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Abstract. The interpretation of basic conditionals as three-valued
objects initiated by de Finetti has been mainly developed and extended
by Gilio and Sanfilippo and colleagues, who look at (compound) condi-
tionals as probabilistic random quantities. Recently, it has been shown AQ1

that this approach ends up providing a Boolean algebraic structure for
the set of conditional objects. In this paper, we show how that this
probabilistic-based approach can also be developed within the possibilis-
tic framework, where conditionals are attached with possibilistic vari-
ables instead: variables attached with a (conditional) possibility distri-
bution on its domain of plain events. The possibilistic expectation of
these variables now provides a means of extending the original possibil-
ity distribution on events to (compound) conditional objects. Our main
result shows that this possibilistic approach leads to exactly the same
underlying Boolean algebraic structure for the set of conditionals.

1 Introduction

Conditional objects are logical constructs very relevant in knowledge represen-
tation and reasoning. Conditional reasoning plays a prominent role in areas
like non-monotonic reasoning [1–3,14,25,28,29], causal inference [27,33], and
more generally reasoning under uncertainty [8,26,32] or conditional preferences
[7,21,34].

Starting from an initial idea by de Finetti [11,12] (see also [31]), an app-
roach to interpret both basic and compound conditionals as probabilistic ran-
dom quantities have been developed mainly by Gilio and Sanfilippo, see e.g.
[22–24]. In this approach, given a finite algebra of plain events A, with Ω being
its set of atoms, and a conditional probability space (Ω, P ), a conditional (a|b)
is viewed as a three-valued quantity X(a|b) on the set of interpretations Ω such
that X(a|b)(w) “ P (a|b) if w falsifies b, besides taking value 1 when w |“ a^b
and value 0 when w |“ ␣a^b. It is shown that the expectation or prevision of the
variable P(X(a|b)) coincides with the conditional probability P (a|b). This idea
has been recently formalised and extended in [16] to define a random quantity
Xt for each compound conditional t in such a way that its prevision P(Xt) can be
properly regarded as a probability on a Boolean algebra of conditionals T (A),
built over the algebra of plain events A, obtained by identifying conditionals t
sharing the same random quantity Xt.
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2 T. Flaminio and L. Godo

On the other hand, a pure algebraic setting for measure-free conditionals has
been recently put forward in [18] and further developed in [17,20]. More pre-
cisely, in [18], given a finite Boolean algebra A “ (A, ^, _,␣, K, J) of events,
another (much bigger but still finite) Boolean algebra C(A) is built, where basic
conditionals, i.e. objects of the form (a|b) with a P A and b P A′ “ A \ {K},
can be freely combined with the usual Boolean operations, yielding compound
conditional objects, while they are required to satisfy a set of natural properties.
Moreover, the atoms of C(A) are fully identified and it is shown they are in a
one-to-one correspondence with sequences of pairwise different atoms of A of
maximal length. Finally, it is also shown that any positive probability P on the
set of events from A can be canonically extended to a probability µP on the alge-
bra of conditionals C(A) in such a way that the probability µP (‘(a|b)’) of a basic
conditional coincides with the conditional probability P (a|b) “ P (a^b)/P (b).
This is done by suitably defining the probability of each atom of C(A) as a cer-
tain product of conditional probabilities. A nice feature of the two approaches
is that they lead to the same algebraic structure for conditionals, that is, both
algebras T (A) and C(A) turn out to be isomorphic.

In this paper we show that the approach of [16] can also be developed within
the possibilistic framework: each conditional t can be attached with a possibilistic
variables Xt on Ω, where now the uncertainty on the values is governed by a
(conditional) possibility on A, and the possibilistic expectation of these variables
now provides a means of extending the original possibility distribution on events
to (compound) conditional objects. Our main result shows that this possibilistic
approach leads to exactly the same underlying Boolean algebraic structure for
the set of conditionals as those in the probabilistic setting.

2 Preliminaries

From now on we will consider a fixed finite Boolean algebra of ordinary events
A “ (A, ^, _,␣, K, J). For an easier reading, for any a, b P A, we will also write
ab for a ^ b and ā for ␣a, while we will keep denoting the disjunction by a_b.

The set of the atoms at(A) of A is identifiable with the set Ω of interpre-
tations for A, i.e. the set of homomorphisms w : A → {0, 1}. Thanks to this
identification, we will say that an event a P A is true (resp. false) under an
interpretation (or possible world) w P Ω when w(a) “ 1 (resp. w(a) “ 0), also
denoted as w |“ a (resp. w ! a).

