of a finite BL-chain, the quasivariety associated to the logic Ls is
a variety.

Some remarks are in order here:

• Lemma 14 and Theorem 6 can be easily generalized to any logic L induced by a finite MTL-
chain provided that the Ls-filters on Ls-chains coincide with the MTL-filters closed under
s.

• A sufficient condition for an MTL-filter on an Ls-chain closed under s to be an Ls-filter is the
fact that a ≡F b iff either a = b or a, b ∈ F . For example, any finite WNM-chain C (with n ele-
ments) satisfies this condition, and hence the logic Ls enjoys the global deduction-detachment
theorem (w.r.t. the term t(ϕ) = (sn(ϕ))2) and thus the quasivariety corresponding to the logic
of a finite WNM-chain with a truth-stresser is a variety.

• The following example proves that there are finite MTL-chains with MTL-filters closed under
s that are not Ls-filters.

Example 5. Take a finite chain A of 6 elements (1 > a > b > c > d > 0) and define the
operation ∗ by (assuming that ∗ is determined when one value is 0 or 1) a ∗ a = a, and x ∗ y = d
otherwise. Then the MTL-filters are {1}, {1, a}, {1, a, b, c, d} and A itself. Define the operator s by
(the values of 0 and 1 are determined) s(a) = a, s(b) = b, s(c) = s(d) = 0. It is obvious that the
MTL-filters closed under s are {1}, {1, a} and A. But {1, a} is not an Ls-filter since b → c = a
and s(b)→ s(c) = b→ 0 = 0 /∈ {1, a}.

4.2. Logics with 4
We consider now the case of logics Ls based on a 4-core fuzzy logic L, i.e. where the projection

4 operator is definable. In this case the situation is much simpler because, in fact, the resulting
logic is an axiomatic expansion of L:
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Proposition 16. Let L be 4-core fuzzy logic. Then Ls is the axiomatic expansion of L obtained
by adding:

(VTL1) sϕ→ ϕ,

(VTL2) s 1,

(MON4) 4(ϕ→ ψ)→ (sϕ→ sψ).

Proof. Let L′ be the axiomatic expansion of L given by these three axioms. It is clear that, thanks
to (MON4), the new connective satisfies the congruence condition (Cong) and hence, since L′ is an
axiomatic expansion of a semilinear logic, it remains semilinear. Then, using that both L′ and Ls

are complete with respect to their corresponding chains, it is easy to check that each one validates
the axioms and rules of the other and thus they are the same logic.

Therefore, in this case Ls is a4-core fuzzy logic itself and hence it satisfies the global deduction-
detachment theorem in the form of Proposition 3 and, by Theorem 5 the class of Ls-algebras is a
variety.
4-core fuzzy logics include the n-valued  Lukasiewicz logic  Ln or the axiomatic extensions of

MTL by the axiom ¬(ϕ)n∨ϕ, called SnMTL (see [26]). In both cases 4ϕ is defined as ϕn and they
define a sequence of nested logics starting with classical propositional calculus: CPC =  L2 ⊆  L3 ⊆
. . . ⊆  Ln ⊆ . . . and CPC = S2MTL ⊆ S3MTL ⊆ . . . ⊆ SnMTL ⊆ . . . respectively. On the other
hand, given a core fuzzy logic L, one can also consider the family of axiomatic extensions of Ls with
the axiom ¬(sn( n. . . (sn(ϕn))n . . .))n∨ϕ, where4 is definable as (sn( n. . . (sn(ϕn))n . . .))n. With these
logics, denoted SnLs, we obtain again a sequence of nested logics S2Ls ⊆ S3Ls ⊆ . . . ⊆ SnLs ⊂ . . ..

4.3. Logics satisfying the modal axiom K for the truth-stresser
The third family we consider is the family of logics LsK defined as the axiomatic extensions of

the logics Ls with the following axiom:

(VT2) s(ϕ→ ψ)→ (sϕ→ sψ)

Axiom (VT2) is the well-known axiom K of modal logics for the truth-stresser connective s,
and it is one of the axioms of Hájek’s BLvt logic [21]. In our setting it means that the logic LsK

requires that if both ϕ and ϕ→ ψ are “very true” then so is ψ.
It turns out that the presence of axiom (VT2) in LsK allows for an equivalent axiomatic

presentation where the rule of inference (MONs) can be replaced by the weaker rule of necessitation
for s:

(NECs) from ϕ infer sϕ

Lemma 17. Let L′sK be the logic obtained from LsK by adding the axiom

(VT3) s(ϕ ∨ ψ)→ (sϕ ∨ sψ).

and replacing the rule (MONs) by the rule (NECs). Then the rule (MONs) is derivable in L′sK .

Proof. From (ϕ→ ψ)∨χ, using necessitation and axiom (VT3) we infer s(ϕ→ ψ)∨s χ, by (VTL1)
we then infer s(ϕ→ ψ) ∨ χ, and by (VT2) we finally infer (sϕ→ sψ) ∨ χ.
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Notice that, by a simple inspection, the logic L′sK indeed corresponds to Hájek’s BLvt logic
when L = BL. Moreover, since both the axiom (VT3) and the necessitation rule (NECs) are
already derivable in LsK , it follows from the above lemma that the logics L′sK and LsK are indeed
equivalent.

Now, following Hájek in [21], we prove a local deduction-detachment theorem for LsK (similar
to the one proved for 4). We will need an auxiliary notation: τϕ stands for s(ϕ & ϕ) and τnϕ
stands for τ( n. . . τ(τϕ) n. . .).

