
Amalgam-based Reuse for Multiagent
Case-based Reasoning

Sergio Manzano12, Santiago Ontañón1, and Enric Plaza1

1 IIIA-CSIC, Artificial Intelligence Research Institute (Spanish Scientific Research
Council), 08193 Bellaterra, Catalonia (Spain)

2 Universitat Autonòma Barcelona, Bellaterra, 08193 Catalonia (Spain)
{sergio,santi,enric}@iiia.csic.es

Abstract. Different agents in a multiagent system might have different
solution quality or preference criteria. Therefore, when solving problems
collaboratively using CBR, case reuse must take this into account. In
this paper we propose ABARC, a model for multiagent case reuse, which
divides case reuse in two stages: individual reuse, where agents generate
full solutions internally, and multiagent reuse, where agents engage in a
deliberation process in order to reach an agreement on a final solution.
Specifically, ABARC is based on the idea of amalgam, which is a way to
generate solutions by combining multiple solutions into one. We illustrate
ABARC in the domain of interior room design.

1 Introduction

The multiplicity of experience sources requires to investigate new approaches to
reuse and adapt them in the cycle of case-based problem-solving. This paper
focuses on the collaboration of multiple CBR systems dealing with complex
structure solutions. Each individual CBR system may have different biases on
the solutions it prefers — bias may be due to history, preferences, priorities, etc.
Therefore, each individual may come to a different solution for the same problem,
and might consider a given solution as more or less satisfactory. A collective
agreed-upon complex solution cannot be achieved by simple aggregation methods
like voting, and requires a richer deliberation process to reach a collective solution.
This deliberation process is in fact a joint reuse process that combines both the
experiences and the bias of these individuals.

As a motivating example, consider two people who need to agree on the
configuration of an office for having good working conditions. Naturally, each
person will have their own preferences with respect to what constitutes “good
working conditions,” or with respect to which pieces of furniture are more
desirable, etc. It is clear that proposing room configurations and voting over
them is not a good approach, since the number of possible room configurations
might be very high. Moreover, notice that biases such as preferences are hard
to express explicitly, and thus cannot be fully communicated. For that reason, a
centralized approach where each person states her preferences and then only one
of them tries to find a room configuration is not viable either. In this paper we

will study how can these kind of problems be addressed by presenting ABARC, a
model of multiagent case reuse, which allows two agents to collaboratively reach
an agreement over a structured solution.

Previous approaches to distributed CBR have mainly focused on distributed
retrieval [11, 13, 9, 8], while the few approaches dealing with distributed reuse,
do so in classification domains [12] by means of voting approaches. The main
contribution of this paper is an approach for distributed reuse in domains with
complex structured solutions.

There are two key ideas behind the ABARC (Amalgam-based Agreement
for Multiagent Reuse of Cases) approach for multiagent CBR. The first is that
reuse can be divided in two different stages: individual reuse and multiagent
reuse. During individual reuse, each agent generates a full solution individually
according to its own biases or preferences. During multiagent reuse, agents reach
an agreement on a solution that is satisfactory for both agents.

The second idea is that the solutions proposed by the other agent can be
used as an indication of its preferences. By combining elements from the solutions
proposed by the two agents, agents could generate solutions which are satisfactory
to both of them. A way to compute such combinations is through amalgams [10],
a formal operation that generates new solutions by combining as many elements
from two given solutions as possible.

The remainder of this paper is organized as follows. First, in Section 2
we present some background on generalization spaces, which is the knowledge
representation formalism used in this paper. Section 3 formally introduces the
idea of an amalgam. Then, ABARC is presented in Section 4. We analyze the
behavior of ABARC in the task of room design in Section 5. The paper closes
with related work and conclusions.

2 Background

In this paper we will make the assumption that solutions in cases are terms in
some language L, and that there exists a subsumption relation among terms.

We say that a term ψ1 subsumes another term ψ2 (ψ1 v ψ2) when ψ1 is more
general (or equal) than ψ2

3. The subsumption relation induces a partial order in
the terms in a language L, thus, the pair 〈L,v〉 is a poset (partially ordered set)
for a given set of terms L; additionally, we assume that L contains the infimum
element ⊥ (or “any”), and the supremum element > (or “none”) with respect
to the subsumption order. In the rest of this paper we will call a pair 〈L,v〉 a
generalization space.

