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Abstract

We propose a general framework for the interpolation problem. Our framework stems from the classical elaboration of the problem.
We introduce the notion of an interpolating fuzzy function and show how this function can be characterized. We examine and analyze
previously published fuzzy interpolation algorithms to choose those algorithms that can be represented analytically. We also propose
an analytic solution of the interpolation problem that unifies various algorithmic approaches.
© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

As is well known, a fuzzy rule base is a characterization of a partially given mapping (fuzzy function) between sets
of fuzzy sets (fuzzy spaces). Each rule characterizes a node (argument-value) of a respective fuzzy function in the
sense that the antecedent of the rule characterizes the argument, whereas the consequent of the rule characterizes the
dependent value. The entire finite rule base characterizes the behavior of that function at the respective finite set of
nodes. For practical applications, it is desirable to interpolate that partial fuzzy function to know its values at an arbitrary
node (fuzzy or crisp). Therefore, the problem of interpolation of a partial fuzzy function consists of its extension to a
fuzzy function that is defined on an extended domain. Moreover, interpolation assumes that if we restrict the extended
(interpolating) fuzzy function to its original domain, we then obtain the original partial fuzzy function.

Many papers are focused on the problem of fuzzy interpolation and give an algorithmic description of one of the
possible extensions of a partial fuzzy function. Below, we list various approaches to the problem of fuzzy interpolation
and indicate their principles: level cuts interpolation [22,23], analogy-based interpolation [4,5,7], interpolation by
convex completion [10,28], interpolation by geometric transformations [1], interpolation in a family of interpolating
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relations [2], polar cut interpolation [20], interpolation based on closeness relations [6], flank functions interpolation
[18,19], and analytic fuzzy relation-based interpolation [25]. This paper will develop and extend the latter approach.

The main drawback of algorithmic approaches to the problem of fuzzy interpolation is their insufficient description
of the new extended domain of an interpolating fuzzy function. As a result of this insufficient description, some of the
proposed algorithms fail when applied to fuzzy sets outside of a respective domain. One “unhappy” example, proposed
in [22,23], was analyzed in [29] where it has been shown that on the extended domain, the proposed interpolation does
not fulfil the necessary requirement (the level cuts of the result of the interpolation are no longer nested). A precise
description of the extended domain of fuzzy interpolation is especially important in the case of a sparse rule base
interpolation (see Section 4.3).

We will base our research on two overview papers [5,18]. We will examine and analyze the fuzzy interpolation
algorithms listed above. We will identify those algorithms that can be represented analytically as interpolating fuzzy
functions. Therefore, we will concentrate on those approaches that are most suitable for this purpose. We will present an
overview and analysis of the following approaches: analogy-based interpolation, interpolation by convex completion,
interpolation based on closeness, and flank functions interpolation. In all cases, we will show that solutions proposed
therein can be characterized by interpolating fuzzy functions and that these functions can be represented by respective
fuzzy relations. They can therefore be used easily in computation. Last but not least, interpolating fuzzy functions can
be used for interpolation of sparse and non-sparse (dense) fuzzy data.

Our paper is organized as follows. In Section 2, we give preliminary information about residuated lattices, fuzzy
sets, and fuzzy spaces. Fuzzy functions and various approaches to this notion are discussed in Section 3. These notions
are then used to formulate the problem of interpolation of fuzzy data and to present a particular case of the problem:
interpolation of sparse rule bases (Sections 4). In Sections 5–8, we give a general overview of the principal approaches to
this specific problem. In these sections, we analyze four particular methods: analogy-based interpolation, interpolation
by convex completion, interpolation based on closeness, and flank functions interpolation. An analytic representation
of a respective interpolating fuzzy function is presented for each of these methods.

2. Preliminaries

The notion of fuzzy function is closely related to and generalizes the notion of function. First, consider the two
alternative definitions of a function. Both definitions assume that two sets, a domain X and a range Y, are given.
According to the first definition, a correspondence f : x�y is a function if for any x ∈ X , the value y = f (x)
is uniquely determined. The latter statement means that for all x1, x2 ∈ X such that x1 = x2, the respective values
f (x1), f (x2) are equal as well (we will say that f respects the equality). The second definition introduces a function
as a special binary relation � ⊆ X × Y such that for all x ∈ X , and all y1, y2 ∈ Y , (x, y1) ∈ � & (x, y2) ∈
� ⇒ y1 = y2.

We observe immediately that the first definition (declarative) emphasizes the computational aspect of a function,
whereas the second definition (descriptive) underscores the specification of a function as a binary relation. A fur-
ther observation suggests that both definitions are based on the notions of set and equality. Therefore, generalized
notions of a set and of an equality relation defined on that set should be used to introduce a generalized notion of
function.

The following subsections introduce the notions of L-fuzzy space and similarity-based L-fuzzy space. Both notions
involve classes of L-valued fuzzy sets enriched with fuzzy equalities.

2.1. Residuated lattice

Because the notion of fuzzy equality requires a scale of degrees (a lattice of truth values) and an algebra of operations
on that scale, we will first introduce these preliminary notions. We will choose a bounded lattice for a scale of degrees,
add a monoidal operation, and assume that the latter is residuated. We thus obtain a residuated lattice—our basic algebra
of operations. We will use an algebraic approach for the definition of the lattice and will give a definition of a residuated
lattice as an algebra.
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Definition 1. A residuated lattice 1 is an algebra

L = 〈L , ∨, ∧, ∗, →, 0, 1〉.
with a support L and four binary operations and two constants such that

• 〈L , ∨, ∧, 0, 1〉 is a lattice where the ordering ≤ defined using operations ∨, ∧ as usual, and 0, 1 are the least and the
greatest elements, respectively;

• 〈L , ∗, 1〉 is a commutative monoid, that is, ∗ is a commutative and associative operation with the identity a ∗ 1 = a;
• the operation → is a residuation operation with respect to ∗, i.e.,

a ∗ b ≤ c iff a ≤ b → c.

A residuated lattice is complete if it is complete as a lattice.
The following is the binary operation of biresiduation on L:

a ↔ b = (a → b) ∧ (b → a).

Well known examples of residuated lattices are: Boolean algebra, Gödel, Łukasiewicz and product algebras. In the
particular case of L = [0, 1], the monoidal operation ∗ is in fact a left-continuous t-norm.

Hereafter and until the end of Section 3, let the complete residuated L be a fixed algebraic structure.

2.2. L-valued fuzzy sets and L-fuzzy space

Let X ⊆ R be a non-empty universal set, R the set of reals, and L a complete residuated lattice. An L-valued fuzzy
set A on X (in brief, a fuzzy set) is a map A : X → L . A fuzzy set is identified with its membership function. A fuzzy
set A is normal if there exists xA ∈ X such that A(xA) = 1. The empty fuzzy set is the set 0 with zero membership
function. The (ordinary) set Core(A) = {x ∈ X |A(x) = 1} is the core of the normal fuzzy set A. The (ordinary) closed
set Supp(A) = {x ∈ X |A(x) > 0} is the support of the fuzzy set A. The class of L-valued fuzzy sets of X will be denoted
by L X . Similarly, we define a (binary) (L-valued) fuzzy relation as a fuzzy set on X × Y .

A notion of fuzzy equality ≡ between fuzzy sets A, B ∈ L X is defined as follows:

(A ≡ B) =
∧
x∈X

(A(x) ↔ B(x)).2 (1)

Indeed (A ≡ B) ∈ L is a degree of coincidence between the two membership functions A and B. It is known that

(A ≡ B) = 1 iff ∀x ∈ X, A(x) = B(x),

that is, (A ≡ B) = 1 if and only if the membership functions A and B coincide (on X). Below, instead of (A ≡ B) = 1
we will write A = B.

Definition 2. The pair (L X , ≡) is a fuzzy space on X.

A ∗-fuzzy preorder � on L X can be introduced as follows 3 :

(A�B) =
∧
x∈X

(A(x) → B(x)), (2)

where (A�B) ∈ L is also known as a degree of “inclusion” of the fuzzy set A into the fuzzy set B [15]. Note that
(A�B) = 1 if and only if A(x) ≤ B(x) for all x ∈ X . Below, instead of (A�B) = 1 we will write A ≤ B. 4

1 In this paper we assume a residuated lattice to be bounded, commutative and integral.
2 For a general definition of fuzzy equality, e.g., [8,17,21].
3 For a general definition of fuzzy preorder see e.g., [3,24].
4 In this paper, we use A ≤ B for representing Zadeh fuzzy set inclusion of A in B instead of the usual notation ⊂ because A and B denote the

membership functions and ≤ then represent pointwise inequality between functions.
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2.3. Similarity-based fuzzy space

Another definition of a fuzzy space on X is related to the notion of similarity (indistinguishability, fuzzy equality).
See the references cited above. This space consists of similarity classes of single points of X. Below, we will give
necessary definitions and then compare different fuzzy spaces.

A binary fuzzy relation E on X is called a similarity on X if for all x, y, z ∈ X , the following properties hold:

S.1 E(x, x) = 1,
S.2 E(x, y) = E(y, x),
S.3 E(x, y) ∗ E(y, z) ≤ E(x, z).

