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Abstract. Wireless Sensor Networks (WSNs) are generally composed
of a large number of battery operated nodes with limited capacities.
Therefore, a main challenge in the management of a WSN is how to
reduce the energy consumption while maintaining a good quality of the
sensed data. Artificial intelligence techniques like multiagent coalition
formation can help on this. In this paper we propose an algorithm called
Coalition Oriented Sensing Algorithm and test it in a realistic scenario.
We experimentally show how this new algorithm allows nodes to self-
organise: nodes perform a good monitoring of the environment while
maximising the life span of the overall sensor network.

Keywords: Wireless Sensor Networks, Sensor Coalitions, Resourse Sa-
ving Strategies.

1 Introduction

Wireless Sensor Networks (WSNs) are networks formed by a large number of
battery-operated sensing nodes to develop monitoring tasks in different environ-
ments. Each node is a low-cost, low-consumption device of limited capabilities,
yet able to sense its environment and communicate wirelessly. As the nodes are
cheap and easy to deploy, this technology allows to perform surveillance tasks
in very large physical spaces. Moreover, the large numbers of nodes make these
networks very robust to individual node failures, enabling them to operate in
remote, hazardous environments. These characteristics, plus their non invasive
nature, make WSNs appropriate for a great range of monitoring applications.
As a result, WSNs have been applied to a number of different domains, such
as environment monitoring, security control, military surveillance, and traffic
control.

Depending on the application environment and its accessibility, the challenges
posed by these systems can be more or less acute, especially those referred to
the limited energy availability. Multiagent System (MAS) technologies can help
in alleviating such constraints by introducing coordination mechanisms between
sensors.

In MAS approaches, the nodes are understood as agents that can coordinate
among themselves to improve their efficiency. This paper exploits that multiagent
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viewpoint to develop energy-saving data treatment strategies for WSNs. This is,
nodes will coordinate to extend the life span of the network while maintaining a
certain quality of the information transmitted (the main purpose of the network).
In a generic scenario, the task of a sensor is to sense the environment and relay
the collected data to a server node, the sink, where this information is further
processed.

The main contribution of this paper is the Coalition Oriented Sensing Algo-
rithm (COSA). COSA aims at exploiting the periods of invariance in (parts of)
the environment. It implements a strategy for (not necessarily optimal) coalition
formation in WSNs. Thereafter, only coalition leaders have to sense and trans-
mit information, allowing the rest of the nodes to save energy. This is, COSA
implements a mechanism that provides a trade-off between information accuracy
and energy consumption.

As a result, the network’s life span is increased at the expense of reporting
less data to the sink. However, coalitions are made in such a way that the non-
transmitted data do not cause a deterioration in the system performance. COSA
is fully distributed in the network and robust to failures in individual nodes. Also,
it assumes that the nodes are fully cooperative, as WSNs are built to serve the
owner’s goal.

Thereafter, we demonstrate the benefits of COSA by means of an empirical
evaluation. Since deploying a full sensor network requires big investments, the
experiments have been carried out in a simulation environment. Therefore, we
modelled a scenario where the sensors are deployed along the course of a river,
with the objective of monitoring it to detect sources of pollution. The simulation
has been implemented using RepastSNS, a simulator especially designed to test
sensor networks from a multiagent perspective. Further, we also run simulations
where the sensors do not cooperate, sensing and transmitting data indepen-
dently. The obtained results show that COSA is able to significantly extend the
network’s lifetime, without losing accuracy of the information received at the
sink.

The rest of the paper is organised as follows. In Section 2, we revise some
important contributions in the area of WSN and coalition formation in MAS.
Section 3 is dedicated to the presentation and characterisation of COSA. The
simulation model that we have used to test it is described in Section 4. Section
5 presents the experimental results obtained and finally, conclusions and future
work are discussed in Section 6.

