
Weaving a Fabric of Socially Aware Agents

Mark d’Inverno1, Michael Luck2, Pablo Noriega3,
Juan A. Rodriguez-Aguilar3, and Carles Sierra3

1 Department of Computing, Goldsmiths, University of London,
London SE14 6NW, United Kingdom

dinverno@gold.ac.uk
2 Department of Informatics, King’s College London, Strand,

London WC2R 2LS, United Kingdom
michael.luck@kcl.ac.uk

3 IIIA, Artificial Intelligence Research Institute,
CSIC, Spanish National Research Council

{pablo,jar,sierra}@iiia.csic.es

Abstract. The expansion of web-enabled social interaction has shed light on so-
cial aspects of intelligence that have not been typically studied within the AI
paradigm so far. In this context, our aim is to understand what constitutes in-
telligent social behaviour and to build computational systems that support it.
We argue that social intelligence involves socially aware, autonomous individ-
uals that agree on how to accomplish a common endeavour, and then enact such
agreements. In particular, we provide a framework with the essential elements
for such agreements to be achieved and executed by individuals that meet in an
open environment. Such framework sets the foundations to build a computational
infrastructure that enables socially aware autonomy.

1 Introduction

The current expansion of social networks (and tools to support them) provides some
valuable opportunities to examine new models of social intelligence, in particular in
situations in which multiple rational entities engage in a common endeavour. In this
sense, social intelligence is an emergent property of the interactions between individ-
uals, whether human, machine, or a combination of both. Key to achieving it is the
requirement for social awareness: the ability of such individuals (henceforth agents) to
understand their context in order to act in such a way that interactions with others can
be meaningful and effective. In this context, and in seeking to contribute to the devel-
opment of systems manifesting social intelligence, this paper addresses the underlying
infrastructure needed to support social interaction processes.

These processes are usually open, in the sense that they involve autonomous individ-
uals that may participate in (or leave) social interactions at will. Such social processes
cannot in general be prescribed a priori but need to be adaptive, in view both of the
autonomy of individual agents, and the openness of systems in which agents might not
know each other in advance. In consequence, agents must themselves come to agree-
ments and then put them in practice. Only by manipulating (creating, modifying, ex-
changing) such agreements in meaningful ways can agents create and execute complex

D. Kinny et al. (Eds.): PRIMA 2011, LNAI 7047, pp. 263–274, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



264 M. d’Inverno et al.

social processes. It is this ability of agents to operate in environments in which they
can understand, participate in, create and modify agreements that we refer to as social
awareness. We do not discuss how to create, modify or argue about these agreements,
but instead provide a framework with the minimal set of elements for such agreements
to be achieved and executed.

In doing so, we provide the conceptual and technological foundation for a wide va-
riety of applications. For instance, to build ad hoc coordination support environments
beyond what, say, Facebook can currently provide, consider how a group of friends
might organise their weekend outings. They might join a virtual group to decide what
movie to watch, where and when to meet; then agree on what type of food to have,
what restaurant to go to and if a reservation is needed choose someone to make it, and
have them actually do so, etc. Similarly, we envisage systems that provide an environ-
ment in which companies come together as a supply network where a call for tenders
results in contracts for production, purchase and delivery of goods or services that are
then enacted, and where incidents and failures are dynamically resolved by the inter-
ested parties. In a similar vein, a game designer could design and run multi-party dis-
tributed role playing games. In more abstract terms, we seek to develop functionalities
for agreed-upon regulated social interaction in a flexible, principled way.

While the notion of intelligence has been considered (and indeed formalised) from
many perspectives, there has been little work on the formalisation of interaction of
intelligent entities that facilitates social awareness. The structuring of interactions as a
static blueprint similar to classical human institutions has been studied in the area of
electronic institutions [2], and modelling software as an organisation of components
with clear interactions among them was pioneered by Gasser [8]. However, the fact that
the most important aspect of any interaction is to represent joint activities of agents,
makes recent developments in process algebras (e.g. [4]) and workflow languages (e.g.
[3]) not well suited, as their emphasis is on the programming of hard-wired processes
constituting individual agents along with their interactions. In other words, agents are
not allowed to autonomously agree on how and when to interact.