Given the subsumption relation, for any two terms ψ1 and ψ2 we can define
their unification, (ψ1 tψ2), which is the most general specialization of two given
terms:

ψ1 t ψ2 = ψ : (ψ1 v ψ ∧ ψ2 v ψ) ∧ (@ψ′ @ ψ : ψ1 v ψ′ ∧ ψ2 v ψ′)
3 In machine learning terms, A v B means that A is more general than B, while in

description logics it has the opposite meaning, since it is seen as “set inclusion” of
their interpretations.

ψ ρ(ψ)

γ(ψ) ψ

a) b)

Fig. 1. A generalization refinement operator γ, and a specialization operator ρ.

That is to say, the unifier’s content is the addition of the content of the two
original terms. However, not every pair of terms may be unified: if two terms
have contradictory information then they have no unifier ψ1 t ψ2 = > —which
is equivalent to say that their unifier is “none”.

The dual operation to unification is that of anti-unification, that is defined as
the least general generalization of two terms, representing the most specific term
that subsumes both. If two terms have nothing in common, then ψ1 u ψ2 = ⊥.
Thus, anti-unification encapsulates in a single description all that is shared by
two given terms, and is defined as follows:

ψ1 u ψ2 = ψ : (ψ v ψ1 ∧ ψ v ψ2) ∧ (@ψ′ A ψ : ψ′ v ψ1 ∧ ψ′ v ψ2)

Notice that both anti-unification and unification might not be unique. Let us
now summarize the basic notions of refinement operator over partially ordered
sets and introduce the concepts relevant for this paper (see [6] for a more in-depth
analysis of refinement operators). Refinement operators are defined as follows:

Definition 1. A downward refinement operator ρ over a partially-ordered set
(L,v) is a function such that ∀ψ ∈ L|ρ(ψ) ⊆ {ψ′ ∈ L|ψ v ψ′}.

Definition 2. An upward refinement operator γ over a partially-ordered set
(L,v) is a function such that ∀ψ ∈ L|ρ(ψ) ⊆ {ψ′ ∈ L|ψ′ v ψ}.

In other words, upward refinement operators generate elements of L which
are more general, whereas downward refinement operators generate elements of
L which are more specific, as illustrated by Figure 1. Typically, the symbol γ
is used to symbolize upward refinement operators, and ρ to symbolize either a
downward refinement operator, or a refinement operator in general.

Refinement operators can be used to navigate the space of terms using search
strategies, and are widely used in Inductive Logic Programming [7]. For instance,
if we have a term representing “a German minivan”, a generalization refinement
operator would return generalizations like “a European minivan”, or “a German
vehicle”. If we apply the generalization operator again to “a European minivan”,
we can get terms like “a minivan”, or “a European vehicle”. A specialization
refinement operator would perform the opposite task, and given a term like “a

German minivan”, would return more specific terms like “a Mercedes minivan”,
or “a red German minivan”.

3 Amalgams

The notion of amalgam can be conceived of as a generalization of the notion of
unification over terms. The unification of two terms (or descriptions) is a new
term, the unifier, which contains all the information in these two terms. Thus,
if a term φ is a unifier of two other terms (φ = ψa t ψb), then all that is true
for one of these terms is also true for φ. For instance, if ψa describes “a red
vehicle” and ψb describes “a German minivan” then their unification φ is the
description “a red German minivan.” Two terms are not unifiable when they
possess contradictory information; for instance “a red French vehicle” is not
unifiable with “a red German minivan” since being French and German at the
same time is not possible for vehicles. The strict definition of unification means
that any two descriptions with only one item with contradictory information
cannot be unified. Now, imagine a scenario where two such descriptions have
a large part of complementary information, which a CBR system would be
interested in reusing: unification is not useful.

An amalgam of two terms (or descriptions) is a new term that contains parts
from these two terms. For instance, an amalgam of “a red French vehicle” and “a
German minivan” is “a red German minivan”; clearly there are always multiple
possibilities for amalgams, since “a red French minivan” is another example of
amalgam. In [10] we formally defined the notion of amalgam, and specifically
studied the most specific amalgams of two terms. For the purposes of this paper,
the following, more generic definition of amalgam suffices.

Definition 3. (Amalgam) The set of amalgams of two terms ψa and ψb is
the set of terms such that:

ψa g ψb = {φ ∈ L − {>}|∃φa, φb ∈ L|φa v ψa ∧ φb v ψb ∧ φ = φa t φb}

Thus, an amalgam of two terms ψa and ψb is a term that has been formed by
unifying two terms φa and φb such that φa v ψa and φb v ψb —i.e. an amalgam
is a term resulting from combining some of the information in ψa with some of
the information from ψb, as illustrated in Figure 2. Formally, ψagψb denotes the
set of all possible amalgams; however, whenever it does not lead to confusion,
we will use ψa g ψb to denote one specific amalgam of ψa and ψb.