Lemma 18 (cf. [21])). In LsK the following formulae are provable:

(i) τn+1ϕ→ τnϕ,

(ii) τϕ→ sϕ, τϕ→ ϕ& ϕ,

(iii) τ(ϕ ∨ ψ)↔ (τϕ ∨ τψ).

Theorem 7 (Local deduction-detachment theorem for LsK). Let T be a theory and let ϕ,ψ be
formulae. Then: T ∪ {ϕ} `LsK

ψ iff T `LsK
τnϕ→ ψ for some n.

Proof. The proof is by induction as usual. Let us check the induction step for deduction rules.
If T `LsK

τnϕ → α and T `LsK
τnϕ → (α → β), then T `LsK

(τnϕ & τnϕ) → β, thus T `LsK

τn+1ϕ → β. Similarly, if T `LsK
τnϕ → β, then T `LsK

s(τnϕ) → s β, thus T `LsK
τn+1ϕ →

s β.

The corresponding algebraic structures are the LsK-algebras. An algebra A = 〈A,&,→
,∧,∨, 0, 1, s〉 is an LsK-algebra if it is an L-algebra expanded by a unary operator s (stressing
hedge) that satisfies, for all x, y ∈ A,

(ve1) s(x) ≤ x,

(ve2) s(x→ y) ≤ (s(x)→ s(y)),

(ve3) s(x ∨ y) ≤ (s(x) ∨ s(y)),

(ve4) s(1) = 1.

From the above remarks, an LsK-algebra is just an Ls-algebra further satisfying the property
(ve2). Therefore, in this case it is obvious that LsK-algebras form a variety (recall that, as in
4-core fuzzy logics, the inference rules of the logic are modus ponens and necessitation). On the
other hand, as usual, for each left-continuous t-norm ∗, the chain obtained by adding to [0, 1]∗ a
truth-stressing hedge s satisfying the above properties is a real LsK-chain.

Next we give some examples of truth-stressers on real chains [0, 1]∗ satisfying axiom (VT2), we
will call them K-truth-stressers.

Example 6. 1. The function s(x) = x∗ n. . . ∗x (xn for short) is a K-truth-stressing function
over [0, 1]∗ for any left-continuous t-norm ∗. Obviously this truth-stressing function is con-
tinuous if the t-norm is so and it is the identity if the t-norm is the minimum.

2. The function s(x) = x · x (product of reals) is also a K-truth-stressing function for the three
basic continuous t-norms. Observe that this function coincides with the one of the previous
example for ∗ being the product t-norm and n = 2.
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3. The function defined by  Lukasiewicz t-norm as s(x) = x ∗ L x = max{0, 2x− 1} is a K-truth-
stressing function for  Lukasiewicz and minimum t-norms but not for product. This function
coincides with the first example for  Lukasiewicz t-norm and n = 2.

4. For any k ∈ [0, 1], the function s(x) = k · x for x < 1 and s(1) = 1 is a K-truth-stressing
function for the three basic continuous t-norms. Observe that when k = 0, this is the 4
operator.

Since it is an axiomatic extension of Ls, the logic LsK is semilinear and so it is complete with
respect to the variety of LsK-algebras and with respect to the class of LsK-chains.

The problem of standard completeness for the logics LsK is far from being solved. In the case
L is the logic of a Gödel chain (for continuous t-norms) or, more in general, a WNM-chain (for the
general MTL-chains) the problem is easy since we have the following result.11

Proposition 19. Let L be the logic of a WNM-chain.12 Then the logic LsK coincides with the
logic Ls.

Proof. It is only necessary to prove that axiom (VT2) is valid over each Ls-chain and this is easy
because if a ≤ b then s(a → b) = 1 = s(a) → s(b), and if a > b then either s(a) = s(b), and then
s(a→ b) = s(a)→ s(b) = 1, or s(a→ b) = s(¬a ∨ b) = s(¬a) ∨ s(b) ≤ ¬s(a) ∨ s(b) = s(a)→ s(b)
(take into account that s(¬a) ≤ ¬a ≤ ¬s(a)).

Then, by theorems 3 and 4, we obtain the following result:

Corollary 20. Let L be the logic of a WNM-chain. Then the LsK is (finite) strong real complete
whenever L is (finite) strong real complete.

If L is the logic of a continuous t-norm, the only one such that Ls satisfies (VT2) is Gödel logic,
and thus it is strong real complete. For the rest of logics of continuous t-norms, including  LsK and
ΠsK , the problem of their real completeness remains open.

5. The case of truth-depressers

Very similarly to the case of truth-stressers, we can proceed to define an axiomatization for the
case of truth-depressers just by replacing axioms (VTL1) and (VTL2) with dual versions (STL1)
and (STL2) (ST for slightly true). Namely, given a core fuzzy logic L, we define Ld as the expansion
of L with a new unary connective d, the following additional axioms13

(STL1) ϕ→ dϕ,

(STL2) ¬ d 0,

and the following additional inference rule

(MONd) from (ϕ→ ψ) ∨ χ infer (dϕ→ dψ) ∨ χ.

11Already given by Hájek [21] for the case of L being Gödel logic.
12Recall that a Gödel chain is a particular case of WNM-chain. Recall as well that in a WNM-chain, the operations

are defined as follows: a & b = min{a, b} if a > ¬b and a ∗ b = 0 otherwise; a → b = 1 if a ≤ b and a → b = ¬a ∨ b
otherwise.

13Observe that (STL1) and (ST2) coincide with Vychodil’s (ST1) and (ST4) respectively.
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Being a kind of dual version of Ls, many properties are proved in a completely analogous way:

Lemma 21. In Ld the following deductions are valid:

(i) `Ld d 1,

(ii) ϕ→ ψ `Ld dϕ→ dψ,

(iii) ¬ϕ `Ld
¬ dϕ,

(iv) `Ld
¬ dϕ→ ¬ϕ,

(v) dϕ, ϕ→ ψ `Ld dψ.

