
Egalitarian Utilities Divide-and-Coordinate:
Stop arguing about decisions, let’s share rewards!

Meritxell Vinyals and Juan Antonio Rodriguez-Aguilar and Jesus Cerquides1

Abstract. In this paper we formulate a novel Divide-and-
Coordinate (DaC) algorithm, the so-called Egalitarian Utili-
ties Divide-and-Coordinate (EU-DaC) algorithm. The Divide-and-
Coordinate (DaC) framework [3] is a family of bounded DCOP algo-
rithms that solve DCOPs by exploiting the concept of agreement. The
intuition behind EU-DaC is that agents get closer to an agreement,
on the optimal solution, when they communicate the local max-
marginals utilities for their assignments instead of only their pre-
ferred assignments. We provide empirical evidence supporting this
hypothesis as well as illustrating the competitiveness of EU-DaC.

1 Introduction
A Distributed Constraint Optimization Problem (DCOP) [1] is a
formal framework proposed to model cooperative networks where
agents need to coordinate in a decentralized manner to find the joint
actions that maximize their joint reward. In this work we focus on
DCOP incomplete algorithms with quality guarantees that provide
locally optimal solutions at low cost. By quality guarantees we mean
that agents can bound the error over their solutions. Quality guaran-
tees allow agents to be aware of the goodness of their decisions and
detect when they eventually converge to poor solutions.

At this aim we focus in our previous work in the Divide-and-
Coordinate (DaC) framework [3] which make headway in this direc-
tion. The DaC framework is a family of incomplete algorithms that
allows to solve DCOPs by exploiting the concept of agreement. The
DaC framework provides an upper bound on the quality of the opti-
mal solution that agents can use to return per-instance quality guar-
antees. The Divide-and-Coordinate Sugradient Algorithm (DaCSA)
[3] is a DaC algorithm in which agents coordinate by exchanging
their preferred variable assignments.

Our main contribution in this paper is a new DaC algorithm, the
Egalitarian Utilities Divide and Coordinate algorithm (EU-DaC), a
bounded anytime DCOP algorithms in which agents coordinate us-
ing the individual max-marginal utilities to get closer to an agree-
ment. Concretely, we advance the state-of-the-art by : (1) formulat-
ing a new DaC algorithm, EU-DaC, where agents coordinate over the
information of their max-marginals utilities instead of their individ-
ual preferences; and (2) empirically showing that EU-DaC usually
outperforms DaCSA and gets similar results than MGM-algorithms.

2 Divide-and-Coordinate: an overview
The key idea behind the DaC approach, introduced in [3], is the fol-
lowing: since solving a DCOP is NP-Hard, we can think of dividing
an intractable problem into simpler subproblems that can be individ-
ually solved by each agent. Figure 1 shows an initial division of a

1 Artificial Intelligence Research Institute (IIIA), Spanish Scientific Research
Council (CSIC), Campus UAB, Bellaterra, Spain

X1

X2 X3

x1 r1

a1

xi xj rij
0 0 0
0 1 5
1 0 5
1 1 5

0 0
1 -5

r13r12 X2

X1 X3

x2 r2

a2

0 0
1 -10

r23r12 X3

X1 X2

x3 r3

a3

0 0
1 -2

r23r13
Reward table
of binary
relations

x1=0, x2=1, x3=1

f1 = 10

x1=1, x2=0, x3=1

f2 = 10

x1=1, x2=1, x3=0

f3 = 10* * *

Local
assignments

Utility

Figure 1. Example of an initial division in a 3 agent DCOP.

3-agent DCOP in which each agent uses its local relations to cre-
ate its subproblem. For instance, the problem of agent a1 is com-
posed of its local relation r1 over its variable x1 and all binary rela-
tions shared with its neighbours (r12,r23) (the table on the left shows
the rewards for binary relations). When solving individual subprob-
lems, agents may assign different values to their shared variables,
thus causing conflicts between assignments. For instance, as shown
by the local assignments in figure 1, agent a1 disagrees with a2 and
a3 on x1. Thereafter, each agent proceeds to coordinate, during the
so-called coordinate stage, by exchanging information about its dis-
agreements with its neighbours. Agents subsequently employ infor-
mation on disagreements to jointly update their subproblems, during
the divide stage, to move closer to an agreement. In figure 1, a1 will
exchange information about its conflict over x1 with a2 and a3, and
will use such information to update its subproblem.