The terms φa and φb are called the transfer terms of an amalgam ψagψb . φa
represents all the information from ψa which is transferred to the amalgam, and
φb is all the information from ψb which is transferred into the amalgam. This
idea of transfer is akin to the idea of transferring knowledge from the source
domain to the target domain in computational analogy [3].

Intuitively, an amalgam is complete when all which can be transferred from
both terms into the amalgam has been transferred, i.e. if we wanted to transfer
more information, φa and φb would not have a unifier.

ψa ψb

ψa � ψb

φa φb

ψa � ψb

Transfer Transfer

Amalgam

Fig. 2. Illustration of the idea of amalgam between two terms ψa and ψb.

Definition 4. (Complete Amalgam) An amalgam φ = ψa gψb with trans-
fers φa and φb is complete when

∀φ′a, φ′b|φa @ φ′a @ ψa ∧ φb @ φ′b @ ψb ⇒ φ′a t φ′b = >

that is to say, there are no terms φ′a , φ′b such that φa @ φ′a @ ψa and φb @ φ′b @
ψb which have a unifier.

Finally, for the purposes of case reuse,we introduce the notion of asymmetric
amalgam, where one term is fixed while only the other term is generalized in
order to compute an amalgam.

Definition 5. (Asymmetric Amalgam) The asymmetric amalgams ψs
→
gψt

of two terms ψs (called source) and ψt (called target) is the set of terms such
that:

ψs
→
g ψt = {φ ∈ L − {>}|∃φs ∈ L|φs v ψs ∧ φ = φs t ψt}

In an asymmetric amalgam, the target term is transferred completely into the
amalgam, while the source term is generalized.

4 ABARC

This section presents ABARC (Amalgam-based Agreement for Multiagent Reuse
of Cases), a framework to address case reuse in multiagent CBR scenarios.
Specifically, the scenario we focus on in this paper is the following.

Two CBR agents A1 and A2 need to solve a given problem P ; the agents have
s shared ontology to represent problems and solutions (e.g. solutions from one
agent can be understood by the other), but each agent has its own individual
biases with which to solve problems, i.e. given the same problem, each agent
might prefer different solutions. In ABARC, biases are modeled as utility func-
tions. Each agent Ai has a utility function Ui, which given a solution S to the
problem P , returns a utility Ui(S) ∈ [0, 1]. These utility functions are private and
we assume cannot be communicated (e.g. it is hard to completely communicate
to another person you full preferences for food). Given a new problem, the goal

Agent 1 Agent 2

Retrieve Individual
Reuse

Case
Base

Utility

RetrieveIndividual
Reuse

Case
Base

Utility

Multiagent
Reuse

Multiagent
Reuse

Solution

Deliberation

Fig. 3. In the ABARC framework, reuse is divided in two separate processes: individual
reuse, and multiagent reuse.

of the agents is to reach an agreement over a solution, which is satisfactory to
both agents (i.e. which has a high enough utility for both).

To address the previous scenario, ABARC assumes that problems to be solved
have two separate parts:

– A shared problem specification: the specification problem that needs to be
solved, shared between the agents.

– An individual problem bias: the biases or preferences of a specific agent,
represented as its own utility function over solutions, which is private to
each agent.

Given that no agent knows the utility functions of the other agent, no
one can actually propose a solution individually expecting it to have a high
utility for the other agent. The main idea behind ABARC is that each agent
individually can reuse cases to generate a solution which satisfies both the shared
problem specification and its individual problem biases, and then combine the
two solutions in order to generate a solution that satisfy at the same time the
problem specification and the biases of both agents. Figure 3 illustrates this idea,
where the reuse process of two CBR agents is split into two separate processes:

– Individual reuse: agents reuse the retrieved cases from the case base and
generate a first candidate solution to problem P , which is passed on to the
second reuse stage. We will call the solution generated by the individual
reuse stage the initial solution of each agent.

– Multiagent reuse: agents start a deliberation process, where they propose
solutions that combine parts of the agents’ initial solutions (using amalgams)
in order to generate a solution which satisfies as much as possible the utility
functions of both agents. This is done in this way, since the initial solutions
are the only indication an agent has of the utility function of the other agent.

