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Abstract. Not every research paper in DisCSP evaluates algorithnieisame
way. Motivated by this fact, we revise some elements of tlea &f distributed
algorithms as well as distributed constraints, which cdp tedevelop a well-
founded methodology for evaluation of DisCSP algorithmkh@ugh prelimi-

nary, we suggest a number of points which should be considesich method-

ology.

1 Introduction

In this paper we aim at collecting a number of thoughts ands@out the task of how
evaluate algorithms for solving DisCSP. As researchersigtniloblted constraint satis-
faction, we often develop new versions of existing proceduwe devise new heuristics
and we produce new solving algorithms. To assess the pabictiportance of these new
developments, their evaluation is a crucial point. Fachig tssue, we often consider
guestions like,

— what is the most adequate environment to test our algorizhms
— on which benchmarks should they been evaluated?
— which are the most adequate parameters to measure alguriffiiency?

Often, different research groups have different answethdse questions. Our goal
is to achieve a consensus in the community of distributedstcaimt satisfaction, in
order to establish a common acceptadthodologyn the way algorithms should be
evaluated. Obviously, this methodology should follow st methods in the area of
distributed algorithmgsee [4] for a comprehensive review of this area). In additio
since constraint solving is NP-complete, many solving atgms have the same worst-
case complexity. To really evaluate these algorithms irctime, we have to identify
some parameters whose measure could give an idea of the hof@asources used in
the algorithm execution. The methodology has to answer ywes of questions. First,
to definewhatparameters should be measured (total CPU time, number lefsgyamn-
current constraint checks, number of messages exchartged Second, to defingow
this can be measured, in a double sewsewhich environmendvaluation is performed
(reality vs. simulation, several computers vs. one compuaedon which benchmarks
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(distributed random, distributed versions of existing C§#ecific DisCSP appplica-
tions, etc.). As a consequence, we expect that comparisongdifferent approaches
would be facilitated, and the value of scientific communaatvould be promoted.

In the following, we discuss some of these issues (the quresfibenchmarks is not
considered) based on our experience. We strongly beliet®ther research groups can
provide valuable ideas and suggestions, and we urge themdo.d

2 Preliminaries

There are several definitions of distributed constrains&attion problems. Without
trying to be exhaustive, we think that all of them share thiefang idea. Adistributed
constraint satisfaction probleifDisCSP) is a CSP which is distributed among several
agents. Each agent contains a part of the problem, but na agetains the whole
problem. Some overlapping may exist among agents, althoogtwo of them can
contain exactly the same initial information. Because sogasons (privacy, size, etc.),
the information of each agent cannot be transferred inton&raleserver, where the
whole problem could be solved by classical, centralized €8%ing methods. In the
distributed setting, the task is to find a solution of the peab(an assignment of all the
variables satisfying all constraints), by exchanging rages among agents.

Depending on the model that we assume about the timing of®irethe distributed
system, we obtain different types of algorithms. In [4]gatiming models are consid-
ered, which are informally described as follows:

1. The synchronous modéThis is the simplest model to describe, to program and to
reason about. We assume that components (agents) takesstepsneously, that
is, that execution proceeds in synchronous rounds.”

2. The asynchronous mod&iWe assume that separate components (agents) take steps
in arbitrary order, at arbitrary relative speeds.”

3. The partially synchronous modéWe assume some restrictions on the relative tim-
ing of events, but execution is not completely lock-step &sin the synchronous
model.”

These three timing models generate three types of algasiftonDisCSP solving.
Broadly speaking, a synchronous algorithm is based on ttiemof privilege a token
that is passed among agents. Only one agent is active atraayttie one having the
privilege, while the rest of agents are waitihg/Vhen the process in the active agent
terminates, it passes the privilege to another agent, wivehbecomes the active one.
In an asynchronous algorithm every agent is active at ang,tamd it does not have to
wait for any event. A partially synchronous algorithm in ietlveen of these two types.
An agent running a partially syncronous algorithm may regjto wait for some special
event, but not for every event.

To solve a DisCSP instance, the three types of algorithrfexdiif their functionality
and efficiency. Considering functionality, asynchrondgssthms are the most general

1 Except for special topological arrangements of the coimttgaph. See [2] for a synchronous
algorithm where several agents are active concurrently.



and portable, because they impose no assumptions on thgtahcomputation steps.
Usually, they are more robust and offer more privacy tharother two types. Regard-
ing efficiency, as the amount of resources required to coenggblution, there is some
debate on which type of algorithm is more efficient. We comeklzn this issue in the
Section 5.