We will be interested in conditional events like “if b then a”, or “a given
b”, where a and b are events from A with b different from K. These objects
are denoted by (a|b). Let A|A′ “ {(a|b) : a P A, b P A′}, where A′ “ A \
{K}, be the set of all conditionals that can be built from A, that will also be
called basic conditionals. By compound conditionals we will understand Boolean-
style combinations of basic conditionals. More formally, they will be elements of
T(A), the term algebra of type (^, _,␣, K, J) over A|A′, so that T(A) contains
arbitrary terms generated from elements of A|A′ (taken as variables) that are
freely combined with the operations from the signature, without any specific
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Conditional Objects as Possibilistic Variables 3

properties. For instance, if a, c, e P A and b, d, f P A′, then (a|b) ^ (c|d) or
(a|b) _ ((c̄|d) ^␣(e|f)) are compound conditionals from T(A).

In the rest of this section we recall from [16] a reduction procedure for com-
pound conditionals from T(A) given an interpretation. The idea of the reduction
is to partially evaluate conditionals by classical evaluations in accordance with
de Finetti’s three-valued semantics. Under this semantics, a conditional (a|b) is
deemed to be true in w when w |“ a and w |“ b, false when w |“ b and w ! a, and
undefined if w ! b. In other words, an interpretation w : A → {0, 1} partially
extends to A|A′ as follows:

w(a|b) “

⎧
⎨

⎩

1, if w(a) “ w(b) “ 1
0, if w(a) “ 0, w(b) “ 1
undefined, if w(b) “ 0

Although some of the basic components of a compound conditional may remain
undefined for a given interpretation w, we can sometimes provide a definite
evaluation or at least a simplified form of the conditional, assuming a Boolean
behaviour of the operations. For instance if w is such that w |“ ābcd̄, then
w((a|b) ^ (c|d)) “ 0 ^ w(c|d) “ 0, while w((c|b) ^ (a|d)) “ 1 ^ w(a|d) “ w(a|d).
So, from the point of view of w, we can reduce (a|b)^ (c|d) to K (the conditional
that always evaluate to false), while (c|b) ^ (a|d) can be reduced to (a|d).

More formally, for every t P T(A), let us write Cond(t) “
{(a1|b1), . . . , (an|bn)} for the set of basic conditionals appearing in t, and let
us denote by b(t) “ b1 _ . . . _ bn the disjunction of the antecedents in Cond(t).

Definition 1. Let w P Ω be a classical interpretation and let t P T(A) be a
term. The w-reduct of t, denoted tw, is the term in T(A), obtained as follows:

(1) replace each (ai|bi) P Cond(t) by J if w |“ aibi, and by K if w |“ āibi,
(2) apply the following reduction rules to subterms of t until no further reduction

is possible: for every subterm r of t

␣J :“ K, ␣K :“ J, r^J “ J^r :“ r, r^K “ K^r :“ K, r_J “ J_r :“ J,
r_K “ K_r :“ r.

This symbolic reduction procedure has some interesting properties.

Fact 1. (1) If w |“ b̄(t), that is w does not satisfy no antecedent of the condi-
tionals in t, then no reduction is possible and hence tw “ t.

(2) The reduction commutes with the operation symbols, in the following
sense: for every terms t, s P T(A) and for every w P Ω: (i) (␣t)w “ ␣tw; (ii)
(t^s)w “ tw^sw; and (iii) (t_s)w “ tw_sw.

In the following, we will denote by Red(t) “ {tw|w P Ω} the set of w-reducts of
t, and by Red0(t) “ Red(t) \ {t}, the set of its proper w-reducts.

Example 1. Let t “ (a|b)^((c|d)_␣(e|f)) and let w such that w(a) “ 1, w(b) “
0, w(c) “ 0, w(d) “ 0, w(e) “ 1, w(f) “ 1, i.e. w |“ ab̄c̄d̄ef . Then

tw “ (a|b)^((c|d)_␣J) “ (a|b)^((c|d)_K) “ (a|b)^(c|d).
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4 T. Flaminio and L. Godo

Let w′ such that w′ |“ abcd̄ef . Then tw
′ “ J^((c|d)_␣J) “ (c|d)_K “ (c|d).

In fact, one can check that

Red0(t) “ {J, K, (a|b), (c|d),␣(e|f), (a|b)^(c|d), (a|b)^␣(e|f), (c|d)_␣(e|f)}.!

3 Possibilistic Variables and Their Expectations

We first recall the notion of conditional possibility measures. Coletti and col-
leagues proposed an axiomatic approach to the notion of conditional possibility,
similar to the case of conditional probability that is a primitive notion, not
derived from a (unconditional) possibility, see e.g. [4,9,10]. The following defi-
nition is basically from [4].

Definition 2. Given a (continuous) t-norm ⊙, a ⊙-conditional possibility1 mea-
sure on A is a binary mapping Π(·|·) : A ˆ A′ → [0, 1], where A′ “ A \ {K},
satisfying the following conditions:

(CΠ1) Π(a|b) “ Π(a ^ b|b), for all a P A, b P A′

(CΠ2) Π(·|b) is a possibility measure for each b P A′

(CΠ3) Π(a^b|c) “ Π(b|a^c)⊙Π(a|c), for all a, b, c P A such that a^c P A′.