Software environments that enable social intelligence need to include the explicit
generation and representation of social interaction process agreements (for example,
jointly starting, jointly finishing or jointly entering an activity), on top of the simpler
capacity to work together once the agreements are set. In response, we seek to con-
tribute to this broad goal by providing a formal framework for the management of such
interactions. Our framework includes those aspects that we claim are necessary to sup-
port the processes of how an activity may be organised and put into action. In particular,
we make explicit (i) the requirements for meaningful communication among agents; (ii)
the requirements for the set up of coordination or interaction processes; and (iii) the re-
quired operations that the environment needs to support social interactions and those
that agents need in order to interoperate.

To ensure that our ideas have a clear and unambiguous semantics, but can also be
described at the appropriate level of abstraction, we use formal specification tech-
niques developed in software engineering, and give a formal account of the concepts
underpinning interoperation in open systems, including the essential data structures and



Weaving a Fabric of Socially Aware Agents 265

operations. While the description omits some aspects due to space limitations, a com-
plete version can be found in [1].

The remainder of the paper is organised as follows. Section 2 presents the main data
structures supporting the static definition of activities or interaction processes, Section
3 describes the data structures supporting the execution of interaction processes, and
the most basic operation that agents may perform. Section 4 concludes.

2 Social Intelligence

Social intelligence, as considered in this paper, essentially arises from activities that
are carried out by groups of agents. Hence, in our approach to open systems we need
to include the basic notion of group meetings, or scenes, in which agents interact. We
therefore postulate a framework for open systems in which the activities of agents are
social, decomposable, scalable, local and dialogical. We consider each of these in turn
below in order to motivate our approach.

For any activities to be performed together by groups of agents, those agents must
coordinate their individual activities with each other. Such coordination underpins so-
cial intelligence and, in this sense, activities are social, because agents that interact
need to be aware, first of others and their roles, and second that certain capacities (or
roles) may be required to achieve a particular goal within a common activity. Activities
are decomposable in the sense that the goals of an agent, and the overall goals of a
group of agents, can be decomposed into simple activities whose performance achieves
the individual and collective goals. This composition requires the interconnection of
atomic activities into a graph in which the achievement of individual and social goals
can thus be associated with particular paths (or to subgraphs) that represent particular
combinations of goals.

Openness means that agents may enter and leave a system at any time, potentially
causing a large number of agents to interact. To cope with the scalability that is required
as a result of this, not only is problem decomposition needed, but so is the possibility
of replicating the enactment of simple activities so that different groups of agents can
be allowed to perform the same activity, concurrently, over an enlarging infrastructure.
Openness and dynamism cause knowledge about others necessarily to be limited. In
consequence, interactions are naturally local within subgroups of agents. This locality
of interaction supports scalability by establishing bounds on interactions of agents, and
also supports security and privacy.

Finally, activities are dialogical as they are achieved via agent interactions composed
of non-divisible units that occur at discrete instants of time. These units can be modelled
as point-to-point messages within a communication language, and physical actions can
be considered as wrapped by appropriate messages of this form.

Now, in order to provide a computational model capturing this view of social intelli-
gence, we have developed a complete, type-checked specification using the Z specifica-
tion language. Z has been used to specify many different agent and multi-agent systems
in the last 15 years (e.g. [5]); due to its computational, functional-programming style
semantics [9], Z can provide an unambiguous formal account of a system and its opera-
tion as a basis for implementation. In what follows, we present a type-checked subset of



266 M. d’Inverno et al.

our formal model for social intelligence in Z, detailing the key concepts, and justifying
in text the need or those whose formal description is not given. We begin by identifying
the languages and primitives required, before building up to the concept of a society by
means of interactions achieved through dialogue.