3 Evaluation

Two complexity measures, on time and on communication, epgsed in [4] for dis-
tributed algorithms that exchange messagdene complexitaims at bounding the time
required to compute a global solution by the whole syst@ammunication complexity
considers the amoung of network resources needed to achanlation.

3.1 Time Complexity

For synchronous algorithms, [4] proposes using the numberumds required to find
a solution as the time complexity measure. For asynchroalyasithms, [4] requires
to have an upper bound on the time between succesive chaheessk to perform
a step. This is called a timed execution. The time of the eigetite supremum of the
times that can be assigned to such an event in all timed égasuSince CSP solving is
NP-complete, this worst-case expression is exponentéhaes not help in clarifying
the relative efficiency of different algorithms.

Alternatively, [3] proposes a new measure of time compyea#t counting the num-
ber of constraint checks that cannot be performed condlynehen solving a DisCSP.
A constraint check occurs when a value tuple is checked afainonstraint. In clas-
sical CSP itis considered an atomic operation, which ha® todsformed for (almost)
all constraint algorithms, so the number of constraint kkes a good estimation of
the search effort. Inspired in the logical clocks of Lampsit in [3] the number of
concurrent constraint ckecks is computed as follows. Egeimtekeeps a counter of its
own performed constraint checks, and every message tlestdsscontains the value of
that counter (when it was sent). When the receiver gets teasage, it updates its own
counter to the maximum between its counter and the counteaiceed in the message.
When the algorithm stops, the maximum of the counters isdta toncurrent con-
straint checks, and approximates the size of the longeseseg of checks that cannot
be done concurrently.

At the end of the search, the number of concurrent constchietks performed
approximates the runtime of the algorithmif it is assumed the elapsed time between
two constraint checks not performed concurrently is apipnately the same. However,
this assumption does not hold in presence of random deldgs partially synchronous
algorithms with unbounded waiting episodes. In this lasecavaiting episodes can be
counted at agent level. Following a similar approach to comnt constraint checks,
we can assess the longest sequence of waiting episodes edrndlot be performed
concurrently.

Other measures can provide complementary informationiristance, the distribu-
tion of constraint checks really performed by agents in #t&ork gives some idea of
how balanced is search effort among agents.



3.2 Communication Complexity

For the three timing models considered, [4] considers tie tlumber of messages
exchanged as the measure of communication complexity. Hessages are counted
depends on the communication model used, described inc8e28. This is also the
common position of the distributed constraints community.

The size of messages can also be taken into account as sgcaretesure, follow-
ing [4]. The cost of sending a message is the cost of settangdmmunication link plus
the cost of properly sending the message. The cost of seittngommunication link
is paid when the first message is sent through that link. Teeafgroperly sending a
message depends on its length (the message size plus tlee hdddd by the commu-
nication software). So message size has to be considemeLiabdy when comparing
algorithms exchanging messages whose sizes differ in rharea constant.

Assuming the Unicast communication model (see Section &@)idea of con-
current constraint checks can be applied to messages. ach lkeeeps a counter of
the sent messages, and every message contains the valwd obdhter when it was
sent. When the receiver gets that message, it updates itsaurer to the maximum
between its counter and the counter contained in the mesgégeall this value con-
current messages, and gives an idea of the length of thedbegguence of messages
that cannot be done concurrently.

Other measures can provide complementary informationiristance, the distribu-
tion of the number of messages sent/received by agents meth@rk gives some idea
of how balanced is the communication among agents.

3.3 Communication Model

Itis often the case that algorithm description and analysisot consider the underlying
communication model. However, a real-case study shoulgttak into account, as the
communication costs may vary depending on which model id.ugé& analyze two
communication models:

1. Unicast(also calledsend/receiver point-to-pointcommunication). On a unicast
network, messages are sent one by one to each of the resgplams requiring
linear resources on the number of agents. This is the comnoalelmised in exper-
iments and simulations.

