
On the Evaluation of DisCSP Algorithms?
Ismel Brito, Fernando Herrero, and Pedro Meseguer

Institut d’Investigació en Intel.ligència Artificial
Consejo Superior de Investigaciones Cientı́ficas

Campus UAB, 08193 Bellaterra, Spain.fismel|fhcarron|pedrog@iiia.csic.es
Abstract. Not every research paper in DisCSP evaluates algorithms in the same
way. Motivated by this fact, we revise some elements of the area of distributed
algorithms as well as distributed constraints, which can help to develop a well-
founded methodology for evaluation of DisCSP algorithms. Although prelimi-
nary, we suggest a number of points which should be considered in such method-
ology.

1 Introduction

In this paper we aim at collecting a number of thoughts and ideas about the task of how
evaluate algorithms for solving DisCSP. As researchers on distributed constraint satis-
faction, we often develop new versions of existing procedures, we devise new heuristics
and we produce new solving algorithms. To assess the practical importance of these new
developments, their evaluation is a crucial point. Facing this issue, we often consider
questions like,

– what is the most adequate environment to test our algorithms?
– on which benchmarks should they been evaluated?
– which are the most adequate parameters to measure algorithmic efficiency?

Often, different research groups have different answers tothese questions. Our goal
is to achieve a consensus in the community of distributed constraint satisfaction, in
order to establish a common acceptedmethodologyon the way algorithms should be
evaluated. Obviously, this methodology should follow standard methods in the area of
distributed algorithms(see [4] for a comprehensive review of this area). In addition,
since constraint solving is NP-complete, many solving algorithms have the same worst-
case complexity. To really evaluate these algorithms in practice, we have to identify
some parameters whose measure could give an idea of the amount of resources used in
the algorithm execution. The methodology has to answer two types of questions. First,
to definewhatparameters should be measured (total CPU time, number of cycles, con-
current constraint checks, number of messages exchanged, etc.). Second, to definehow
this can be measured, in a double sense:on which environmentevaluation is performed
(reality vs. simulation, several computers vs. one computer), andon which benchmarks? This research is supported by the REPLI project TIC-2002-04470-C03-03.

(distributed random, distributed versions of existing CSP, specific DisCSP appplica-
tions, etc.). As a consequence, we expect that comparison among different approaches
would be facilitated, and the value of scientific communication would be promoted.

In the following, we discuss some of these issues (the question of benchmarks is not
considered) based on our experience. We strongly believe that other research groups can
provide valuable ideas and suggestions, and we urge them to do so.

2 Preliminaries

There are several definitions of distributed constraint satisfaction problems. Without
trying to be exhaustive, we think that all of them share the following idea. Adistributed
constraint satisfaction problem(DisCSP) is a CSP which is distributed among several
agents. Each agent contains a part of the problem, but no agent contains the whole
problem. Some overlapping may exist among agents, althoughno two of them can
contain exactly the same initial information. Because somereasons (privacy, size, etc.),
the information of each agent cannot be transferred into a central server, where the
whole problem could be solved by classical, centralized CSPsolving methods. In the
distributed setting, the task is to find a solution of the problem (an assignment of all the
variables satisfying all constraints), by exchanging messages among agents.

Depending on the model that we assume about the timing of events in the distributed
system, we obtain different types of algorithms. In [4], three timing models are consid-
ered, which are informally described as follows:

1. The synchronous model. “This is the simplest model to describe, to program and to
reason about. We assume that components (agents) take stepssimultaneously, that
is, that execution proceeds in synchronous rounds.”

2. The asynchronous model. “We assume that separate components (agents) take steps
in arbitrary order, at arbitrary relative speeds.”

3. The partially synchronous model. “We assume some restrictions on the relative tim-
ing of events, but execution is not completely lock-step as it is in the synchronous
model.”

These three timing models generate three types of algorithms for DisCSP solving.
Broadly speaking, a synchronous algorithm is based on the notion of privilege, a token
that is passed among agents. Only one agent is active at any time, the one having the
privilege, while the rest of agents are waiting1. When the process in the active agent
terminates, it passes the privilege to another agent, whichnow becomes the active one.
In an asynchronous algorithm every agent is active at any time, and it does not have to
wait for any event. A partially synchronous algorithm in in between of these two types.
An agent running a partially syncronous algorithm may require to wait for some special
event, but not for every event.