It is informative to observe that the operation ∗ in the definition of similarity belongs to the residuated lattice L, of
fixed structure as specified above. Given a similarity E on X, certain fuzzy sets of X can be characterized as similarity
classes of single elements of X, i.e., as fuzzy sets determined by membership functions of the form Et , with t ∈ X ,
where Et (x) = E(t, x) for all x ∈ X . The fuzzy set Et is called an E-fuzzy point of X. Because Et (t) = 1, Et is a
normal fuzzy set. Denote by

(X, E) = {Et |t ∈ X}
the class of all E-fuzzy points of X, and call it a similarity-based fuzzy space of X. It is not difficult to see that for any
t, p ∈ X ,

(Et ≡ E p) = E(t, p).

According to [21], a subclass S ⊆ L X of normal fuzzy sets of X is a similarity-based fuzzy space on X if and only if
for any two fuzzy sets A, B ∈ S, the following inequality holds:∨

x∈X

(A(x) ∗ B(x)) ≤
∧
x∈X

(A(x) ↔ B(x)). (3)

In this case, we have S = (X, ES ), where the similarity ES on X is given by

ES (x, y) =
∧
A∈S

(A(x) ↔ A(y)).

Thus the subclass S forms a fuzzy partition of X. In the Boolean case, inequality (3) means that if A is not the same as
B, then they are disjoint. In the fuzzy case, this inequality does not prevent elements of a fuzzy partition from having
overlapping supports.

Remark 1. If (X,E) is a fuzzy space on X, and Et is a E-fuzzy point for some t ∈ X , then t ∈ Core(Et ). However,
Core(Et ) can contain other elements than t. It can be easily shown that if t1 ∈ Core(Et ) and t1 � t , then Et1 = Et .

2.4. Relation-based fuzzy space

Let us associate a fuzzy space on X with a fuzzy relation that is weaker than a similarity. A binary fuzzy relation R
on X is reflexive if for all x ∈ X , R(x, x) = 1. Given a reflexive fuzzy relation R on X, consider the fuzzy set Rt , for
t ∈ X , defined by Rt (x) = R(t, x) for all x ∈ X and call it R-fuzzy point of X. By reflexivity of R, Rt is a normal fuzzy
set. The class (X, R) = {Rt |t ∈ X} that consists of all R-fuzzy points of X is called the R-fuzzy space on X.

3. Fuzzy functions

There exist several definitions of a fuzzy function, e.g., [8,11,16,21,25]. In [8,16,21], a fuzzy function is viewed
as a special fuzzy relation, in [11] it is a fuzzy set of functions; in all cases, the authors’ approach is descriptive. In
[25], a fuzzy function is a mapping between two fuzzy spaces (in other words, classes of fuzzy sets), and therefore,
the authors’ approach is declarative. In this section, we review both approaches briefly, and we explain under what
circumstances they coincide. To distinguish different notions, we will use the name “E–F-fuzzy function” for a fuzzy
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function that is a special fuzzy relation. We will retain the simple name “fuzzy function” to denote a mapping between
two fuzzy spaces.

3.1. Fuzzy function as a mapping

We will define a fuzzy function following [25]. Recall that for the purposes of our discussion, a fuzzy function is a
mapping that respects the (ordinary) equality relation. Moreover, we will define an extensional fuzzy function which
respects a certain fuzzy equality.

Definition 3. Let L be a complete residuated lattice and (L X , ≡), (LY , ≡) fuzzy spaces on X and Y, respectively.

• A correspondence f : L X → LY is a fuzzy function if for every A, B ∈ L X ,

A = B implies f (A) = f (B). (4)

• A fuzzy function f : L X → LY is extensional if for every A, B ∈ L X ,

(A ≡ B) ≤ ( f (A) ≡ f (B)).

Note that a fuzzy function so defined is indeed nothing more than a conventional function from L X to LY . The
adjective “fuzzy” stresses a correspondence between fuzzy spaces. An example of a fuzzy function is given below.

Example 1 (Fuzzy functions determined by a fuzzy relation). Let (L X , ≡), (LY , ≡) be fuzzy spaces on X and Y,
respectively, R ∈ L X×Y a fuzzy relation. For every A ∈ L X , we define the ◦-composition of A and R by

(A ◦ R)(y) =
∨
x∈X

(A(x) ∗ R(x, y)), (5)

and the �-composition of A and R by

(A�R)(y) =
∧
x∈X

(A(x) → R(x, y)), (6)

Both compositions determine respective fuzzy sets A ◦ R and A�R of Y. The corresponding mappings f◦R : A�A ◦ R
and f�R : A�A�R are fuzzy functions defined on the whole fuzzy space L X . It can be proved that both f◦R and f�R

are extensional fuzzy functions.

3.2. E–F-fuzzy function

Below, we recall the notion of fuzzy function (see [21]). 5 In discussing this notion, we will use the term E–F-fuzzy
function.

Definition 4. Let E, F be respective similarities on X and Y. An E–F-fuzzy function is a binary fuzzy relation � on
X × Y such that for all x, x ′ ∈ X , y, y′ ∈ Y the following axioms hold true:

• �(x, y) ∗ E(x, x ′) ≤ �(x ′, y),
• �(x, y) ∗ F(y, y′) ≤ �(x, y′),
• �(x, y) ∗ �(x, y′) ≤ F(y, y′).

The following example [21] relates an ordinary function and an E–F-fuzzy function.

Example 2. Let E, F be respective similarities on X and Y, and a function g : X → Y extensional with respect to E
and F so that for all x, x ′ ∈ X ,

E(x ′, x) ≤ F(g(x ′), g(x)). (7)

5 In [21], it has been introduced as partial fuzzy function.
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Then the fuzzy relation �g given by

�g(x, y) =
∨

x ′∈X

(E(x ′, x) ∗ F(g(x ′), y)), x ∈ X, y ∈ Y (8)

is an E–F-fuzzy function. Moreover, for all x ∈ X and y ∈ Y ,

�g(x, y) = F(g(x), y). (9)

Note that an E–F-fuzzy function is neither a correspondence between X and Y nor a correspondence between L X

and LY . However, the corresponding fuzzy relation � determines a fuzzy function f◦� in the sense of (5). Therefore,
it is informative to investigate the relationship between a fuzzy function expressed by (5) and an E–F-fuzzy function
when both are determined by a common fuzzy relation.

Let us recall the following statement [27]: if E and F are similarities on X and Y, respectively, and �g is given by (8),
then the following equality:

(Ex ′ ◦ �g)(y) = F(g(x ′), y) (10)

holds for all x ′ ∈ X if and only if function g satisfies (7).
Accordingly, a relationship between fuzzy functions and E–F-fuzzy functions can be characterized as follows: if E

and F are similarities on X and Y, respectively, the function g : X → Y fulfills (7), and the fuzzy relation �g is given
by (8), then �g is an E–F-fuzzy function and �g also determines the fuzzy function f◦�g

. Moreover, by (9) and (10),
the values of �g and f◦�g

at respective “points” x ′ and Ex ′ coincide, i.e., for all y ∈ Y ,

�g(x ′, y) = f◦�g
(Ex ′ )(y).

3.3. R–F-fuzzy function

Note that an E–F-fuzzy function establishes a correspondence between two similarity-based fuzzy spaces (X,E) and
(Y,F). However, in our investigation we will work also with an R-fuzzy space (X,R) where R is a reflexive fuzzy relation.
Therefore, we need to extend an E–F-fuzzy function to an R–F-fuzzy function, the latter establishes a correspondence
between (X,R) and (Y,F). Below, we give a new definition that slightly modifies Definition 4.

Definition 5. Let R be a reflexive fuzzy relation on X and F a similarity on Y. An R–F-fuzzy function is a binary fuzzy
relation � on X × Y such that for all x, x ′ ∈ X , y, y′ ∈ Y the same axioms (where E should be replaced by R) as in
Definition 4 hold true.

We will prove that fuzzy relation �g expressed by formula (12) is an R–F-fuzzy function. Moreover, the corresponding
fuzzy functions f◦�g

establish a correspondence between the R-fuzzy space (X,R) and the similarity-based fuzzy space
(Y,F).

Theorem 1. Let R be a reflexive fuzzy relation on X and F a similarity on Y. Let g : X → Y be an extensional with
respect to R and F function, i.e. for all x, x ′ ∈ X the following holds:

R(x ′, x) ≤ F(g(x ′), g(x)). (11)

Then the fuzzy relation

�g(x, y) =
∨

x ′∈X

(R(x ′, x) ∗ F(g(x ′), y)), x ∈ X, y ∈ Y, (12)
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fulfils the following properties:

(i) for all x ∈ X and y ∈ Y ,

�g(x, y) = F(g(x), y),

(ii) �g is an R–F-fuzzy function,
(iii) for all x ′ ∈ X ,

f◦�g
(R′

x ) = Fg(x ′). (13)

Proof. Assume that the assumptions of Theorem 1 are fulfilled.

(i) We will split the equality �g(x, y) = F(g(x), y) into two opposite inequalities and prove them. By (11) and
transitivity of F,

�g(x, y) =
∨

x ′∈X

(E(x ′, x) ∗ F(g(x ′), y))

≤
∨

x ′∈X

(F(g(x ′), g(x)) ∗ F(g(x ′), y)) ≤ F(g(x), y).

On the other hand, by reflexivity of R,

�g(x, y) =
∨

x ′∈X

(E(x ′, x) ∗ F(g(x ′), y)) ≥ E(x, x) ∗ F(g(x), y) = F(g(x), y).