We will call the pair (A,Π) a ⊙-conditional possibility space.

In what follows, given a ⊙-conditional possibility Π : Aˆ A′ → [0, 1], for any
event a P A, we will write Π(a) to denote Π(a|J), without danger of confusion.
Note that Π(·) “ Π(·|J) is indeed a possibility measure.

Also, whenever it is clear by the context, we will simply say that Π is a
conditional possibility without explicitly referring to the t-norm ⊙.

Let (A,Π) be a given finite conditional possibility space, and let Ω be the
set of atoms of A. By a possibilistic variable (or quantity) we mean a function
X : Ω → [0, 1], that propagates the possibilistic uncertainty on Ω to the values
of X. Indeed the possibility that X takes value in a subset S ⊆ [0, 1], conditional
to an event b P A, is naturally defined as

Π(X P S | b) “ max{Π(w|b) |X(w) P S}.

This can be interpreted as a sort of possibilistic counterpart of the notion of ran-
dom variable particularised to our framework of conditional possibility spaces.

Notation 1. In the following, for any event a P A, we will denote by Xa the
indicator function of a in Ω, that is, for all w P Ω, Xa(w) “ 1 if w |“ a, and
Xa(w) “ 0 otherwise. Accordingly, XJ is the constant function of value 1 (also
denoted 1) and XK is the constant function of value 0 (also denoted 0). Also, if
λ P [0, 1], by λ⊙X we will denote the variable such that (λ⊙X)(w) “ λ⊙X(w)
1 Called T -conditional possibility in [9,10].
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Conditional Objects as Possibilistic Variables 5

for all w P Ω. Finally, if X and Y are variables, sometimes we will denote
by X ^ Y and X _ Y the variables such that, for all w P Ω, (X ^ Y )(w) “
min(X(w), Y (w)) and (X _ Y )(w) “ max(X(w), Y (w)) respectively.

Likewise, the possibilistic counterpart of the notion of expected value for a
random value will be played here by a generalized Sugeno integral [13,19].

Definition 3. Let (A,Π) be a finite ⊙-conditional possibility space and let
X : Ω → [0, 1] be a possibilistic random variable. Then, the possibilistic expec-
tation of X is defined as the following generalised Sugeno integral of X w.r.t.
the possibility distribution π : Ω → [0, 1] defined as π(w) “ Π(w|J), that is:

E(X) “ max
wPΩ

X(w) ⊙ π(w).

Analogously, the conditional possibilistic expectation of X given an event
b P A′ is defined as the generalised Sugeno integral of X w.r.t. the possibility
distribution π(·|b) : Ω → [0, 1] defined as π(w|b) “ Π(w|b), namely:

E(X|b) “ max
wPΩ

X(w) ⊙ π(w|b) “ max
wPΩ:w|“b

X(w) ⊙ π(w|b).

Unsurprisingly, we recover the unconditional expectation when we take
b “ J, namely E(X|J) “ E(X). Also as expected, we recover the conditional
possibility Π from E when applied over indicator functions, in fact, for any a P A,
E(Xa|b) “ Π(a|b).

It is worth pointing out that the case of non-conditional expectations have
been studied in [15] under the name of extended generalised possibility measures
(see also [6]), whereas ⊙-conditional possibilistic expectations have been formally
introduced in [5], under the name of T -conditional possibilistic previsions, where
the authors show they satisfy the following properties for every b P A′:

– E(1|b) “ E(Xb|b) “ 1
– E(0|b) “ 0
– E(X|b) “ E(X ⊙ Xb|b)
– E(X1_X2|b) “ max(E(X1|b), E(X2|b))
– E(λ⊙X|b) “ λ ⊙ E(X|b), for every λ P [0, 1]
– E(Xa ⊙ X|b) “ E(Xa|b) ⊙ E(X|a ^ b), for every a P A′

Actually, these properties characterise them, as implicitly understood in [5]. We
provide here a proof for the sake of completeness

Proposition 1. Let A be a finite Boolean algebra, Ω be the set of its atoms,
and let E(·|·) : [0, 1]Ω ˆ A′ → [0, 1] be a mapping. Then E satisfies the following
properties for any b P A′:

(i) E(1|b) “ 1
(ii) E(X1_X2|b) “ max(E(X1|b), E(X2|b))
(iii) E(λ⊙X|b) “ λ ⊙ E(X|b), for every λ P [0, 1]
(iv) E(Xa ⊙ X|b) “ E(Xa|b) ⊙ E(X|a ^ b), for every a P A′
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6 T. Flaminio and L. Godo

if, and only if, there exists a (normalised) ⊙-conditional possibility distribution
π : Ω ˆ A′ → [0, 1] such that E(X|b) “ maxwPΩ X(w) ⊙ π(w|b).