2 Related Work

From a MAS perspective, coalitions represent a fundamental form of organisa-
tion, as it allows the agents to organise themselves in coalitions. Agents then
cooperate within the coalition in order to share resources or reach shared goals
that cannot be achieved individually. Agents’ association to perform a task has
been considered almost from the initial conception of the MAS paradigm. The
approach taken for the design of these coalition or groupal strategies have evolved
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as the MAS application environments diversified. Therefore, a whole range of dif-
ferent coalition formation (CF) mechanisms exist depending on the conditions
and characteristics of the application scenario and the nodes composing the net-
work.

The application of CF techniques to distributed sensor networks has been
investigated by numerous researchers, as it is the case of [1]. In this work, a
negotiation process and individual utility calculations lead the agents to discover
their organizational relationships and, according to them, to group establishment
for tracking tasks.

As typically deployed in dynamic scenarios, sensor networks should be inher-
ently adaptive. Based on this idea, the Dynamic Regions Theory was proposed
in [2]. According to this theory, the network partionates itself into several re-
gions based on the individual nodes’ current circumstances and the system global
policy.

The influence of the network topology structure in a MAS perfomance for
task solving has also been considered in different approaches, [3,4,5]. In these
cases, the system divides itself into disjoint groups in order to accomplish the
demanded tasks.

In the work of [3], agents can rewire their connections to their neighbours to
form better coalitions. This can be done according to their degree of connectivity
or a performance-based policy. The decision factor for rewiring in [4] is the si-
milarity among neighbours and some task and group success indicators. Finally,
the work of [5] enriched the previous one by considering a more realistic coalition
model. However, none of these three approaches takes into account the energy
consumption and the cost derived from the rewiring pocilies.

Saving energy is one of the main objectives pursued by clustering algorithms
proposed for WSNs, such as LEACH [6], EEHC [7] and HEED [8]. All these
algorithms divide the sensor network distributedly into a set of non-overlapping
clusters, each of them with a cluster head which is in charge of sending the col-
lected data in the group to the sink. Our approach differs from these works in the
way the cluster head is chosen, as the characteristics of the own node, its state
and the perception their neighbouring nodes have of it are taken into account. A
more recent approach to this problem is presented in [9], where a cluster based
routing algorithm is introduced. In this case, the base station determines which
the cluster heads are and implements also a centralised predictive filtering algo-
rithm to decrement the amount of transmitted data. In contrast, we propose an
approach in which the nodes make autonomous decisions without any centralised
control.

In the same vein of reducing the number of transmissions, but far from the
coalition/group perspective presented above,the work in [10] proposes an algo-
rithm for individual node adaptive sampling that tries to extend the network
lifetime of a glacial sensor network. This same goal is also pursued in the work
of [11], in which a real deployment of an automated wildlife monitoring system
is presented. In contrast to these previous works, we propose a CF strategy for
homogeneous nodes in a sensor network scenario that allows to extend the useful
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life time of the network by avoiding redundant sensing and transmission. This
group formation strategy is based on the nodes’ state and the conditions of the
environment. There is no intervention of any central authority and the algorithm
is fully distributed and embedded in the nodes’ behaviour. The main objective
of the algorithm is achieved by allowing nodes in a coalition to delegate their
sensing tasks to other neighbouring nodes, while restricting the maximum infor-
mation loss, therefore the initial purpose of the system —faithfully monitoring
the environment— is not missed.

3 Algorithm Description

The Coalition Oriented Sensing Algorithm (COSA) has been designed consider-
ing an scenario composed of a set A = {a1, . . . , aN} of cooperative and homo-
geneous agents (the network’s nodes). We do not consider that agents can be
competitive or selfish as in this kind of problems there are neither resources to
fight for nor rewards to be won by the agents.

The basic behaviour of an agent ai is to sense the environment and relay the
observed measures to a server or sink.