(ii) To prove that �g is an R–F-fuzzy function means to verify the axioms of Definition 4 where E is replaced
by R. We will verify the first axiom (the other two are simple exercises), i.e., for all x, x ′ ∈ X , y, y′ ∈ Y ,
�g(x, y) ∗ R(x, x ′) ≤ �g(x ′, y). Indeed,

�g(x, y) ∗ R(x, x ′) = R(x, x ′) ∗ F(g(x), y)

≤
∨
x∈X

(R(x, x ′) ∗ F(g(x), y)) = �g(x ′, y).

(iii) Finally, let us verify (13) by proving two opposite inequalities for arbitrarily chosen x ′ ∈ X and y ∈ Y :

f◦�g
(R′

x )(y) =
∨
x∈X

R(x ′, x) ∗
(∨

t∈X

(R(t, x) ∗ F(g(t), y))

)

≥
∨
x∈X

(R(x ′, x) ∗ R(x ′, x) ∗ F(g(x ′), y)) = F(g(x ′), y) = Fg(x ′)(y)

and

f◦�g
(R′

x )(y) =
∨
x∈X

(
R(x ′, x) ∗

∨
t∈X

(R(t, x) ∗ F(g(t), y))

)

≤
∨
x∈X

R(x ′, x) ∗
(∨

t∈X

(F(g(t), g(x)) ∗ F(g(t), y))

)

≤
∨
x∈X

(R(x ′, x) ∗ F(g(x), y)) = �g(x ′, y) = F(g(x ′), y) = Fg(x ′)(y). �

4. General approach to the problem of interpolation

The method developed in this paper adapts the standard framework for interpolation to interpolation of fuzzy data
(fuzzy interpolation). First, we recall the standard setting of interpolation and then propose the extension to interpolation
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of fuzzy data where the latter belong to a similarity-based or relation-based fuzzy space. Our principal idea is to
identify interpolation (ordinary or fuzzy) with the process of choosing an interpolating function (ordinary or fuzzy)
from a predetermined set of functions. Finally, we will discuss four different fuzzy interpolation methods and show
interpolating fuzzy functions that correspond to them.

4.1. Interpolation in the classical sense

To begin, we will present the simplest formulation of an interpolation problem. In this formulation, all functions are
real functions of real arguments. Moreover, these functions depend on one argument. Let interpolation data be given by
a set of ordered pairs {(ai , bi ), i = 1, . . . , n}, where A = {a1, . . . , an} ⊂ R and B = {b1, . . . , bn} ⊂ R, and elements
in A are pairwise different. Let P ⊆ {℘|℘ : D → R}, where A ⊂ D ⊆ R be a subset of functions that is chosen for
interpolation. We say that ℘ ∈ P is an interpolating function for data {(ai , bi ), i = 1, . . . , n}, if

℘(ai ) = bi , i = 1, . . . , n. (14)

By the assumption that elements in A are pairwise different, a mapping f : A → B such that f (ai ) = bi , i = 1, . . . , n,
is functional. Moreover, ℘ ∈ P is an interpolating function for {(ai , bi ), i = 1, . . . , n} if and only if f = ℘|A. 6 In
other words, we say that the interpolating function ℘ is an extension of f on the domain D.

Remark 2. Note that we can impose additional conditions on interpolating functions and by this, restrict P . For
example, P can be a class of polynomials, as it is traditionally assumed. Other possible restrictions for P are: a class
of piecewise polynomials (splines), a class of smooth functions that guarantee interpolation “in between”, i.e., for all
i = 1, . . . , n − 1, min{bi , bi+1} ≤ ℘(a) ≤ max{bi , bi+1} if ai ≤ a ≤ ai+1, provided that a1 < a2 < · · · < an , etc.

Two important conditions should be recognized in every formulation of the interpolation problem:

I1. Interpolation data {(ai , bi ), i = 1, . . . , n} determine a functional relation on A × B.
I2. A set P of interpolating functions contains at least one interpolating function for {(ai , bi ), i = 1, . . . , n}.

4.2. Interpolation of fuzzy data

This paper focuses on the interpolation approach to a computation with fuzzy data. A precise definition of interpo-
lation of fuzzy data will be given below. Loosely speaking, this problem involves extension of a fuzzy function (in the
sense of Definition 3) given on a restricted domain to a fuzzy function given on a wider domain (similar to the case
considered above).

In the language of fuzzy functions, the problem of interpolation of fuzzy data can be formulated explicitly as follows:
Let fuzzy data be given by a set of pairs {(Ai , Bi )|i = 1, . . . , n}, where Ai ∈ L X , Bi ∈ LY , i = 1, . . . , n, and

A1, . . . , An are pairwise different with respect to =. Moreover, let f : Ai�Bi be a fuzzy function on the domain
A = {A1, . . . , An}, and P ⊆ {℘|℘ : D → LY }, where A ⊂ D ⊆ L X , is a chosen subset of fuzzy functions. The
problem is to find ℘ ∈ P such that the following interpolation condition

℘(Ai ) = Bi , i = 1, . . . , n (15)

is fulfilled. In this case, ℘ is called an interpolating fuzzy function for fuzzy data {(Ai , Bi )|i = 1, . . . , n}. In other
words, the interpolating fuzzy function ℘ is an extension of f on the domain D.

It is easy to see that both conditions I1–I2 are respected in the formulation above.

Remark 3. Note that fuzzy interpolation, with the stress on the word “fuzzy,” seeks to relax the condition (15). Let us
show one possible way to achieve this result. By (4), the interpolation condition (15) can be rewritten as

A = Ai implies ℘(A) = Bi , i = 1, . . . , n.

6 If ℘ : X → Y is a function and A ⊆ X then the restriction ℘|A is a function with the domain A such that for all x ∈ A, ℘|A(x) = ℘(x).
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If both equalities above are changed to inequalities,

A ≤ Ai implies ℘(A) ≤ Bi ,

or even to

“The greater is the degree of inclusion of A into Ai ,

the greater is the degree of inclusion of ℘(A) into B ′′
i (16)

where i = 1, . . . , n, we arrive at a relaxed version of fuzzy interpolation. However, this relaxed version is contained in
the formulation of the problem of interpolation given by (15). In fact, (16) is an additional condition that restricts the
class of interpolating fuzzy functions (see Remark 2).

4.3. Interpolation of sparse rule bases

Below, we present assumptions and requirements that are common to all papers that are focused on the interpolation
of sparse rule bases.

(i) A residuated lattice L is considered on the interval [0, 1].
(ii) All fuzzy sets in a rule base are normal, convex and considered on the real line R.

(iii) The rule base consists of two rules A1 → B1 and A2 → B2, where A1, A2 are fuzzy sets of X ⊆ R, and B1, B2
are fuzzy sets of Y ⊆ R.

(iv) It is assumed that the rule base is sparse in the sense that the support sets of A1 and A2 are disjoint, i.e., their
intersection is empty.

(v) Fuzzy sets A1, A2 and a fuzzy set A of R (an “observation”) are such that A1 � A � A2, where � is a precedence
relation to be specified in each case.

The problem amounts to the estimation of a fuzzy set B of R (a “conclusion” of a new rule A → B, where A is the
given observation) such that B1 � B � B2 (see Remark 2).

Note that if specified, the relation � differs from the order relation ≤ defined in Section 2.2. This follows from the
fact that if A1 and A2 are disjoint, then (A1�A2) = 0 regardless of whether A1 � A2 is true or not. Therefore, in our
analytic overview we will define � for each approach that we analyze to obtain the extended domain of a corresponding
interpolating fuzzy function.

5. Analogy-based interpolation

The analogy-based interpolation has been proposed by Bouchon-Meunier et al. [4,7]. It has been then analyzed and
compared with other interpolation methods in [5]. Actually, the proposed analogy-based interpolation gives an estimate
of a conclusion B. The approach is purely computational and does not seek a formal representation of a result.

In this section, we will give an algorithmic description of the analogy-based interpolation and then show how this
algorithmic description can be represented analytically. The representation will be based on formula (5) where fuzzy
relation R is given by (8).

5.1. Algorithmic description

In addition to the assumptions (i)–(v) considered above, this type of interpolation assumes that all fuzzy sets are
L–R fuzzy intervals of R (see e.g., [11]). The other assumption implicitly required is that each normal fuzzy set is
determined by a central point of its core and by a chosen shape. The following two steps lead to a construction of B
according to the analogy-based interpolation:

• Let c, c1, c2 be central points of respective cores of A, A1, A2 such that c1 ≤ c ≤ c2, and similarly, d1, d2 are central
points of respective cores of B1, B2. Then the central point d of B fulfills the following equation:

c − c1

c2 − c1
= d − d1

d2 − d1
. (17)
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• Without going into technical details, let Csh(A, A1; A1, A2) ∈ R (respectively Csh(A, A2; A1, A2)) be an index of
distinguishability of A and A1 (respectively A and A2) in the context (A1, A2). It is assumed that given A1, A2, their
central points c1, c2, indices Csh(A, A1; A1, A2) and Csh(A, A2; A1, A2), and a central point c of A, the membership
function of A can be uniquely reconstructed. It is then proposed to construct B from B1, B2 and with the help of
Csh(B, B1; B1, B2), Csh(B, B2; B1, B2), where

Csh(B, B1; B1, B2) = Csh(A, A1; A1, A2), (18)

Csh(B, B2; B1, B2) = Csh(A, A2; A1, A2). (19)

The method assumes that the membership functions A, A1, A2 as well as B, B1, B2 belong to the same group (a group
can be specified by a certain shape of membership functions). Equalities (18) and (19) state two analogical proportions
of the form “B is to B1 (respectively, B2) as A is to A1 (respectively, A2)”, in terms of an index of distinguishability.