Proof. Suppose E satisfies (i), (ii) and (iii). Since everything is finite, we can
write X “ maxwPΩ X(w) ⊙ Xw, where X(w) is the constant function of value
X(w) and Xw is the characteristic function of w, i.e. for everything w′ P Ω,
Xw(w′) “ 1 if w′ “ w and Xw(w′) “ 0 otherwise. Therefore, for any b P A′, by
(ii) and (iii), we have E(X|b) “ maxwPΩ E(X(w) ⊙ Xw|b) “ maxwPΩ X(w) ⊙
E(Xw|b). Finally, by defining π(·|b) : Ω → [0, 1] as π(w|b) “ E(Xw|b) we get that
E(X|b) “ maxwPΩ X(w)⊙π(w|b). Now, let us define the Π(·|·) : A ˆ A′ → [0, 1]
by letting Π(a|b) “ maxw|“a π(w|b) “ maxw|“a E(Xw|b) “ E(Xa|b). Finally, we
are led to check that Π is a ⊙-conditional possibility:

(CΠ1): it holds by definition of π(w|b).
(CΠ2): by (i) and (i), it follows that Π(·|b) is a normalised possibility measure

for each b P A′.
(CΠ3): let w P Ω such that w ď a^b, then (iv) gives E(Xw|b) “ E(Xa⊙Xw|b) “

E(Xa|b) ⊙ E(Xw|a ^ b), that is, π(w|b) “ Π(a|b) ⊙ π(w|a ^ b). Therefore,
we have Π(a ^ b|c) “ maxw|“a^b π(w|c) “ maxw|“a^b π(w|a ^ c) ⊙ Π(a|c) “
Π(a|c)⊙maxw|“a^b π(w|a^c) “ Π(a|c)⊙Π(a^b|a^c) “ Π(a|c)⊙Π(b|a^c).

!

4 Conditionals and Their Associated Possibilistic
Variables

In this section, following the idea in [16], we associate a possibilistic variable
to every compound conditional t P T(A) and study basic properties of these
variables and of their possibilistic expectations.

Definition 4. Let (A,Π) be a finite conditional possibility space. For every term
t in T(A), we define the variable Xt : Ω → [0, 1] as follows: for every w P Ω,

Xt(w) :“ E(Xtw |b(tw)).

If tw “ J or tw “ K, we define b(tw) “ J, and hence we take XJ and XK as
the constant functions of value 1 and 0 respectively.

Let us show that the above definition captures the intuition by analysing
the most basic cases. We start by considering the case t “ (a|J). Here we have
tw “ J if w |“ a, tw “ K otherwise, and b(tw) “ J in either case. Therefore,
Xt(w) “ E(XJ|b(tw)) “ 1 when w |“ a and Xt(w) “ 0 when w |“ ā; in other
words, X(a|J) is nothing but the characteristic or indicator function of the event
a. From now on, we will simply write Xa for X(a|J). Moreover, the expectation
of Xa is E(Xa) “ maxwPΩ Xa(w) ⊙ Π(w) “ 1 ⊙ maxw|“a Π(w) “ Π(a).

Let us consider now the case t “ (a|b). By the above definition, we get

tw “

⎧
⎨

⎩

J, if w |“ ab
K, if w |“ āb
(a|b), if w |“ b̄

, b(tw) “

⎧
⎨

⎩

J, if w |“ ab
J, if w |“ āb
b, if w |“ b̄
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Conditional Objects as Possibilistic Variables 7

and thus we have:

X(a|b)(w) “ E(Xtw |b(tw)) “

⎧
⎨

⎩

E(XJ|J) “ 1, if w |“ ab
E(XK|J) “ 0, if w |“ āb
E(X(a|b)|b), if w |“ b̄

.

Now, since Π(w|b) “ 0 whenever w |“ b̄, we have

E(X(a|b)|b) “ [1 ⊙ Π(ab|b)] _ [0 ⊙ Π(āb|b)] _ [E(X(a|b)|b) ⊙ 0] “ Π(ab|b) “ Π(a|b).

Therefore we get the following three-valued possibilistic representation of (a|b):

X(a|b)(w) “

⎧
⎨

⎩

1, if w |“ ab,
0, if w |“ āb,
Π(a|b), if w |“ b̄.

If t “ ␣(a|b), one gets an analogous expression for X␣(a|b), just replacing above
a by ā, and hence Π(a|b) by Π(ā|b) as well. Thus, one has X␣(a|b) “ X(ā|b).

