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Abstract

Satisfiability is considered the canonical NP-complete prob-

lem and is used as a starting point for hardness reductions

in theory, while in practice heuristic SAT solving algorithms

can solve large-scale industrial SAT instances very efficiently.

This disparity between theory and practice is believed to be a

result of inherent properties of industrial SAT instances that

make them tractable. Two characteristic properties seem

to be prevalent in the majority of real-world SAT instances,

heterogeneous degree distribution and locality. To under-

stand the impact of these two properties on SAT, we study

the proof complexity of random k-SAT models that allow to

control heterogeneity and locality. Our findings show that

heterogeneity alone does not make SAT easy as heterogeneous

random k-SAT instances have superpolynomial resolution

size. This implies intractability of these instances for modern

SAT-solvers. On the other hand, modeling locality with an

underlying geometry leads to small unsatisfiable subformulas,

which can be found within polynomial time.

A key ingredient for the result on geometric random k-

SAT can be found in the complexity of higher-order Voronoi

diagrams. As an additional technical contribution, we show

an upper bound on the number of non-empty Voronoi regions,

that holds for points with random positions in a very general

setting. In particular, it covers arbitrary p-norms, higher

dimensions, and weights affecting the area of influence of

each point multiplicatively. Our bound is linear in the total

weight. This is in stark contrast to quadratic lower bounds

for the worst case.

1 Introduction

Propositional satisfiability (SAT) is arguably among the
most-studied problems for both theoretical and practical
research. Nonetheless, the gap between theory and
practice is huge. In theory, SAT is the prototypical
hard problem and hardness of other problems is shown
via reductions from SAT. Achieving even a running time
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of O(2cn) for any c < 1 and n variables would be a major
breakthrough and a somewhat surprising one at that.
On the contrary, reductions to SAT are used to solve
various problems appearing in practice, as state-of-the-
art SAT solvers can easily handle industrial instances
with millions of variables.

This theory–practice gap does not come from the
lack of a sufficiently precise theoretical analysis of
modern SAT solvers. They are actually provably slow
on most instances, i.e., drawing an instance uniformly at
random yields a hard instance with probability tending
to 1 for n→∞, if the clause-variable ratio is not too low
or way too high [7, 20]. Instead, the discrepancy comes
from the fact that industrial instances have properties
that make them easier than worst-case instances. In
2014, Vardi [52] wrote that “we have no understanding
of why the specific sets of heuristics employed by modern
SAT solvers are so effective in practice” and that we
need this understanding to successfully advance SAT
solving further.

In recent years, scientists have been studying prop-
erties of industrial SAT instances to gain this under-
standing. By modeling SAT instances as graphs, e.g.,
with edges indicating inclusion of variables in clauses,
one can benefit from the extensive research conducted in
the field of network science. Two properties commonly
observed in real-world networks are heterogeneity and
locality. Heterogeneity refers to the degree distribution,
meaning that vertices have strongly varying degrees. In
fact, one usually observes a heavy-tailed distribution
with many vertices of low degree and few vertices of high
degree. A common assumption is a power-law distribu-
tion [53], where the number of vertices of degree k is
roughly proportional to k−β . The constant β is called
the power-law exponent. Locality refers to the fact that
edges tend to connect vertices that are close in the sense
that they remain well connected even when ignoring
their direct connection. This can also be seen as hav-
ing strong community structures, with high connectivity
within communities and loose ties between communities.

With respect to these two properties, industrial SAT
instances are similar to real-world networks. In many
cases, the variable frequencies are heterogeneous [1]
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and there is a high level of locality [2]. The latter
is often measured in terms of modularity. Inspired
by network science, researchers have studied models
that resemble industrial instances with respect to these
properties. Particularly, Ansótegui et al. [3] introduced a
power-law SAT model for heterogeneous instances, which
has been theoretically studied in terms of satisfiability
thresholds [28–30]. Moreover, Giráldez-Cru and Levy
[35] introduced a model in which variable weights
lead to heterogeneity while an underlying geometry
facilitates locality. Comparing this to network models,
the former model [3] is the SAT-variant of Chung-
Lu graphs [18, 19]. The latter [35] is based on
the popularity-similarity model [47], which is closely
related to hyperbolic random graphs [39] and geometric
inhomogeneous random graphs [17].

Besides serving as somewhat realistic benchmarks for
SAT competitions [34], these SAT models can be used
to study solver behavior depending on heterogeneity
and locality. One can experimentally observe that a
high level of heterogeneity improves the performance
of SAT solvers that also perform well on industrial
instances [3, 11]. Moreover, locality seems very beneficial
as solvers appear to implicitly use the locality of a
given instance [35]. This coincides with the findings of
experiments on actual industrial instances that show that
the locality (measured using modularity) of an instance
is a good predictor for solver performance [46, 54, 55].