5.2. Interpolating fuzzy functions and the analogy-based interpolation

It is clear that the analogy-based interpolation presented above is a formal scheme that requires a specification of
involved membership functions, i.e., a specification of a domain and range of a corresponding interpolating fuzzy
function. After that the scheme becomes an interpolation that uniquely determines a fuzzy set B for given A and given
context: A1, A2 and B1, B2. The uniqueness of B guarantees that condition (4) is fulfilled so that the analogy-based
interpolation scheme thus specified actually defines an interpolating fuzzy function.

Below, we give our specification of the analogy-based interpolation scheme, and we place assumptions on interpo-
lation data such that the interpolating fuzzy function is determined by a fuzzy relation.

(a) Let X ⊂ R, Y ⊂ R be bounded domains common to fuzzy sets A, A1, A2 and B, B1, B2, respectively.
(b) Let E, F be similarities on X and Y such that

1. if c, c1, c2 ∈ X are fixed central points of the respective cores of A, A1, A2 then A = Ec, A1 = Ec1 , A2 = Ec2 ,
2. if d1, d2 ∈ Y are fixed central points of the respective cores of B1, B2 then B1 = Fd1 , B2 = Fd2 .

(c) If A = Ec, B = Fd , where c ∈ X , d ∈ Y then the indices of distinguishability of A and Ai , and of B and Bi ,
i = 1, 2, are defined by

Csh(A, Ai ; A1, A2) = c − ci

c2 − c1
,

and

Csh(B, Bi ; B1, B2) = d − di

d2 − d1
.

(d) Let g : X → Y be an ordinary linear function that characterizes a dependence between central points of cores
c ∈ X and d ∈ Y according to (17), i.e., g : c�d , where

d = g(c) = d1 + d2 − d1

c2 − c1
(c − c1). (20)

Assume that g is extensional 7 with respect to E and F (cf. (7)), i.e., for all x, x ′ ∈ X ,

E(x ′, x) ≤ F(g(x ′), g(x)).

Let us show how the specification given above uniquely determines an interpolating fuzzy function for fuzzy data
{(Ai , Bi ))|i = 1, 2} on the domain D = {A|A = Ec, c1 ≤ c ≤ c2}. We denote this function ℘B M (initials of the first
author of [4,7]) and define it as follows:

℘B M (Ec)(y) = F(g(c), y), y ∈ Y. (21)

7 Extensionality of g does not automatically follow from the specification above. This assumption puts an additional limitation on interpolation
data.
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It is easy to verify that D is linearly ordered by

Ec′ � Ec′′ if c′ ≤ c′′ where c′, c′′ ∈ X, x ∈ X.

Thus D = {A|A = Ec, Ec1 � A � Ec2}. We discussed � in Section 4.3.
To verify the interpolation conditions I1–I2, we note that A1 ∈ D, A2 ∈ D, and by the specification (b) and by (21),

we have ℘B M (A1) = B1 and ℘B M (A2) = B2. Moreover, if A = Ec then by (21), B = ℘B M (A) = Fd , where d = g(c)
so that by (20),

• Csh(A, A1; A1, A2) = Csh(B, B1; B1, B2) = (c − c1)/(c2 − c1) = (d − d1)/(d2 − d1),
• Csh(A, A2; A1, A2) = Csh(B, B2; B1, B2) = (c − c2)/(c1 − c2) = (d − d2)/(d1 − d2).

Therefore, the fuzzy function ℘B M fulfills both necessary requirements, namely (17)–(19), of the analogy-based
interpolation scheme. Its domain D = {A|A = Ec, c1 ≤ c ≤ c2} is a similarity-based fuzzy space ([c1, c2], E), i.e., a
class of E-fuzzy points of the interval [c1, c2]. Its range is a similarity-based fuzzy space ([d1, d2], F), i.e., the class
G = {B|B = Fd , d1 ≤ d ≤ d2} of F-fuzzy points of the interval [d1, d2].

We can further extend the fuzzy function ℘B M to the domain [0, 1]X , i.e., to all fuzzy subsets of X. For this purpose,
we will represent ℘B M by a respective fuzzy relation. The following theorem gives all necessary details.

Theorem 2. Let a specification of the analogy-based interpolation scheme be given by conditions (a)–(d) above.
Let

�g(x, y) =
∨

x ′∈X

(E(x ′, x) ∗ F(g(x ′), y)), x ∈ X, y ∈ Y

be a fuzzy relation on X ×Y , and f◦�g
: A�A◦�g the fuzzy function defined on [0, 1]X determined by �g in accordance

with (5).
Then f◦�g

is an interpolating fuzzy function for fuzzy data {(Ai , Bi ))|i = 1, 2}. Moreover, f◦�g
|D = ℘B M , where

D = {A|A = Ec, c1 ≤ c ≤ c2} and ℘B M is given by (21).

Proof. The statement follows from (10), i.e., for all A = Ec, where c1 ≤ c ≤ c2,

f◦�g
(A) = Ec ◦ �g = Fg(c) = ℘B M (A). �

6. Fuzzy interpolation by convex completion

Dubois and Prade et al. [10,13,28] proposed another approach to the problem of interpolation. They focused on
interval interpolation using data {(Ai , Bi ))|i = 1, . . . , n}, where Ai and Bi are closed intervals on the real line.
Intervals are considered as ordered pairs of real numbers with pointwise operations over them.

In this section, we will give an algorithmic description of interpolation by convex completion and then show how
this algorithmic description can be represented analytically. The representation will be based on formula (5) where
fuzzy relation R is given by (12).

6.1. Algorithmic description

Let us give more technical details in addition to the assumptions (i)–(v) above: the case n = 2 is considered so that
A1 = [a11, a12], A2 = [a21, a22], B1 = [b11, b12], B2 = [b21, b22], where a11≤a12<a21≤a22 and b11≤b12<b21≤b22.
In this case, X = [a11, a22] and Y = [b11, b22] are universal sets for antecedents and consequents, respectively. A
proposed solution is an interpolating fuzzy function, say ℘D , defined on the domain A that consists of all closed
intervals A = [a, a] such that a11 ≤ a ≤ a ≤ a22. In other words, A consists of all closed intervals that are inside X.

The following algorithm for computing B = ℘D(A) for given A = [a, a] is proposed (the details are in [28]):

(i) if for some � ∈ [0, 1], A = A� so that a = (1 − �)a11 + �a21, a = (1 − �)a12 + �a22 then B = B�, where
b = (1 − �)b11 + �b21, b = (1 − �)b12 + �b22;
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(ii) if for some � ∈ [0, 1], A� ⊂ A then A = ⋃
�:A�⊂A A� and

B =
⋃

�:A�⊂A

B�;

(iii) if for some � ∈ [0, 1], A ⊂ A� then A = ⋂
�:A⊂A�

A� and

B =
⋂

�:A⊂A�

B�.

The preorder � can be specified on A as follows: if [a, a] ⊆ X and [a′, a′] ⊆ X then

[a, a] � [a′, a′] if
a + a

2
≤ a′ + a′

2
.

It is easy to see that A = {A|A = [a, a] ⊆ X, A1 � A � A2}.
Let us discuss a justification of the proposed algorithm. In [28], the justification was based on the fact that according

to classical reasoning, both formulas (A1 ∨ A2) → (B1 ∨ B2) and (A1 ∧ A2) → (B1 ∧ B2) are consequences of those
two: A1 → B1 and A2 → B2. Therefore, if we accept the rule base {A� → B�|� ∈ [0, 1]}, we will also accept the
results (deduced rules) of the algorithm. However, there exist deduced rules for which intervals in antecedents have
non-empty intersections, whereas intervals in consequents do not. Those situations were characterized as potentially
incoherent. Conditions that produce such situations were examined in [28].

To justify the proposed algorithm in terms of our approach, we must prove that the interpolating fuzzy function ℘D
fulfills conditions I1–I2. The proof will consist of verification of (4) on the domain A and (15) for A1, A2. Recall that
A consists of all closed intervals A = [a, a] such that a11 ≤ a ≤ a ≤ a22. By [28], A can be divided into three
subclasses A1 ∪ A2 ∪ A3, where

A1 = {A�|� ∈ [0, 1]},
A2 = {A ∈ A|(∃� ∈ [0, 1])(A� ⊂ A)},
A3 = {A ∈ A|(∃� ∈ [0, 1])(A ⊂ A�)}.

The range of ℘D can be specified by the set {0, 1}Y of all subsets of Y so that ℘D : A → {0, 1}Y establishes a
correspondence between A and {0, 1}Y . The proof that ℘D is a fuzzy function, i.e., ℘D fulfills (4), follows from the
fact that classes A1,A2,A3 are mutually disjoint (see [28, Proposition 1]). The proof that ℘D is an interpolating
fuzzy function, i.e., ℘D fulfills (15) for A1, A2, follows from the case (i) of the algorithm. Therefore, ℘D is indeed
an interpolating fuzzy function, and the proposed algorithm is justified. Moreover, a potentially incoherent situation
(see above) means that for some A ∈ A3, ℘D(A) = 0. In our general approach, this case makes no specific difficulty
(we do not assign a logical meaning to values from the range of ℘D), but it corresponds to a situation called “potential
incoherence” by the authors of [28], i.e., a situation where the input interval A is logically inconsistent with the convex
completion of the rule base.