Fact 2. From the above cases it follows that, for any a P A and b ≥ a, the
following equalities hold:

- X(a|b) “ X(a^b|b), X␣(a|b) “ X(ā|b), and X␣␣(a|b) “ X␣(ā|b) “ X(a|b)
- Xa “ X(a|J), and X␣(a|J) “ X(ā|J) “ Xā “ 1 ´ Xa

- X(a|a) “ X(b|a) “ X(J|J) “ XJ “ 1, and X␣(a|a) “ X(ā|a) “ X(K|J) “ 0
where 0 and 1 denote the variables of constant value 0 and 1 respectively.

In general, a possibilistic random quantity Xt can be specified in a more
compact way: let Red0(t) “ {tw|w P Ω} “ {t1, t2, ..., tk} and let E1, E2, ..., Ek

be the corresponding interpretations leading to a same element of Red0(t), then

Xt(w) “ E(Xtw |b(tw)) “

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ec(Xt1), if w |“ E1

. . . , . . .
Ec(Xtk), if w |“ Ek

Ec(Xt), if w |“ ␣(E1 _ . . . _ Ek)

where Ec(Xt) stands for E(Xt|b(t)), and the dashed line separates the cases
where w satisfies b(t) from those which do not. It follows that Xt can be
expressed as a max-⊙ combination of the indicator functions XEi ’s :

Xt “ max(Ec(Xt1) ⊙ XE1 , . . . , Ec(Xtk) ⊙ XEk , Ec(Xt) ⊙ XEk` 1),

where Ek` 1 “ Ē1 . . . Ēk “ b(t), and hence, the possibilistic expectation of Xt is
given by:

Ec(Xt) “ max(Ec(Xt1) ⊙ Π(E1|b(t)), . . . , Ec(Xtk) ⊙ Π(Ek|b(t))).

Next result shows two interesting properties of the possibilistic prevision of Xt,
that are similar to the probabilistic case. In particular it shows that the prevision
E(Xt) coincides with its conditional previsions given both b(t) and b(t).
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8 T. Flaminio and L. Godo

Proposition 2. The following properties hold for any conditional term t P T(A)
and event a P A:

(i) E(Xt ^ Xa) “ E(Xt ⊙ Xa) “ E(Xt|a) ⊙ Π(a)
(ii) E(Xt|b̄(t)) “ E(Xt|b(t)) “ E(Xt)

Proof. (i) Since a P A, Xa(w) P {0, 1}, whence for every term t, Xt ^ Xa “
Xt ⊙ Xa. Now, E(Xt ^ Xa) “ E(Xt ⊙ Xa) “ maxw{Xt(w) ⊙ Xa(w) ⊙ Π(w)}.
Now, observe that Xa(w)⊙Π(w)) “ Π(w^a) and, by (CΠ3), Π(w^a) “ Π(w^
a|J) “ Π(w|a)⊙Π(a) and hence the previous expression equals maxw{Xt(w)⊙
Π(w|a) ⊙ Π(a)} “ Π(a) ⊙ maxw{Xt(w) ⊙ Π(w|a)} “ Π(a) ⊙ E(Xt|a).

(ii-a) By definition, E(Xt|b̄(t)) “ maxw|“b̄(t) Xt(w) ⊙ Π(w|b̄(t)) and this latter
equals maxw|“b̄(t) E(Xtw |b̄(tw)) ⊙ Π(w|b̄(t)). By Fact 1 (1) if w |“ b̄(t), tw “
t and hence E(Xt|b̄(t)) “ maxw|“b̄(t) E(Xt|b(t)) ⊙ Π(w|b̄(t)) “ E(Xt|b(t)) ⊙
maxw|“b̄(t) Π(w|b̄(t)) “ E(Xt|b(t)) ⊙ Π(b̄(t)|b̄(t)) “ E(Xt|b(t)).

(ii-b) Since b is an event, Xb only takes value 0 or 1, and thus Xt “ (Xt ⊙
Xb) _ (Xt ⊙ Xb̄). Now, from (i) and (ii-a) above, the following equalities hold:
E(Xt) “ E(Xt⊙Xb(t))_E(Xt⊙Xb̄(t)) “ max(E(Xt|b(t))⊙Π(b(t)), E(Xt|b̄(t))⊙
Π(b̄(t))) “ max(E(Xt|b(t)) ⊙ Π(b(t)), E(Xt|b(t)) ⊙ Π(b̄(t))) “ E(Xt|b(t)) ⊙
max(Π(b(t)),Π(b̄(t))) “ E(Xt|b(t)). !

We end this section with two further instantiations of the definition of Xt,
namely for the cases of a conjunction and a disjunction of basic conditionals.