2. Multicast On the other hand, advantage could be taken from multiestanks,
such as IP networks, on which agents can subscribe to a gnoup@ssages sent to
that group do not imply any additional cost per agent. Thisehprovides constant
time and resources, irrespective to the number of recepient

Since this is an implementation issue, it makes sense tetreftach of these mod-
els was actually used when presenting experimental restiksiot uncommon to con-
sider “broadcast” communication as a single process, winégct the implementation
means sending one message to each receiver.



4 Simulator

Ideally, to evaluate a new algorithm one should haxadedicated processors connected
to a common network on which tests would be done. Howeves siiiting is often not
available in most of our labs. Even if there is a number of corars available, the
workload of each computer and the load of the communicatework are out of the
control of the experimenter, and these aspects have a samifmpact on the efficiency
of the algorithms. Because of that, we consider that sinaranto a single computer is
a suitable alternative to make the tunning and most of theraxgntation for DisCSP
algorithms. After that, some algorithms can be tested orahsgtting, assuming the
resources needed to perform a field test. In the followingcaomsider the different
options for DisCSP algorithms when are evaluated by sinarain a single computer.

Usually, DisCSP algorithms are described in terms of agékisagent is an au-
tonomous entity that contains a part of the problem, it i dblperform its own rea-
soning process and to communicate with other agents. In #-task computer (for
instance, a desktop with Linux operating system (OS)), actlioption is to imple-
ment each agent as a different task, all having the sameitgribhe OS scheduler is
in charge of activating / desactivating the agents, that tantrol of the CPU as any
other task in the system. Communication among agents isnpeefl using standard
task communication facilities (usually implemented udiiigk storage). This approach
is relatively simple to implement but present some drawbaEkst, it depends on the
OS, so results obtained in computers with different OS coolche directly compara-
ble. Second, even using the same computer and the same iemlgian, it is difficult
to reproduce exactly the same results when repeating the egperiments. There are
some sublte factors (such as the mail server, the netwodk the disk storage) which
change between executions and are out of the control of {heriexenter. Because of
that, exact reproduction of previous results is almost issfiale with this approach.

To overcome this fact, an alternative is to use a simulatat ¢ffers the same fa-
cilities as the OS, but allows one complete control. Thisusator allows agents to
execute, performs the scheduling among agents and prasédesiunication facilities.
With this approach, results are reproducible, the samerigrppt generates the same
results (providing random elements are initialized with $ame seed).

The first simulator of this kind appears in the seminal workokoo [6, 7]. Each
agent keeps its own clock, which is incremented at each @fclmputation. One
cycle for an agent consists of reading all its incoming mgssaprocessing them and
writing all messages generated as answers. It is assunmied thessage sent at time
is available to the receiver at time+ 1. This means a kind of synchronicity in the acti-
vation of agents, which is somehow contradictory with thaleation of asynchronous
procedures. We come back on this point in Section 5.

Another scheduling policy is to activate agents randomlyaradom number be-
tween 1 andh determines the identifier of the agent to activate. Whenabent ter-
minates, the same process selects the next agent to acliiéde@pproach seems to be
more adequate to evaluate asynchronous procedures. @ttezhuiing policies could
offer some interesting alternatives.



5 Discussion

In this Section we contrast some of the criteria presentedieakvith current practices
in the evaluation of DisCSP algorithms. With this exercise identify some aspects
which could be improved in distributed algorithm evaluatio

5.1 Evaluation Parameters

Time and communication.Often we see DisCSP algorithms which are evaluated con-
sidering time or communication, but not both aspects. Ineganwe think that this
approach provides incomplete information and does notvatloe to assess globally
the amount of resources needed for an algorithm. Followiaigdard practice in dis-
tributed algorithms, we propose to use these two measures wbaluating DisCSP
algorithms. Some researchers have suggested to aggreghtenbasures in one (or
translate one measure into another). When possible, thi®aph is attractive because

it allows us to deal with a single number. However, in manyesas cannot be done
without making arbitrary assumptions, difficult to justifg such cases, we suggest to
keep both measures separated.

Timing model. Evaluating an algorithm should follow methods which arecagee for
the timing model assumed by the algorithm. Synchronousittgos can be evaluated
using the number of rounds as time complexity measure. Hexvagynchronous algo-
rithms should not be evaluated using methods that assumecarenous model (such
as the number of rounds).

An interesting question is the evaluation of partially dyrmmous algorithms, es-
pecially on those parts which require waiting for some ewentsed by other agents.
During a waiting episode, an agent may not use its own ressurat it is causing some
delay to agents which require its input. Waiting episodeshmcounted at agent level.
In addition, following a similar approach to concurrent staint checks, we can assess
the longest sequence of waiting episodes which cannot beucamnt.