2.1 Languages

Our concern is with specifying open systems in which agent interactions are mean-
ingful, contextual, consequential and regulated. We handle these properties through
different languages and constructs as follows.

Interactions are meaningful in the sense that the meaning of the interaction is the
same for all participants. When interacting within a common environment, agents need
to communicate about their problem domain, and thus an ontology that describes this
domain is required. We call this the domain ontology, specified in terms of a domain
language in which to express the purpose and means of the interaction. Although this
shared language might be the result of some process of semantic alignment, for the
interaction to be successful it must be meaningful to all participants.

Interactions between agents are contextual in the sense that their effects depend on
the specific circumstances under which they take place. In fact, interactions generate a
history of information exchanges — a sequence of messages between agents playing
various roles — that determines the particular context in which new interactions are
to be interpreted. The representation of such evolving circumstances requires a stateful
architecture in which context is explicitly represented. Changes to the context of an
interaction occur as actions are executed when agents speak. Since interactions have
consequences for the context of the participants, an action language determines how to
update the state of contexts after illocutions occur. For example, if John wins an auction
for a box of fish, his credit (a variable associated with any buyer) is decreased by his
winning bid amount.

Building on the domain language types, the property language provides the means
to represent attributes of the components of an interaction model. Such attributes might
indicate that buyers have credit, or that there can be only one auctioneer in an auction
room. Interactions are further regulated in being constrained by context. For this reason,
a constraint language is needed to guarantee that every atomic interaction occurs in the
right context. For example, any bid in an English auction must be higher in value than
a preceding bid.

Now, to bootstrap our specification, we need a set of basic types that specify agents,
roles and time, variables, terms, the formula of the languages already mentioned above
(domain, property, constraint and action), whose syntactic features we abstract out in
this paper and simply declare as given sets.

[Agent, Role, Time]
[AgentVar, RoleVar, TimeVar]
[AgentTerm, RoleTerm, TimeTerm]

[DLFormula, CLFormula, PLFormula, ALFormula]



Weaving a Fabric of Socially Aware Agents 267

2.2 Roles and Relationships

Our aim is to specify patterns of interaction to enable meaningful interoperation of mul-
tiple socially intelligent individuals. To interact successfully, these individuals need to
be socially aware: they need to know the actions that they and others may take. Of
course it is not possible to define interactions at the level of individual agents in ad-
vance, so we need an abstraction of an agent in the context of a social setting for which
we introduce the notion of roles. Roles enable us to describe, design and understand
interactions in an abstract and re-usable sense. First, roles define concrete patterns of
behaviour; that is, what can be said and to whom. Second, roles have relationships of
different sorts that either further restrict behaviour (for example, a committee member
cannot perform the actions of the chair) or determine subsumption policies (for exam-
ple, the chair may take on the responsibilities of any member). Thus, our framework
contains roles and any relationships that we may wish to specify between them. For-
mally, we define these simply in the schema Roles.

Roles
roles : P Role
socialrels : P(Role ↔ Role)

2.3 Interaction and Communication

Humans communicate through a variety of forms (visual, phonetic, linguistic) but if we
are designing open systems to include mixed societies with software agents, then basing
it on anything other than the linguistic would seem impossible. So agents in roles must
interact by means of communication or, more precisely, by exchanging speech acts.
Given this, the template for any such exchange must include a formula from the domain
language (to identify the content), and an illocutionary particle (the basic illocutionary
force of the communication, such as promising, commanding or asserting). Along with
this, we must also provide a minimal context: a time term (to record when the utterance
took place), and a sender agent and a receiver agent, both with their associated roles.
For example, we might have an inform illocutionary particle, with a domain language
formula view(movie, Jaws), at time 36487, from a proposer role to a friend role (in-
stantiated at some later point with the agents Alice and Bob as sender and receiver).
The syntax is thus similar to that of agent communication languages, FIPA or KQML
[7,6], but we only identify the core components that are required for our model of social
intelligence.

