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Abstract Record linkage is used in data privacy to evaluate the disclosure risk of protected
data. It models potential attacks, where an intruder attempts to link records from the pro-
tected data to the original data. In this paper we introduce a novel distance based record
linkage, which uses the Choquet integral to compute the distance between records. We use
a fuzzy measure to weight each subset of variables from each record. This allows us to im-
prove standard record linkage and provide insightful information about the re-identification
risk of each variable and their interaction. To do that, we use a supervised learning approach
which determines the optimal fuzzy measure for the linkage.

Keywords Data privacy · Record linkage · Choquet integral · Optimization

1 Introduction

Record Linkage techniques identify records from different databases (or data sources in
general) that refer to the same entity. It was initially introduced for database integration
in Dunn (1946) and further developed in Newcombe et al. (1959), Fellegi and Sunter (1969),
and it is nowadays a popular technique used by statistical agencies, research communities,
and corporations. Record linkage is mainly used to integrate different databases or data
sets in general (Statistics Canada 2010; Colledge 1995; Data.gov 2010; Data.gov.uk 2010),
or for data cleaning and quality control (Batini and Scannapieco 2006; Winkler 2003). For
example, for detecting duplicate records between several data sets (Elmagarmid et al. 2007).
More recently, in the context of data privacy (Lane et al. 2008), record linkage has emerged
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as an important technique to evaluate the disclosure risk of protected data (Torra et al. 2006;
Winkler 2004). By identifying the links between the protected dataset and the original one,
we can evaluate the re-identification risk of the protected data (Domingo-Ferrer and Torra
2001).

Among record linkage approaches are those based on a distance function between
records, which link records by their closeness. In this paper we introduce a new distance-
based record linkage for data privacy which is based on the Choquet integral (Choquet 1953;
Torra and Narukawa 2007). This approach allows the use of a fuzzy measure to weight the
attributes in each dataset. Moreover, we present a supervised learning approach to determine
the fuzzy measure for the linkage.

Our contribution is twofold. On the one hand we improve the performance of more stan-
dard distance-based record linkage. On the other hand we provide insightful information
about the relevance of each variable, and the interactions between variables, in the linkage
process. This is especially important in data privacy. Our method identifies which attributes
provide more information for the record linkage, or in other words, which concrete attributes
leak more information for the re-identification of individuals and increase the disclosure risk.
It can be seen as an evaluation of disclosure risk of each individual attribute. Moreover, since
we use a fuzzy measure to weight the attributes, we can also determine the relevance of the
interaction of several attributes. This information can be used by the statistical agencies to
increase the protection for concrete attributes.

The paper is organized as follows. Section 2 introduces distance-based record linkage in
the context of data privacy. In Sect. 3 we describe our contribution, and in Sect. 4 we show
our results and evaluation. Finally, Sect. 5 concludes the paper.

2 Record linkage in data privacy

In data privacy, record linkage can be used to re-identify individuals from a protected dataset.
It serves as an evaluation of the protection method used by modeling the possible attack to
be performed on the protected dataset.

A dataset X can be viewed as a matrix with n rows (records) and V columns (attributes),
where each row refers to a single individual. The attributes in a dataset can be classified,
depending on their capability to identify unique individuals, as follows:

– Identifiers: attributes that can be used to identify the individual unambiguously. A typical
example of identifier is the passport number.

– Quasi-identifiers: attributes that are not able to identify a single individual when they
are used alone. However, when combining several quasi-identifier attributes, they can un-
equivocally identify an individual. Among the quasi-identifier attributes, we distinguish
between confidential (Xc) and non-confidential (Xnc), depending on the kind of informa-
tion that they contain. An example of non-confidential quasi-identifier attribute would be
the zip code, while a confidential quasi-identifier might be the salary.