(vi) ϕ ∨ ¬ϕ `Ls ϕ↔ dϕ

Proof. (i) It follows directly from (STL1) taking ϕ = 0.

(ii) It follows directly from (MONd) taking χ = 0.

(iii) It follows from (ii) for ψ = 0 and (STL2).

(iv) It follows directly from (STL1) using the fact that (ϕ → ψ) → (¬ψ → ¬ϕ) is derivable in
MTL.

(v) Very easy using (ii) and modus ponens.

(vi) Analogous to (vi) of Lemma 7 with the obvious modifications.

It is interesting to remark that (v) provides a kind of weaker or modified version of modus
ponens with the truth-depresser: if ϕ implies ψ, and ϕ is slightly true, then one can derive that ψ
is slightly true as well.

Again, (ii) shows that the (Cong) condition is satisfied by the new unary connective too.
Therefore, the logic Ld is Rasiowa-implicative and its equivalent algebraic semantics is the class of
Ld-algebras. An algebra A = 〈A,&,→,∧,∨, 0, 1, s〉 of type 〈2, 2, 2, 2, 1, 0, 0〉 is an Ld-algebra if it is
an L-algebra expanded by a unary operator d : A → A (truth-depressing hedge) that satisfies, for
all x, y, z ∈ A,

(1′) d(0) = 0,

(2′) x ≤ d(x),

(3′) if (x→ y) ∨ z = 1 then (d(x)→ d(y)) ∨ z = 1.

Analogously to the case of truth-stressers, every L-chain A can be expanded to an Ld-chain by
adding an arbitrary non-decreasing mapping d : A→ A such that d(0) = 0 and x ≤ d(x) for every
x ∈ A.

Also, since the lattice disjunction keeps satisfying the (PCP) in the expanded logic, Ld is semi-
linear and hence it is complete with respect to the semantics of all Ld-chains. As a straightforward
consequence, we have for d an analogous result to Corollary 10 for s:

Lemma 22. In Ld the following deductions are valid:
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(vi) `Ld d(ϕ ∨ ψ)↔ dϕ ∨ dψ,

(vii) `Ld d(ϕ ∧ ψ)↔ dϕ ∧ dψ.

The next theorem is easily proved in an analogous way as for truth-stressers.

Theorem 23. Let L be the language of a core fuzzy logic L. For every set Γ∪ {ϕ} of L-formulae,
Γ `Ld

ϕ iff Γ `L ϕ.

Also, as in the case of truth-stressers, the following remarks are provable:

1. Monotonicity with respect to ∧ and ∨ are not equivalent.
2. (MONd) cannot be equivalently substituted by the monotonicity axioms with respect to both

lattice connectives: d(ϕ ∧ ψ)↔ dϕ ∧ dψ and d(ϕ ∨ ψ)↔ dϕ ∨ dψ.
3. The inference rule (MONd) cannot be equivalently simplified to: from ϕ → ψ infer d(ϕ) →
d(ψ).

4. The inference rule (MONd) cannot be equivalently substituted by this rule: from ¬ϕ infer
¬d(ϕ).

The proofs of these statements are analogous to the ones of the corresponding results for truth-
stressers. For 1 take the dual of the Gödel algebra of example 2, i.e. the finite non-linear Gödel
algebra defined over {0, a, b, c, 1} where 0 is the minimum, 1 is the maximum, a is the only co-atom,
c ∧ b = 0, and c ∨ b = a and the dual truth-depresser. For 2 take the same Gödel algebra of the
previous case, the filter F = {c, a, 1} and d defined by d(1) = d(a) = d(b) = 1 and d(c) = d(0) = 0
and proceed as in Example 3. Modifying Example 4 by taking d(a, b) = 〈a ∨ b, a ∨ b〉, we can
prove that, in the context of truth-depressers, the rule (MONd) cannot be substituted by simple
monotonicity, i.e. we have proved 3. The same example also proves 4.

Completeness results analogous to Theorems 3 and 4, and Corollaries 11 and 12 can be easily
proved and they are summarized next.

Theorem 8. Let L be a core fuzzy logic, let K be a class of L-chains, and let Kd be the class of
the Ld-chains whose d-free reducts are in K.

If the language of L is finite we have:

• L has the FSKC if, and only if, Ld has the FSKdC.

• In particular, L has the FSRC if, and only if, Ld has the FSRC.

If the chains in K are completely ordered we have:

• L has the SKC if, and only if, Ld has the SKdC.

• In particular, Ld has the SRC if, and only if, L has the SRC.

6. Deduction theorems and the variety problem for logics Ld

Similar results to the ones for truth-stressers given in Section 4 also hold for truth-depressers,
although with some variations. The class of algebras associated to a logic Ld is a quasivariety
and, like in the case of the logics of truth-stressers Ls, we do not know whether these classes are
always varieties or not. When L is a 4-fuzzy core logic, this question is clear, as in to the case
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of truth-stressers (see Section 4.2), since then the (MONd) inference rule can be replaced by the
axiom 4(ϕ → ψ) → (dϕ → dψ) and hence Ld is actually a 4-core fuzzy logic as well. In other
cases, according to Theorem 5, one way to prove that the quasivariety of Ld-algebras is a variety is
to prove that the logic Ld has either a global or local, deduction theorem. In this section we prove
that this is in fact the case for two classes of logics L.