Up to date, there are no theoretical results support-
ing these experimental observations. On the contrary, it
has been shown that instances generated by the commu-
nity attachment model [33], which enforces a community
structure, are hard for modern SAT solvers [43]. With
this paper, we provide a theoretical foundation that
matches the observations in practice by studying the
proof complexity of k-SAT instances (for constant k)
drawn from the power-law SAT model, and from a very
general model with underlying geometry. The former
was introduced by Ansótegui et al. [3], the latter is a
generalization of geometric model by Giráldez-Cru and
Levy [35] in the same way as geometric inhomogeneous
random graphs [17] are a generalization of hyperbolic
random graphs [39]. Our findings are that heterogeneous
instances are hard asymptotically almost surely1 in that
modern SAT solvers require superpolynomial or even ex-
ponential running time to refute unsatisfiable instances.
On the contrary, instances with a high level of locality
facilitated by an underlying geometry are a. a. s. easy to
solve. Our results focus on unsatisfiable instances, i.e.,
on the case where a solver has to prove that no satis-

1Asymptotically almost surely (a. a. s.) refers to a probability
that tends to 1 for n→∞. With high probability (w. h. p.) refers
to the stronger requirement that the probability is in 1−O(1/n).

fying assignment exists. This is typically much harder
than finding a satisfying assignment, making the unsat-
isfiable regime arguably more relevant. Besides these
results on SAT, we provide insights on the complexity
of weighted higher-order Voronoi diagrams in higher
dimensions, which is of independent interest.

The power-law and geometric models both mimic
specific properties observed in industrial instances while
trying to make as little additional assumptions as
possible. Though this makes the resulting instances
arguably more realistic than, e.g., instances drawn
uniformly at random, we want to stress that even the
geometric model is far from a perfect representation of
industrial instances. Thus, our results do not claim to
completely explain the efficiency of modern SAT solvers
on industrial instances. However, to the best of our
knowledge, we provide the first theoretical result that
links a high level of locality to provably more tractable
instances, which we believe to be a first step towards
closing the theory–practice gap.

Outline. We state and discuss our main results and
technical contributions in Section 2. Formal definitions
are in Section 3. A short outline of our core arguments
is in Section 4. The detailed proofs can be found in the
full version [12].

2 Results, Technical Contribution, Discussion

In this section, we state our results and discuss the
contribution, also in context to previous results. To
make the results understandable, we briefly discuss, e.g.,
the probability distributions over SAT formulas we study.
These are short and not meant to be formal definitions.
For complete definitions, see Section 3.

2.1 Power-Law SAT. The power-law SAT model
has four parameters: the number of variables n, the
number of clausesm, the number k of variables appearing
in each clause, and a power-law exponent β. To draw a
formula, power-law weights with exponent β are assigned
to the variables and then each clause is generated
independently by drawing k variables without repetition
using probabilities proportional to the weights. Each
literal is negated with probability 1/2.

To discuss our first main contribution, let Φ be a
formula drawn from the power-law model with density
above the satisfiability threshold, i.e., Φ is a. a. s. unsat-
isfiable. We show that, although it is highly likely that
Φ is unsatisfiable, it is highly unlikely that modern SAT
solvers can figure that out in polynomial time. We prove
this via a lower bound for the resolution width, which is
the size of the largest clause appearing in a resolution
proof. A lower bound w for the width implies lower
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Figure 1: Exponent of the bound (i) in Theorem 2.1.
Dashed vertical lines show where the bound (iv)
takes over.

bounds on the size of resolution proofs [7]: every reso-
lution proof has size exp(Ω(w2/n)) and every tree-like
resolution proof has size exp(Ω(w)). The lower bound
on the resolution size directly translates to a matching
lower bound on the running time of conflict-driven clause
learning (CDCL) solvers [6, 48]. For Davis–Putnam–
Logemann–Loveland (DPLL) solvers, which use tree-like
resolution, the bounds are even stronger. We note that
our bound does not only hold above the satisfiability
threshold, where Φ is a. a. s. unsatisfiable, but also at
the threshold, where it is unsatisfiable with constant
probability.

Theorem 2.1. Let Φ be a random power-law k-SAT
formula with n variables, m ∈ Ω(n) clauses, k ≥ 3, and
power-law exponent β > 2k−1

k−1 . Let ∆ = m/n be large
enough so that Φ is unsatisfiable at least with constant
probability. Let ε, ε1, . . . , ε3 be constants with ε > 0,
ε1 = k−ε

2 − 1 > 0, ε2 = (k − ε)β−2β−1 − 1 > 0, and

0 < ε3 < (k2 − 1)β−2β−1 − 1. For the resolution width w of
Φ, it holds a. a. s. that:

(i) If β ∈
(

2k−1
k−1 , 3

)
and ∆ ∈ o (nε2),

then w ∈ Ω
(
nε2/ε1∆−1/ε1

)
.

(ii) If β = 3 and ∆ ∈ o
(
nε1/ log1+ε1 n

)
,

then w ∈ Ω
(
n ·∆−1/ε1/ log1+1/ε1 n

)
.