Before releasing the data, a protection method ρ is applied, leading to a protected
dataset Y . Indeed, we will assume the following typical scenario: (i) identifier attributes
in X are either removed or encrypted, therefore we will write X = Xnc‖Xc; (ii) confidential
quasi-identifier attributes Xc are not modified, and so we have Yc = Xc; (iii) the protection
method itself is applied to non-confidential quasi-identifier attributes, in order to preserve
the privacy of the individuals whose confidential data is being released. Therefore, we have
Ync = ρ(Xnc). This scenario, which was first used in Domingo-Ferrer and Torra (2001) to
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compare several protection methods, has also been adopted in other works like Torra et al.
(2006).

Once the protected dataset Y is released, everybody can see its content Y = Ync‖Xc. We
assume now that an intruder obtains from another data source another non-protected dataset
Z = zid‖znc which includes one identifier and some (maybe all) of the non-confidential
quasi-identifier attributes of some (maybe all) of the individuals whose data is in X. The
goal of such an intruder is to find correct links between the protected dataset Y and the
non-protected dataset Z using the common attributes between Y and Z (ync and znc). If the
intruder is able to correctly link a record of Z with its corresponding protected record in Y ,
then he will know that the matching (not modified) confidential information xc belongs to
the individual with identifier yid , breaking therefore the privacy of this individual. Therefore,
the disclosure risk (i.e. the level of privacy) of a protection method is directly related to the
difficulty of finding correct linkages between original and protected data.

There are two main approaches for record linkage

– Distance based record linkage (DBRL). This approach (Pagliuca and Seri 1999) links
each record from dataset A to the closest record in dataset B . The closest record is defined
in terms of a distance function.

– Probabilistic record linkage (PRL). In this case, the matching algorithm uses the lin-
ear sum assignment model to choose which pairs of the original and protected records
must be matched. In order to compute this model, the EM (Expectation–Maximization)
algorithm (Hartley 1958; McLachlan and Krishnan 1997; Jaro 1989) is normally used.

Both approaches have been used extensively in the area of data privacy to evaluate the
disclosure risk of protected data. The work in this paper is focused on distance-based record
linkage, which is further described in the next section.

2.1 Distance-based record linkage

In distance-based record linkage, the determination of parameters is not easy. Its main point
is the definition of a distance. Nevertheless, different distances can be defined, each obtain-
ing different results. Different distances have been considered and tested in the literature.
We review the most relevant ones below.

We will use V X
1 , . . . , V X

n and V Y
1 , . . . , V Y

n to denote the set of variables of file X and
Y , respectively. Using this notation, we express the values of each variable of a record a

in X as a = (V X
1 (a), . . . , V X

n (a)) and of a record b in Y as b = (V Y
1 (b), . . . , V Y

n (b)). V X
i

corresponds to the mean of the values of variable V X
i .

As an example we show two common distance functions used in distance based record
linkage which rely on the Euclidean distance. Other distance functions such as the Maha-
lanobis or Kernel distances, have also been used for record linkage (Torra et al. 2006).

DBRL1: The Euclidean distance is used for attribute-standardized data. Accordingly, the
distance between two records a and b is defined by:

d(a, b)2 =
n∑

i=1

(
V X

i (a) − V X
i

σ (V X
i )

− V Y
i (b) − V Y

i

σ (V Y
i )

)2

DBRL2: The Euclidean distance is used for distance-standardized data. Formally, the dis-
tance is defined as follows:

d(a, b)2 =
n∑

i=1

(
V X

i (a) − V Y
i (b)

σ (V X
i − V Y

i )

)2
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In this paper we consider the parametrization of distance based record linkage using
weights to express the importance of the variables in the linkage process. This will be
achieved considering a variation of the Euclidean distance using a distance weighted with a
fuzzy measure as will be detailed in the next sections.

3 Learning optimal distances for record linkage

In this section we introduce our approach to determine weights associated to each variable
yielding an optimal distance-based record linkage. To that end, we first introduce a new
distance based on the Choquet integral, and then present the learning process to determine
the optimal fuzzy measure to weight the attributes.