To solve a DisCSP instance, the three types of algorithms differ in their functionality
and efficiency. Considering functionality, asynchronous algorithms are the most general

1 Except for special topological arrangements of the constraint graph. See [2] for a synchronous
algorithm where several agents are active concurrently.

and portable, because they impose no assumptions on the timing of computation steps.
Usually, they are more robust and offer more privacy than theother two types. Regard-
ing efficiency, as the amount of resources required to compute a solution, there is some
debate on which type of algorithm is more efficient. We come back on this issue in the
Section 5.

3 Evaluation

Two complexity measures, on time and on communication, are proposed in [4] for dis-
tributed algorithms that exchange messages.Time complexityaims at bounding the time
required to compute a global solution by the whole system.Communication complexity
considers the amoung of network resources needed to achievea solution.

3.1 Time Complexity

For synchronous algorithms, [4] proposes using the number of rounds required to find
a solution as the time complexity measure. For asynchronousalgorithms, [4] requires
to have an upper bound on the time between succesive chances of a task to perform
a step. This is called a timed execution. The time of the eventis the supremum of the
times that can be assigned to such an event in all timed executions. Since CSP solving is
NP-complete, this worst-case expression is exponential and does not help in clarifying
the relative efficiency of different algorithms.

Alternatively, [3] proposes a new measure of time complexity as counting the num-
ber of constraint checks that cannot be performed concurrently when solving a DisCSP.
A constraint check occurs when a value tuple is checked against a constraint. In clas-
sical CSP it is considered an atomic operation, which has to be performed for (almost)
all constraint algorithms, so the number of constraint checks is a good estimation of
the search effort. Inspired in the logical clocks of Lamport[5], in [3] the number of
concurrent constraint ckecks is computed as follows. Each agent keeps a counter of its
own performed constraint checks, and every message that it sends contains the value of
that counter (when it was sent). When the receiver gets that message, it updates its own
counter to the maximum between its counter and the counter contained in the message.
When the algorithm stops, the maximum of the counters is the total concurrent con-
straint checks, and approximates the size of the longest sequence of checks that cannot
be done concurrently.

At the end of the search, the number of concurrent constraintchecks performed
approximates the runtime of the algorithm if it is assumed that the elapsed time between
two constraint checks not performed concurrently is approximately the same. However,
this assumption does not hold in presence of random delays orfor partially synchronous
algorithms with unbounded waiting episodes. In this last case, waiting episodes can be
counted at agent level. Following a similar approach to concurrent constraint checks,
we can assess the longest sequence of waiting episodes whichcannot be performed
concurrently.

Other measures can provide complementary information. Forinstance, the distribu-
tion of constraint checks really performed by agents in the network gives some idea of
how balanced is search effort among agents.

3.2 Communication Complexity

For the three timing models considered, [4] considers the total number of messages
exchanged as the measure of communication complexity. How messages are counted
depends on the communication model used, described in Section 3.3. This is also the
common position of the distributed constraints community.

The size of messages can also be taken into account as secondary measure, follow-
ing [4]. The cost of sending a message is the cost of setting the communication link plus
the cost of properly sending the message. The cost of settingthe communication link
is paid when the first message is sent through that link. The cost of properly sending a
message depends on its length (the message size plus the header added by the commu-
nication software). So message size has to be considered, especially when comparing
algorithms exchanging messages whose sizes differ in more than a constant.

Assuming the Unicast communication model (see Section 3.3), the idea of con-
current constraint checks can be applied to messages. Each agent keeps a counter of
the sent messages, and every message contains the value of that counter when it was
sent. When the receiver gets that message, it updates its owncounter to the maximum
between its counter and the counter contained in the message. We call this value con-
current messages, and gives an idea of the length of the longest sequence of messages
that cannot be done concurrently.

Other measures can provide complementary information. Forinstance, the distribu-
tion of the number of messages sent/received by agents in thenetwork gives some idea
of how balanced is the communication among agents.

3.3 Communication Model

It is often the case that algorithmdescription and analysisdo not consider the underlying
communication model. However, a real-case study should take this into account, as the
communication costs may vary depending on which model is used. We analyze two
communication models:

1. Unicast (also calledsend/receiveor point-to-pointcommunication). On a unicast
network, messages are sent one by one to each of the recepients, thus requiring
linear resources on the number of agents. This is the common model used in exper-
iments and simulations.