6.2. Interpolating fuzzy functions and fuzzy interpolation by convex completion

The algorithmic description of the function ℘D given above determines it as an interpolating fuzzy function defined
on A = A1 ∪A2 ∪A3, where A is a class consisting of all closed intervals of X. In this subsection, we will show how
the interpolating fuzzy function ℘D can be analytically represented on the domain A with the help of fuzzy relation
�g given by formula (8).

We will choose the Łukasiewicz algebra on L = [0, 1] as an underlying residuated lattice. The following steps lead
to �g:

(a) compute the centers c1, c2 of intervals A1, A2, and d1, d2 of intervals B1, B2:

c1 = a11 + a12

2
, c2 = a21 + a22

2
, d1 = b11 + b12

2
, d2 = b21 + b22

2
,
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Fig. 1. Fuzzy relation R on [c1, c2] × X (left), and fuzzy relation F on [d1, d2] × Y (right).

(b) compute the lengths l1, l2 of intervals A1, A2 and m1, m2 of intervals B1, B2:

l1 = a12 − a11, l2 = a22 − a21, m1 = b12 − b11, m2 = b22 − b21,

(c) for each � ∈ [0, 1], let

l� = �l2 + (1 − �)l1, m� = �m2 + (1 − �)m1,

(d) for each � ∈ [0, 1], define the similarities S� on [c1, c2], and Q� on [d1, d2] by

S�(u, x) = max

(
1 − 2|u − x |

l�
, 0

)
, Q�(v, y) = max

(
1 − 2|v − y|

m�
, 0

)
,

(e) define the reflexive fuzzy relation R on [c1, c2] (see Fig. 1) by

R(t, x) = S�t (t, x) where �t = t − c1

c2 − c1
,

and for all c ∈ [c1, c2], define the R-fuzzy point Rc as a fuzzy set on X by the following extension of the membership
function Rc : [c1, c2] → [0, 1] to the domain X \ [c1, c2]:

Rc(x) =
{

R(c, c + |c − x |) if x < c1,

R(c, c − |c − x |) if x > c2.

(f) define the reflexive fuzzy relation F on [d1, d2] (see Fig. 1) by

F(s, y) = Q�s (s, y) where �s = s − d1

d2 − d1
,

and similarly to the above, for all d ∈ [d1, d2], define the F-fuzzy point Fd as a fuzzy set on Y,
(g) define the ordinary (linear) function g : [c1, c2] → [d1, d2] (see Fig. 2)

g(x) = d1 + x − c1

c2 − c1
(d2 − d1),

(h) finally, define the fuzzy relation �g (see Fig. 3) on X × Y (see also (12)) by

�g(x, y) =
∨

x ′∈[c1,c2]

(R′
x (x) ∗ Fg(x ′)(y)), x ∈ X, y ∈ Y,

where Rx and Fg(x ′) are fuzzy points with extended membership functions.
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Fig. 2. Function g(x) = d1 + ((x − c1)/(c2 − c1))(d2 − d1) on the domain [c1, c2]. The slope of g is less than or equal to each of the slopes of the
diagonals of rectangles A1 × B1 and A2 × B2.
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Fig. 3. Fuzzy relation �g on X × Y .

By the example in Section 3.1, �g determines the fuzzy function f◦�g
on the domain [0, 1]X (recall that X =

[a11, a22]). However, we will consider f◦�g
on three different subdomains X1,X2,X3 ⊂ [0, 1]X such that

X1 = {Rc|c ∈ [c1, c2]} is an R-fuzzy space of X,

X2 = {RM∪|M ⊆ [c1, c2]} where RM∪(x) =
∨
c∈M

R(c, x), x ∈ X,

X3 = {RM∩|M ⊆ [c1, c2]} whereRM∩(x) =
∧
c∈M

R(c, x), x ∈ X.

We will show that restrictions ℘D|A1 , ℘D|A2 , ℘D|A3 can be obtained with the help of respective restrictions f◦�g
|X1 ,

f◦�g
|X2 , f◦�g

|X3 . The proof will be based on Theorem 1 which, however, requires extensionality of function g with
respect to a reflexive fuzzy relation R on X and a similarity F on Y. Therefore, we will first impose limitations (Theorem
3) that guarantee that the function g (step (g) above) fulfills (11) with respect to R and F (both are reflexive) constructed
on steps (e) and (f) above. Then we will show (Proposition 1) which conditions guarantee that F is a similarity on Y.
Proofs of both Theorem 3 and Proposition 1 are given in the Appendix.
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Fig. 4. The straight line g lies between g1 and g2.

Theorem 3. Let us accept steps (a)–(h) above. Then the function g fulfills (11), i.e., for all t ∈ [c1, c2], x ∈ X

R(t, x) ≤ F(g(t), g(x)),

if and only if for all � ∈ [0, 1] the following inequality holds:

d2 − d1

c2 − c1
≤ min

(
m1

l1
,

m2

l2

)
. (22)

A geometrical meaning of the condition (22) is that the slope of the straight line g is less than or equal to each of the
slopes of the diagonals of rectangles A1 × B1 and A2 × B2, see Fig. 2.

In [28], it is proved that the set of rules {A� → B�|� ∈ [0, 1]} defines a relation R = ⋂
�∈[0,1](A� → B�), which

must satisfy (∀x ∈ [a11, a22])(∃y ∈ [b11, b22]) ((x, y) ∈ R) so as to ensure the composition A ◦ R to be a non-empty
interval. When this condition is violated, it corresponds to the potential incoherence (see the last paragraph of the
preceding subsection). It is proved that potential incoherence is avoided if and only if the segment g1 limited by points
(a11, b11) and (a21, b21) lies under the segment g2 defined by points (a12, b12) and (a22, b22) in the area limited by
abscissae a12 and a21, see Fig. 4. By construction, it is easy to see that in the latter case, the segment g lies between g1
and g2. Moreover, this is the case if and only if the condition on slopes given in Theorem 3 (positive slope diagonals of
the rectangles in Fig. 4) is verified. In the limit (when the three slopes, i.e., of g and the diagonals, are equal the three
segments are aligned).

Proposition 1. Let us accept steps (a)–(h) above, and moreover, assume that the lengths m1, m2 of the intervals B1,
B2 are equal. Then fuzzy relation F constructed on the step (f) is a similarity on [d1, d2].

Further on, we will accept steps (a)–(h) with the additional limitation m1 = m2 and the condition (22). They all
assure that the conditions of Theorem 1 are fulfilled. Therefore, the fuzzy relation �g (step (h)) determines the fuzzy
function f◦�g

such that for all c ∈ [c1, c2], f◦�g
(Rc) = Fd .

Below, we will characterize restrictions f◦�g
|X1 , f◦�g

|X2 , f◦�g
|X3 and show how they yield ℘D|A1 , ℘D|A2 , ℘D|A3 .

The following assertions can be verified:

(1) Let f◦�g
be restricted to the domain consisting of R-fuzzy points of [c1, c2], i.e, to the class X1 = {Rc|c ∈ [c1, c2]}.

Then by Theorem 1, the range of such a restricted f◦�g
is equal to Y1 = {Fd |d ∈ [d1, d2]} or to F-fuzzy points of

[d1, d2]. Moreover, the restriction f◦�g
|X1 behaves according to the equality f◦�g

|X1 (Rc) = Fg(c).
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Fig. 5. Fuzzy set RM∪ on X and fuzzy set f◦�g |X2 (RM∪ ) = Fg(M)∪ on Y.

(2) Let Supp(Rc) (Supp(Fd )) be the support of the R-fuzzy point Rc (Fd ). Let us consider two sets of closed intervals
Supp(X1) = {Supp(Rc)|c ∈ [c1, c2]} and Supp(Y1) = {Supp(Fd )|d ∈ [d1, d2]}, and see that Supp(X1) = A1,
where A1 belongs to the domain of ℘D . The following function f ′◦�g

: Supp(X1) → Supp(Y1), given by the
equality

f ′
◦�g

(Supp(Rc)) = Supp( f◦�g
(Rc)) = Supp(Fg(c)),

coincides with the restriction ℘D|A1 , where ℘D|A1 was described in step (i) of the algorithm above. In other words,
if A = A�, where � ∈ [0, 1], and if c = �c2 + (1 − �)c1, then B = f ′◦�g

(Supp(Rc)).
(3) Let f◦�g

be restricted to the domain consisting of unions of R-fuzzy points of [c1, c2], i.e., to the class X2 =
{∨c∈M R(c, x)|M ⊆ [c1, c2]}. Denote RM∪ a fuzzy set of X given by the membership function

∨
c∈M R(c, x). By

the equality below (the proof is a simple technical exercise)

f◦�g
(RM∪ ) =

∨
c∈M

Fg(c), (23)

we see that the range of the restriction f◦�g
|X2 is equal to Y2 = {∨h∈H F(h, y)|H ⊆ [d1, d2]}. Denote FH∪ a

fuzzy set of Y given by the membership function
∨

h∈H F(h, y). Then the restriction f◦�g
|X2 behaves according

to the equality f◦�g
|X2 (RM∪ ) = Fg(M)∪ (see Fig. 5).