3.1 A Choquet integral based distance for record linkage

It is well known that the multiplication of the Euclidean distance by a constant will not
change the results of any record linkage algorithm. Due to this, we can express the distance
DBRL1 given in Sect. 2.1 as a weighted mean of the distances for the attributes.

In a formal way, we redefine DBRL1 as follows:

d(a, b)2 =
n∑

i=1

1

n

(
V X

i (a) − V X
i(a)

σ (V X
i )

− V Y
i (b) − V Y

i(b)

σ (V Y
i )

)2

Now, defining

di(a, b)2 =
(

V X
i (a) − V X

i(a)

σ (V X
i )

− V Y
i (b) − V Y

i(b)

σ (V Y
i )

)2

we can rewrite this expression as

d(a, b)2 = AM(d1(a, b)2, . . . , dn(a, b)2)

where AM is the arithmetic mean AM(c1, . . . , cn) = ∑
i ci/n. We will denote this distance

as d2AM(a,b).
In general, any aggregation operator C might be used (Torra and Narukawa 2007):

d(a, b)2 = C(d1(a, b)2, . . . , dn(a, b)2).

From this definition, we consider a weighted version of DBRL1 using a fuzzy integral
as aggregation operator. In this case we rely on a fuzzy measure μ to weight the relevance
not only of the single variables, but also of their interaction, and use the Choquet integral as
follows.

Definition 1 Let μ be an unconstrained fuzzy measure on the set of variables V , i.e.
μ(∅) = 0, μ(V ) = 1, and μ(A) ≤ μ(B) when A ⊆ B for A ⊆ V , and B ⊆ V . Then, the
Choquet integral distance is defined as:

d2CIμ(a, b) = CIμ(d1(a, b)2, . . . , dn(a, b)2) (1)

where CIμ(c1, . . . , cn) = ∑n

i=1(cs(i) − cs(i−1))μ(As(i)), given that cs(i) indicates a permuta-
tion of the indices so that 0 ≤ cs(1) ≤ · · · ≤ cs(i−1), cs(0) = 0, and As(i) = {cs(i), . . . , cs(n)}.
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The interest of this variation is that we do not need to assume that all the attributes are
equally important in the re-identification. This would be the case if one of the attributes is a
key-attribute, e.g. an attribute where V X

i = V Y
i . In this case, the corresponding weight would

be assigned to one, and all the others to zero. Such an approach would lead to 100% of re-
identifications. Moreover the interaction of different variables is taken into account by the
fuzzy measure. Note that previous proposals for weighted distances for record linkage (Torra
et al. 2010) only considered the weighted mean and OWA operators, which can only weight
individual variables.

3.2 Determining the optimal weights

For the sake of simplicity, we presume that each record of X, Xi = (a1, . . . , aN), is the
protected record of Y , Yi = (b1, . . . , bN). That is, files are aligned. Then, if Vk(ai) repre-
sents the value of the kth variable of the ith record, we will consider the sets of values
d(Vk(ai),Vk(bj )) for all pairs of records ai and bj .

Then, record i is correctly linked using aggregation operator C when the aggrega-
tion of the values d(Vk(ai),Vk(bi)) for all k is smaller than the aggregation of the values
d(Vk(ai),Vk(bj )) for all i �= j . I.e.,

C(d(V1(ai),V1(bi)), . . . , d(Vn(ai),Vn(bi)))

< C(d(V1(ai),V1(bj )), . . . , d(Vn(ai),Vn(bj ))) (2)

for all i �= j . Then, the optimal performance of record linkage is achieved when this equation
holds for all records i.

To formalize the optimization problem and permit that the solution violates some equa-
tions we consider the equation in blocks. We consider a block as the set of equations con-
cerning record i. I.e. we define a block as the set of all the distances between one record of
the original data and all the records of the protected data.

