
Generalizing DPOP: Action-GDL, a new complete
algorithm for DCOPs

(Extended Abstract)
M. Vinyals

IIIA, Artificial Intelligence
Research Institute

Spanish National Research
Council

meritxell@iiia.csic.es

J.A. Rodriguez-Aguilar
IIIA, Artificial Intelligence

Research Institute
Spanish National Research

Council
jar@iiia.csic.es

J. Cerquides ∗

WAI, Dep. Matemàtica
Aplicada i Anàlisi

Universitat de Barcelona
cerquide@maia.ub.es

ABSTRACT
In this paper we make three main contributions (fully de-
tailed in [5]). Firstly, we formulate a new algorithm, the
so-called Action-GDL, which extends GDL [1] to apply it
to Distributed Constraint Optimization Problems (DCOPs).
Secondly, we show that Action-GDL generalizes DPOP[4], a
low-complexity, state-of-the-art algorithm to solve DCOPs.
Finally, we provide empirical evidence showing that Action-
GDL can outperform DPOP in terms of the amount of com-
putation, communication and parallelism.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—
Distributed Artificial Intelligence

General Terms
Algorithms theory

Keywords
GDL, DCOP, Distributed Junction Tree, DPOP

Action-GDL is a novel, complete algorithm that extends
GDL [1] to efficiently solve DCOPs. GDL is a general message-
passing algorithm that exploits the way a global function
factors into a combination of local functions generalizing a
large family of well-known algorithms. In our case, the ra-
tionale to apply (and extend) GDL is that a DCOP requires
the maximization of a global function resulting from the
combination of local functions.

GDL is defined over two binary operations [1]. In our
case over addition and maximization (the max-sum GDL)
because we aim at maximizing some objective function. In
order to ensure optimality and convergence, GDL arranges
the objective function to assess in a junction tree structure
(JT)[2].

∗Partially funded by TIN2006-15662-C02-01. M.Vinyals is
supported by the Ministry of Education of Spain (FPU grant
AP2006-04636). JAR thanks JC2008-00337.

Cite as: Title (Extended Abstract), Author(s), Proc. of 8th Int.
Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–
15, 2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

x1

x2

x3 x4

x5
r
1
2

r
23

r34

r 24

r
1
5

(a) CG

C1x1 x2

ψ1(x1, x2)

C2x2 x3 x4

ψ2(x2, x3, x4)

C3x1 x5

ψ3(x1, x5)

x2 x1

(b) JT

C5x1 x5

ψ5(x1, x5)

C1x1 x2ψ1(x1, x2)

C2x2 x3 x4

ψ2(x2, x3, x4)

C3x3 x4

ψ3(x3, x4)

C4x4

ψ4(x4)

x2x4

x2 x1

x4

(c) DJT

Figure 1: CG and JT/DJT arrangements

Fig. 1(a) shows an example of DCOP represented by its
constraint graph (CG). We use the definition and nomencla-
ture for the DCOP as formulated in [5]. Fig.1(b) shows one
of the possible JTs for this DCOP, a tree of three cliques,
where each clique is a subset of variables of the DCOP.
Nodes in the figure stand for cliques and edges for sepa-
rators. Thus, for example, C1 contains variables x1, x2; C3

contains variables x1, x5; and their separator is composed of
their intersection x1. Each clique Ci is associated with a po-
tential ψi, a function whose domain is a subset of Ci. More-
over, by making Ψ = {ψ1 = r12, ψ2 = r23 + r34 + r24, ψ3 = r15}
the function encoded is the same as the one in the CG.