(4) Let Supp(RM∪ ) (Supp(FH∪ )) be the support of RM∪ (FH∪ ). It is easy to see that if M(H) is an interval, then
Supp(RM∪ ) (Supp(FH∪ )) is an interval as well.
Let us consider two sets of closed intervals Supp(X2) = {Supp(RM∪ )|M = [m1, m2] ⊆ [c1, c2]} and Supp(Y2) =
{Supp(FH∪ )|H = [h1, h2] ⊆ [d1, d2]}, and see that Supp(X2) = A2, where A2 belongs to the domain of ℘D . The
following function f ′′◦�g

: A2 → Supp(Y2), given by the equality

f ′′
◦�g

(Supp(RM∪ )) = Supp( f◦�g
(RM∪ )) = Supp(Fg(M)∪ ),

coincides with the restriction ℘D|A2 , where ℘D|A2 was described in the step (ii) of the algorithm above. In other
words, step (ii) considers arguments A such that for some � ∈ [0, 1], A ⊃ A�. By [28], the inclusion A ⊃ A�
is valid for � ∈ [�, �], where the latter is a certain interval. Let c = �c2 + (1 − �)c1, c = �c2 + (1 − �)c1 and
M = [c, c]. Then it can be verified that B = f ′′◦�g

(Supp(RM )).
(5) Let f◦�g

be restricted to the domain consisting of intersections of R-fuzzy points of [c1, c2], i.e., to the class
X3 = {∧c∈M R(c, x)|M ⊆ [c1, c2]}. Denote by RM∩ the fuzzy set of X given by the membership function∧

c∈M R(c, x). It can be proved that (the proof is a simple technical exercise)

RM∩ ◦ �g ≤
∧
c∈M

Fg(c). (24)
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Fig. 6. Fuzzy set RM∩ on X and fuzzy set Fg(M)∩ on Y.

Denote by FH∩ the fuzzy set of Y given by the membership function
∧

h∈H F(h, y). Then the restriction f◦�g
|X3

behaves according to the inequality f◦�g
|X3 (RM∩) ≤ Fg(M)∩ (the graph of Fg(M)∩ can be seen from Fig. 6).

(6) In a manner similar to that employed in assertion (4) above, we consider two sets of closed intervals Supp(X3) =
{Supp(RM∩ )|M = [m1, m2] ⊆ [c1, c2]} and Supp(Y3) = {Supp(FH∩ )|H = [h1, h2] ⊆ [d1, d2]}, and see that
Supp(X3) = A3 where A3 is a part of the domain of ℘D . Let us define two functions: f ′′′◦�g

: A3 → Supp(Y2) and

f ′′′ : A3 → Supp(Y2) so that

f ′′′
◦�g

(Supp(RM∩ )) = Supp( f◦�g
(RM∩ ))

and

f ′′′(Supp(RM∩ )) = Supp(Fg(M)∩ ).

It is easy to see that f ′′′ coincides with the restriction ℘D|A3 , whereas for all Supp(RM∩ ) ∈ Supp(X3), the following
inequality holds:

f ′′′
◦�g

(Supp(RM∩ )) ≤ f ′′′(Supp(RM∩)).

Summarizing assertions (2), (4) and (6) above, we conclude that both functions f ′◦�g
∪ f ′′◦�g

∪ f ′′′ and f ′◦�g
∪ f ′′◦�g

∪ f ′′′◦�g

are interpolating fuzzy functions defined on the extended domain A. These functions coincide on A1 ∪ A2. The
interpolating fuzzy function ℘D coincides with f ′◦�g

∪ f ′′◦�g
∪ f ′′′ and is greater than or equal to f ′◦�g

∪ f ′′◦�g
∪ f ′′′◦�g

.
The behavior of the latter fuzzy function is determined by the fuzzy relation �g . Therefore, the function can be further
extended to the domain [0, 1]X .

6.3. Analogy-based interpolation and fuzzy interpolation by convex completion

In this subsection, we will compare the two interpolating fuzzy functions ℘B M and ℘D previously considered in
Sections 5.2 and 6.2. Both functions are formally represented with the help of fuzzy relations that we denoted by the
same symbol �g . In general, however, those fuzzy relations differ because their constituents have different properties.
Therefore, fuzzy functions ℘B M and ℘D differ as well. We give additional details below.

The domain D = {A|A = Ec, c1 ≤ c ≤ c2} of ℘B M is a similarity-based fuzzy space ([c1, c2], E), i.e., a class
of E-fuzzy points of the interval [c1, c2]. The domain A of ℘D is a union of three subdomains A = A1 ∪ A2 ∪ A3,
where the first A1 consists of closed supports of fuzzy sets from X1. The latter is an R-fuzzy space on X, i.e., a class
of R-fuzzy points of the respective interval [c1, c2]. Thus, domains D and X1 have similar structures if and only if both
fuzzy relations, denoted by E and R, are similarities.

Another difference between ℘B M and ℘D is the further extension of ℘D to closed supports of fuzzy sets in X2 ∪X3,
i.e., to A2 ∪ A3.
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7. Fuzzy interpolation based on closeness relations

Another approach to fuzzy interpolation is that proposed in [6]. In the processing of this method, we will use formula
(6) for analytical representation of the respective interpolating fuzzy function, where fuzzy relation R is given by (12).

7.1. Algorithmic description

Fuzzy data {Ai , Bi )|i = 1, . . . , n} are characterized as a set of fuzzy if–then rules K = {“If X = Ai then Y =
Bi ”|i = 1, . . . , n}. The basic idea is to interpret each fuzzy rule “If X = Ai then Y = Bi ” as a kind of meta-inference
rule stating

“The closer the input A is to Ai , the closer the output B is to Bi ”.

To use this interpretation for fuzzy interpolation, we need to have a pair of L-valued fuzzy relations, closeX : L X ×L X →
L and closeY : LY × LY → L , on the input and output spaces, respectively, modeling a graded notion of closeness.
For the moment, we will only assume that they are reflexive relations, i.e., closeX (A, A) = 1 for all A ∈ L X and
closeY (B, B) = 1 for all B ∈ LY . Then the above interpretation of the fuzzy rule “If X = Ai then Y = Bi ” comes
down to the condition

closeX (A, Ai ) ≤ closeY (B, Bi ). (25)

Now, if K is the set of fuzzy if–then rules given above, then the suitability of the closeX and closeY relations for
interpolation is understood as follows. We require that condition (25) be satisfied by all rules in K. That is, we require
that the inequalities

{closeX (A j , Ai ) ≤ closeY (B j , Bi )|i, j = 1, . . . , n} (26)

be satisfied. In such a case, we will call the pair (closeX , closeY ) interpolative with respect to the rule set K. If so, then
given an input X = A, a compatible output Y = B according to K and (closeX , closeY ) would be among those B ′ that
solve the following set of inequalities:

�i ≤ {closeY (B ′, Bi )|i = 1, . . . , n}, (27)

where �i = closeX (A, Ai ). For instance, it is meaningful to choose B as the least specific (i.e., the pointwise biggest)
B ′ satisfying (27).

This approach can be refined when the input and output spaces provide not only a pair of interpolative closeness
relations but also an entire parametric family M = {(closeX

� , closeY
� )}�∈�, with � ⊂ R+, of decreasingly stricter

interpolative closeness relations, i.e., such that

(1) for all �, closeX
� (A j , Ai ) ≤ closeY

� (B j , Bi ) for all i, j = 1, . . . , n
(2) if � ≤ �′ then closeX

� ≤ closeX
�′ and closeY

� ≤ closeY
�′

(3) close0
X and close0

Y , restricted to the (classical) singletons of X and Y, respectively, are the crisp identity relations.
(4) for all A, A′ ∈ L X and B, B ′ ∈ LY , sup�∈� close�

X (A, A′) = 1 and sup�∈� close�
Y (B, B ′) = 1.

In such conditions, for a given input X = A and according to K and a family of closeness relations
{(closeX

� , closeY
� )}�∈�, a compatible output for Y will be any fuzzy set B ∈ LY that satisfies the following inequalities:

{closeX
� (A, Ai ) ≤ closeY

� (B, Bi )|i = 1, . . . , n, � ∈ �}. (28)

However, it is meaningful to apply the minimal specificity principle here (e.g., [9]) and to take as the solution the least
specific B satisfying (28).

For example, we describe an instance (in fact, two instances) of the general approach. This example uses a family of
fuzzy similarity relations over the reals to define the closeness relations closeX

� and closeY
� . Suppose that the input and

output spaces are the real line R for simplicity, and suppose further that we have a parametric nested family of fuzzy
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similarity relations on R, S = {S� : R2 → [0, 1]|0 ≤ � < +∞}, such that S0 is the crisp equality and S+∞ = 1.
An example of such a parametric family of relations on R2 is the family defined by

S�(x, y) = max

(
1 − |x − y|

�
, 0

)
(29)

for any real � > 0, and S0(x, y) being the classical equality.
One can then consider two families of closeness relations on [0, 1]R, {H1

� }�∈� and {H2
� }�∈�, induced by the family

of similarities S. The first family is defined by

H1
� (E, D) = (E�S� ◦ D) (30)

i.e., according to (2), H1
� (E, D) is nothing but the degree of inclusion of E into the extended fuzzy set D with the

similarity S�. 8 The second family is defined by symmetrization:

H2
� (E, D) = min((E�S� ◦ D), (D�S� ◦ E)).

Obviously, H1
� is reflexive and H2

� is both reflexive and symmetric. Moreover, they are ∗-transitive whenever S� is.
The proof is in Lemma 1 in the Appendix.