We call this combination of data items an IllocutionType, represented formally in
the schema below, which first requires introduction of a set for IllocutionaryParticle.
The schema includes a predicate that asserts that the sender and receiver agents must be
distinct, ruling out agents talking to themselves as social interaction.

[IllocutionaryParticle]



268 M. d’Inverno et al.

IllocutionType
dlformula : DLFormula;

illocutionaryparticle : IllocutionaryParticle
time : TimeTerm; sender, receiver : AgentTerm
sendrole, receiverole : RoleTerm

sender �= receiver

When considering the kinds of interactions that may take place, some elements must
be abstracted away. In particular, it is not known which concrete formulae will be ex-
changed, who will talk to whom or when. However, since interactions are regarded as
dialogue patterns, it is known which roles the unknown agents will incarnate in a par-
ticular communicative act and the illocutionary force (or particle) that will be used.
Thus, we introduce the notion of Scheme as a subschema of IllocutionType, in which
the agents and the time, at least, are abstracted away as variables, where the time term
must always be a free variable.

isavar : P AgentTerm; istvar : P TimeTerm

Scheme
IllocutionType

isavar sender ∧ isavar receiver ∧ istvar time

An Illocution defines what occurs when an agent acts through an IllocutionType for
which all variables are bound. (In the definition below, we omit the predicate part that
would simply state that all variables are bound.)

Illocution == IllocutionType

2.4 Conversations and Scenes

We have stated that agents interact by exchanging illocutions within group meetings
that contextualise those exchanges. We now make more precise the fact that speech acts
are always uttered in a conversation in a particular environment that involves the goals
of the participating agents, the roles they are playing, and a particular shared set of vari-
ables modelling the properties of the conversation. If we do not group utterances into
these conversations (which we refer to as scenes to emphasise the fact that agents are
taking on specific roles within a conversation), then we could never be able to interpret
an utterance. In our view it is the combination of roles, illocutions, and scenes together
that provide agents with the necessary social awareness required to interpret messages.

Our example of agents deciding which movie to go see, is just one of several situa-
tions that agents may encounter in the larger set of activities involved in actually going
to see a movie, including setting a time and place to meet, making travel arrangements,
and actually going to the movie. Each of these separate situations can be regarded as a
scene where agents exchange utterances. When an agent makes a speech act, the state



Weaving a Fabric of Socially Aware Agents 269

of the conversation changes, we thus say it moves to a new conversation place. At any
time during its life, a scene is in one of these conversation places, transitions between
which are achieved either by agents uttering illocutions, or eventually by agents not
uttering anything at all after some time. Thus, a scene is a directed graph of conversa-
tion places, where the arcs are labeled with speech acts, constraints, and actions. The
speech act takes the form of an unbound illocution scheme, the set constraints (or pre-
conditions) determine what must be satisfied for the speech act to take place, and the
sequence of actions (or post-conditions) to update relevant information if and only if
the speech act is successful.

First, we provide the formal definitions required, and then explain them.

[ConvPlace, SceneName]

Label
scheme : Scheme
constraints : P CLFormula
actions : seq ALFormula

Scene
sname : SceneName
sceneroles : P Role
limits : Role �→ P1(N)

places : P ConvPlace
moves : ConvPlace ↔ ConvPlace
label : (ConvPlace × ConvPlace) �→ Label
startingpoint : ConvPlace
closing : P ConvPlace
access, leaving : Role �→ (P ConvPlace)

∀ cs : ConvPlace | cs �= startingpoint •
cs ∈ (ran({startingpoint} � moves)�)