Then, the DaC framework is found on the following propositions:
(Proposition 1) The sum of the solutions of individual subprob-

lems is an upper bound on the quality of the optimal solution.
(Proposition 2) If agents reach an agreement on a joint solution

when optimizing subproblems, such solution is the optimal.
Although proposition 2 tells us that agreements stand for opti-

mal solutions, when agents do not agree on their assignments, they
can still provide bounded anytime solutions. At this aim, after ex-
changing information on disagreements with its neighbours, agents
distributedly generate a candidate solution: an assignment for their
variables as close to the agreement as they can. The quality of this
candidate solution is bounded by the upper bound of proposition 1.

Observe that the DaC framework does not make explicit: (1) what
information agents exchange about the disagreement during the co-
ordinate stage; and (2) how to modify subproblems in the divide stage
based on the coordination information to get closer to an agreement.
Hence, particular implementations of these operations lead to dif-
ferent DaC algorithms. Algorithm 1 presents the pseudocode for a
general DaC algorithm, whose operation is described below:

Initialization (lines 1-2). Each agent ai starts by creating its local
problem Φ̄0

i using its local relations.
Divide (lines 4-6). Each agent updates its local problem with coor-

Algorithm 1 DaC(Φ)

Each agent ai runs:
1: bound←∞; solution, Ci ← ∅; bestV alue← −∞;

2: Φ
0
i ← createSubproblem(〈X i,Di,Ri〉);

3: repeat
4: /* Divide stage */
5: Φ

t
i ← updateSubproblem(Φ

t−1
i , {Ψi});

6: (d∗,ti , f∗,ti)← solveSubproblem(Φ
t
i);

7: /* Coordinate stage */
8: for xv ∈ Neighbours(xi) do
9: Ψv

i ← wrapCoordinationInfo(d∗,ti , f∗,ti , Ct−1
i , {Ψ});

10: Ψi
v ← exchangeCoordinationInfo(Ψv

i);
11: end for
12: /*Update bounded anytime solution*/
13: Ct

i ← generateCandidateSolutions(xi, C
t−1
i);

14: if betterBoundOrSolutionAvailable({Ψ}) then
15: Update bound, solution, bestV alue if applies
16: end if
17: until termination condition satisfied
18: return 〈solution, bestV alue, bound〉

dination information and subsequently solves it to obtain its pre-
ferred assignment (d∗i) along with its utility (f∗i). Since the DaC
framework does not specify how each agent uses the information
gathered from its neighbours ({Ψi}) to update its subproblem, the
updateSubproblem function (line 5) is an abstract method.

Coordinate (lines 7-11). Each DaC algorithm must implement the
wrapCoordinationInfo function (line 9) that assesses the coordi-
nation information (Ψv

i) that ai exchanges with its neighbour av .
Bounded anytime solutions (lines 12-16). Each agent ai generates

a candidate solution for its variable xi (Ct
i at line 13) by, for ex-

ample, selecting the assignment in which most agents agree on.
Agents distributedly assess candidate solution and bound’s values
of each pair of divide and coordinate stages and use them to up-
date the bounded anytime solution (lines 14-16).

3 Egalitarian Utilities Divide-and-Coordinate
We propose the Egalitarian Utilities Divide and Coordinate algorithm
(EU-DaC), a novel DaC algorithm that has agents coordinate by:
(1) using their max-marginal utilities as information about their dis-
agreement; and (2) updating their subproblems to get max-marginals
closer to those of their neighbours. The rationale behind EU-DaC
is that if agents agree on the max-marginal utilities, then they agree
on their local assignments. According to DaC [3], this implies that
agents have found a DCOP solution. Next we describe how EU-DaC
implements the coordinate and divide stages of the DaC framework.
Coordinate. Each agent communicates to each one of its neighbours
the maximum utility it can obtain for each one of the possible assign-
ments of their shared variables, the so-called max-marginal utility.
Consider the example in figure 1, the max-marginal utilities of a1 for
its variable x1 are: U1

1 (0) = maxd∈D23 r1(0)+r12(0, d)+r13(0, d) = 10

and U1
1 (1) = maxd∈D23 r1(1) + r12(1, d) + r13(1, d) = 5 . Hence, a1

reports a max-marginal utility of 10 when setting x1 to 0 and of 5
when setting it to 1. Thereafter each agent is ready to assess which
utility changes apply to its subproblem to get closer to its neighbours.
We refer to these utility changes as coordination relations.