In the following we will write H� when we do not distinguish between H1
� and H2

� .
Actually, given a fuzzy rule base K = { Ri : “If X = Ai then Y = Bi ” |i = 1, . . . , n}, it is not customary to take the

full K into account to perform interpolation given an input X = A. Rather, it is usual to consider only a subset of rules
K (A) ⊆ K that are most closely related to A. According to our assumptions in Section 4.3, K (A) will consist of only
two rules.

Finally let us define the family of interpolative closeness relations M = {(closeX
� , closeY

� )}�∈[0,+∞) based on the
H� measures as follows: for each �,

closeX
� = H�, closeY

� = H f (�),

where

f (�) = inf{� ∈ R+|∀Ri , R j ∈ K (A), H�(Ai , A j ) ≤ H�(Bi , B j )}. (31)

Note that if this infimum is actually a minimum, then the family of closeness relations M is indeed interpolative with
respect to the rule set K (A). Moreover, if the Ai ’s are totally pairwise disjoint, then H0(Ai , A j ) = 0 for i � j , and thus
f (0) = 0.

In this setting, the proposed approach consists of taking, as the interpolated solution for an input X = A, the output
Y = B where

B =
⋂

{F�(A, Ri )|Ri ∈ K (A), S� ∈ S} (32)

with the fuzzy subset F�(A, Ri ) of Y being the least specific B ′ such that closeX
� (A, Ai ) ≤ closeY

� (B ′, Bi ). In [6] it is
shown that F�(A, Ri ) is then defined by

F�(A, Ri )(y) = H�(A, Ai ) → (S f (�) ◦ Bi )(y) for all y ∈ Y. (33)

Note that even though the formal expression for the output (32) is the same for both types of closeness relations defined
by H1

� and H2
� , the output fuzzy set is not generally the same.

It is informative to note that the method described in [14] can be formulated, in part, in terms of this approach.
In fact, Esteva et al. use closeX

� , closeY
� defined by Ruspini’s implication measures H1

� induced by some parametric
families of similarity relations on the input and output spaces, and the output B is required to satisfy (28) with equalities.
Sometimes this stronger condition is too strong to yield a fuzzy set as solution. As noted in [14], this method applied to
triangular fuzzy sets gives the same results for pairs of sparse rules as does the analogy-based interpolation explained
in Section 6.2.

8 Recall that the fuzzy set S� ◦ D is defined as (S� ◦ D)(x) = ∨
y∈R S�(x, y) ∗ D(y).
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7.2. Interpolating fuzzy functions and fuzzy interpolation based on closeness

Let us analyze the above described instantiation of the approach to fuzzy interpolation that results in formula (32).
The latter gives an interpolated solution B for an input A in the sense described above and is different from the one
proposed in Section 4.2. Because (32) uniquely assigns B to A, it can be viewed as a formal representation of a fuzzy
function. We denote this fuzzy function by ℘G : L X → LY . Moreover, if we substitute F�(A, Ri ) in (32) for the
right-hand side of (33), we then obtain a formal representation of ℘G : L X → LY in the form

℘G(A) =
∧
�∈�

2∧
i=1

(H�(A, Ai ) → (S f (�) ◦ Bi )), (34)

where � = {�|0 ≤ � ≤ +∞}, f (�) is given by (31), and for each � ≥ 0, S� is a similarity relation from the nested
family S = {S� : 0 ≤ � ≤ +∞} of similarity relations on R. In the following, we will assume that if 0 ≤ �1 ≤ �2,
then S�1 ≤ S�2 .

In this subsection, we will show that under certain restrictions on the fuzzy data and on the domain of ℘G , the
latter satisfies the interpolation condition (15). Moreover, we will show that such a restricted fuzzy function ℘G can be
represented formally with the help of a certain fuzzy relation and the �-composition given by (6).

Let us list the assumptions made about the fuzzy data A1, A2:

(a) A1, A2 are normal fuzzy sets with xAi ∈ Core(Ai ), i = 1, 2,
(b) there exists �∗ ≥ 0 such that for every i = 1, 2, Ai ≤ S�∗

xAi
,

(c) S�∗
xA1

∧ S�∗
xA2

= 0.

The set � = {�|0 ≤ � ≤ +∞} will be partitioned into two subsets � = �1 ∪ �2 so that

�1 = {�|0 ≤ � ≤ �∗}, �2 = {�|�∗ < � ≤ +∞}. (35)

For every � ∈ �2, we consider

S�
xAi

�R = S f (�) ◦ Bi , i = 1, 2 (36)

as an auxiliary system of fuzzy relation equations (where R is unknown). In [27], we proved that the inequality (31)
guarantees the solvability of (36) and moreover, the following fuzzy relation

R̂�(x, y) =
2∧

i=1

(S�
xAi

(x) → (S f (�) ◦ Bi )(y)) (37)

is a solution of (36).
Our results will be based on the propositions given below. We retain the notation of Section 7 (see [26] for proofs).

Theorem 4. Let A1, A2 ∈ L X , B1, B2 ∈ LY be normal fuzzy sets with xAi ∈ Core(Ai ) and xBi ∈ Core(Bi ), i = 1, 2.
Let the family of interpolative closeness relations M be based on a H� measure, let f : � → � be the function defined
by (31), and let �∗ determine the partition (35). Then for every j = 1, 2, the interpolated solution (32) for A j is equal
to B j , and the fuzzy function ℘G given by (34) satisfies the equality

℘G(A j ) = B j .

Corollary 1. Let all the assumptions of Theorem 4 be satisfied, and for every j = 1, 2, let the interpolated solution
for A j be given by

℘̃G(A) =
∧
�≥�∗

2∧
i=1

(H�(A, Ai ) → (S f (�) ◦ Bi )), (38)
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where, contrary to (34), the external inf is taken over a subset of �. Then for every j = 1, 2,

℘̃G(A j ) = B j .

Theorem 4 and its corollary confirm that fuzzy functions (34) and (38) are interpolating in both senses: the classical
one based on the interpolation condition (15) and the one based on closeness (25). Note that both functions are defined
on the domain L X .

We will now show that the interpolating fuzzy function (38) on the restricted domain D (see below) can be represented
with the aid of the fuzzy relation R̂� given by (37), and the �-composition given by (6). The domain D consists of
those normal fuzzy sets that are between A1 and A2, i.e.,

D = {A ∈ L X |xA ∈ Core(A), xA ∈ [xA1, xA2 ], A ≤ S�∗
xA

},
where the core points xA1 , xA2 of the fuzzy sets A1, A2 ∈ L X fulfill the inequality: xA1 < xA2 , and �∗ determines the
partition (35).

Let fuzzy relation R̂� be given by (37) and for all A ∈ D, and all � ≥ �∗, let fuzzy function �� : D → LY be
defined by

��(A)(y) = f�R̂� (S�
xA

) =
∧
x∈X

(S�(xA, x) → R̂�(x, y)), y ∈ Y. (39)

Moreover, for all A ∈ D, let

�(A) =
∧
�≥�∗

��(A),

so that � : A → LY is a fuzzy function on D as well. The next theorem shows that for all A ∈ D, ℘̃G(A) is equal to
�(A). In other words, the respective fuzzy functions coincide.

Theorem 5. Let all the assumptions of Theorem 4 be fulfilled and ℘̃G |D be a restriction of ℘̃G on D. Then the fuzzy
functions � and ℘̃G |D coincide.

8. An axiomatic approach to fuzzy interpolation

An axiomatic approach that considered both approaches proposed in [4,28] appeared in [18]. Seven necessary
conditions (axioms) were formulated in order to state a “logical characterization of the existing rule interpolation
methods.” In addition to two axioms that we formulated above as conditions I1–I2, other axioms demand that an
interpolating fuzzy function should have the following properties: monotonicity, continuity, closeness with respect to
union and intersection, linearity, and preserving “in between.” Moreover, a method (in algorithmic form) for obtaining
an interpolating fuzzy function that fulfills all required axioms was proposed in [18] as well. Implicitly, the proposed
method justifies the logical flavor of this axiomatic approach (in the same sense as a model justifies consistency of a
logical theory).

In this section, we will consider the axiomatic approach to fuzzy interpolation in more (but not in all) technical
details to compare it with approaches previously discussed.

8.1. Algorithmic description

Let assumptions (i)–(iv) above be satisfied and let fuzzy sets A1, A2 be represented by the following triplets:
(pA1 , f A1 , gA1 ) and (pA2 , f A2 , gA2 ) where for each i = 1, 2, pAi is a reference point (e.g., a center of a core), and
f Ai , gAi : [0, 1] → [0, Mi ] are flank functions (non-decreasing, left-continuous mappings from [0, 1] to (−∞, 0])
such that for all x ∈ X ,

Ai (x) =
{

f (−1)
Ai

(x − pAi ) if x ≤ pAi ,

g(−1)
Ai

(pAi − x) if x ≥ pAi .
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Similarly, we suppose fuzzy sets B1, B2 to be represented by triplets: (pBi , fBi , gBi ), i = 1, 2. Let A = (pA, f A, gA)
be an observation, i.e., a fuzzy subset of X with a triplet representation. We again propose to represent the respective
value B of an interpolating fuzzy function by the triplet (pB, fB, gB). The unknown components are computed in three
steps:

Step 1: Compute r = (pA2 − pA)/(pA2 − pA1 ).
Step 2: Compute A′ = (pA′ , f A′ , gA′), B ′ = (pB′ , fB′ , gB′) where

pA′ = pA, pB′ = r pB1 + (1 − r )pB2 ,

f A′ = r f A1 + (1 − r ) f A2 , fB′ = r fB1 + (1 − r ) fB2 ,

gA′ = rgA1 + (1 − r )gA2 , gB′ = rgB1 + (1 − r )gB2 .