Communication model. Most of DisCSP papers does not deal explicitely with the
communication model. It is usually assumed that when antagsmds a message o
other agents, this causgphysical messages in the network. In other words, the unicas
model is implicitely assumed. This is fine, the only conceenehs that the communi-
cation model should be made explicit, so algorithms coulevaduated using different
models. This will bring closer the DisCSP paradigm to reahowinication networks,
which finally could promote the use of DisCSP algorithms fiagtical applications.

Message sizeéWhen messages of different sizes are present in DisCSHtalgst usu-
ally size differences are neglected and the number of messaghe only evaluation
parameter considered. We believe that this is not a faircgmr and the message size
cannot be ignored, especially when message sizes diffeoia than a constant (for in-
stance, in a function that depends on problem dimensiorssuygest to take message
size differences into account, as suggested in the areatofudited algorithms [4].



5.2 Processing Messages: One by One vs Packets

Asynchronous DisCSP algorithms are often described asguthat agents react in-
mediately after receiving a message: they process messagdxy one. However, some
algorithms are evaluated processing messages by packetgeat reads all messages
that are waiting in the input buffer and processes them asaewtt is worth noting
that these two strategies may produce quite differentt®sohsidering the evaluation
parameters described above.

The motivation of asynchronous algorithms for processiregsages by packets,
instead of one by one, is to prevent useless work. A simplmpl@occurs when two
consecutive messages arrive from the same agent, infothrang has taken two differ-
ent values. Obviously, the first message becomes obsolst®asas the second arrives.
All the work generated by processing the first message amd extssages that this
processing might be caused, could be saved if the agent vmauelknown the second
message. Somehow, this idea was mentioned in [7] and [8pmRlg¢cin [1] a formal
protocol for processing messages by packets is proposed.

Informally, when any agent processes messages by pacdkétst reads all mes-
sages that are in its input buffer. Then, it processes all me@ssages as a whole, ignor-
ing those messages that become obsolete by the presenceldramessage. The agent
looks for any consistent value after its agent view and itgonal store are updated with
these incoming messages.

Thus, every outgoing message that an agent will send is qaesee of the previ-
ous incoming messages because all of them update the agenbefore agent checks
consistency. Therefore, before agent looks for a congigtdne, the agent’s concurrent
counter has to be updated to the maximum value between itcoumter before start-
ing to process the packet and the maximum of all concurremttes of all messages
contained in the processed packet.

Empirically, we have tested both types of message proagssimistributed binary
random problems using two algorithms: one asynchronousaagartial synchronous.
The former is the well-knowABT algorithm [6, 7]. The latter i&aBT-HyH1], an novel
ABT-like algorithm which introduces some synchronizationm®ito avoid sending
redundant messages. It can be seen as a patrtially synclsralgmrithm.

In our experiments, we have 16 variables/agents (16) and 8 values per variable
(m = 8). The connectivity of the network is set to 045 €0.5). On Table 1 and Table2
we report results averaged over 100 executions in termsedbtlowing parameters:

— the sum of all constraint checks performed by all ageftp (

— the number of concurrent constraint checks:)

— the total number of messages exchangees(s)

— the number of concurrent messages, computed in the samesway (@mess)
— the total number ofnfo messages exchangea (o)

— the total number oBackmessages exchangéd k)

— the total number oAdd-Linkmessages exchangédén(k)

— the number oBackmessages that are obsolete when are receibed)(

Regarding the communication cost, the number of messagbsueged in both al-
gorithms processing messages by packets is lower thangsingemessages one by



messages processingcc ccc | mess|cmess info | back|link| obso
one byone [92,86(23,14833,1843,63525,4137,733 384,824
by packets  |77,55035,40831,9865,55824,8777,770 39 |2,339

Table 1.Results in the pick of difficulty foABT with both types of messages processing

messages processingcc ccc | mess|cmess info |back|link| obso
one by one 57,36422,72024,1074,25019,7204,437 37 (1,567
by packets  |56,68(22,60323,9634,22919,6604,303 67 |1,525