The rationale of this approach is as follows. We consider a variable K which indicates,
for each block, if all the corresponding constraints are satisfied (K = 0) or not (K = 1).
Then, we want to minimize the number of blocks non compliant with the constraints. This
way, we can find the best weights that minimize the number of violations, or in other words,
we can find the weights that maximize the number of re-identifications between the original
and protected data. Therefore, we have so many K as the number of rows of our original
file. Besides, we need a constant C that multiplies K to avoid the inconsistencies and satisfy
the constraint.

Note that if for a record i, (2) is violated for a certain record j , then, it does not matter
that other records j also violate the same equation for the same record i. This is so because
record i will not be re-identified.

Using these variables, Ki and the constant C are defined as follows:

C(d(V1(ai),V1(bj )), . . . , d(Vn(ai),Vn(bj )))

− C(d(V1(ai),V1(bi)), . . . , d(Vn(ai),Vn(bi))) + CKi > 0 (3)

for all i �= j .
The constant C is used to express the minimum distance we require between the correct

link and the other incorrect links. The larger it is, the more the correct links are distinguished
from the incorrect links.
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Using these constraints we can define the optimization problem for a given aggregation
operator C as:

Minimize
N∑

i=1

Ki (4)

Subject to

N∑

i=1

N∑

j=1

C(d(V1(ai),V1(bj )), . . . , d(Vn(ai),Vn(bj )))

− C(d(V1(ai),V1(bi)), . . . , d(Vn(ai),Vn(bi))) + CKi > 0 (5)

Ki ∈ {0,1} (6)

where N is the number of records, and n the number of variables. This problem is a linear
optimization problem with linear constraints and the (global) optimum solution can be found
with an optimization algorithm. More explicitly, it can be considered a mixed integer linear
problem (MILP), because it is dealing with integer and real-valued variables in the objective
function and the constraints, respectively. Note, that we only have considered aggregation
operators with real-valued weights.

If N is the number of records, and n the number of variables of the two data sets X

and Y . We have N terms of Ki in the objective function, that is N variables for (4). The
total number of constraints in the optimization problem is N2 +N . There are N2 constraints
from (5), and N for (6). Note that depending on the aggregation operator C used, there will
be more constraints in the problem.

3.3 Learning the optimal fuzzy measure for record linkage

In the case of the Choquet integral based distance d2CI introduced in Sect. 3.1, the mini-
mization problem can be defined in a generic form as:

Minimize
N∑

i=1

Ki (7)

Subject to

N∑

i=1

N∑

j=1

CIμ(d(V1(ai),V1(bj )), . . . , d(Vn(ai),Vn(bj )))

− CIμ(d(V1(ai),V1(bi)), . . . , d(Vn(ai),Vn(bi))) + CKi > 0 (8)

Ki ∈ {0,1} (9)

μ(∅) = 0 (10)

μ(V ) = 1 (11)

μ(A) ≤ μ(B) when A ⊆ B (12)

To formulate the problem we use the Möbius transform of the fuzzy measure instead of
the measure itself. So, we have rewritten the optimization function and also the constraints in
terms of the Möbius transformation, following a similar approach as described in Torra and
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Narukawa (2007, Chap. 8). Recall, that given a fuzzy measure μ on the set V , its Möbius
transform m is defined as:

mμ(A) =
∑

B⊆A

(−1)|A|−|B|μ(B)

for all A ⊂ V .
Appreciate that the function m is not restricted to the interval [0,1].
We use the following notation to denote the fuzzy measure of the set of variables V

(recall that |V | = n). However, instead of μ(A) to denote the V subsets’ measures, we have
considered μk , with k ∈ {0, . . . ,2n − 1}, where the index k denotes the subset of variables V

determined by the dyadic representation of k. Let δk
nδ

k
n−1 . . . δk

1 be the dyadic representation
of k, then μk denotes the measure of the following set:

μk = μ({vl ∈ V | δk
l = 1forl = 1, . . . , n})

In general, we denote as δ(A) the index k corresponding to the set A given by its dyadic
representation.