(iii) If β > 3 and ∆ ∈ o (nε1),

then w ∈ Ω
(
n ·∆−1/ε1

)
.

(iv) If β > 2k−2
k−2 and ∆ ∈ o

(
nε3/ logε3 n

)
,

then w ∈ Ω
(
n ·∆−1/ε3

)
.

The above lower bounds allow the density ∆ to be
super-constant (even polynomially), which is asymptot-
ically above the satisfiability threshold. For the sake

of simplicity, assume ∆ to be constant in the following.
Starting at the bottom (iii, iv), we get a linear bound
for w if β is sufficiently large, i.e., greater than 3 or
(2k− 2)/(k− 2). For β = 3 (ii), the bound is still almost
linear. Note that these results in particular imply expo-
nential lower bounds on the resolution size and thus on
the running time of CDCL and DPLL. For smaller β (i),
we get a polynomial bound for the width with exponent
ε2/ε1; see Figure 1 for a plot with ε close to 0.

Interestingly enough, our bounds only hold for power
law exponents β > 2k−1

k−1 . This is complemented by a
previous result [29], which shows that the satisfiability
threshold of power-law random k-SAT is at density
∆ = Θ(1) for power law exponents β > 2k−1

k−1 and that
asymptotically almost surely instances with constant
constraint densities are trivially unsatisfiable for power
law exponents β < 2k−1

k−1 . Thus, the resolution width is
constant in the latter case.

Part iv of Theorem 2.1 is derived via lower bounds on
the bipartite expansion of the clause-variable incidence
graph of these instances. These results can be of
independent interest for hypergraphs with edge size
k and for random (0, 1)-matrices. Additionally, these
expansion properties yield lower bounds for the clause
space complexity, which in turn gives lower bounds on
the tree-like resolution of such formulas. More precisely,
this gives an exponential lower bound for the tree-like
resolution for β > 2k−3

k−2 . This is an improvement of the
bound obtained via the resolution width.

It is interesting to note that this result on the non-
geometric model supports the claim that locality is a
crucial factor for easy SAT instances. The lower bounds
for the power-law model are solely based on the fact
that every set of clauses covers a comparatively large
set of variables. In other words, we only use that there
are no clusters of clauses with similar variables, i.e., we
explicitly use the lack of locality.

2.2 Geometric SAT. The geometric model has the
following parameters: n, m, and k have the same
meaning as for the power-law model. Moreover, w is
a weight function assigning each variable v a weight
wv and T is the so-called temperature that controls
the strength of locality by varying the impact of the
geometry. As underlying geometric space, we use the d-
dimensional torus Td = Rd/Zd (see Section 3) equipped
with a p-norm with p ∈ N+ ∪∞. To draw a formula, the
variables and clauses are assigned random positions in
Td. Then, for each clause, k variables are drawn without
repetition with probabilities depending on the variable
weight and on the geometric distance between clause
and variable. In the extreme case of T = 0, each clause
deterministically includes the k closest variables (where
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closeness is a combination of geometric distance and
weight), while increasing the temperature T increases
the probability for the inclusion of more distant variables.
For T → ∞, the model converges to uniform random
SAT. Note that the weights are a parameter of the model
and not drawn randomly. We have the following theorem,
where W denotes the sum of all variable weights. The
condition on the weights is in particular satisfied by
power-law distributed weights.

Theorem 2.2. Let Φ be a formula with n variables and
m ∈ Θ(n) clauses drawn from the weighted geometric
model with ground space Td equipped with a p-norm,
temperature T < 1, W ∈ O(n), and wv ∈ O(n1−ε) for
every v ∈ V and any constant ε > 0. Then, Φ contains
a. a. s. an unsatisfiable subformula of constant size, which
can be found in O(n log n) time.

To briefly explain how we prove this, consider a
simplified version where variables and clauses are points
in the Euclidean plane and each clause contains the k
variables geometrically closest to it (temperature T = 0).
Now consider the equivalence relation obtained by defin-
ing two points of the plane equivalent if and only if they
have the same set of k closest variables. The equivalence
classes of this relation are the regions of the order-k
Voronoi diagram of the variable positions. With this
connection, we can use upper bounds on the complexity
of order-k Voronoi diagrams [41] to prove the existence
of small and easy to find unsatisfiable subformulas. We
note that this result is of asymptotic nature. In par-
ticular for small densities, the number of variables n
has to be very large before the instances actually get as
easy as stated in Theorem 2.2. Nevertheless, this results
strongly suggests that an underlying geometry makes
SAT instances more tractable.

To extend the above argument to the general
statement in Theorem 2.2, we extend the complexity
bounds for order-k Voronoi diagrams in various ways;
see next section for more details. Moreover, for non-zero
temperatures, clauses no longer include exactly the k
closest variables but can, in principle, consist of any
set of k variables. However, we can show that, with
high probability, a linear fraction of clauses behaves as
in the T = 0 case. We note that analyses of similar
structures, such as hyperbolic random graphs, are often
restricted to the simpler but less realistic T = 0 case,
e.g., [9, 10, 13, 45]. We believe that our analysis provides
insights on the non-zero temperature case that can be
helpful for such related questions.