Basically, the multiagent reuse step explores the space of amalgams between
the initial solutions proposed by the agents. Given that this space might be very
large, we propose a deliberation protocol that proceeds in a series of rounds

where agents propose solutions, which are then evaluated by the other agent.
The process continues until one agent accepts the solution of the other agent.

Assuming that solutions proposed by an agent Ai have high utility for Ai,
if an agent Aj wants to generate a solution with expected high utility for Ai,
such solution should be similar to the one proposed by Ai. This is the second
key idea behind ABARC: initially agents generate solutions that have high utility
for themselves, and at each round, the solution proposed by an agent contains
more and more elements from the solution proposed by the other agent. This is
done by computing amalgams that transfer more and more elements from the
solution proposed by the other agent. The more elements are transferred from
the other agent’s solution, the less elements can be kept from the agents desired
solution. Thus, the multiagent reuse process can be seen as a concession process
where agents propose solutions that lower one’s utility while trying to approach
the interests of the other agent, until one agent accepts the solution of the other.

The remainder of this section first presents a specific interaction protocol
that implements the deliberation process required to reach a final agreement
over the solution to the problem P , and then how can the amalgam operation
be used to merge solutions generated by both different agents.

4.1 Multiagent Reuse Interaction Protocol

The goal of the multiagent reuse process is to reach an agreement over a solution
for the problem P . To reach such agreement, the agents explore the space of
possible amalgams between their two individual solutions (which is the subspace
of the whole solution space which is expected to have high utility for both).
Moreover, it is possible that no solution exists that has maximum utility for
both agents. Thus, it is important that agents reach an agreement, and settle
for a “good enough” solution. In order to achieve that, ABARC uses a deliberation
protocol where the agents are allowed to send three kind of messages:

– propose(A,S): with which an agent A proposes solution S to the other agent.
– accept(A,S): with which an agent A accepts the solution S previously sent

by the other agent.
– withdraw(A): with which an agent A withdraws from the protocol before

reaching an agreement.

Given two agents, A1 and A2 who are trying to reach an agreement on the
solution of a given problem P , the ABARC protocol is a token passing protocol,
where at each round t, one of the two agents holds a token. Let us call S0

1 and
S0

2 the solutions found by A1 and A2 respectively after performing individual
reuse. S0

1 is a valid solution for P and that has a high utility value for A1, but
might have a low utility value for A2 (resp. S0

2).

1. Initially, A1 sends the message propose(A1, S
0
1), and A2 sends the message

propose(A1, S
0
2). Then, a token is given to one agent at random, round t = 1

starts, and the protocol moves to step 2.

2. The agent Ai owner of the token does the following:
(a) Generates a new solution Sti . If a new solution cannot be generated (e.g.

when the whole space of amalgams has already been explored), then Ai
sends the message withdraw(Ai) and the protocol ends without reaching
any agreement.

(b) Ai evaluates the utility of all the solutions sent by the other agent in
rounds prior to t, and selects the solution S with maximum utility Ui(S).

(c) If Ui(S) ≥ Ui(Sti), then Ai will send the message accept(Ai, S), and
the protocol ends. Otherwise, Ai sends the message propose(Ai, Sti), the
token is given to the next agent, a new round t+1 starts, and the protocol
moves back to 2.

A key step in the protocol is 2.a, where agents generate new solutions. In
ABARC the first solution that an agent Ai proposes, A0

i only takes into account
its individual utility function. At each round, agents propose a new amalgam,
which transfers a bit less from their solution, and a bit more from the other’s
solution, i.e. they propose solutions with higher expected utility for the other
agent. In this way, agents approach each other, until they reach an agreement.

Therefore, the key component in the protocol is the mechanism for generating
new solutions (new amalgams), as explained in the next section.

4.2 Merging Solutions Through Amalgams

Two key functionality required in ABARC is generating solutions during the
multiagent reuse protocol. Let us first explain how can this be implemented
using amalgams and refinement operators.

Given a solution Si generated by an agent Ai, and a solution Sj generated
by an agent Aj , if an agent Ai wants to generate a solution S∗ which results
from merging Si with Sj , but without losing utility, it can do so in the following
way, by using the previously introduced idea of asymmetric amalgam:

1. Let B = {S ∈ L|S v Sj ∧ (Si u Sj) v S} be the set of potential transfers
that can be used for computing the asymmetric amalgam Sj

→
g Si.