Example 2. Let t “ (a|b)^(c|d). Here we have b(t) “ b _ d, and

Xt(w) “

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, if w |“ abcd
0, if w |“ (āb) _ (c̄d)
Ec(Xa|b) “ Π(a|b), if w |“ b̄cd
Ec(Xc|d) “ Π(c|d), if w |“ abd̄

Ec(X(a|b)^(c|d)), if w |“ b̄d̄

Then, by definition we get:

Ec(X(a|b)^(c|d)) “
max(Π(abcd|b_d),Π(a|b) ⊙ Π(b̄cd|b_d),Π(c|d) ⊙ Π(abd̄|b_d))2

In the particular case when a ď b “ c ď d everything simplifies, indeed it is not
difficult to check that Ec(X(a|b)^(c|d)) “ Π(a|d) and X(a|b)^(c|d) “ Xa|d.

2 This is a possibilistic counterpart of the formula given in [30] for the probability of
the conjunction of two conditionals.
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Conditional Objects as Possibilistic Variables 9

Now, consider t “ (a|b)_(c|d). Again here b(t) “ b _ d, and Xt is defined as:

Xt(w) “

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, if w |“ ab _ cd
0, if w |“ ābc̄d
Ec(Xa|b) “ Π(a|b), if w |“ b̄c̄d
Ec(Xc|d) “ Π(c|d), if w |“ ābd̄

Ec(X(a|b)_(c|d)), if w |“ b̄d̄

where, by definition we have: Ec(X(a|b)_(c|d)) “ E(X(a|b)_(c|d)|b_d) “
max(Π(ab_cd|b_d),Π(a|b)⊙Π(b̄c̄d|b_d),Π(c|d)⊙Π(ābd̄|b_d)). One can show
that the last expression is equal to max(Π(a|b),Π(c|d)) (we omit the proof for
the lack of space). Therefore we have

Ec(X(a|b)_(c|d)) “ max(Π(a|b),Π(c|d)). !
From the above example, the following equalities among variables readily

follow by simple inspection:
X(a|b)^(c|d) “ X(c|d)^(a|b) and X(a|b)_(c|d) “ X(c|d)_(a|b),
X(a|b)^(c|b) “ X(a^c|b) and X(a|b)_(c|b) “ X(a_c|b),
X(a|b)^(a|b) “ X(a|b)_(a|b) “ X(a|b),
X(a|b)^(ā|b) “ X(a|b)^␣(a|b) “ XK “ 0,
X(a|b)_(ā|b) “ X(a|b)_␣(a|b) “ XJ “ 1.

Moreover, by iterating or combining the above expressions for the conjunction
and disjunction of basic conditionals, the following further equalities also hold:

X(a|b)^((c|d)^(e|f)) “ X((a|b)^(c|d))^(e|f)andX(a|b)_((c|d)_(e|f)) “
X((a|b)_(c|d))_(e|f),

X(a|b)^((c|d)_(e|f)) “ X((a|b)^(c|d))_((a|b)^(e|f)),
X(a|b)_((c|d)^(e|f)) “ X((a|b)_(c|d))^((a|b)_(e|f)),
X␣((a|b)^(c|d)) “ X␣(a|b)_␣(c|d), X␣((a|b)_(c|d)) “ X␣(a|b)^␣(c|d).

5 A Boolean Algebraic Structure on the Set of Compound
Conditionals

The aim of this section is to show that T(A) can be endowed with a Boolean
algebraic structure. To prove this, we start showing some elementary properties
whose proof can be shown by induction on the structure of the terms and whose
base cases only involve basic conditionals and are listed at the end of Sect. 4.

Proposition 3. For every t, s, r P T(A) the following conditions hold:
1. Xt “ Xt^t 2. Xt^s “ Xs^t 3. Xt^(s^r) “ X(t^s)^r

4. Xt^␣t “ 0 5. X␣(t^s) “ X␣t_␣s 6. Xt^(s_r) “ X(t^s)_(t^r)

7. X␣␣t “ Xt 8. Xt_s “ max(Xt,Xs) 9. If a ď b,X(a|b)^(a|b_c) “ X(a|b_c).

The next step consists in partitioning T(A) in equivalence classes, each of
which contains compound conditionals giving the same possibilistic quantity in
any conditional possibility space over A.
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10 T. Flaminio and L. Godo

Definition 5. For all t, s P T(A), t is equivalent to s, written t ” s whenever
Xt “ Xs under any conditional possibility Π on A ˆ A′.

It is clear that ” is an equivalence relation, and hence we can consider the
quotient T(A)/” . Letting [t] being the equivalence class of a generic term
t P T(A) under ” , define ^∗, _∗,␣∗ on T(A) as follows: for all [t], [s] P T(A),
[t]^∗[s] “ [s^t], [t]_∗[s] “ [s_t], ␣∗[t] “ [␣t], 0 “ [(K|J)], 1 “ [(J|J)]. By the
properties of Xt, the operations are well defined (we skip details due to lack of
space) and, by Proposition 3, they endow T(A)/” with a Boolean structure.