Step 3: Transform A′ into A so that

f A = tA, f ◦ f A′ ,

gA = tA,g ◦ gA′ .

Rescale tA, f and tA,g into tB, f and tB,g and apply to fB′ and gB′ to obtain fB and gB so that

fB = tB, f ◦ fB′ ,

gB = tB,g ◦ gB′ .

We have shown that the approach proposed above fulfills all axioms if and only if the following conditions hold:

(a) A1, A2 : X → [0, 1] are continuous functions,
(b) the reference points of A, A1, A2, B1, B2 are centers of their cores,
(c) the observation A : X → [0, 1] is a unimodal function (i.e., it has one extremum-maximum),
(d) functions A, A1, A2, B1, B2 are balanced (see [18]).

At the start of [18], the domain of the proposed extension was formally characterized as a set of valid fuzzy subsets of
X. Subsequently, this characterization was specified as a set of fuzzy subsets of X with triplet representation. However,
the claim given above shrinks the domain by imposing additional requirements. (In our subsequent discussion, we will
characterize the domain so that all requirements are met).

8.2. Interpolating fuzzy functions and axiomatic approach to fuzzy interpolation

It is not difficult to see that any model of the axiomatic approach to fuzzy interpolation is a combination of the
analogy-based interpolation and the interpolation by convex completion discussed in Sections 5 and 6. From that
point of view, the former is an interpolating fuzzy function, say ℘J . Conditions (a)–(d) above characterize a class of
interpolating fuzzy functions that are models of the axiomatic approach to fuzzy interpolation. It follows from these
conditions that the domain of ℘J is a class of all fuzzy sets A (observations) on X such that their respective membership
functions are continuous, normal, convex, unimodal and have reference points at the centers of their cores.

Finally, we postulate conditions in addition to (a)–(d) that guarantee that ℘J has a formal representation. To do so,
we will invoke the fuzzy relation �g given by (8):

• The Łukasiewicz algebra on L = [0, 1] is chosen as an underlying residuated lattice.
• Let h A1 , h A2 , hB1 , hB1 : [0, 1] → [0, 1] be decreasing functions such that for all x ∈ [0, 1],

h A1 (x) ≤ 1 − x, h A2 (x) ≤ 1 − x, hB1 (x) ≥ 1 − x, hB2 (x) ≥ 1 − x .

• For all x ∈ X , let

A1(x) = h(−1)
A1

(|x − pA1 |), A2(x) = h(−1)
A2

(|x − pA2 |),
B1(x) = h(−1)

B1
(|x − pB1 |), B2(x) = h(−1)

B2
(|x − pB2 |),
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• Let us define the ordinary function g : [pA1 , pA2 ] → [pB1 , pB2 ]

g(x) = pB1 + x − pA1

pA2 − pA1

(pB2 − pB1 )

A proof of this claim will appear in a forthcoming paper on interpolating fuzzy functions.

9. Conclusion

We have characterized the problem of interpolation of fuzzy data. Our approach was to treat the problem in terms
of extension of a fuzzy function (in the sense of Definition 3) given on a restricted domain to a fuzzy function given
on a wider domain. Accordingly, we introduced and subsequently discussed all notions involved: fuzzy space, fuzzy
functions, fuzzy equality, and similarity. These formalized notions were used to formulate the problem of interpolation
of fuzzy data. We gave a general overview of principal approaches to this problem. We then analyzed the following
four methods: analogy-based interpolation, interpolation by convex completion, interpolation based on closeness, and
flank functions interpolation.

Our main purpose was to develop fuzzy interpolation methods centered on relation-based analytic representation of
a resulting interpolating fuzzy function. For all four methods considered above, we showed how to characterize the
proposed solutions by interpolating fuzzy functions. We also showed how to represent these functions by respective
fuzzy relations and compositions. Our analytic representations reveal the common nature of these previously proposed
methods. Still other approaches have been envisaged [12], where fuzzy data are viewed as ill-known points (rather
than points equipped with similarity or weaker relations), which always leads to a fuzzy output for the result of an
interpolation of a given type (e.g., linear) between such fuzzy points, even when applied to a precise input. Furthermore,
our work offers better understanding of these specific methods. By doing so, it contributes to better general understanding
of the problem of interpolation of fuzzy data.

Appendix

Theorems 3 and 1, proved below, confirm that computation on the basis of convex completion (Section 6) can be
analytically represented by the fuzzy function f◦�g

on the domain X1.

Theorem 2. Let us accept steps (a)–(h) in Section 6.2. Then function g fulfills (11), i.e., for all t ∈ [c1, c2], x ∈ X ,

R(t, x) ≤ F(g(t), g(x)),

if and only if inequality (22) holds, i.e.

d2 − d1

c2 − c1
≤ min

(
m1

l1
,

m2

l2

)
.

Proof. At first, we will prove that under the assumptions of the theorem, g fulfills (11) if and only if for all � ∈ [0, 1]
the following inequality holds:

d2 − d1

c2 − c1
≤ �m2 + (1 − �)m1

�l2 + (1 − �)l1
. (40)

Let t ∈ [c1, c2], x ∈ X be chosen and let �t = (t − c1)/(c2 − c1), �g(t) = (g(t) − d1)/(d2 − d1) be computed.
We show that �t = �g(t). Indeed, using the expression for g (step (g)), we obtain

�g(t) = g(t) − d1

d2 − d1
= 1

d2 − d1

(d2 − d1)(t − c1)

c2 − c1
= t − c1

c2 − c1
= �t .

Then

R(t, x) ≤ F(g(t), g(x)) ⇔ S�t (t, x) ≤ Q�g(t) (g(t), g(x)) ⇔ |t − x |
l�t

≥ |g(t) − g(x)|
m�g(t)

.
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where l�t = �t l2 + (1 − �t )l1, m�t = �t m2 + (1 − �t )m1. Because

|g(t) − g(x)| = (d2 − d1)|t − x |
c2 − c1

,

then

R(t, x) ≤ F(g(t), g(x)) ⇔ m�g(t)

l�t

≥ d2 − d1

c2 − c1
⇔ �t m2 + (1 − �t )m1

�t l2 + (1 − �t )l1
≥ d2 − d1

c2 − c1
.

Because t ∈ [c1, c2] is an arbitrary point, �t runs over [0, 1].
We now prove that inequalities (40) and (22) are equivalent. If we assume (40) and let � = 0 and 1 then

d2 − d1

c2 − c1
≤ m1

l1
and

d2 − d1

c2 − c1
≤ m2

l2
,

and thus

d2 − d1

c2 − c1
≤ min

(
m1

l1
,

m2

l2

)
.

If on the other hand we assume (22) then it is sufficient to prove (40) for � ∈ (0, 1). Let m2/l2 ≤ m1/l1 and r = m2/l2
wherefrom m2 = rl2 and m1 ≥ rl1. Then

�m2 + (1 − �)m1

�l2 + (1 − �)l1
≥ �rl2 + (1 − �)rl1

�l2 + (1 − �)l1
= r = min

(
m1

l1
,

m2

l2

)
.

Therefore,

d2 − d1

c2 − c1
≤ min

(
m1

l1
,

m2

l2

)
≤ �m2 + (1 − �)m1

�l2 + (1 − �)l1
. �

Theorem 3. Let us accept steps (a)–(h) in Section 6.2, and moreover, assume that the lengths m1, m2 of the intervals
B1, B2 are equal. Then fuzzy relation F constructed on the step (f) is a similarity on [d1, d2].

Proof. It is easy to see that by the assumption m1 = m2, for each � ∈ [0, 1], m� = m1 = m2. Therefore, all similarities
Q� on [d1, d2] are equal and they are equal to the fuzzy relation F on [d1, d2]. Thus F is a similarity on [d1, d2] too.

In Lemma 1, the ∗-transitivity of the closeness relation H1
� is proved. �

Lemma 1. If S is reflexive and ∗-transitive, then (E�S ◦ D) ∗ (D�S ◦ F) ≤ (E�S ◦ F).

Proof. The proof is based on the following properties, all of which can be checked easily for any fuzzy sets E, D, F
and any � ∈ [0, 1]:

(1) (E�� ∗ D) ≥ � ∗ (E�D).
(2) S ◦ (� ∗ D) = � ∗ (S ◦ D).
(3) S ◦ (S ◦ D) = S ◦ D.
(4) (E�D) ∗ (D�F) ≤ (E�F).

Proof: let � = E�D = ∧
x E(x) → D(x). Then it holds that D(x) ≥ � ∗ E(x) for every x, noted D ≥ � ∗ E .

Therefore, (S ◦ E�S ◦ D) ≥ (S ◦ E�S ◦ (� ∗ E)) ≥ � ∗ (S ◦ E�S ◦ E) = � ∗ 1 = � = E�D.

Then we have the following chain of inequalities: (E�S ◦ D) ∗ (D�S ◦ F) ≤ (E�S ◦ D) ∗ (S ◦ D�S ◦ (S ◦ F)) =
(E�S ◦ D) ∗ (S ◦ D�S ◦ F) ≤ (E�S ◦ F). �
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