2. Let φj = arg maxφ∈B Ui(φtSi). Notice that φtSi is an asymmetric amalgam

Sj
→
g Si, where φ is the transfer. Thus, φj is the transfer which maximizes

the utility of the resulting amalgam for Ai.
3. S∗ = φj t Si.

The previous method is generic, and can be used for any utility function.
However, in the experiments reported in this paper we have modeled the utility
functions in the following way. Each agent has a lists of private goals G1 =
{g1

1 , ..., g
1
n}, andG2 = {g2

1 , ..., g
2
m} respectively, where each goal gij has an associated

weight w(gij) > 0, indicating how important it is (the higher the weight, the more
important the goal is). A goal g is satisfied by a solution S if g v S, therefore,
if we have two solutions, S1 and S2, such that S1 v S2, and g is satisfied by S1,
then g is also satisfied by S2.

S0
i

S0
j

S1
i S3

i S5
i

γ(S0
i)

γ(φ3
i)

S1
i = S0

j

→
� S0

i

S3
i = S0

j

→
� φ3

i

S5
i = S0

j

→
� φ5

i

Fig. 4. Solutions during the mutliagent reuse protocol are generated by an agent by
iteratively conceding more and more, i.e. by transferring less and less from its own
solution.

Therefore, any asymmetric amalgam will satisfy that Si v (Sj
→
g Si), and

thus will have, at least, the same utility as Si. Moreover, since it is in the agent’s
own interest to propose solutions that maximize the other agent’s utility as well,
the more specific the amalgam, the higher the utility is likely to be for the other
agent, and thus, it is desirable to compute complete amalgams.

In addition to merging solutions, agents in ABARC need to generate different
amalgams in each round of the protocol, approaching the other agent. The way
this is modeled in ABARC is by generating amalgams between S0

i and S0
j that

are not asymmetric, i.e. where not all the information in S0
i is transferred to

the amalgam. In an asymmetric amalgam S0
j

→
g S0

i , the transfer from Si to the
amalgam is ψi = Si. A way to generate a solution that approaches that of the
other agent is by transferring less information from Si, i.e. having a transfer
φi @ Si.

Moreover, Ai only wants to concede the minimum amount necessary. Thus,
given that at a round t, an agent Ai proposed the solution Sti , with transfers
φi and φj form S0

i and S0
j respectively, and given a generalization refinement

operator γ, γ(φi) is a set of terms which are more general than φi. Given any term
φ′i ∈ γ(φi), if we compute a complete asymmetric amalgam S0

j

→
g φ′i, we obtain

an amalgam with less transfer from S0
i than Sti (and thus may accommodate

more transfer from the solution of the other agent), i.e. we obtain a solution
that approaches that of the other agent.

In ABARC, agents generate new solutions during the protocol in the following
way, as illustrated in Figure 4:

1. In the initial round, the agent proposes its initial solution S0
i .

2. Then, the first time an agent Ai owns the token, it will propose the solution
generated by a complete asymmetric amalgam S0

j

→
g S0

i .
3. The subsequent times an agent Ai owns the token, it will generate a solution

by generalizing the last transfer term using a refinement operator:

Ui

t

S0
i

S0
j

S1
i

S3
i

S5
i

S2
j

S4
j

S6
j

0 1 2 3 4 5 6

Fig. 5. The utility for one agent Ai of the solutions proposed by both agents over time.

(a) First, compute φ′i = arg maxφ∈γ(φi) Ui(φ), which is the generalization of
the previous transfer φi with highest utility for Ai.

(b) The next solution to propose will be S0
j

→
g φ′i.

As Figure 4 shows, by iteratively generalizing the transfer term, the solutions
generated by an agent Ai contain less and less from its original solution, S0

i , in
order to accommodate more and more from the solution proposed by the other
agent, S0

j . The effect is the sequence of solutions proposed by Ai have decreasing
utility for Ai, but increasing for Aj , and the solutions proposed by Aj have
increasing utility for Ai and decreasing for Aj . As illustrated in Figure 5, the
utility values will eventually cross, and the agents will reach an agreement.

5 Collaborative Generation of Room Designs

In order to illustrate ABARC, we have applied it to the domain of interior room
design. In this domain the goal is to design the interior of a room (pieces of
furniture to use and their layout) according to some given constraints (size
and shape of the room), and a set of given goals (e.g. design a proper work
environment). Moreover, we have specifically focused on the problem of designing
room for two individuals. In this case, when designing the room, the two individuals
(represented by agents) have to agree on a design that satisfies both.