Theorem 3. T (A) “ (T(A)/” , ^∗, _∗,␣∗, 0, 1) is a Boolean algebra.

Next shows natural properties of conditionals that hold in the current setting.

Proposition 4. The following properties hold in T (A):
(i) [(a|a)] “ 1, (ii) [(a|b) ^ (c|b)] “ [(a ^ c|b)],
(iii) [␣(a|b)] “ [(ā|b)], (iv) [(a ^ b|b)] “ [(a|b)],
(v) [(a|b) ^ (b|c)] “ [(a|c)], if a ď b ď c.

Proof. For each one of the equalities above, of the form [t] “ [s], we proved in
previous examples that Xt “ Xs. !

Properties (i)-(v) turn out to be to conditions (C1)-(C5) in [18] required in
the construction of a finite Boolean algebra C(A) of conditional objects starting
from a finite algebra of events A. In particular (C5) stands for a qualitative
counterpart of the Bayes rule for conditional probabilities (P (a ^ b|c) “ P (a|c) ·
P (b|a^c)) and for condition (CΠ3) of Definition 2 for ⊙-conditional possibilities,
equivalently expressed when a ď b ď c. These properties are enough to prove
that the sets of atoms of both T (A) and C(A) are in bijective correspondence
and hence the following holds.

Theorem 4. The algebras T (A) and C(A) are isomorphic.

By the above and [18] we hence know that each atom of T (A) can be regarded
as terms (αi1 |J)^(αi2 |ᾱi1)^ ...^(αin´ 1 |ᾱi1 ...ᾱin´ 2) where at(A) “ {α1, . . . ,αn}
and {i1, ..., in´ 1} are n ´ 1 pairwise different indices from {1, ..., n}.

6 Possibility Measures on T (A) and Canonical
Extensions

Since T (A) is a Boolean algebra, we can define possibility measures on it. Actu-
ally, we can show that the possibilistic expectations E(Xt)’s of the variables Xt’s
determine in fact an (unconditional) possibility on T (A).

Definition 6. Given a ⊙-conditional possibility Π : A ˆ A′ → [0, 1], we define
the mapping Π∗ : T (A) → [0, 1] as follows: for every [t] P T (A),

Π∗([t]) “def E(Xt) “ maxw Ec(Xtw) ⊙ Π(w|b(t)).

A
ut

ho
r 

Pr
oo

f



Conditional Objects as Possibilistic Variables 11

Again, this is well defined, as if t and t′ are terms such t ” t′, it is immediate to
check that Π∗([t]) “ Π∗([t′]). Moreover, Π∗ is a possibility measure in T (A):

– Π∗(K) “ E(XK) “ 0, Π∗(J) “ E(XJ) “ 1, and
– Π∗(t _ s) “ E(Xt_s) “ E(Xt _ Xs) “ max(E(Xt), E(Xs)) “

max(Π∗(t),Π∗(s))

Notice that, given a conditional possibility Π on A ˆ A′, Π∗ is a (uncondi-
tional) possibility measure in T (A) such that, for every basic conditional (a|b),

Π∗([(a|b)]) “ E(X(a|b)) “ Π(a|b),

as we checked after Definition 4. In other words, Π∗ satisfies the possibilistic
counterpart of Stalnaker’s hypothesis for the probabilistic case. Moreover, Defini-
tion 6 provides a recursive procedure to compute the possibility measure Π∗([t])
of any compound conditional t, in terms of conditional possibilities of basic con-
ditionals. For instance, based on Example 2, we get the following expression for
the possibility measure of the conjunction of two conditionals:

Π∗([(a|b) ^ (c|d)]) “ Π(abcd|b _ d) _ [Π(a|b) ⊙ Π(b̄cd|b _ d)] _ [Π(c|d) ⊙ Π(abd̄|b _ d)].

It turns out that Π∗ is not an arbitrary possibility measure on the algebra
T (A) of (equivalence classes of) possibilistic variables, but a very special one.
As a matter of fact, next theorem shows that Π∗ can be seen as the canonical
extension of the conditional possibility Π on A ˆ A′ to T (A).

Theorem 5. Let A be a Boolean algebra with at(A) “ {α1, . . . ,αn} and let Π
be a conditional possibility on A ˆ A′. Then, for each sequence ⟨β1, . . . ,βm⟩ of
m pairwise incompatible events from A, with m ď n, it holds that:

(1) Π∗((β1|J) ^ (β2|β1) ^ ... ^ (βm|β1 ^ . . . ^ βm´ 1)) “
“ Π(β1) ⊙ Π(β2|β̄1) ⊙ . . . ⊙ Π(βm|β1 ^ . . . ^ βm´ 1), and in particular

(2) Π∗((α1|J) ^ (α2|α1) ^ ... ^ (αn´ 1|α1 ^ . . . ^ αn´ 2)) “
“ Π(α1) ⊙ Π(α2|ᾱ1) ⊙ . . . ⊙ Π(αn´ 1|α1 ^ . . . ^ αn´ 2).