We note that our results seem to contradict the
results of Mull et al. [43], stating that (i) a strong
community structure is not sufficient to have tractable
SAT instances and that (ii) the community attachment

model [33], which enforces a community structure,
generates hard instances. However, at a closer look,
this is not a contradiction at all. Though measuring
the community structure, e.g., via modularity, is a good
indicator for locality, the concept of locality goes deeper.
If the instance can be partitioned such that there are
strong ties within each partition and loose ties between
partitions, then the instance has a strong community
structure. However, to have a high level of locality, this
concept has to hierarchically repeat on different levels of
magnitude, i.e., there needs to be community structure
within each partition and between the partitions. To
state this slightly differently, consider locality based on
a notion of similarity between objects (here: variables or
clauses). In this paper, we use distances between random
points in a geometric space as a measure for similarity,
which gives us a continuous range of more or less similar
objects. In contrast to that, in the above mentioned
papers focusing on a flat community structure [33, 43],
similarity is a binary equivalence relation: two objects
are either similar or they are not.

2.3 Voronoi Diagrams. Consider a finite set of
points, called sites, in a geometric space. The most
commonly studied type of Voronoi diagram assumes the
2-dimensional Euclidean plane as ground space and has
one Voronoi region for each site, containing all points
closer to this site than to any other site. We deviate
from this default setting in four ways: (i) We allow an
arbitrary constant dimension d, where the ground space
is the torus or a hypercube in Rd. (ii) We consider the
order-k Voronoi diagram, which has for every subset A
of sites with |A| = k a (possibly empty) Voronoi region
containing all points for which A are the k nearest sites.
The number of non-empty order-k Voronoi regions is
called the complexity of the diagram. (iii) The sites
have multiplicative weights that scale the influence of
the different sites. Without loss of generality, we assume
the weights to be scaled such that the minimum is 1.
(iv) We allow the p-norm for arbitrary p ∈ N+ ∪∞.

Theorem 2.3. Let S be a set of n sites with minimum
weight 1, total weight W , and random positions on the d-
dimensional torus equipped with a p-norm, for constant d.
For every fixed k, the expected number of regions of the
weighted order-k Voronoi diagram of S is in O(W ). The
same holds for random sites in a hypercube.

To set this result into context, we briefly discuss
previous work on the complexity of Voronoi diagrams
in different settings. See the book by Aurenhammer
et al. [5] for a general overview on Voronoi diagrams. To
this end, we use the following theorem that relates the
complexity in terms of Voronoi regions (which is what
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we are concerned with in this paper) with the complexity
in terms of vertices.2

Theorem 2.4. Let S be a set of n weighted sites in
general position in Rd equipped with a p-norm. If the
order-k Voronoi diagram has ` vertices, then the order-
(k + d) Voronoi diagram has Ω(`) non-empty regions.

We note that, using insights from previous work,
this theorem is not hard to prove. One basically has to
generalize the result by Lê [40] bounding the number of d-
spheres going through d+1 points in d-dimensional space
to weighted sites, and then observe how the Voronoi
diagram changes in the construction by Lee [41] for d = 2,
when going from order-k to order-(k + 1). However, we
are not aware of previous work stating this connection
between vertices and non-empty regions in higher orders
explicitly.

The four above-mentioned generalizations of the
basic Voronoi diagram (higher dimension, higher order,
multiplicative weights, and different p-norms) have all
been considered before. However, to the best of our
knowledge, not all of them together.

Higher-order Voronoi diagrams have been introduced
by Shamos and Hoey [51]. Lee [41] showed that the
order-k Voronoi diagram in the plane (unweighted with
Euclidean metric) has complexity O(k (n− k)) (in terms
of number of regions), which is linear for constant
k. For the 1- and ∞-norm, Liu et al. [42] improved
this bound to O(min{k (n − k), (n − k)2}). Closely
related to the 1-norm, Gemsa et al. [32] showed similar
complexity bounds for higher-order Voronoi diagrams on
transportation networks of axis-parallel line segments.
Bohler et al. [14] show an upper bound of 2k (n − k)
for the much more general setting of abstract Voronoi
diagrams. There, the metric is replaced by curves
separating pairs of sites such that certain natural (but
rather technical) conditions are satisfied. One obtains
normal Voronoi diagrams when using perpendicular
bisectors for these curves. This in particular shows that
the 2k (n − k) bound on the number of regions in the
order-k Voronoi diagram holds for arbitrary p-norms in
2-dimensional space and for the hyperbolic plane. As the
hyperbolic plane is closely related to 1-dimensional space
with sites having multiplicative power-law weights [17],
we suspect that the bound by Bohler et al. [14] also
covers this case.