Table 2. Results in the pick of difficulty foABT-Hybwith both types of messages processing

one. Considering the number of concurrent constraint &)qmlocessing messages by
packets increases the number of concurrent constrainkslveith respect to process-
ing messages one by one. However, the number of obsoletagessdecreases when
agents process messages by packets. This phenomenon ean beter if we compute
the following ratios:

— ratio of concurrency of constraint checks,

rece =1 2% (1)
ce

— ratio of concurrency of messages,

Cmess

rem—=—1— )
mess
— ratio of information quality ofBack messages,
obso

g — 1 — 3

i back 3)

The ratiorcee can give us an idea of how concurrent is our algorithm. Onresit
ratiorcce and ratiorig can help us to measure the use of the resources of the network.
These parameters are easily extended to synchronousthfgseriln themycee = 0,
remess = () andrig = 12,

On Table 3 and Table 4 we show the results of computing theses i the ex-
perimental results reported on Table 1 and Table 2. Regg/AlRT, we can see that it
becomes less concurrent when messages are processed bispaltkough the qual-
ity of the information is higher. RegardildBT-Hybwhen messages are processing by
packets, the concurrency of the algorithm and the qualitshefinformation remains
approximately the same as processing messages one by dadappens because an
ABT-Hybagent can be in avaiting statewithout sending any outgoing message. In
that state, the agent receives &llfo messages updating its agent view accordingly.

2 Except for special arrangements of the constraint graptiessribed in [2]



messages process|ngece [rcmess  rig
one byone |0.75070.89050.3757
by packets |0.54340.82620.6692

Table 3. Ratios forABT algorithm with both types of messages processing.

messages processingece (remess rig
one by one 0.60390.823710.6395
by packets |0.60130.82350.6456

Table 4.Ratios forABT-Hybalgorithm with both types of messages processing.

Then, when an agent leaves thaiting stateit will have a better idea of the current
assignments of the other agents.

Finally, it is worth noting that although concurrency dexses when processing
messages by packets, this does not necessarity meansepabtiess is less efficient.
In fact, it saves some useless work. This is reflected in tbeement ofrig (ratio of
information quality) of theBackmessages and in the decrement-af- (ratio of con-
current constraint checks) anedmsg (concurrent messages).

6 Summary

We believe that the evaluation of current DisCSP algoritissot completely estab-
lished, and a common methodology is badly needed. Such ahelitgy should follow
standard evaluation methods in distributed algorithms hafee reviewed some basic
elements of this area, such as the timing model, the comratiorcmodel, time and
communication complexities. We have also considered atialuprocedures suggested
from the distributed constraint community. We have trie@dpply them to the evalua-
tion of DisCSP algorithms. Doing this exercise, we have fified some points which
should be followed in the evaluation of DisCSP algorithmsede results can be seen
as preliminary. More work is needed to achieve a global amé@nt methodology for
the evaluation of DisCSP algorithms.

References

1. Brito I., Meseguer P. Synchronous, asynchronnous anddsyalgorithms for DisCSP. Sub-
mitted toCP-04 Workshop on Distributed Constraint Reasoning

2. Collin Z., Dechter R., Shmuel K. On the Feasibility of Distited Constraint Satisfaction.
In Proc. of the 12th International Joint Conference on Actii Intelligence, IJCAI-91318—
324,1991.

3. Meisels A., Kaplansky E., Razgon ., Zivan R. Comparingétenance of Distributed Con-
straint Processing Algorithm&AMAS-02 Workshop on Distributed Constraint Reasoning
86-93, Bologna, Italy, 2002.

4. Lynch N.Distributed AlgorithmsMorgan—Kaufmann, 1996.



5. Lamport L. Time, Clock, and the Ordering of Evens in a Olistied SystemCommunica-
tions of the ACM21(7), 558-565, 1978.

6. Yokoo M., Durfee E.H., Ishida T., Kuwabara K. Distribut€dnstraint Satisfaction for For-
malizing Distributed Problem Solvingn Proc. of the 12th International Conference on Dis-
tributed Computing Syster614—621, 1992.

7. Yokoo M., Durfee E.H., Ishida T., Kuwabara K. The Disttiéd Constraint Satisfaction
Problem: Formalization and AlgorithmEEE Trans. Knowledge and Data Engineerih@
673-685, 1998.

8. Zivan, R. and Meisels, ASynchronous and Asynchronous Search on DisCBFRroc. of
EUMAS-2003, Oxford, UK, 2003