As explained above, COSA’s objective is to save system resources by allowing
agents to form coalitions of agents that are perceiving very similar measures.
Thereafter, a single agent can act as a representative for the whole coalition,
avoiding redundant sensing and saving resources. To find an appropriate distri-
bution of the agents in coalitions, we take into account the similarity of the in-
dividual measurements and the topology of the neighbourhood structure, which
determines the neighbourhood relationships to be established among agents.

A coalition structure c = {gk}k:1..K is defined as a partition of A in K groups.
The criterion that guides the formation of the different coalition structures is to
find (in a distributed manner) the best partition so that the energy consumption
of the system is somehow minimised, while the accuracy of the information
sent to the sink is constrained to a certain range. COSA appears as a tuneable
algorithm thanks to the definition of a set of parameters p (to be explained later)
whose values drive the agents’ behaviour. Depending on p, agents take different
kinds of sampling and transmission actions, represented as mj ∈ Mp, where Mp

is the set of existing actions available for that p configuration.
The objective of minimising the system’s energy consumption is formally ex-

pressed in Equation 1. According to this equation, we try to find an optimal set
of parameters p∗, where mj

i is the action j taken by agent i and Ej represents
the energy consumption associated to that action. Measurements’ accuracy is
guaranteed through an adequate p parameters election.

p∗ = argmin
p∈P

∆E = argmin
p∈P

∑

mj∈Mp

∑

ai∈A

#mj
iEj (1)

Group formation among agents is based on a peer-to-peer negotiation protocol
by means of which agents exchange information about their measurements and
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their adequacy to represent their neighbours. As a consequence of this negotia-
tion, agents assume one of two possible roles : leader, if it is the representative
of its coalition (where it may be the only member); or follower, if it joined a
coalition lead by another agent. The main concepts that drive this negotiation
are adherence degree and leadership attitude.

The adherence degree of an agent i to an agent j is a measure that indicates
how much agent i intends to form part of a group led by agent j. The higher the
degree, the higher the intention. The adherence degree is defined as the product
of two factors. To evaluate those factors, we assume that the variable under
observation follows a Normal distribution, N . On the one hand, the first factor
in the adherence equation (2) captures the similarity between the measurements
of agents i and j. To avoid unproductive calculation, this factor is only defined
for neighbour agents whose measurements verify that ‖xj−xi‖ ≤ dmaxσj , where
dmax is a parameter and xi, σj are the corresponding sample and deviation of
agents i and j. On the other hand, the second factor captures the goodness
of the neighbour’s distribution and avoids obtaining high adherence values to
neighbours with wide distributions. To achieve that, this factor restricts the
evaluation to those neighbours whose σ belongs to the interval (σmin,σmax),
through the evaluation of the distribution’s entropy normalized on that range.

As a result, the evaluation of the degree to which an agent ai may be interested
in being led by one of its neighbours aj is calculated as follows:

adh(ai, aj) =
p(xi,Nj(x̄j ,σj))

p(x̄j ,Nj(x̄j ,σj))
· (1 − eHj − eHmin

eHmax − eHmin
) (2)

Note that the set of p parameters, as presented previously, can be identified now
as p = 〈dmax,σmin,σmax〉 defined over the space p ∈ (3. As previously stated,
the set of values to which these parameters are set influences the actions that a
node can take.

When an agent receives an adherence value from a neighbour, it has to decide
whether it is interested in becoming the leader of this agent or not. Let us call
P (ai) (potential group) the group formed by ai and the agents willing to become
part of a group led by ai. The attitude of ai as a leader of this group depends on
different factors that can be identified in (3). The first factor is called prestige
and it is an average of the adherence level of the group’s members. The capacity
factor indicates the available energy of the node to act as a leader. This value
is derived from the current energy level of the node minus the security energy
level (Esl) divided by the maximum energy level available Emax. Esl defines the
minimum energy that the node has to keep to ensure sending one last message
before completely depleting its battery.