2Although the Voronoi regions are not necessarily polytopes
in the weighted setting, we adopt the notion for polytopes and
call the corners of Voronoi regions vertices. I.e., vertices are the
0-dimensional elements (a.k.a. points) of the boundary, where
higher-dimensional elements (a.k.a. edges, faces, etc.) intersect.
They are represented as small black dots in Figure 2.

In general one can say that higher-order Voronoi
diagrams of unweighted sites in 2-dimensional space are
well-behaved in that they have linear complexity. This
still holds true for arbitrary p-norms. However, this
picture changes for weighted sites or higher dimensions.

Voronoi diagrams with multiplicative weights were
first considered by Boots [16]3 due to applications in eco-
nomics. Beyond that, multiplicatively weighted Voronoi
diagrams have applications in sensor networks [21], logis-
tics [31] and the growth of crystals [22]. However, even
in the most basic setting of 2-dimensional Euclidean
space and order 1, weighted Voronoi diagrams can have
quadratic complexity [4] (in terms of number of vertices).
This comes from the fact that Voronoi cells are not nec-
essarily connected; see Figure 2a for the construction
of Aurenhammer and Edelsbrunner [4] that proves the
lower bound. With Theorem 2.4, and as illustrated in
Figure 2, this implies that even the order-3 Voronoi
diagram of weighted sites in 2-dimensional Euclidean
space has a quadratic number of non-empty regions. As
a special case, Theorem 2.3 shows that this complexity
is only linear in the total weight for sites positioned
randomly in the unit square. Moreover, this also implies
that the number of vertices of the corresponding order-1
Voronoi diagram is linear. This nicely complements the
result by Har-Peled and Raichel [37], who show that the
expected complexity of order-1 Voronoi diagrams of sites
in 2-dimensional Euclidean space with random weights
is O(npolylog n). Only recently, Fan and Raichel [27]
showed that sites with weights chosen randomly form
a constant-sized set of possible weights yield Voronoi
diagrams with linear complexity. Moreover, more closely
related, they show that the Voronoi diagram of sites with
arbitrary weights and with random positions chosen in
the unit square has linear complexity in expectation. We
are not aware of any results concerning the complexity of
Voronoi diagrams when combining multiplicative weights
with higher dimension, higher order or other norms.

For higher dimensions, even normal (first order, un-
weighted) Voronoi diagrams in 3-dimensional Euclidean
space can have Θ(n2) [38, 50] vertices. Theorem 2.4
thus implies that the order-4 Voronoi diagram has a
quadratic number of non-empty regions. Moreover, the
complexity of higher-order Voronoi diagrams in higher
dimensions has been considered before by Mulmuley
[44], who obtains polynomial bounds with the degree
of the polynomial depending on the dimension. Our
Theorem 2.3 in particular shows that this complexity is
much lower, namely linear, for the hypercube with ran-
domly positioned sites. Moreover, via Theorem 2.4 this
gives a linear bound on number of vertices in the normal

3In this paper, Voronoi regions are called Thiessen polygons.
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Figure 2: (a) Weighted Voronoi diagram (order-1) of the colored sites. Continuing the construction with n/2
high-weight sites on the left and n/2 low-weight sites towards the right yields Θ(n2) vertices (small black dots).
Note that each vertex lies on the boundary of three regions and has thus equal weighted distance to its three
closest sites. (b) The order-3 Voronoi diagram for the same sites (excluding one). The colored boxes indicate the
three closet sites. The order-1 diagram is shown in the background. Each order-1 vertex lies in the interior of an
order-3 region as it has equal weighted distance to its three closest sites. As at most two order-1 vertices share an
order-3 region, we get Ω(n2) order-3 regions. Theorem 2.4 generalizes this observation.

order-1 Voronoi diagram in higher dimensions. We note
that this special case of our result coincides with a pre-
vious result by Bienkowski et al. [8]. Similarly, Dwyer
[24] showed that sites drawn uniformly from a higher
dimensional unit sphere (instead of a hypercube) yield
Voronoi diagrams of linear complexity in expectation.
Moreover, due to Golin and Na [36] and Driemel et al.
[23], the same is true for random sites on 3-dimensional
polytopes and random sites on polyhedral terrains, re-
spectively. Thus, though higher dimensional Voronoi
diagrams can be rather complex in the worst case, these
results indicate that one can expect most instances to
be rather well behaved. An alternative explanation of
why the complexity of practical instances is lower than
the worst-case indicates is given by Erickson [25, 26],
who studies the complexity of 3-dimensional Voronoi
diagrams depending on the so-called spread of the sites.

The above results for higher dimensional Voronoi
diagrams consider the Euclidean norm. For general
p-norms, Lê [40] showed that the complexity of the
Voronoi diagram is bounded by O(nc), where c is
a constant independent of p but dependent on the
dimension d. With the same argument as above,
Theorem 2.3 together with Theorem 2.4 implies a linear
bound for this complexity that holds in expectation.
Moreover, Boissonnat et al. [15] show more precise
bounds of Θ(ndd/2e) and Θ(n2) for the ∞- and the
1-norm, respectively. Again, our result implies linear
bounds for random sites in this setting.