We can now express the fuzzy measure as (μ0,μ1, . . . ,μ2n−1). Since μ0 = 0 we only
consider the vector μ+ = (μ1, . . . ,μ2n−1) and its corresponding Möbius transform m+ =
(m1, . . . ,m2n−1).

Then, the Choquet integral defined in Definition 1 can be rewritten in terms of the Möbius
transform of the fuzzy measure as:

CIμ(c1, . . . , cn) =
n∑

i=1

((cs(i) − cs(i−1))

( ∑

A⊂As(i)

m(A)

)

=
n∑

i=1

∑

A⊂As(i)

((cs(i) − cs(i−1))m(A))

where cs(i) denotes the ith lowest value in (c1, . . . , cn), and As(i) = {cs(i), . . . , cs(n)}.
In our case the data vector c is the vector of distances between variables of two records

a and b such as d(a, b) = (d(V1(a),V1(b)), . . . , d(Vn(a),Vn(b)) = (d1(a, b), . . . , dn(a, b)).
We can define the vector d+(a, b) = (d+

1 (a, b), . . . , d+
2n−1(a, b)), where each element corre-

sponds to:

d+
r (a, b) =

n∑

i=1

(ds(i)(a, b) − ds(i−1)(a, b)) · τi,r

for r = 1, . . . ,2n − 1, where

τi,r =
{

1 ifδ(B) = k for B ⊆ As(i)

0 otherwise

So the Choquet integral can be defined in terms of d+ and m+ as:

CIμ(d(a, b)) = d+(a, b) · m+

Now the minimization problem can be expressed as:

Minimize
N∑

i=1

Ki (13)
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Subject to

N∑

i=1

N∑

j=1

[((d+(ai, bj ) − d+(ai, bi)) · m+) + CKi] > 0

for all i �= j (14)

Ki ∈ {0,1} (15)

2n−1∑

k=1

mk = 1 (16)

∑

B ′⊂B

mk(B
′) −

∑

A′⊂A

mk(A
′) ≥ 0 for all A ⊂ B (17)

The number of constraints is: N2 for (14); N for (15); 1 for (16); and
∑n

k=2

(
n

k

)
k for (17).

To solve the problem defined above, we used the simplex optimizer algorithm from the
IBM ILOG CPLEX tool (IBM 2010), (version 12.1). The problem is first expressed into the
MPS (Mathematical Programming System) format, and then, processed with the optimiza-
tion solver. Due to requirements of the CPLEX software we also added a constraint for the
possible values of the Möbius transform of the fuzzy measure as: −(n − 1) ≤ mk ≤ n − 1
for k = 1 . . . (2n − 1).

4 Evaluation

To evaluate our proposal we have tested it with different protected files. In each case
we attempt to link the protected version of the dataset with the original one to evalu-
ate the disclosure risk. The protection method used is microaggregation, which broadly
speaking, provides privacy by means of clustering the data into small clusters of size k,
and then replacing the original data by the centroids of the corresponding clusters. The
parameter k determines the protection level: a greater k implies greater protection (and
greater information loss). For further information about microaggregation the reader is re-
ferred to Defays and Nanopoulos (1993), Torra (2004, 2008), Domingo-Ferrer and Torra
(2005). The protection has been performed using the sdcMicro R package (Templ 2008;
Templ and Petelin 2009).