Finally, the last factor in (3), representativeness, indicates how well the poten-
tial leader’s measurement fits as a representative of the potential group agents’
measurements. So, ai characterizes the set of data received together with its
own data, that is, the set {x}P (ai), with their mean and standard deviation,
noted as (x̄P (ai),σP (ai)). To encourage the formation of groups with very similar
measurements, an exponential function establishes the divergence growing ratio.
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Those potential groups whose measurement distribution is very disperse are also
penalized through the inclusion of the Pearson’s coefficient in the equation.

A good group leader is an agent who has enough energy and whose measure-
ments are similar enough to the measurements of the other group members. In
summary, the leadership capacity of an agent ai for its potential group P (ai) is
calculated as follows:

∑
aj∈P (ai)

adh(aj , ai)

N
· E(ai)− Esl

Emax
· 1

e|xi−x̄P(ai)
|CVP(ai)

(3)

This information exchange takes place following a certain operational protocol
according to which, every agent involved in a negotiation with a neighbour goes
through these phases:

– Sample information exchange. This process corresponds to the variable sam-
pling and measurements broadcast.

– Adherence graph construction. Once the agent has calculated the adherence
degrees to its neighbours, it communicates the maximum adherence value to
the corresponding most preferred neighbour.

– Leadership information exchange. Based on the current adherence relation-
ships, the agent calculates and communicates its attitude as a leader towards
the agents willing to adhere to it.

– Group definition. Depending on the information available for an agent at a
certain moment, it decides wether to stay in its current group (as a leader
or dependant of a leader node), to leave this group to join a different one or
to constitute its own group.

The set of performatives that the agents use to complete these stages are:

– inform: to indicate the transmission of data (measurements, maximum adhe-
rence and leadership values).

– firmAdherence: to express the desire of the sending node to adhere to the
addressee node.

– ackAdherence: to express the acknowledgment to a previously received firm-
Adherence message.

– break : for a leader node to break a leadership relationship.
– withdraw : for a dependant node to break a leadership relationship.

The CF protocol is embedded in the agent generic behaviour. Agents behave
in a proactive and reactive way. Proactive because the core behaviour of an
agent is the continuous process of looking for the best group of neighbours that
matches with its measurement and its state. To achieve this objective, an agent
exchanges messages asynchronously with its neighbours. Reactive because their
acts and decisions are triggered by the observation of the environment and the
information they receive.
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4 Simulation Model

Our experiments run over RepastSNS [12], an event-based simulator especially
designed to model sensor networks as multi-agent systems. In RepastSNS, all
the environment objects are modelled as agents that communicate via message
passing. The platform is open source and developed in Java over Repast. It is
designed as a two-layered structure with an object layer and a network layer.
The object layer defines the behaviour of the individual sensors and the network
layer defines the topology and the relationships among the sensors. The simu-
lation platform is an extension of Repast classes, so the program structure of
RepastSNS fits into this known MAS simulation engine.

All these characteristics make RepastSNS a general purpose simulation envi-
ronment, that allows different application domains for WSN to be tested over it.
This can be done without too much effort, as the environment provides a scalable
and extensible infrastructure to build up networks of basic WSN components.
The main task that a programmer has to do over this environment is just to
configure and adapt its pre-defined elements (observable phenomena, sensors,
agents, communication mechanisms) to the specific domain being modelled.

The advantage of using RepastSNS instead of any other network simulator
such as ns2, OMNeT or J-SIM is twofold: (i) it provides for a more abstract level
description than these other simulators, allowing the programmer to concentrate
on the actual agent behaviour instead of dealing with hardware details; and (ii)
it brings with it a convenient basic implementation of all the components needed
to model wireless sensor networks.

To avoid confusions, from now on we will use the term node when we refer
to a wireless sensor device and the term sensor when we refer to the specific
physical device that measures a parameter of environment.