3 Formal Definitions

Here we provide formal definitions for all concepts we
use throughout the paper, including the power-law and
geometric random SAT models, and Voronoi diagrams.

Power-Law Random k-SAT. The power-law model
can be defined via the more general non-uniform model.
To draw a k-SAT formula from the non-uniform model,
let n and m be the number of variables and clauses,
respectively, and let w1, . . . , wn be variable weights. We
sample m clauses independently at random. Each clause
is sampled by drawing k variables without repetition with
probabilities proportional to their weights. Then each
of the k variables is negated independently at random
with probability 1/2.

The power-law model for a power-law exponent
β > 2 is an instantiation of the non-uniform model
with discrete power-law weights

wi = i−
1

β−1 .

Graph Representation and Expansion. Let Φ be a
SAT-formula with variable set V and clause set C. The
clause-variable incidence graph G(Φ) of Φ has vertex set
C∪V , with an edge between a clause and a variable if and
only if the clause contains the variable. Clearly, G(Φ)
is bipartite. It is an (r, c)-bipartite expander if for all
C ′ ⊂ C with |C ′| ≤ r it holds that |N(C ′)| ≥ (1 + c)|C ′|,
where N(C ′) is the neighborhood of C ′.

Geometric Ground Space. We regularly deal with
points with random positions in some geometric space.
With random point, we refer to the uniform distribution
in the sense that the probability for a point to lie in
a region A is proportional to its volume vol(A). For
this to work, the volume of the ground space has to be
bounded. Canonical options are, e.g., a unit-hypercube
or a unit-ball. These, however, lead to the necessity
of special treatment for points close to the boundary,
which makes the analysis more tedious without giving
additional insights. To circumvent this, we use a torus
as ground space, which is completely symmetric.
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The d-dimensional torus Td is defined as the d-
dimensional hypercube [0, 1]d in which opposite borders
are identified, i.e., a coordinate of 0 is identical to a
coordinate of 1.4 It is equipped with the p-norm as
metric, for arbitrary but fixed p ∈ N+ ∪ {∞}. To
define it formally for the torus, let p = (p1, . . . , pd)
and q = (q1, . . . , qd) be two points in Td. The circular
difference between the ith coordinates is |pi − qi|◦ =
min{|pi − qi|, 1 − |pi − qi|}. With this, the distance
between p and q is

‖p− q‖ =

 p

√∑
i∈[d] |pi − qi|

p
◦ for p 6=∞,

maxi∈[d]{|pi − qi|◦} for p =∞.

Random Points. We obtain the uniform distribution
for a point p = (p1, . . . , pd) by drawing each coordinate
pi uniformly at random from [0, 1]. For two random
points p and q, their distance ‖p − q‖ is a random
variable. Let Fdist(x) be its cumulative distribution
function (CDF), i.e., Fdist(x) = Pr

[
‖p− q‖ ≤ x

]
. To

determine Fdist(x), fix the position of p. Then, for
x ≤ 0.5, the set of points of distance at most x to p is
simply the ball Bp(x) of radius x around p, yielding

Fdist(x) = vol(Bp(x))(3.1)

= Πd,p · xd for 0 ≤ x ≤ 0.5,

with Πd,p =

(
2Γ
(
1/p + 1

))d
Γ
(
d/p + 1

) .

where Γ is the gamma function. Note that Πd,p only
depends on d and p but is constant in x. Moreover
Π2,2 = π (thus the name Π), and Πd,∞ = limp→∞Πd,p =
2d. For distances x > 0.5, the formula for Fdist(x) is
more complicated (we basically have to subtract the
parts reaching out of the hypercube). However, for our
purposes, it suffices to know Fdist(x) for x ≤ 0.5 and use
the obvious bound Fdist(x) ≤ 1 for x > 0.5.

Weighted Points and Distances. We regularly con-
sider a fixed set of n points equipped with weights, which
we call sites. For a site si with weight wi, the weighted

distance of a point p to si is ‖si − p‖/w1/d
i . For a fixed

value x, the set of points with weighted distance at most

x are the points with ‖si − p‖ ≤ xw1/d
i . Note that the

volume of this set is proportional to wi. Intuitively, the
region of influence of a site is thus proportional to its
weight. To simplify notation in some places, we define

normalized weights ωi = w
1/d
i .5

4For convenience reasons, we sometimes work with [−0.5, 0.5]d

instead of [0, 1]d.
5We note, in the context of weighted Voronoi diagrams, it is

common to only use the normalized weights (just calling them

Geometric Random k-SAT. In the geometric model,
we sample positions for the variables and clauses uni-
formly at random in the d-dimensional torus Td. For
v ∈ V and c ∈ C, we use v and c to denote their posi-
tions, respectively. Let w1, . . . , wn be variable weights
that are normalized such that the smallest weight is
1. Moreover, let W =

∑n
v=1 wv. For a clause c and a

variable v, define the connection weight

X(c, v) =

(
wv

‖c− v‖d

)1/T

.