We have considered files with the following protections:

– M4-33: 4 variables microaggregated in groups of 2 with k = 3.
– M4-28: 4 variables, first 2 variables with k = 2, and last 2 with k = 8.
– M4-82: 4 variables, first 2 variables with k = 8, and last 2 with k = 2.
– M5-38: 5 variables, first 3 variables with k = 3, and last 2 with k = 8.
– M6-385: 6 variables, first 2 variables with k = 3, next 2 variables with k = 8, and last 2

with k = 5.
– M6-853: 6 variables, first 2 variables with k = 8, next 2 variables with k = 5, and last 2

with k = 3.
– M7-999: 7 variables, first 6 microaggregated in groups of 3. These two groups and the

single variable are protected with k = 3.

In each case, we have protected 400 records randomly selected from the Census dataset (U.S.
Census Bureau 2010) from the European CASC project (Brand et al. 2002), which contains
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1080 records and 13 variables, and has been extensively used in other works (Domingo-
Ferrer et al. 2001, 2006; Laszlo and Mukherjee 2005; Domingo-Ferrer and Torra 2005;
Yancey et al. 2002).

Note that in our experiments we apply different protection degrees to different variables.
This is especially interesting when variables have different sensitivity. There are more sen-
sitive attributes that need more perturbation (protection) than others.

4.1 Improvement in record linkage

We compare our method based on the Choquet integral d2CI to the standard record link-
age d2AM which uses a simple mean to aggregate the distances for each variable of the
records, and a record linkage using a weighted mean d2WM to aggregate such distances (as
described in Torra et al. 2010). The d2WM also uses the same supervised learning approach
as described in Sect. 3.2 to obtain the optimal weight vector.

Table 1 shows the ratio of linked records for each file and record linkage method. The
ratio determines the correctly identified records from the total, so a ratio of 1 means a 100%
re-identification.

There is an important increase of the record linkage performance with d2WM and d2CI

when compared to d2AM , and a minor increase of d2CI compared to d2WM .
In Table 2 we show the computation time, expressed in seconds, for each of the tests

corresponding to each protection dataset with the weighted mean (d2WM) and the Choquet
integral (d2CI ) approaches. In this table we can observe an important difference of compu-
tation time between both methods. This is so because the Choquet integral approach has to
satisfy a higher number of constraints to solve the problem.

Table 1 Improvement in the
linkage ratio d2AM d2WM d2CI

M4-33 0.84 0.955 0.9575

M4-28 0.685 0.93 0.9375

M4-82 0.71 0.9425 0.9425

M5-38 0.3975 0.905 0.9125

M6-385 0.78 0.9925 0.9975

M6-853 0.8475 0.9875 0.9925

M7-999 0.8775 0.915 0.9725

Table 2 Computation time
consumed in seconds d2WM d2CI

M4-33 0.38 158.52

M4-28 0.37 1626.29

M4-82 0.39 469.53

M5-38 419.79 355923.05(∼ 99 h)

M6-385 4.4 49.69

M6-853 7.7 128.5

M7-999 9019.78(∼ 2.5 h) 21682.29(∼ 6 h)
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Table 3 Fuzzy measure for
M4-28 k μk k μk

0000 0.000000 1000 0.999168

0001 0.154253 1001 0.999799

0010 0.003651 1010 0.999800

0011 0.207612 1011 0.999899

0100 0.039292 1100 0.999268

0101 0.154353 1101 0.999899

0110 0.096721 1110 0.999900

0111 0.207712 1111 0.999999

Fig. 1 Fuzzy measure lattice for M4-28. Dyadic representation of the set and measures in brackets

4.2 Relevance of attributes determined by the optimal weights

Once we solve the optimization problem with d2CI (c.f. Sect. 3.3) for a concrete dataset,
we can reconstruct the original fuzzy measure from the Möbius transform obtained using
(18).

μ(A) =
∑

B⊆A

m(B) (18)

for all A ⊆ V .
This fuzzy measure provides valuable information about the relevance of each subset

of variables in the re-identification process that maximize the number of correctly linked
records.