SensorSensor

SensorSensor

Field

CPU

Battery

Sensor

Actuator

Wireless Sensor

Phenomenon

Phenomenon

Wireless
Sensor

Perceptions

Actions

Fig. 1. RepastSNS simulation architecture

Figure 1 outlines the architecture of a sensor network simulation on Repast-
SNS. In RepastSNS all the observable phenomena are contained inside a field
that includes the nodes themselves. Furthermore, the nodes are composed of
multiple modules: a cpu, a battery, and any number of sensors and actuators.
Sensors are those devices that allow the node to perceive the field’s phenomena
and their properties. Analogously, actuators allow the cpu agent to modify ex-
isting phenomena or produce new ones. This very simple model is surprisingly
sound, as any phenomena or agent behaviour needed in a system can be easily
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modelled and incorporated. For instance, wireless radio interfaces can be mod-
elled as an actuator that generates wireless waves (a phenomenon), plus a sensor
that detects them.

5 Experimental Results

To demonstrate the proposed MAS algorithm, the experimental evaluation com-
pares a WSN performance when it implements COSA and when it behaves ac-
cording to a random sampling policy. Our main aim is to compare the energy
usage of both approaches, as well as the accuracy of the data reported in each
case. The two approaches deliver different data as the random sampling scheme
implies that measurements taken from the environment are directly send to the
general server, while the characteristic grouping imposed by COSA translates in
association data sending.

5.1 Experimental Setting

COSA algorithm aims at faithfully monitoring the state of a dynamic environ-
ment and extending the life time of the network as much as possible. To test
this, the scenario considered is that of a river, whose state is to be monitored.
Different state variables and phenomena that could be sensed in this domain
are water temperature, salinity or hydrocarbon presence. The deployment of the
sensor network in such an environment can rely on the buoys and signalling
elements deployed along the course of the waterway.

To correctly fit this application domain into the simulation platform, we start
by defining a river phenomenon. This phenomenon represents a river section of 50
kilometers long by 2 kilometers wide, and it is composed of a grid of water cells.
In order to mimic the effects of water flowing through the river, we define a simple
river movement schedule that will cause that any phenomenon appearing in the
river will be displaced by the current of the water. The model used to implement
this functioning considers a drift component, a sedimentation component and
a solvent component, i.e. the general intensity of the phenomenon reduces in
time and a part of it remains in its origin, while the rest flows according to the
strength of the current. Therefore if any contaminant is poured in a water cell, it
will spread to its downward cells through time according to the following model
River(x, y) = (1−ρ)River(x, y)+ρ(α(River(x−1, y−1))+β(River(x, y−1))+
γ(River(x+1, y−1))). During each simulation run, three different contamination
sources appear at random locations, but at specific times and keep spewing
contaminant between 30 and 60 weeks.

The surveillance nodes are the ones responsible of monitoring the river’s con-
dition and informing the sink about their observations. As explained before, they
are formed by a CPU, battery, sensor and radio. These components are mod-
eled after Waspmote ones, real wireless sensor devices whose specifications are
summarized in Table 1.

Two different kinds of surveillance nodes are considered according to the two
sampling approaches proposed. Regardless the sampling policy nodes implement,
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Table 1. Node components specifications

Component Specification

Battery capacity 13000mAh@3.7V
CPU active consumption 9000uAh@3.3V
CPU sleep consumption 62uAh@3.3V
CPU hibernate consumption 1uAh@3.3V
Radio transmission consumption 210000uAh@3.3V
Radio reception consumption 80000uAh@3.3V
Radio bandwidth 156Kbps
Radio Sensing radius 1.5km
Radio sleep consumption 60uAh@3.3V
Sensor consumption 6uAh@3.3V
Sensor sampling time 1.63s

both kind of nodes have to send the collected data to a sink node. This sink node
represents the central monitoring station to which the nodes deployed along the
river are reporting to. In our setting, this agent has the ability to obtain the actual
contamination values at any time at every point in the river, and can therefore de-
termine the differences between node-reported values and the real ones. Differently
from sensing nodes, the sink node does not take samples from the environment, nei-
ther is it constrained to low power or low processing capacity, as it acts as a server
in the system, being part of the network control unit.