This is the reciprocal of the weighted distance between
v and c raised to the power d/T . The k variables
for the clause c are drawn without repetition with
probabilities proportional to X(c, v). Among all possible
combinations, we choose which of the k variables to
negate uniformly at random, without repetition if
possible, i.e., we only get the same clause twice if we
have more than 2k clauses with the same variable set.
For T → 0 the model converges to the threshold case
where c contains the k variables with smallest weighted
distance.

The connection weight X(c, v) is a random variable.
We denote the CDF of X(c, v) with FX(x). With the
CDF for the distance between two random points in
Equation (3.1), we obtain the following [12]:

(3.2) FX(x) = 1−Πd,pwvx
−T for x ≥

(
2dwv

)1/T
.

Voronoi Diagrams. Let S = {s1, . . . , sn} be a set of
sites with weights w1, . . . , wn. A point p belongs to
the (open) Voronoi region of a site si if its weighted
distance to si is smaller than its weighted distance to
any other site. The collection of all Voronoi regions is
the Voronoi diagram of S. Order-k Voronoi regions are
defined analogously for subsets A ⊆ S with |A| = k,
i.e., the region of A contains a point p if and only if
the weighted distances of p to all sites in A is smaller
than the weighted distance to any site not in A. More
formally, p belongs to the order-k Voronoi region of A if
there exists a radius r such that ‖si−p‖ ≤ ωir for si ∈ A
and ‖si − p‖ > ωir for si /∈ A. Note that the order-k
Voronoi region of A is potentially empty. The order-k
Voronoi diagram is the collection of all non-empty order-
k Voronoi regions. Its complexity is the number of such
non-empty regions.

“weights”). In the context of random networks, however, the non-
normalized weights are more common. As both notions have their
advantages in different situations, we use both.
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4 Core Arguments

Here we only briefly discuss the core arguments. See the
full version for detailed proofs [12].

4.1 Power-Law SAT. We use a framework that Ben-
Sasson and Wigderson [7] introduced for the uniform
SAT model. We prove lower bounds for the resolution
width, which implies lower bounds for the resolution
size and the tree-like resolution size, which then implies
lower bounds for the running times of CDCL and DPLL
solvers, respectively.

To bound the resolution width, we essentially have
to show that different clauses do not overlap too heavily.
Specifically, a formula has resolution width Ω(w) if
(1) every set S of at most w clauses contains at least |S|
different variables and (2) every set S of 1

3w ≤ |S| ≤
2
3w

clauses contains at least a constant fraction of unique
variables.

We achieve the bounds in Theorem 2.1 (i–iii) by
showing the above two properties directly. For the bound
in Theorem 2.1 (iv), we first observe that both properties
are fulfilled if the clause-variable incidence graph of a
k-CNF formula Φ has high enough bipartite expansion.
Recall the definition of bipartite expansion from Section 3
and note how the requirement that the neighborhood of
clause vertices is large resembles the requirement that
clauses to not overlap too heavily. We show that G(Φ)
is a bipartite expander asymptotically almost surely if
Φ is drawn from the power-law model, which yields the
lower bound of Theorem 2.1 (iv).

Compared to the uniform case, the weights make
the properties required for the lower bounds less likely.
Variables with high weight appear in many clauses,
making the clauses less diverse. Thus, it is less likely
that every clause set covers a large variety of variables.

4.2 Geometric SAT. To explain the core idea of
our proof, consider the following simplified geometric
model. Map n variables and m clauses to distinct
points in the 2-dimensional Euclidean plane (randomly or
deterministically). Build the SAT instance by including
in each clause c the k variables with the smallest
geometric distance to c. Now consider the order-k
Voronoi diagram defined by the positions of the n
variables. As a clause c contains the k closest variables,
the k variables contained in c are exactly the k variables
defining the Voronoi region of c’s position. Independent
of the positions of the n variables, there are only at most
2k (n− k) regions in the order-k Voronoi diagram [14].
Thus, if we have at least 2k2k (n−k) clauses, then, by the
pigeonhole principle, at least one Voronoi region contains
2k clauses. As k is considered to be a constant, this
number of clauses is linear in n, i.e., we still have constant

density. Moreover, as repeating the same clause (with the
same variable negations) is avoided whenever possible,
there is a set of k variables that has a clause for every
combination of literals. Thus, we have an unsatisfiable
subformula of constant size 2k, which implies low proof
complexity.

This result can be varied and strengthened in
multiple ways, e.g., by allowing weighted variables, a
higher dimensional ground space, or by softening the
requirement that every clause contains the k closest
variables (model with higher temperature). In the
following, we briefly discuss how these generalizations
can be achieved.