Table 3 shows the fuzzy measure obtained for M4-28 and Fig. 1 shows the lattice repre-
sentation of this fuzzy measure. Each subset of variables A ⊆ V is represented by the dyadic
representation of its index k as described in Sect. 3.3. We can see that the first variable pro-
vides a high degree of information for the re-identification. Note that all subsets which
include it have a weight greater than 0.999. This variable has been protected with k = 2,
which preserves more information (is less distorted) than the last two variables (recall that
they are protected with k = 8). It is also interesting to note that the highest weight of a two
element subset is the one which includes the first and third variables. Each of these variables



Ann Oper Res (2012) 195:97–110 107

Fig. 2 Partial fuzzy measure lattice for M6-385 including all measures with values larger than 0.1

Table 4 Fuzzy measure for
M6-853 k μk k μk

000000 0.0000000000 010000 0.0004214525

000001 0.0007378150 010001 0.0008378150

000010 0.0000000000 010010 0.0220367576

000011 0.0220367576 010011 0.0221367576

000100 0.0000000000 010100 0.0640252746

000101 0.0640252746 010101 0.0641252746

000110 0.0640252746 010110 0.0641252746

000111 0.0641252746 010111 0.8247279668

001000 0.0019057155 011000 0.0127378590

001001 0.0160771077 011001 0.0213887564

001010 0.0220367576 011010 0.0221367576

001011 0.0221367576 011011 0.0222367576

001100 0.0020057155 011100 0.0641252746

001101 0.0641252746 011101 0.0642252746

001110 0.0641252746 011110 0.8247279668

001111 0.0642252746 011111 0.8248279668

100000 0.0081683003 110000 0.0221158311

100001 0.0221158311 110001 0.0222158311

100010 0.0221158311 110010 0.0222158311

100011 0.0222158311 110011 0.0424704875

100100 0.0082683003 110100 0.0641252746

100101 0.0641252746 110101 0.0642252746

100110 0.0641252746 110110 0.9998000000

100111 0.9998000000 110111 0.9999000000

101000 0.0082683003 111000 0.0222158311

101001 0.0222158311 111001 0.0223158311

101010 0.0423704875 111010 0.0424704875

101011 0.0424704875 111011 0.0425704875

101100 0.0083683003 111100 0.0642252746

101101 0.0642252746 111101 0.0643252746

101110 0.9998000000 111110 0.9999000000

101111 0.9999000000 111111 1.0000000000
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Table 5 Weight vector for
M6-853, when using d2WM

k weight

100000 0.016809573957189

010000 0.00198841786482128

001000 0.00452923777074791

000100 0.138812880222131

000010 0.835523953314578

000001 0.00233593687053289

correspond to different protected blocks (one with k = 2 and the other with k = 8). So our
approach is useful to detect that to combine variables with complementary information is
useful in re-identification.

Also interesting is to observe the case of the fuzzy measure for the files with 6 variables.
Table 4 shows the fuzzy measure for M6-853, and Fig. 2 the lattice representation of the
measure for all subsets with a weight μk ≥ 0.1.

Note, for example that the sets of four elements (leaves from last row in Fig. 2) all
include at least one element of each block of variables. That is, one element of the variables
microaggregated with k = 8, one with k = 5, and one with k = 3. As stated before all these
variables provide complementary information, which helps in the linkage process.

We also show in Table 5 the weights obtained for the same dataset if we compute the
weighted mean distance d2WM . In this case the most important variable seems be the 5th
one. It comes as no surprise that this variable is present in all the measures from Fig. 2. Note
also that measures for sets which differ in the presence of the second and last variables are
approximately the same. These variables do not seem to provide useful information for the
record linkage.

5 Conclusions

In this paper we have introduced a distance based record linkage for the evaluation of the
disclosure risk in data privacy. Our proposal uses the Choquet integral and a fuzzy measure
to determine the relevance of each variable (and the interaction between variables) in the
linkage process. We have provided a supervised learning approach to determine the optimal
fuzzy measure for the linkage, which also provides information about the variables and their
interactions.
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