Proof. We prove (1) and
first show by induction that X(β1|J)^...^(βm|β1^...^βm´ 1)

“ Π(βm|β̄1...β̄m´ 1) ⊙
Π(βm´ 1|β̄1...β̄m´ 2) ⊙ ... ⊙ Π(β2|β̄1) ⊙ Xβ1 . For k P {1, ...,m ´ 1}, let tk “
(βk|β̄1...β̄k´ 1) ^ ... ^ (βm|β̄1...β̄m´ 1), where b(tk) “ β̄1...β̄k´ 1. Then:
(•) Let k “ 1. Hence t1 “ β1 ^ (β2|β̄1) ^ ... ^ (βm|β̄1...β̄m´ 1), and b(t1) “ J.
Then:

Xt1(w) “

⎧
⎨

⎩

1, if w |“ K
0, if w |“ β̄1

Ec(X(β2|β̄1)^...^(βm|β̄1...β̄m´ 1)), if w |“ β1

Thus, Xt1 “ Ec(Xt2)⊙Xβ1 , and E(Xt1) “ Ec(Xt2)⊙E(Xβ1) “ Ec(Xt2)⊙Π(β1).
(•) Let k ď m ´ 2 and assume, by inductive hypothesis, that the following hold:

- Ec(Xtk) “ Ec(Xtk` 1) ⊙ Π(βk|β̄1...β̄k´ 1),
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12 T. Flaminio and L. Godo

- Xt1 “ Ec(Xtk` 1) ⊙ Π(βk|β̄1...β̄k´ 1) ⊙ ... ⊙ Π(β2|β̄1) ⊙ Xβ1 .
Now consider the variable Xtk` 1 , where b(tk` 1) “ β̄1...β̄k. Then:

Xtk` 1(w) “

⎧
⎨

⎩

1, if w |“ K
0, if w |“ β̄1...β̄kβ̄k` 1

Ec(X(βk` 2|β̄1...β̄k)^...^(βm|β̄1...β̄m´ 1)), if w |“ β̄1...β̄kβk` 1

Hence Xtk` 1 “ Ec(Xtk` 2) ⊙ Xβ̄1...β̄kβk` 1
, and thus we have:

- Ec(Xtk` 1) “ Ec(Xtk` 2) ⊙ Π(β̄1...β̄kβk` 1|β̄1...β̄k) “ Ec(Xtk` 2) ⊙
Π(βk` 1|β̄1...β̄k),

- Xt1 “ Ec(Xtk` 1) ⊙ Π(βk|β̄1...β̄k´ 1) ⊙ ... ⊙ Π(β2|β̄1) ⊙ Xβ1

“ Ec(Xtk` 2)⊙Π(βk` 1|β̄1...β̄k)⊙Π(βk|β̄1...β̄k´ 1)⊙ ...⊙Π(β2|β̄1)⊙Xβ1 .

(•) In particular, taking k “ m ´ 2, we have

Ec(Xtk` 2) “ Ec(Xtn) “ Ec(X(βn|β̄1...β̄m´ 1)) “ Π(βn|β̄1...β̄m´ 1)

and thus,

Xt1 “ Π(βn|β̄1...β̄m´ 1) ⊙ Π(βn´ 1|β̄1...β̄m´ 2) ⊙ ... ⊙ Π(β2|β̄1) ⊙ Xβ1 .

Finally, taking expectations we have:

Π∗(Xt1) “ E(Xt1) “ Π(βn|β̄1 ...β̄m´ 1 ) ⊙ Π(βn´ 1 |β̄1 ...β̄m´ 2 ) ⊙ ... ⊙ Π(β2 |β̄1 ) ⊙ Π(β1 ),

that proves (1). Claim (2) follows from (1) when taking the set of atoms as the
set of pair-wise incompatible events and noticing that α1 ^ . . . ^ αn´ 1 “ αn. !

Expression (2) in the above theorem tells us is that Π∗ is nothing but the
canonical extension of the original conditional possibility Π to the algebra T (A)
(or C(A) if you prefer) in the sense of [20], where the original conditional prob-
abilistic setting from [16] has been adapted to the possibilistic case.

7 Conclusions

In this paper we have proposed a possibilistic counterpart of the random
quantity-based approach to (compound) conditionals, and have shown that it
preserves all their main properties as well as the underlying Boolean algebraic
structure of compound conditionals that arises from them, and thus appearing as
an essential feature independent from the particular probabilistic or possibilistic
uncertainty quantification model used.

As for future work, since possibility measures are a particular class of upper
probabilities, we plan to explore the feasibility of using in the definition of the
variables Xt the corresponding lower previsions. This might lead to an alternative
model of conditionals.
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