2. Multicast. On the other hand, advantage could be taken from multicast networks,
such as IP networks, on which agents can subscribe to a group and messages sent to
that group do not imply any additional cost per agent. This model provides constant
time and resources, irrespective to the number of recepients.

Since this is an implementation issue, it makes sense to reflect which of these mod-
els was actually used when presenting experimental results. It is not uncommon to con-
sider “broadcast” communication as a single process, when in fact the implementation
means sending one message to each receiver.

4 Simulator

Ideally, to evaluate a new algorithm one should haven dedicated processors connected
to a common network on which tests would be done. However, this setting is often not
available in most of our labs. Even if there is a number of computers available, the
workload of each computer and the load of the communication network are out of the
control of the experimenter, and these aspects have a significant impact on the efficiency
of the algorithms. Because of that, we consider that simulation into a single computer is
a suitable alternative to make the tunning and most of the experimentation for DisCSP
algorithms. After that, some algorithms can be tested on a real setting, assuming the
resources needed to perform a field test. In the following, weconsider the different
options for DisCSP algorithms when are evaluated by simulation on a single computer.

Usually, DisCSP algorithms are described in terms of agents. An agent is an au-
tonomous entity that contains a part of the problem, it is able to perform its own rea-
soning process and to communicate with other agents. In a multi-task computer (for
instance, a desktop with Linux operating system (OS)), a direct option is to imple-
ment each agent as a different task, all having the same priority. The OS scheduler is
in charge of activating / desactivating the agents, that take control of the CPU as any
other task in the system. Communication among agents is performed using standard
task communication facilities (usually implemented usingdisk storage). This approach
is relatively simple to implement but present some drawbacks. First, it depends on the
OS, so results obtained in computers with different OS couldnot be directly compara-
ble. Second, even using the same computer and the same implementation, it is difficult
to reproduce exactly the same results when repeating the same experiments. There are
some sublte factors (such as the mail server, the network load, the disk storage) which
change between executions and are out of the control of the experimenter. Because of
that, exact reproduction of previous results is almost impossible with this approach.

To overcome this fact, an alternative is to use a simulator that offers the same fa-
cilities as the OS, but allows one complete control. This simulator allows agents to
execute, performs the scheduling among agents and providescommunication facilities.
With this approach, results are reproducible, the same experiment generates the same
results (providing random elements are initialized with the same seed).

The first simulator of this kind appears in the seminal work ofYokoo [6, 7]. Each
agent keeps its own clock, which is incremented at each cycleof computation. One
cycle for an agent consists of reading all its incoming messages, processing them and
writing all messages generated as answers. It is assumed that a message sent at timet
is available to the receiver at timet+ 1. This means a kind of synchronicity in the acti-
vation of agents, which is somehow contradictory with the evaluation of asynchronous
procedures. We come back on this point in Section 5.

Another scheduling policy is to activate agents randomly: arandom number be-
tween 1 andn determines the identifier of the agent to activate. When thisagent ter-
minates, the same process selects the next agent to activate. This approach seems to be
more adequate to evaluate asynchronous procedures. Other scheduling policies could
offer some interesting alternatives.

5 Discussion

In this Section we contrast some of the criteria presented above with current practices
in the evaluation of DisCSP algorithms. With this exercise we identify some aspects
which could be improved in distributed algorithm evaluation.

5.1 Evaluation Parameters

Time and communication.Often we see DisCSP algorithms which are evaluated con-
sidering time or communication, but not both aspects. In general, we think that this
approach provides incomplete information and does not allow one to assess globally
the amount of resources needed for an algorithm. Following standard practice in dis-
tributed algorithms, we propose to use these two measures when evaluating DisCSP
algorithms. Some researchers have suggested to aggregate both measures in one (or
translate one measure into another). When possible, this approach is attractive because
it allows us to deal with a single number. However, in many cases it cannot be done
without making arbitrary assumptions, difficult to justify. In such cases, we suggest to
keep both measures separated.

Timing model. Evaluating an algorithm should follow methods which are adequate for
the timing model assumed by the algorithm. Synchronous algorithms can be evaluated
using the number of rounds as time complexity measure. However, asynchronous algo-
rithms should not be evaluated using methods that assume a synchronous model (such
as the number of rounds).