As previously explained, the system basic functioning consists of monitoring
the environment through periodical samples collection. The way nodes deployed
in the scenario behave to satisfy this purpose is what defines the applied sampling
policy. The base case considered for the experimentation set is that of a random
policy. The random setting presents a set of nodes (called random nodes) that
take a sample from the environment at a random moment within the sampling
period specified for the network.

The so called cf nodes (coalition formation) act according to the COSA algo-
rithm presented in previous sections. Therefore, these nodes sample the environ-
ment periodically as expected, but instead of directly sending every individual
measurement to the sink, these measurements are used to establish peer to peer
negotiations with neighbourghs so that sensing groups can be formed. Conse-
quently, only one node for each group (the leader) senses and sends information
to the sink on behalf of the others, which delegate their tasks on it for a certain
period of time.

The sink node in both scenarios receives the information collected by ac-
tive nodes. In the random scenario, this information corresponds to every single
measurement periodically collected by all the random nodes. The sensing task
delegation among cf nodes may cause the sink to receive a group measurement
representing the information associated to a set of nodes in a group. Assum-
ing a common sample for a set of nodes may cause the loss of some pieces of
information and consequently, some noise is added to the reported data.
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Fig. 2. Network remaining energy ratio

Finally, to completely define the experimental setup, Table 2 presents the
values assigned to the COSA algorithm parameters as well as the sampling fre-
quency demanded to the system. The number of nodes considered is set to 50
and their deployment along the river course is assumed to follow a regular chain
distribution. Every node is situated in the middle of the river section considered
and evenly spaced.

Table 2. Parameters’ values

Parameter Value

Sampling frequency 10min
dmax 1.75
σmin 0.0005
σmax 6
Node asleep time 1day

5.2 Results

To test if COSA achieves the objectives that inspired its definition, we study its
performance in terms of the energy consumption and the quality of the reported
information. The reference base for these two gauges are supplied by the random
nodes’ behaviour, as they follow a dummy sampling policy.

All the experiments have been run until every node in the network has com-
pletely depleted its battery, that is, for our experimental setting, 140 weeks.
Figure 2 shows the ratio of network remaining energy for both kind of nodes, cf
nodes and random nodes.

In this figure, as initially expected, we can observe how the COSA algorithm
allows the network to keep a higher level of global energy than the random policy
during most of its life time; however, both sampling policies lead to a very similar
network death time.
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The energy consumption curve obtained for the random nodes follows a sta-
ble pattern, whereas cf nodes present more variability, especially by the end
of the experiments. This phenomenon is because COSA causes different group
configurations to appear in the network over time. The influence of the group
configuration reached in the network grows as the global energy in the system
decreases. At these middle-end stages, the leader node situation and the avail-
able energy of the set of nodes still alive have a severe impact on the global
energy level.

In contrast, the results obtained for random nodes clearly show the effect of
their independent sampling behaviour. This is neither affected by their neigh-
bours’ state, nor by the dynamics of the environment. The decreasing energy
curve, therefore, shows the effect of nodes dying, dependent on their distance
to the sink. The extension of the useful life span of the network can be better
identified in Figure 3.
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Fig. 3. Network median remaining energy

This figure shows the median of the nodes’ energy values per week. We observe
that half of the random nodes are already disabled by week 101, whereas this
same value is reached over 30 weeks later for cf nodes (specifically by week
134). This result translates directly into better system performance during the
network lifetime. COSA causes nodes’ death to be evenly distributed, which
guarantees that the network is going to get a fairly good representation of the
whole environment, for most of its life time.