On the one hand, each agent as assesses, for each variable of its
neighbours xi ∈ N(xs), a coordination relation (4s,t

i) that quan-
tifies how much as must change its utility for xi to agree with ai:

4s,t
i (d) = Ui,t

i (d)− Us,t
i (d) (1)

On the other hand, as also assesses a coordination relation for its
own variable xs (5s,t

s) to counterbalance the utility updates of its
neighbours:

5s,t
s (d) = −

X
xj∈N(as)

∆
s,t
j (d) (2)

c

Figure 2. Percent gain of EU-DaC with respect to DaCSA and MGM-{2,3}
Divide. Each agent uses its coordination relations to update its lo-
cal subproblem. The goal of an EU-DaC agent when updating its
subproblem is to converge on the max-marginal utilities of its neigh-
bours. Therefore, at each iteration t, each agent as updates its sub-
problem f t

s by adding the coordination relation for each variable:
f

t
s(d) = f

t−1
s (d) + γ · [5s,t

s +
X

xj∈Ns

4s,t
j] (3)

where γ ∈ (0, 1] is a damping parameter that weighs the change.
To summarise, EU-DaC provides particular implementations of

the divide and coordinate stages as follows. On the one hand, during
each divide stage, each agent: (1) updates its subproblem by averag-
ing its local utilities with those of its neighbours according to equa-
tion 3; and (2) solves the updated subproblem. On the other hand,
during the coordinate stage, each agent: (1) exchanges its local max-
marginal utilities over single variables shared with its neighbours;
and (2) assesses its coordination relations using equations 1 and 2.

4 Experiments
We benchmarked EU-DaC against MGM{2,3} algorithms [2] and
DaCSA [3]. We compared these algorithms based on the solution
obtained at a number of message cycles (mcs) and by plotting the
percent gain of EU-DaC with respect to each algorithm. Figures 3
(a)-(c) show the results for 100 agents on small-world, regular grid
and random topologies (we use the same experimental scenarios than
in [3]). Each graph shows the mean over 25 instances of the percent
gain of EU-DaC respect to DaCSA and MGM-{2,3}.

First, observe that in all experimented topologies EU-DaC outper-
forms DaCSA. Thus, our results show that when agents explicitly
communicate their max-marginal utilities instead of their preferred
variable assignments they obtain results closer to an agreement. Ob-
serve that these gains are higher on structured topologies (small-
world and regular grids) than on random ones. Moreover, EU-DaC
usually outperforms MGM-2 in all scenarios and the same applies to
MGM-3 on structured topologies, though these gains are lower than
with respect to DaCSA.

ACKNOWLEDGEMENTS. Work funded by EVE (TIN2009-14702-C02-01),
Agreement Technologies (CONSOLIDER CSD2007-0022, INGENIO 2010) and
Generalitat de Catalunya (2009-SGR-1434). Meritxell Vinyals is supported by the
Ministry of Education of Spain (FPU grant AP2006-04636).

References
[1] Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo,

‘Adopt: asynchronous distributed constraint optimization with quality
guarantees’, Artif. Intell., 161(1-2), 149–180, (2005).

[2] J. P. Pearce, Local Optimization in Cooperative Agent Networks, Ph.D.
dissertation, Dissertation for Doctor of Philosophy in Computer Science,
University of Southern California, Los Angeles, 2007.

[3] Meritxell Vinyals, Marc Pujol, Juan A. Rodriguez-Aguilar, and Jesus
Cerquides, ‘Divide and Coordinate: solving DCOPs by agreement’, in
AAMAS, pp. 149–156, (2010).