An interesting question is the evaluation of partially synchronous algorithms, es-
pecially on those parts which require waiting for some eventcaused by other agents.
During a waiting episode, an agent may not use its own resources but it is causing some
delay to agents which require its input. Waiting episodes can be counted at agent level.
In addition, following a similar approach to concurrent constraint checks, we can assess
the longest sequence of waiting episodes which cannot be concurrent.

Communication model. Most of DisCSP papers does not deal explicitely with the
communication model. It is usually assumed that when an agent sends a message top
other agents, this causesp physical messages in the network. In other words, the unicast
model is implicitely assumed. This is fine, the only concern here is that the communi-
cation model should be made explicit, so algorithms could beevaluated using different
models. This will bring closer the DisCSP paradigm to real communication networks,
which finally could promote the use of DisCSP algorithms for practical applications.

Message size.When messages of different sizes are present in DisCSP algorithms, usu-
ally size differences are neglected and the number of messages is the only evaluation
parameter considered. We believe that this is not a fair approach and the message size
cannot be ignored, especially when message sizes differ in more than a constant (for in-
stance, in a function that depends on problem dimensions). We suggest to take message
size differences into account, as suggested in the area of distributed algorithms [4].

5.2 Processing Messages: One by One vs Packets

Asynchronous DisCSP algorithms are often described assuming that agents react in-
mediately after receiving a message: they process messagesone by one. However, some
algorithms are evaluated processing messages by packets: an agent reads all messages
that are waiting in the input buffer and processes them as a whole. It is worth noting
that these two strategies may produce quite different results considering the evaluation
parameters described above.

The motivation of asynchronous algorithms for processing messages by packets,
instead of one by one, is to prevent useless work. A simple example occurs when two
consecutive messages arrive from the same agent, informingthat it has taken two differ-
ent values. Obviously, the first message becomes obsolete assoon as the second arrives.
All the work generated by processing the first message and extra messages that this
processing might be caused, could be saved if the agent wouldhave known the second
message. Somehow, this idea was mentioned in [7] and [8]. Recently, in [1] a formal
protocol for processing messages by packets is proposed.

Informally, when any agent processes messages by packets, it first reads all mes-
sages that are in its input buffer. Then, it processes all read messages as a whole, ignor-
ing those messages that become obsolete by the presence of another message. The agent
looks for any consistent value after its agent view and its nogood store are updated with
these incoming messages.

Thus, every outgoing message that an agent will send is consequence of the previ-
ous incoming messages because all of them update the agent view before agent checks
consistency. Therefore, before agent looks for a consistent value, the agent’s concurrent
counter has to be updated to the maximum value between its owncounter before start-
ing to process the packet and the maximum of all concurrent counter of all messages
contained in the processed packet.

Empirically, we have tested both types of message processing on distributed binary
random problems using two algorithms: one asynchronous andone partial synchronous.
The former is the well-knownABT algorithm [6, 7]. The latter isABT-Hyb[1], an novel
ABT-like algorithm which introduces some synchronization points to avoid sending
redundant messages. It can be seen as a partially synchronous algorithm.

In our experiments, we have 16 variables/agents (n = 16) and 8 values per variable
(m = 8). The connectivity of the network is set to 0.5 (p1=0.5). On Table 1 and Table2
we report results averaged over 100 executions in terms of the following parameters:

– the sum of all constraint checks performed by all agents (cc)
– the number of concurrent constraint checks (ccc)
– the total number of messages exchanged (mess)
– the number of concurrent messages, computed in the same way as ccc (cmess)
– the total number ofInfo messages exchanged (info)
– the total number ofBackmessages exchanged (back)
– the total number ofAdd-Linkmessages exchanged (link)
– the number ofBackmessages that are obsolete when are received (obso)

Regarding the communication cost, the number of messages exchanged in both al-
gorithms processing messages by packets is lower than processing messages one by

messages processingcc ccc mess cmess info back link obso
one by one 92,86023,14833,1843,63525,4137,733 38 4,824
by packets 77,55035,40831,9865,55824,8777,770 39 2,339

Table 1.Results in the pick of difficulty forABT with both types of messages processing

messages processingcc ccc mess cmess info back link obso
one by one 57,36422,72024,1074,25019,7204,437 37 1,567
by packets 56,68022,60323,9634,22919,6604,303 67 1,525