This result relates to the previous figure, as the nodes that deplete their battery
first are the more distant ones to the sink. This means that the sink is blind to this
area. Random nodes situated there are the first to die, while the ones situated near
the sink keep most of their battery power and are the last to die, but are only able
to sample the sink’s surroundings. The even battery depletion in cf nodes causes a
more simultaneous node death phenomenon, but in terms of global energy in the
system, both policies reach zero level at the same time.
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Fig. 4. Reported information deviation

Figures 4 and 5 represent the deviation of the information reported to the
sink by random and cf nodes. When no pollution phenomenon has appeared yet,
there is no deviation from the real environment state, but as a first pollution
phenomenon appears (at week 40), the deviation value of the reported informa-
tion changes. As both models have all their nodes fully operational by this time,
we see that the resulting deviation of both models’ reported samples is quite low
(in fact, the lowest deviation from real phenomenon values is reached during this
period).

Between weeks 40 and 80, the deviation corresponding to the data reported
by cf nodes is slightly higher than the corresponding to the random nodes in
the same period, with the maximum difference between them of only 0.035.
Although both models provide really good representations of the phenomenon,
cf nodes data is a little more deviated from reality due to the characteristic group
sampling of COSA, which allows a leader node to send a sample on behalf of its
dependent nodes. However, as random nodes begin depleting their batteries and
becoming unable to sense, the deviation of the information they report quickly
deteriorates. Therefore, by the time the second pollution event takes place (week
80) the deviation of random nodes’ information suffers a bigger increase than
the corresponding leap that cf nodes’ deviation takes.

The same behaviour repeats for the third pollution stain, appearing in week
100. Again, the deviation of the data reported by cf nodes is lower than that
offered by random nodes. Moreover, the smaller leaps in the deviation resulting
from cf nodes’ data indicates that they are also more stable, and therefore, more
robust to nodes’ failure or exhaustion.

This property can also be observed in Figure 5, which shows mean and dis-
persion values corresponding to the deviation reported by both kinds of nodes.
The fact that the standard deviation associated to this gauge increases as the
number of nodes decreases supports the hypothesis of robustness for cf nodes for
different environmental conditions and lower number of nodes.
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Fig. 5. Mean and standard deviation information accuracy

6 Conclusions

In this paper we have presented the COSA algorithm and have given experimen-
tal evidence of its computing properties. This algorithm is aimed at extending
the life span of WSNs while guaranteeing their good performance. In contrast to
previous approaches that tried to save energy using adaptive sampling schemes,
COSA innovates by reaching this objective via a peer to peer negotiation pro-
tocol. This negotiation protocol enables nodes to interact and generate groups
that produce a network-wide benefit. To attain a good group configuration the
algorithm relies on the node local information about its environment state and
neighbouring nodes. This local information together with the appropriate COSA
algorithm parameter configuration leads to the formation of groups of nodes that
act as a single entity, avoiding redundant sensing and transmissions efforts.

The improvements obtained by this algorithm have been shown in a simple
scenario representing the section of a river where different pollutant phenomena
appear in random positions. Simulating the scenario required the development of
the simulation platform RepastSNS, which represents a powerful tool for WSN
simulation from a MAS perspective.

The results obtained for the experimentation showed how a sensor network
whose nodes implement COSA guarantees a better use of the network energy
and a more homogeneous system energy depletion than the ones offered by a
sensor network whose nodes follow a simple random sampling policy. Achieving
this more regular system exhaustion reverts in the extension of the useful life of
the network, as the whole monitoring area can be sampled for longer periods,
therefore, getting a more accurate view of the environment.

As future work, we plan to test the behaviour of COSA in different scenarios
and for different network topologies. We believe that the COSA parameter con-
figuration highly depends on the dynamics of the phenomena being observed and
the distribution of the nodes in the environment. Getting to know the impact of
these two factors in the algorithm performance will allow us to fully characterise
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it and to be able to identify the set of cases for which its use would result bene-
ficial. Even more, being able to assess the improvement expected, which would
result in better WSN deployment planning.
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