6.1. The case of n-contractive axiomatic expansions of BL
Observe first that, in the case of truth-depressers, the property that an L-filter is closed under

d has no sense since, being d(x) ≥ x, any L-filter is closed under d. However, this does not mean
that the Ld filters coincide with L filters. Take for example the same algebra as in Example 5 and
d defined by d(x) = x for all x 6= b and d(b) = a. Then the L-filter F = {1, a} is not an Ld-filter
since b→ c = a ∈ F and d(b)→ d(c) = a→ c = b /∈ F .

In this case we will use a different and more general way to prove that any logic Ld where L is
an n-contractive axiomatic expansion of BL enjoys a global deduction theorem. Recall that, given
n ≥ 2, a logic L is n-contractive if it proves the n-contraction law ϕn−1 → ϕn. For the proof of
the result, we will use the following theorem of BL (it is folkore, but we include its proof for the
reader’s convenience):

Lemma 24. The following formula is provable in BL:

(ϕ→ ϕ& ϕ)→ ((ϕ ∧ ψ)→ ϕ& ψ)).

Proof. We prove it by cases, by showing the following provabilities in BL:

(i) ` (ϕ→ ψ)→ (ϕ& ϕ→ ϕ& ψ)

(ii) ϕ→ ψ ` (ϕ→ ϕ& ϕ)→ (ϕ→ ϕ& ψ), and hence
ϕ→ ψ ` (ϕ→ ϕ& ϕ)→ (ϕ ∧ ψ → ϕ& ψ)

(iii) ψ → ϕ ` ψ → (ϕ ∧ ψ), and hence ψ → ϕ ` ψ → (ϕ& (ϕ→ ψ))

(iv) ψ → (ϕ& (ϕ→ ψ)) ` (ϕ→ ϕ& ϕ)→ (ψ → (ϕ& ϕ& (ϕ→ ψ)))
ψ → (ϕ& (ϕ→ ψ)) ` (ϕ→ ϕ& ϕ)→ (ψ → (ϕ& (ϕ ∧ ψ)))
ψ → ϕ,ψ → (ϕ& (ϕ→ ψ)) ` (ϕ→ ϕ& ϕ)→ (ψ → (ψ & ϕ))
ψ → ϕ,ψ → (ϕ& (ϕ→ ψ)) ` (ϕ→ ϕ& ϕ)→ ((ϕ ∧ ψ)→ (ψ & ϕ))

(v) from (iii) and (iv), ψ → ϕ ` (ϕ→ ϕ& ϕ)→ ((ϕ ∧ ψ)→ (ψ & ϕ))

From (ii) and (v) we finally get ` (ϕ→ ϕ& ϕ)→ ((ϕ ∧ ψ)→ ϕ& ψ).

Notice that if L is n-contractive then ϕn−1 is idempotent, i.e. L proves the formula ϕn−1 →
ϕn−1 & ϕn−1, and hence L proves (ϕn−1 ∧ ψ)→ (ϕn−1 & ψ) as well.

Theorem 9. Let L be an n-contractive axiomatic expansion of BL for some n ≥ 2. Then the logic
Ld enjoys the following global deduction-detachment theorem: for every set Γ∪{ϕ,ψ} of formulae,
it holds that

Γ, ϕ `Ld
ψ iff Γ `Ld

ϕn−1 → ψ.
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Proof. Again, we only show the induction step for the inference rule: if Γ `Ld
δn−1 → ((ϕ→ ψ)∨χ)

then Γ `Ld
δn−1 → ((dϕ → dψ) ∨ χ). Notice that since L is n-contractive, then Ld proves

δn−1 → δn−1 & δn−1, and by Lemma 24, Ld also proves (δn−1 ∧ ϕ) → δn−1 & ϕ. Now assume
Γ `Ld

δn−1 → ((ϕ→ ψ) ∨ χ). By cases again, we have:

(i) Γ, (ϕ → ψ) → χ `Ld
δn−1 → χ, and hence Γ, (ϕ → ψ) → χ `Ld

δn−1 → (dϕ → dψ) ∨ χ as
well.

(ii) Γ, χ→ (ϕ→ ψ) `Ld
δn−1 → (ϕ→ ψ), and hence Γ, χ→ (ϕ→ ψ) `Ld d(δn−1 & ϕ)→ dψ as

well. But, `Ld
(δn−1 ∧ ϕ)→ δn−1 & ϕ, and thus `Ld d(δn−1 ∧ ϕ)→ d(δn−1 & ϕ), and taking

into account that `Ld d(δn−1∧ϕ)↔ d(δn−1)∧dϕ, hence we finally have Γ, χ→ (ϕ→ ψ) `Ld

δn−1 → (dϕ→ dψ).

Finally, from (i) and (ii) we have Γ `Ld
δn−1 → ((dϕ→ dψ) ∨ χ).

Observe that every finite BL-chain with n elements satisfy the n-contraction identity (xn−1 =
xn) and thus, in particular, if L is the logic of a finite BL-chain, the logic Ld enjoys the global
deduction-detachment theorem.

The last theorem, together with Theorem 5, immediately yields the following corollary.

Corollary 25. Let L be an n-contractive axiomatic expansion of BL. The quasivariety associated
to the logic Ld is a variety.

In particular, if L is the logic of a finite BL-chain, the quasivariety associated to Ld is a variety.

6.2. Logics satisfying the modal axioms K for the truth-depressers
In this section we consider axiomatic extensions of a logic Ld with the following two modal-like

axioms used by Vychodil [38] to define two systems for truth-depressers as expansions of BL:

(ST5) d(ϕ→ ψ)→ (dϕ→ dψ)

(ST6) (ϕ→ ψ)→ (dϕ→ dψ)

Let us define the logics Ld-I and Ld-II as the axiomatic extensions of Ld with the axioms (ST5)
and (ST6) respectively.