Message/local knowledge (bK)
1. µ21 = maxx3,x4

ψ2(x2, x3, x4)

2. µ31 = maxx5
ψ3(x1, x5)

3. bK1 = ψ1(x1, x2) + µ21(x2) +
µ31(x1)
4. µ12 = maxx1 ψ1(x1, x2) +µ31(x1)
5. µ13 = maxx1 ψ1(x1, x2) +µ21(x2)

6. bK2 = ψ2(x2, x3, x4) + µ12(x2)

7. bK3 = ψ3(x1, x5) + µ13(x1)

Messages/local knowledge bK
1. µ21 = maxx3,x4

ψ2(x2, x3, x4)

2. µ31 = maxx5
ψ3(x1, x5)

3. bK1 = ψ1(x1, x2)+µ21(x2)+µ31(x1)
4. {c∗1 , c

∗
2} = argmaxx1,x2

bK1(x1, x2)

5. σ12 = c∗2 , σ13 = c∗1
6. bK2 = ψ2(σ12,x3,x4)

7. (c∗3 , c
∗
4) = argmaxx3,x4

bK2(x3, x4)

8. bK3 = ψ3(σ13,x5)

9. c∗5 = argmaxx5
bK3(x5)

Table 1: Traces of GDL (left) and Action-GDL (right)

GDL defines a message-passing phase for cliques to ex-
change information about their variables. Once a clique
has received messages from all its clique neighbors it has
all information related to its variables. Table 1 (left) dis-

plays a trace of GDL over the JT in figure 1(b). At step
1, clique C2 = {x2, x3, x4} sends a message µ21 to clique
C1 = {x1, x2} with the values of its local function, ψ2, after
’filtering out’ dependence on all variables but those com-
mon to C2 and C1 (namely variables which are not in their
separator). An equivalent process is executed by clique C3

to send a message to C1 (step 2). At step 3, after clique
C1 receives the values of its children’s local functions for its
variables x1, x2, it combines them with its potential into its
local knowledge bK1. At that point, since C1 has received
messages from all its neighbors, bK1 contains all the informa-
tion related to its variables x1, x2. At steps 4 and 5, clique
C1 sends messages to its children that contain the combina-
tion of its local function, ψ1, with other children messages
filtering out all variables in the separator. Thus, C2 receives
a message from C1 that contains the potential ψ1 combined
with µ31 and filtered out over x2. Then, it can compute bK2

(step 6).
However, the capability of computing any objective func-

tion, as provided by GDL, is not enough when solving DCOPs.
We need to go one step beyond GDL to allow a group of
agents make a joint decision (regarding their variables’ val-
ues) that maximizes any objective function. For this pur-
pose, Action-GDL extends GDL by: (1) supporting the dis-
tribution of the problem; and (2) inferring decision variables.

Supporting the distribution of the problem. GDL
runs over a JT in which all cliques are considered to be
located in a single agent, which is in charge of running
GDL. Action-GDL solves a DCOP where variables and re-
lations are distributed over agents that cooperatively solve
the problem. Therefore, Action-GDL extends GDL to deal
with cliques that are distributed to different agents and
control that agents have knowledge about the local infor-
mation (potential) related to its cliques. This is accom-
plished by running Action-GDL over a distributed junc-
tion tree (DJT), where each clique is assigned to an agent.
Fig.1(c) shows a DJT for the DCOP of figure 1(a). This
DJT has 5 cliques, one for each agent of the DCOP (clique
Ci is assigned to agent ai). The set of potentials contains
the set of relations of the DCOP distributed as follows:
ψ1 = r12,ψ2 = r23 + r24,ψ3 = r34,ψ4 = {},ψ5 = r15. Notice that
this DJT has the property that agents are assigned a clique
whose potential contains relations that this agent knows (in
DCOP relations that contains some agent’s variable). Thus,
agent 2 is assigned clique 2 whose potential contains rela-
tions that include variable x2, namely r23, r24. That is not
true in the JT of figure 1(b) since in that case there is not
a single agent who knows all relations assigned to potential
ψ2, namely r23, r34, r24.