In this section we will present an illustration with a particular instance of
this problem, in which two agents need to agree on the design of a square office
for work space. Agent A1 has a “geek” personality, and agent A2 represents an
“artist” personality. In this instance, we have represented a room to be composed
of 8 spaces: the four corners (which can accommodate small pieces of furniture)
and the four big walls (which can accommodate large pieces of furniture). The
south-west corner needs to be free, for the door to enter the room. The agents
can select among 7 different small pieces of furniture (like dressers, plants, small

Table 1. Goals of two agents in a room design problem.

Agent A1 Agent A2

Goal Weight Goal Weight

tower-computer 8.0 drawing table 8.0

computer desk 7.0 Tansu 7.0

plant pot 6.0 glass-door cabinet 6.0

bookcase 5.0 couch 5.0

couch 4.0 laptop 4.0

armchair 3.0 plant pot 3.0

dresser 2.0 filing cabinet 2.0

cabinet 1.0 corner desk 1.0

Dresser

Computer
Desk, Tower
& Monitor

Cabinet

Armchair

Coach

Bookcase

Door

Plant

Corner Table
& Laptop

Tansu
Drawing

table

Filing
Cabinet

Coach

Glass-door cabinet

Door

Plant

GEEK ARTIST

S0
2S0

1

Fig. 6. The two room designs according to the Geek’s and Artist’s goals.

desks, etc.) and 9 different large pieces of furniture (like couches, desks, etc.).
Some pieces of furniture (like computer desks), can also have devices on top (like
netbooks, laptops or computers). In total, there are about 1.3×109 possible room
configurations. For this example, we represented solutions using feature terms
[1], and we thus use a general feature term generalization refinement operator.

The goals and weights of the goals that compose the utility functions of the
two agents are shown in Table 1. Utility is measured in the following way:

Ui(S) =

∑
g∈Gi|gvS w(g)∑
g∈Gi

w(g)

i.e. as the sum of the weights of the goals that are satisfied by a solution, divided
between the total sum of weights of the goals. Thus, if we have two solutions S1

and S2 such that S1 v S2 then we know that U(S2) ≥ U(S1).
After solving the problem individually, the agents come up with the solutions

shown in Figure 64. If we evaluate the utilities of the solutions for both agents,
4 Notice that the 2 laptops appearing in S2

0 means that there are 2 ways to achieve
the goal of having a place for a laptop, not having 2 places or 2 laptops.

Drawing
table

Dresser

Computer
Desk, Tower
& Monitor

Cabinet

Armchair

Coach & Laptop

Bookcase

Door

Plant
Dresser

Computer
Desk, Tower
& Monitor

Armchair

Coach & Laptop

Bookcase

Door

Plant

S3
1S1

1

Fig. 7. Solutions S1
1 and S3

1 proposed by A1 in rounds 1 and 3.

Plant

Computer
Desk, Tower
& Monitor

Drawing
Table

Filing
Cabinet

Coach & Laptop

Glass-door cabinet

Door

Corner Table
& Laptop

φ15
2φ15

1

Fig. 8. Final agreed-upon solution, and the transfers from the initial solutions proposed
by the agents.

we obtain that: U1(S0
1) = 1.0, U1(S0

2) = 0.22, U2(S0
1) = 0.31, and U2(S0

2) = 1.0.
Notice that the solution proposed by A2 (the artist) has a non zero utility for
A1 (the geek), since S0

2 contains elements such as a plant pot, a couch and a
glass-door cabinet (which is just a special kind of cabinet), and thus S0

2 satisfies
some of the goals of A1.

When the ABARC protocol starts (t=1), say agent A1 owns the token; then
A1 tries to find an asymmetric amalgam S0

2

→
g S0

1 to propose as a new solution.
That is to say, A1 tries to find a transfer φ1

2 v S0
2 that unifies with S0

1 ; the
result is the solution S1

1 , shown on the left hand side of Figure 7. This solution
keeps all the content of S0

1 and has incorporated the laptop, which fits on top of
the couch. This solution has improved A2’s utility to U2(S1

1) = 0.33, since one
more of its goals (having a laptop) is satisfied. Two rounds later, A1 needs to
generate another solution proposal, and, using a refinement operator, generalizes
S0

1 giving up the cabinet in the east wall, to allow any piece of large furniture
(φ3

1). Thus, A1 proceeds to find another asymmetric amalgam S0
2

→
gφ3

1, obtaining
a solution S3

1 with the drawing table on the east wall. This solution now has a
slightly lower utility for A1 (0.97), but an increased utility for A2 (0.56).