Table 2.Results in the pick of difficulty forABT-Hybwith both types of messages processing

one. Considering the number of concurrent constraint checks, processing messages by
packets increases the number of concurrent constraint checks with respect to process-
ing messages one by one. However, the number of obsolete messages decreases when
agents process messages by packets. This phenomenon can be seen better if we compute
the following ratios:

– ratio of concurrency of constraint checks,rccc = 1� ccccc (1)

– ratio of concurrency of messages,rcm = 1� cmessmess (2)

– ratio of information quality ofBack messages,riq = 1� obsoback (3)

The ratiorccc can give us an idea of how concurrent is our algorithm. On contrast,
ratiorccc and ratioriq can help us to measure the use of the resources of the network.
These parameters are easily extended to synchronous algorithms. In them,rccc = 0,rcmess = 0 andriq = 1 2.

On Table 3 and Table 4 we show the results of computing these ratios to the ex-
perimental results reported on Table 1 and Table 2. Regarding ABT, we can see that it
becomes less concurrent when messages are processed by packets, although the qual-
ity of the information is higher. RegardingABT-Hybwhen messages are processing by
packets, the concurrency of the algorithm and the quality ofthe information remains
approximately the same as processing messages one by one. This happens because an
ABT-Hybagent can be in awaiting statewithout sending any outgoing message. In
that state, the agent receives allInfo messages updating its agent view accordingly.

2 Except for special arrangements of the constraint graph, asdescribed in [2]

messages processingrccc rcmess riq
one by one 0.75070.89050.3757
by packets 0.54340.82620.6692

Table 3.Ratios forABTalgorithm with both types of messages processing.

messages processingrccc rcmess riq
one by one 0.60390.82370.6395
by packets 0.60130.82350.6456

Table 4.Ratios forABT-Hybalgorithm with both types of messages processing.

Then, when an agent leaves thewaiting stateit will have a better idea of the current
assignments of the other agents.

Finally, it is worth noting that although concurrency decreases when processing
messages by packets, this does not necessarity means that the process is less efficient.
In fact, it saves some useless work. This is reflected in the increment ofriq (ratio of
information quality) of theBackmessages and in the decrement ofrccc (ratio of con-
current constraint checks) andrcmsg (concurrent messages).

6 Summary

We believe that the evaluation of current DisCSP algorithmsis not completely estab-
lished, and a common methodology is badly needed. Such methodology should follow
standard evaluation methods in distributed algorithms. Wehave reviewed some basic
elements of this area, such as the timing model, the communication model, time and
communication complexities. We have also considered evaluation procedures suggested
from the distributed constraint community. We have tried toapply them to the evalua-
tion of DisCSP algorithms. Doing this exercise, we have identified some points which
should be followed in the evaluation of DisCSP algorithms. These results can be seen
as preliminary. More work is needed to achieve a global and coherent methodology for
the evaluation of DisCSP algorithms.

References

1. Brito I., Meseguer P. Synchronous, asynchronnous and hybrids algorithms for DisCSP. Sub-
mitted toCP-04 Workshop on Distributed Constraint Reasoning.

2. Collin Z., Dechter R., Shmuel K. On the Feasibility of Distributed Constraint Satisfaction.
In Proc. of the 12th International Joint Conference on Artificial Intelligence, IJCAI-91, 318–
324, 1991.

3. Meisels A., Kaplansky E., Razgon I., Zivan R. Comparing Performance of Distributed Con-
straint Processing Algorithms.AAMAS-02 Workshop on Distributed Constraint Reasoning,
86–93, Bologna, Italy, 2002.

4. Lynch N.Distributed Algorithms, Morgan–Kaufmann, 1996.

5. Lamport L. Time, Clock, and the Ordering of Evens in a Distributed System.Communica-
tions of the ACM, 21(7), 558–565, 1978.

6. Yokoo M., Durfee E.H., Ishida T., Kuwabara K. DistributedConstraint Satisfaction for For-
malizing Distributed Problem Solving.In Proc. of the 12th International Conference on Dis-
tributed Computing System, 614–621, 1992.

7. Yokoo M., Durfee E.H., Ishida T., Kuwabara K. The Distributed Constraint Satisfaction
Problem: Formalization and Algorithms.IEEE Trans. Knowledge and Data Engineering10,
673–685, 1998.

8. Zivan, R. and Meisels, A.Synchronous and Asynchronous Search on DisCSPs.In Proc. of
EUMAS-2003, Oxford, UK, 2003