To compile such DJT, we propose to use the method in-
troduced in [3] during the Action-GDL pre-processing phase,
which allows agents to distributedly compile a DJT to feed
Action-GDL. The advantatge of this method is that it cap-
tures how relations aredistributed among agents.

Inferring decision variables In a DCOP, clique vari-
ables are decision variables. Computing a clique’s objective
function stands for assigning values to these decisions. As
explained above, when a clique in GDL has received mes-
sages from all its neighbors, it has all information related to
its variables and it can infer their values. Therefore, when
a clique infers their state solving a DCOP, there is no need
to propagate more information related to its variables down
the tree, and instead it can directly propagate its decisions.

Hence, once all cliques have received messages from all their
children (messages sent up the tree), the second message-
passing phase of GDL (messages sent down the tree to chil-
dren) is no longer necessary. Instead, this phase is replaced
by a message-passing phase for cliques to exchange deci-
sions with their children (down the tree), which is precisely
the extension that Action-GDL introduces. Henceforth, we
shall refer to the first message-passing phase as utility prop-
agation, and to the second one as value propagation. Very
importantly, notice that the value propagation phase ensures
that whenever multiple optimal joint decisions are feasible,
cliques converge to the very same joint decision, namely to
the very same solution of a DCOP.

To illustrate that change, table 1 (right) displays a trace
of Action-GDL over the JT in figure 1(b). Steps 1-3 are
equivalent to steps 1-3 in GDL, since they correspond to
message sent up to the tree (messages sent during the utility
propagation phase). However, at step 4 the root clique C1

has received messages from all their children and can assess
the optimal value for x1, x2, namely c∗1, c∗2. At that point, it
starts the value propagation phase, and C1 propagates the
optimal value for x1, x2 down the tree to C2 and C3 through
value messages σ12 σ13 respectively (step 5). At steps 6-7,
C2 assesses the values of x2, x4 using its parent inferred value
for x2, namely c∗2. Same process is repeated in steps 8-9 for
C3 using its parent inferred value for x1.

Finally, we claim that DPOP executions are equivalent to
the execution of Action-GDL under certain DJTs. To prove
that, in [5] we: (i) define a mapping from pseudotrees to a
subclass of DJTs; and (ii) prove that, given any pseudotree,
the execution of DPOP over the pseudotree is equivalent to
the execution of Action-GDL over the DJT produced by our
mapping for the pseudotree. Since given a pseudotree there
is a DJT such that Action-GDL execution is equal to DPOP
execution, Action-GDL can be at least as efficient as DPOP
(by mimicking its behavior) when solving DCOPs. More-
over, Action-GDL can yield better algorithmic performance
than DPOP. Action-GDL can achieve such improvement be-
cause: (i) DJTs allow to explore problem arrangements that
can- not be represented via pseudotrees; and (ii) it can assess
multiple variables’ values at once. Hence, our early empir-
ical results, included in [5], indicate that alternative DJT
arrangements can lead to significant savings in communica-
tion and computation costs (which increase as the number
of variables grow) and to reductions of the maximum degree
of parallelism (from 25% to 40% of reduction).

1. REFERENCES
[1] S. M. Aji and R. J. McEliece. The generalized

distributive law. IEEE Transactions on Information
Theory, 46(2):325–343, 2000.

[2] F. V. Jensen and F. Jensen. Optimal junction trees. In
UAI, pages 360–366, 1994.

[3] M. A. Paskin, C. Guestrin, and J. McFadden. A robust
architecture for distributed inference in sensor
networks. In IPSN, pages 55–62, 2005.

[4] A. Petcu and B. Faltings. A scalable method for
multiagent constraint optimization. In IJCAI, pages
266–271, 2005.

[5] M. Vinyals, J.A.Rodriguez-Aguilar, and J. Cerquides.
Proving the equivalence of action-gdl and dpop.
Technical report, IIIA-CSIC, 2008. Available at http:
//www2.iiia.csic.es/~meritxell/publications/TRR200804.pdf.