After only 15 rounds, they arrive at the solution shown in Figure 8, which
has utility 0.72 and 0.81 for A1 and A2 respectively. Figure 8 also shows what
was transferred from the original solutions by A1 and A2. Notice that most of
the solution comes from A2, however, that is fine for A1, since the part that
is transferred from A2 satisfies many of A1’s goals, such as having a plant-pot
or having a cabinet. This shows ABARC can effectively and efficiently help two
agents reach an agreed-upon solution even when they have completely different
sets of goals, and no agent knows the goals of the other agent.

Moreover, in order to assess how good is the solution found by ABARC,
we can compare it with the “best” solution that can be found in the search
space. Given that there are two utility functions involved, we may use welfare
functions for determining collective utility, such as the utilitarian welfare (the
solution that maximizes the sum of utilities) or egalitarian welfare (the solution
that maximizes the minimum utility). Considering a utilitarian welfare, the best
solution that could have been found has utility values of 0.875 and 0.75 for A1

and A2 respectively. To find that solution, we ran an exhaustive algorithm that
explored all the 1.3×109 possible solutions. In comparison, agents in ABARC only
shared 15 different solutions (and considered 161 solutions internally). Moreover,
the solution found by ABARC has a utility about 94% of the optimal solution
in utilitarian welfare. This means that ABARC manages to find a very good
solution very fast, thanks to the amalgam operation. On the worst case, agents
using ABARC would explore the set of all possible amalgams between their initial
solutions, which is a subspace of the complete solution space.

6 Related Work

Three areas of work are related to ABARC: reuse in multiagent systems, reusing
multiple cases, and work on merging operations.

Concerning reuse in multiagent systems, the first work in multi-CBR systems
was presented by Prasad, Lesser and Lander [13]. They focus on a system where
a set of individual agents have collected experience on their own, and thus can
have a local view of each problem. They present a decentralized “negotiated case
retrieval” technique that allows the group of agents to retrieve the appropriate
information from each individual case base and then aggregate it in order to
answer a query. The aggregation, however, does not correspond to merging
solutions as in our framework, but to the fact that different agents might only
know some subset of the features of each problem. Similarly, other research in
multiagent CBR, like Plaza, Arcos and Martin [11], McGinty and Smyth [9], or
Leake and Sooriamurthi [8], focuses on distributing the retrieval stage.

To the best of our knowledge, the only work on distributed reuse is that
of Ontañón and Plaza [12], which focuses on classification tasks, and on using
voting mechanisms as a distributed reuse procedure. The difference with our
work is that we focus here on structured solutions, and thus, voting mechanisms
are not appropriate.

Concerning reusing multiple solutions, specially relevant are compositional
adaptation techniques, which find new solutions from multiple cases and have
been analyzed for configuration tasks in [15], where the approach adaptation-as-
configuration is presented. This approach has two specific operators (compose
and decompose) that achieve compositional adaptation in “conceptual hierarchy
oriented configuration.” Compose merges multiple concept instances that have
already been configured, while Decompose gives the subconcept instances of a
given concept instance. These operations work upon is-a and part-of relations
in an object-oriented hierarchy.

Another application, different from configuration, is planning. Systematic
Plan Adapter (SPA) [4] is an approach for adapting plans as search in a refinement
graph of plans. SPA is systematic and complete and, as local search, is based on
adapting a single plan. MPA (Multi-Plan Adapter) [14] is an extension which
allows for reusing multiple plans. MPA breaks the different plans into smaller
pieces, which are then recombined together. The complexity breaking these
plans into smaller pieces, however, is very high and MPA uses only a heuristic.
Compared to MPA, our approach avoids the need of this breaking down process
while providing a systematic way to combine multiple solutions into a single one.

Concerning merging operations, they have been studied in belief merging [5],
where the goal is to merge two knowledge bases (beliefs plus integrity constraints)
while maintaining consistency. This approach was applied to CBR [2] by viewing
case combination in reuse as a belief merging problem. Specifically, each case is
viewed as a knowledge base, and the merging is generating a new knowledge
base that preserves the relevant integrity constraints.

7 Conclusions

In this paper we have focused on distributed reuse in multiagent CBR systems.
Specifically, we have focused on the scenario where two CBR agents with different
biases or solution quality criteria need to agree on a single structured solution
for a given problem. To address this scenario, we have presented ABARC, which
models this problem by dividing the reuse process in two subprocesses: individual
reuse, and multiagent reuse. During multiagent reuse, we use the amalgam
operation and refinement operators in order to propose solutions that consist
of different ways to merge the two individual solutions proposed by the agents.