A first obvious observation is that the system Ld-I is stronger than Ld-II since the axiom (ST6)
is derivable in the system Ld-II.

A second observation is that the rule (MONd) is superfluous in both systems Ld-I and Ld-II.
Indeed, it is very easy to check that in both systems one can prove the following formula

((ϕ→ ψ) ∨ χ)→ ((dϕ→ dψ) ∨ χ)

without using the rule (MONd), just using the axioms (ST1) and (ST5) in the case of Ld -I, and
using axiom (ST6) in the case of Ld -II. Therefore, both logics Ld -I and Ld -II are indeed axiomatic
expansions of L, and hence we have the following results for free.

Lemma 26. Let L be any core fuzzy logic. Then both Ld -I and Ld -II are core fuzzy logics too, and
thus:
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• they are complete with respect to their corresponding classes of chains,

• they satisfy the same local/global deduction-detachment theorem as L, and

• the quasivarieties associated to Ld -I and Ld -II are in fact varieties.

The following lemma shows that if L is a core fuzzy logic expanding IMTL, the involutive
extension of MTL, in particular  Lukasiewicz logic or Nilpotent Minimum logic, then Ld -II, and
hence Ld -I as well, collapses with L itself.

Lemma 27. Let L be any core fuzzy logic expanding IMTL. Then both Ld -I and Ld -II prove the
formula

ϕ↔ dϕ.

Proof. It is enough to show that Ld -II proves the formula dϕ → ϕ. But this is easy since taking
taking ψ as 0 in axiom (ST6), one gets ¬ϕ → (dϕ → d 0). Now, using (ST2), that is simply
d 0 → 0, we can prove ¬ϕ → (dϕ → 0), i.e. ¬ϕ → ¬ dϕ. Finally, recalling that in IMTL the
contraposition law (ϕ→ ψ)→ (¬ψ → ¬ϕ) holds, one can prove dϕ→ ϕ.

In particular, this result shows that, for WNM logics, expansions with truth-depressers behave
much differently than those with truth-stressers. Indeed, for truth-stressers we have proved that
if L is the logic of a WNM-chain, the logics Ls and LsK are the same. However, according to
the above result, NMdI = NMdII = NM, while this is clearly not true for NMd. Indeed axioms
(ST5) and (ST6) are not sound over the standard NM-chain. For instance, take the truth-depresser
defined by d(x) = 0.5 if x ∈ (0, 0.2), d(x) = 0.6 if x ∈ [0.2, 0.6] and d(x) = x otherwise. Then14

0.2 → 0.1 = 0.8 = d(0.2 → 0.1) and d(0.2) → d(0.1) = 0.6 → 0.5 = 0.5, therefore (0.2 → 0.1) →
(d(0.2) → d(0.1)) = 0.5 < 1. This shows that (ST6) is not sound. The same holds true for (ST5)
just by replacing (0.2→ 0.1) by d(0.2→ 0.1) in the expression above, because the two expressions
have the same value.

7. Some further topics

7.1. Logics with both a truth-stresser and a truth-depresser
Given a core fuzzy logic L, let us define the logic Ls,d as the expansion of Ls with a new unary

connective d together with the axioms (STL1) and (STL2), and the inference rule (MONd).
The algebraic semantics of Ls,d is given by Ls,d-algebras, which are defined in the natural way

as expansions of Ls-algebras with a new unary operation d satisfying the equations corresponding
to axioms (STL1) and (STL2) and the quasiequation corresponding to (MONd).

Actually, since in Ls,d the stressers s and d are independent from each other, most properties
we have discussed in the previous sections easily extend to Ls,d; in particular, chain-completeness
and real completeness results directly extend from Ls and Ld to Ls,d.

Corollary 28. Let L be a core fuzzy logic. Then the following properties hold for Ls,d:

• Ls,d is complete with respect to the class of Ls,d-chains.

14Recall that the implication operation in the standard NM-chain is defined as x→ y = 1 if x ≤ y, and x→ y =
max{1− x, y} otherwise.
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• Ls,d is a conservative expansion of Ls, Ld and L.

Corollary 29. Let L be a core fuzzy logic, let K be a class of L-chains, and let Ks,d be the class
of the Ls,d-chains whose {s, d}-free reducts are in K.

If the language of L is finite we have:

• L has the FSKC if, and only if, Ls,d has the FSKs,dC.

• In particular, L has the FSRC if, and only if, Ls,d has the FSRC.

If the chains in K are completely ordered we have:

• L has the SKC if, and only if, Ls,d has the SKs,dC.

• In particular, Ls,d has the SRC if, and only if, L has the SRC.

One can also consider the additional axiom (in fact two axioms):

(Cont) d sϕ↔ s dϕ↔ ϕ

Let us denote the expansion of the logic Ls,d with these axioms as Lcont
s,d . It is easy to check that the

result of Corollary 29 regarding FSRC remains true, i.e. L has the FSRC if, and only if, Lcont
s,d has

the FSRC. Moreover it is obvious that the corresponding equations over a real chain imply that the
functions interpreting hedges have to be continuous (take into account that d(s(x)) = s(d(x)) = x
implies that s and d are bijective and d = s−1). As a consequence, one can indeed consider Lcont

s,d

as the logic (expansion of L) of continuous stressing and depressing hedges.
In Vychodil’s logic BLvt,st, the author also considered the following axioms (relating stressers

and depressers),

(ST2) dϕ→ ¬ s¬ϕ,

(ST3) s(ϕ→ ψ)→ (dϕ→ dψ)

but we will not further explore these kind of expansions (actually axiomatic extensions of our Ls,d

logics) here since it is not clear how to justify these type of axioms relating truth stressers and
depressers. Semantically (ST2) gives an upper bound of the depresser obtained by dualitization
of the stresser, while (ST3) is a modification of the axiom K. However, in a similar way, we could
define other axioms with different meanings and we have no argumentation to give priority to one
of them. Moreover, for these expansions, it is not clear how to obtain real completeness.