Abstract Geometric Spaces. The result by Bohler
et al. [14] on the complexity of order-k Voronoi diagrams
is very general in the sense that it holds for abstract
Voronoi diagrams. Roughly speaking, abstract Voronoi
diagrams are based on separating curves between pairs
of points that take the role of perpendicular bisectors.
In this way, one can abstract from the specific geometric
ground space. Whether a point p is closer to site s1 or to
site s2 is no longer determined by comparing distances
‖s1 − p‖ and ‖s2 − p‖ but by the curve separating s1
from s2. For this to work, the separating curves have to
satisfy a handful of basic axioms. These are for example
satisfied by perpendicular bisectors in the Euclidean or
the hyperbolic plane. Thus, the above argumentation
for low proof complexity directly carries over to the
hyperbolic plane, or more generally, to any abstract
geometric space satisfying the axioms.

Lower Density Via Random Clause Positions.
Assume the variable positions are fixed. Now choose
random positions for the clauses and observe in which
regions of the order-k Voronoi diagram they end up. We
want to know whether there is a region that contains
at least 2k clauses. This comes down to a balls into
bins experiment. Each Voronoi region is a bin and each
clause is a ball. Thus, there are O(n) bins and m balls.
Moreover, we are interested in the maximum load, i.e.,
the maximum number of balls that land in a single bin.
Due to a result by Raab and Steger [49], the maximum
load is a. a. s. in Ω( logn

log logn ) if we throw Ω( n
polylogn ) balls.

Thus, even for a slightly sublinear number of balls, the
maximum load is superconstant. We note that this
result holds for uniform bins. In our case, we have non-
uniform bins, as the probability for a clause to end up in
a particular Voronoi region is proportional to the area
of the region. However, it is not hard to see that the
result by Raab and Steger [49] remains true for non-
uniform bins; see the full version [12]. Thus, even if the
number of clauses m is slightly sublinear in the number
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of variables n, we get a small unsatisfiable subformula
asymptotically almost surely if the Voronoi diagram has
low complexity.

Positive or Negative Literals with Repetition.
Above we assumed that we get the exact same clause
with coinciding negations twice only if we already have
more than 2k clauses with the same set of k variables.
Although this is arguably a reasonable assumption for
the model, we can make a similar argument without
it. Assume instead that for each variable, we choose
the positive and negative literal uniformly at random,
independently of all other choices. Moreover, assume for
an increasing function f , that there are f(n) clauses that
have the same set of k variables. With the above balls
into bins argument, we, e.g., have f(n) ∈ Ω( logn

log logn ).
Then the probability that there is a combination of
positive and negative literals that we did not see at least
once is at most 2k(1− 2−k)f(n). This probability goes
to 0 for n → ∞, i.e., a. a. s., there is an unsatisfiable
subformula of constant size 2k.

Higher Dimension and Weighted Variables. At
the core of our argument lies the fact that order-k
Voronoi diagrams have linear complexity in the plane.
As already mentioned in Section 2.3, this is no longer
true for order-k Voronoi diagrams in higher dimensions
or if the variables have multiplicative weights. However,
for sites distributed uniformly at random, we can show
that the complexity can be expected to be linear in
the total weight, even in the more general setting.
Thus, using that the variables have random positions (a
requirement we did not need before), we can apply the
above argument to obtain low proof complexity.

Non-Zero Temperature. Non-zero temperatures
make it so that clauses do not necessarily contain the
k closest variables. Instead, variables are included with
probabilities depending on the distance. Thus, we cannot
simply look at the order-k Voronoi diagram to deter-
mine which variables are contained in a given clause.
To resolve this, we call a clause nice, if it behaves as
it would in the T = 0 case, i.e., if it includes the k
closest variables. We can show that, in expectation, a
constant fraction of clauses is actually nice. Moreover,
we can show that the number of nice clauses is concen-
trated around its expectation. With this, we can apply
the same arguments as before to only the nice clauses,
of which we have linearly many, to obtain a low proof
complexity.

4.3 Voronoi Diagrams. The worst-case lower
bounds for the complexity of order-k Voronoi diagrams

follow from existing lower bounds on the number of
vertices together with Theorem 2.4, which connects
the complexity in terms of regions with the complexity
in terms of vertices. This connection is obtained by
observing how the order-k Voronoi diagram changes
when increasing k.

For the average-case linear upper bound on the
number of regions, the argument works roughly as
follows, assuming the unweighted case for the sake of
simplicity. For each size-k subset A of the sites, we
devise an upper bound on the probability that A has
non-empty order-k Voronoi region. This region is non-
empty if and only if there are points that have A as the
k closest sites, i.e., if there is a ball that contains the
sites of A and no other sites. With this observation, we
can use a win-win-style argument. Either the radius of
this ball is small, which makes it unlikely that all sites
of A lie in the ball, or the ball is large, which makes it
unlikely that it contains no other sites.
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