ABARC effectively allows agents to reach agreements over structured solutions
by exploring the different ways in which the solutions proposed by each agent
can be merged (by using the amalgam operation). By only exploring the different
ways to amalgamate the solutions proposed individually, ABARC avoids an expen-
sive search process over the space of possible solutions trying to find a solution
that maximizes the utility for both agents.

The work presented in this paper is one step towards our long term goal of
enabling the application of CBR to open multiagent systems. Whereas distributed
retrieval has received some attention, the topic of reusing multiple cases in
multiagent CBR has remained under-explored. Our future work focuses on two

main lines: on the one hand, we would like to continue analyzing the properties
of the amalgam operation for multiple case reuse, and on the other hand, we are
interested in the general problem of problem-solving in distributed scenarios,
where agents need to reach agreements over potentially structured solutions.

Acknowledgements. This research was partially supported by projects Next-
CBR (TIN2009-13692-C03-01) and AT CONSOLIDER CSD2007-0022.

References

[1] Carpenter, B.: Typed feature structures: an extension of first-order terms. In:
Saraswat, V., Ueda, K. (eds.) Proceedings of the International Symposium on
Logic Programming. pp. 187–201. San Diego (1991)

[2] Cojan, J., Lieber, J.: Belief merging-based case combination. In: Case-Based Rea-
soning Research and Development (ICCBR’09). Lecture Notes in Artificial Intel-
ligence, vol. 5650, pp. 105–119 (2009)

[3] Falkenhainer, B., Forbus, K.D., Gentner, D.: The structure-mapping engine: Al-
gorithm and examples. Artificial Intelligence 41, 1–63 (1989)

[4] Hanks, S., Weld, D.S.: A domain-independent algorithm for plan adaptation. J.
Artificial Intelligence Research 2(1), 319–360 (1994)

[5] Konieczny, S., Lang, J., Marquis, P.: Da2 merging operators. Artificial Intelligence
157(1-2), 49–79 (2004)

[6] van der Laag, P.R.J., Nienhuys-Cheng, S.H.: Completeness and properness of re-
finement operators in inductive logic programming. Journal of Logic Programming
34(3), 201–225 (1998)

[7] Lavrač, N., Džeroski, S.: Inductive Logic Programming. Techniques and Applica-
tions. Ellis Horwood (1994)

[8] Leake, D.B., Sooriamurthi, R.: When two case bases are better than one: Exploit-
ing multiple case bases. In: ICCBR. pp. 321–335 (2001)

[9] McGinty, L., smyth, B.: Collaborative case-based reasoning: Applications in per-
sonalized route planning. In: ICCBR. pp. 362–376 (2001)

[10] Ontañón, S., Plaza, E.: Amalgams: A formal approach for combining multiple
case solutions. In: Case-Based Reasoning. Research and Development, 18th Inter-
national Conference on Case-Based Reasoning, ICCBR 2010. pp. 257–271 (2010)

[11] Plaza, E., Arcos, J.L., Mart́ın, F.: Cooperative case-based reasoning. In: Weiss,
G. (ed.) Distributed Artificial Intelligence Meets Machine Learning. Learning in
Multi-Agent Environments, pp. 180–201. No. 1221 in Lecture Notes in Artificial
Intelligence, Springer-Verlag (1997)

[12] Plaza, E., Ontañón, S.: Ensemble case-based reasoning: Collaboration policies
for multiagent cooperative cbr. In: Watson, I., Yang, Q. (eds.) In Case-Based
Reasoning Research and Development: ICCBR-2001. pp. 437–451. No. 2080 in
LNAI, Springer-Verlag (2001)

[13] Prassad, M.V.N., Lesser, V.R., Lander, S.: Retrieval and reasoning in distributed
case bases. Tech. rep., UMass Computer Science Department (1995)

[14] Ram, A., Francis, A.: Multi-plan retrieval and adaptation in an experience-based
agent. In: Leake, D.B. (ed.) Case-Based Reasoning: Experiences, Lessons, and
Future Directions. AAAI Press (1996)

[15] Wilke, W., Smyth, B., Cunningham, P.: Using configuration techniques for adap-
tation. In: Case-Based Reasoning Technology, Lecture Notes in Computer Science,
vol. 1400, pp. 139–168. Springer-Verlag (1998)