7.2. Expansions with truth-constants
The logics Ls and Ld axiomatize respectively the whole classes of stressing and depressing

hedges on [0, 1]. However, sometimes we are interested on reasoning with a particular hedge or
a particular family of hedges, for example, when one wants to build a fuzzy description language
able to manage linguistic modifiers as proposed in [37, 36]. If L is the logic of a suitable t-norm
∗, one can resort to expanding the logic with truth-constants and (partially) specify the hedge by
means of book-keeping axioms for the hedge.

Let L be the logic of a left-continuous t-norm ∗, i.e. such that L is complete with respect to the
standard algebra [0, 1]∗ = 〈[0, 1], ∗,⇒∗,min,max, 0, 1〉, where⇒∗ is the residuum of ∗ and expand it
with truth-constants from a countable subalgebra C ⊆ [0, 1]∗. We also expand it with the projection

23



operator 4, obtaining the logic L∗∆(C). We will assume that such logic retains the finite strong
completeness with respect to its standard algebra 〈[0, 1], ∗,⇒∗,min,max, 0, 1,4, {r | r ∈ C}〉. This
is always the case when ∗ is a continuous t-norm decomposable as an ordinal sum of finitely-many
basic components such that C has elements in the interior of each component (see [15, Theorem
2.8.3.]) or when ∗ is a WNM t-norm satisfying analogous properties (see [16, Theorem 32]).

As an example, consider the logic L4,s(Q), i.e. the expansion of the logic Ls with rational
truth-constants and with the 4 operator. Let us fix a truth-stressing hedge f : [0, 1] → [0, 1]
that is closed over the rationals. Axioms and rules of Lf

4,s(Q) are those of L4,s plus the following
book-keeping axioms:

(Book-∗) r & q ↔ r ∗ q for every r, q ∈ [0, 1] ∩ Q,

(Book-⇒∗) (r → q)↔ r ⇒∗ q for every r, q ∈ [0, 1] ∩ Q,

(Book-4) 4(r)↔4(r), for each r ∈ [0, 1] ∩ Q,

(Book-f) s(r)↔ f(r), for each r ∈ [0, 1] ∩ Q.

The algebraic semantics is given by the class of Lf
4,s(Q)-algebras which are structures A =

〈A,&,→,∧,∨,4, s, {rA}r∈[0,1]∩Q〉 where 〈A,&,→,∧,∨,4, s, 0, 1〉 is an L4,s-algebra and for each
rational r ∈ [0, 1], rA is a 0-ary operation (i.e. a value in A), satisfying the following conditions:

rA ∗ qA = r ∗ qA for every r, q ∈ [0, 1] ∩ Q,

rA ⇒∗ qA = r ⇒∗ qA for every r, q ∈ [0, 1] ∩ Q,

4A(rA) = 4(r)A, for each r ∈ [0, 1] ∩ Q,

s(rA) = f(r)A, for each r ∈ [0, 1] ∩ Q.

Since Lf
4,s(Q) is an axiomatic expansion of L4,s, it is also a 4-core fuzzy logic, the class

of Lf
4,s(Q)-algebras is a variety, and Lf

4,s(Q) is (strongly) complete with respect to the class
of Lf

4,s(Q)-chains. Moreover, we can prove the following real completeness with respect to the
intended semantics.

Theorem 10. Lf
4,s(Q) is finite strong complete with respect to the standard Lf

4,s(Q)-algebra
[0, 1]f4,s = 〈[0, 1], ∗,⇒∗,min,max,4, f, {r}r∈[0,1]∩Q〉.

Proof. Assume that Γ 6`Lf
4,s

(Q) ϕ, for some finite set of formulae Γ ∪ {ϕ}. Then there is an

Lf
4,s(Q)-chain A and an A-evaluation e such that e[Γ] ⊆ {1A} while e(ϕ) < 1A. Let X ⊆ A be

the finite set of images by e of all subformulae of Γ ∪ {ϕ}. Let A− be the L4(Q)-reduct of A.
Since L4(Q) is finite strong complete with respect to the standard L4(Q)-algebra, there is a partial
embedding h from A− into [0, 1] respecting all operations in X and such that h(rA) = r for all
r appearing in Γ ∪ {ϕ}. In particular, since s(rA) = f(r)A, if both rA and s(rA) are in X then
h(s(rA)) = h(f(r)A) = f(r). Therefore, h is actually a partial embedding from A into [0, 1]f4,s,
and hence e′ = h ◦ e is an evaluation on [0, 1]f4,s such that e′[Γ] ⊆ {1} and e′(ϕ) < 1.
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7.3. First-order logics with hedges
In this final subsection we will consider first-order fuzzy logics expanded with hedges. First we

need to recall the usual presentation of first-order formalisms for core fuzzy logics.
Given a propositional core fuzzy logic L, the language PL of L∀ is built in the standard classical

way from the propositional language L of L by enlarging it with a set of predicate symbols Pred
and a set of function symbols Funct and a set of object variables V ar, together with the two
classical quantifiers ∀ and ∃. The set of terms Term is the minimum set containing the elements of
V ar and closed under the functions. The atomic formulae are expressions of the form P (t1, . . . , tn),
where P ∈ Pred and t1, . . . , tn ∈ Term. The set of all formulae is obtained by closing the set of
atomic formulae under combination by propositional connectives and quantification, i.e. if ϕ is a
formula and x is an object variable, then (∀x)ϕ and (∃x)ϕ are formulae as well.

In first-order core fuzzy logics it is usual to restrict the semantics to chains only. Given an L-
chain A, an A-structure is M = 〈M, 〈PM〉P∈P red, 〈fM〉f∈F unct〉 where M 6= ∅, fM : Mar(f) → M ,
and PM : Mar(P ) → A for each f ∈ Funct and P ∈ Pred (where ar is the function that gives
the arity of function and predicate symbols). For each evaluation of variables v : V ar → M ,
the interpretation of a t ∈ Term, denoted tM,v, is defined as in classical first-order logic. The
truth-value ‖ϕ‖AM,v of a formula is defined inductively from

‖P (t1, . . . , tn)‖AM,v = PM(t1M,v, . . . , t
n
M,v),

taking into account that the value commutes with connectives, and defining

‖(∀x)ϕ‖AM,v = inf{‖ϕ‖AM,v′ | v(y) = v′(y) for all variables y, except x}
‖(∃x)ϕ‖AM,v = sup{‖ϕ‖AM,v′ | v(y) = v′(y) for all variables y, except x}

if the infimum and supremum exist in A, otherwise the truth-value(s) remain undefined. An A-
structure M is called safe if all infs and sups needed for the definition of the truth-value of any
formula exist in A. Then the truth-value of a formula ϕ in a safe A-structure M is just

‖ϕ‖AM = inf{‖ϕ‖AM,v | v : V ar →M}.

When ‖ϕ‖AM = 1 for a safe A-structure M, the pair 〈M,A〉 is said to be a model for ϕ, written
〈M,A〉 |= ϕ.

The axioms for L∀ are obtained from those of L by substitution of propositional variables with
formulae of PL plus the following axioms for quantifiers:

(∀1) (∀x)ϕ(x)→ ϕ(t) (t substitutable for x in ϕ(x))
(∃1) ϕ(t)→ (∃x)ϕ(x) (t substitutable for x in ϕ(x))
(∀2) (∀x)(ν → ϕ)→ (ν → (∀x)ϕ) (x not free in ν)
(∃2) (∀x)(ϕ→ ν)→ ((∃x)ϕ→ ν) (x not free in ν)
(∀3) (∀x)(ϕ ∨ ν)→ ((∀x)ϕ ∨ ν) (x not free in ν)

The rules of inference of L∀ are modus ponens and generalization: from ϕ infer (∀x)ϕ.

Theorem 11. For any first-order core fuzzy logic L∀, any set of sentences T and any formula ϕ, it
holds that T `L∀ ϕ iff 〈M,A〉 |= ϕ for each model 〈M,A〉 of T with A being a countable L-chain.
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The properties SKC, FSKC and KC are defined analogously as in the propositional case.
Observe that the previous theorem says that every first-order core fuzzy logic enjoys the SKC
when K is the class of all countable chains. A usual way to prove SKC consists on showing that
every non-trivial countable L-chain can be σ-embedded (i.e. with an embedding which preserves
existing suprema and infima) into some chain from K. In this case we say that L has the K-σ-
embedding property. As proved in [9] this is a sufficient, but in general not necessary, condition
for the SKC. This method has been used to prove strong real completeness for first-order versions
of a number of important fuzzy logics such as MTL, SMTL, IMTL, G, NM, and WNM. Others
have been shown to lack all real completeness properties as a consequence of the studies on the
arithmetical complexity of the set of standard tautologies as in the case of  L, Π, BL, and SBL (see
e.g. [24]). Moreover, it is also proved in [9] that any completeness property of a first-order logic
implies the validity of the same completeness property in the underlying propositional logic.

Given a first-order core fuzzy logic L∀, let Ls∀ be the expansion of L∀ with a unary symbol s, the
axioms (VTL1), (VTL2), and the rule (MONs). The same logic could be obtained by considering
Ls and extending it to the first-order level in the analogous way as in core fuzzy logics.

Proposition 30. Ls∀ is a conservative expansion of L∀.

Proof. Let T ∪ {ϕ} be a set of first-order formulae in the language without s and assume that
T 0L∀ ϕ. Then there exists L-chain A a model 〈M,A〉 of T such that 〈M,A〉 6|= ϕ. We expand A
to an Ls-chain A′ where the stresser symbol is interpreted as the 4 function. 〈M,A′〉 is still safe,
is a model of T and 〈M,A〉 6|= ϕ, hence T 0Ls∀ ϕ.

We can now consider the issue of standard completeness for these logics.

Theorem 12. Let L be a core fuzzy logic, K a class of L-chains, and Ks the class of Ls-chains
whose s-free reducts are in K.

1. If L has the K-σ-embedding property and all the members of K are completely ordered, then
Ls∀ has the SKsC.

2. If L does not have the K-embedding property, then Ls∀ does not have the SKsC.

Proof. The first item relies on the proof of Theorem 4. Indeed assume that L has the K-σ-
embedding property and all the members of K are completely ordered and take any countable
Ls-chain A. We know that its s-free reduct is σ-embeddable into a chain B ∈ K. Then the
construction used in the proof of Theorem 4 allows to define a hedge function in such a way that
we obtain that B σ-embeddable into a expasnion of B in Ks. As for the second item, if L does
not have the K-embedding property, then L∀ does not enjoy the SKC and hence, since Ls∀ is a
conservative expansion of L∀, Ls∀ does not have the SKsC either.

Observe that if we only know that L has the K-embedding property, we cannot conclude
anything, at least in general, regarding SKsC of Ls∀.

Finally, notice that the case of first-order logics expanded with a connective for depressing
hedges is completely analogous: the logic can be defined by means of (STL1), (STL2) and (MONd),
and we obtain analogous results.
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8. Related work

As we have mentioned before, there are two main references when talking about the formalisa-
tion of truth-stressing hedges within the framework of mathematical fuzzy logic. The first one is
Hájek’s paper [21] where he axiomatizes over BL a logic for the hedge very true, and the second
one is the paper by Vychodil [38] where he extends Hájek’s analysis to truth-depressing hedges. A
further relevant further study of logics with truth-stressers can be found in the paper by Ciabattoni
et al. [7], that makes significant contributions in various aspects. The authors basically consider
expansions of MTL with a unary modality (i.e. a unary operator that satisfies axiom K and the
necessitation rule), they consider three possible additional axioms to be added to Hájek’s axiomat-
ics, and they develop proof systems for the new logics and study their algebraic and completeness
properties. Given a logic L that is an extension of MTL, they consider the following logics:

L-KTr = L + (VT1) + (VT2) + (VT3) + (NEC)
L-S4r = L-KTr + (VT4) sϕ→ s(sϕ)

Axiom (VT4), together with axiom (VT1), forces the truth-stressing hedges to be closed over
their image, i.e. sϕ has to be equivalent to s(sϕ) (hence s becomes a closure operator like in some
previous works; see [23], for instance).

Notice that Hájek’s logic BLvt (which we have called BLsK in this paper) is nothing but the
logic BL-KTr. Moreover, Ciabattoni et al. prove in [7] standard completeness of the L-S4r logics for
different choices for L, namely MTL, SMTL, CnMTL, IMTL, and CnIMTL. Finally, observe that
after adding the axiom sϕ ∨ ¬ sϕ to L-KTr, s turns to be equivalent to the projection connective
4.

Other papers dealing with particular types of truth-stressers are:

• The paper [23], a pioneering work in the setting of truth-stressing hedges, which proves that
the Yashin strong future tense operator can be interpreted, in our framework, as a hedge over
G that is a closure operator and satisfies axiom K.

• The paper [22], which defines the logical system BL!
LU obtained by adding two unary connec-

tives, L and U, (for truth stresser and depresser) to BL4 that are required to be idempotent
with respect to the monoidal operation, among other technical properties. The paper contains
an interesting result about the undecidability of ∗-tautologies.

• In the paper [25] the authors introduce in BL∀ a new unary connective At, interpreted as
almost true, in order to analyze the sorites paradox in the setting of mathematical fuzzy
logic. It turns out that the axioms proposed for this new connective are (STL1) together
with

(ϕ→ ψ)→ (Atϕ→ Atψ),

which is actually axiom (ST6), stronger than (MON). However, the axiom (STL2) is not
required.

• The paper [30] studies the system obtained by adding to a fuzzy logic L a unary connective
called storage operator which has some analogies with Girard’s exponentials and behaves as
an idempotent truth-stresser closed over its image (it is in fact an interior operator).
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• Finally, we mention the papers [2, 18, 3] where the authors study expansions of Gödel logic
with a monotone unary operator ◦ interpreted by monotone functions f : [0, 1] → [0, 1]
satisfying, among other conditions, f(1) = 1. So, although they are very close to truth-
hedges, in general they are not necessarily requested to satisfy the other boundary condition
f(0) = 0. However, in [18], Fasching implicity considers particular logics that indeed can
be regarded as a proper logic of truth stressers: indeed, he considers the expansion of Gödel
logic with ◦ together with the axioms ◦(ϕ→ ψ)↔ (◦ϕ→ ◦ψ)15 and the rule of necessitation
for ◦. Let us call this logic G◦. Then, from [18, Corollaries 4.1(a) and 4.2(b)] it can readily
be seen that: (i) G◦ together with the axiom ◦ϕ → ϕ is complete with respect to the class
of standard Gödel chains expanded with strictly increasing truth-stressing hedges, and (ii)
G◦ together with the axioms ϕ → ◦ϕ and ◦0 → 0 is complete with respect to the class of
standard Gödel chains expanded with strictly increasing truth-depressing hedges.

Despite the undoubtable theoretical interest of these papers, hedge functions that are either
closure operators, satisfy axiom K, or are idempotent, have a quite limited behavior and can
account only for some very special cases of truth-stressing hedges.

Finally, it must be mentioned that, besides the axiomatic approach followed in this paper
and in all the related articles we have just discussed, logics with hedges have also received an
extensive treatment in the interesting formalization of evaluative linguistic expressions developed
in the framework of fuzzy type theory by Vilém Novák, see e.g. [33] and Chapter 6 of [34]. Indeed,
the intuition of Novák’s modelling of hedges that goes back to [32] was, as pointed out by Lakoff
in [28], that the effect of hedges like very in an expression like very small carries out a shifting of
the whole membership function of the fuzzy set small, in the sense of a shortening of the kernel of
the fuzzy set. This may be accomplished by truth-hedges h : [0, 1] → [0, 1] such that h(x) = 1 if
x is greater than a given threshold a, and h(x) = 0 for x smaller than another given threshold b,
with 0 < b < a < 1. These classes of hedges are neither subdiagonal nor superdiagonal, and hence
they fall out of the scope of the goals of the current paper. The question of whether these classes
of truth-hedges admit a similar logical treatment than those considered in this paper (subdiagonal
and superdiagonal) remains as an interesting matter of future research.
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[21] P. Hájek. On very true. Fuzzy Sets and Systems, 124(3):329–333, 2001.
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[24] P. Hájek, F. Montagna, and C. Noguera. Arithmetical complexity of first-order fuzzy logics. In P. Cintula,
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