∀ r : Role; cs1 : ConvPlace | cs1 ∈ (access r) •
∃ cs2 : closing • (cs1, cs2) ∈ moves�

closing ∩ (dom moves) = {}

The Scene schema above contains the following elements. First, it requires a name
so that we can identify it, the set of roles that can act within it, and the limits on the
number of agents that play those roles (e.g., one meeting coordinator to determine the
movie of a cinema visit). Second, we must define the set of conversation places and
those moves between them that may occur because of an utterance. Each such move
must be labelled with the illocution scheme that needs to take place, a (possibly empty)
set of constraints (e.g., to stop someone changing the cinema venue at the last minute
when some people may already have left home), and a set of action formulae (e.g.,
if we buy tickets, then our balance goes down and the cinema’s goes up). Third, every
scene has a unique starting point but there are several places where the conversation may



270 M. d’Inverno et al.

legitimately close; conversations are finished at a closing place, so no other place can be
reached by a move from them; and, in a scene graph, all places must be reachable from
the starting place, and there must be at least one closing place that is reachable from any
place. Fourth, in a truly open interoperational framework, agents playing various roles
may either join or leave an ongoing conversation at some socially accepted places. Some
simple integrity constraints must be satisfied by the specification of a conversation, but
they are omitted here for space reasons.

2.5 Weaving the Society

Because agents are concurrent and autonomous, a society amounts to a set of connected
conversations. Any social system that respects the changing goals and evolution of be-
haviours of autonomous agents must thus provide mechanisms for moving freely be-
tween scenes, for weaving together these agents and their actions in the various scenes
in which they are involved. Thus, now that we have defined scenes, we need some way
to connect them so that agents autonomously move between them once a social decision
is reached. In our model, the means of doing this is via transitions and arcs: arcs give
routes out of scenes and into scenes, and transitions provide synchronisation and choice
points for agents as they leave and enter scenes. The resulting network of scenes allows
groups of agents to jointly decide whether to start a new scene, join a scene, leave a
scene, or close a scene.

As indicated, arcs link scenes to transitions and transitions to scenes, with each arc
associated with a set of actions from the action language and constraints from the con-
straint language, corresponding to preconditions that govern the ability of an agent play-
ing a role to traverse an arc. For example, an agent is seeking to go to the group movie
event, must express a preference for a particular movie, and must pay part of a group rate
fee in advance. In such a case, there may be an arc to the movie decision scene with the
constraint that the agent has voted for a movie, and an action that decreases the agent’s
balance by the movie fee. Networking scenes is necessary to capture the causal depen-
dencies between scenes including order, synchronisation, parallelism, choice points,
creation, change of roles between scenes and so on.

Formally, this is captured in the Society schema, which contains the set of all scenes,
of which there must be one entry scene and one exit scene, which are distinct. It also
contains arcs linking scenes. Then, there is a labelling function (disjnorm), which maps
each arc to a disjunctive normal form of agent variables and role identifiers, defining
the possible (non-empty) set of agents and associated (non-empty) roles that agree on
simultaneously traversing the arc. Similarly, a second labelling function (constraints)
maps arcs to constraints (in our constraint language), which individual agents must
fulfill in order to traverse the arc. A third labelling function (actions) maps arcs to
actions (in our action language), which are triggered when individual agents traverse
the arc. In this way, each arc is labelled with (possibly empty) sets of constraints and
actions. Finally, to enforce the earlier restrictions on entry and exit scenes, it is not
possible to return to the entry scene, nor is it possible to leave the exit scene and return
to another scene in the network of scenes.

Arc == (Scene × Scene)



Weaving a Fabric of Socially Aware Agents 271

Society
allscenes : P1 Scene
entryscene, exitscene : Scene
arcs : P1 Arc
disjnorm : Arc �→ P1(P1(AgentVar × Role))
constraints : Arc �→ (P CLFormula)

actions : Arc �→ (P ALFormula)

entryscene �= exitscene
¬ (∃ a : Arc • second(a) = entryscene)
¬ (∃ a : Arc • first(a) = exitscene)

3 State of an Open System

3.1 Agent Processes

At run time, agents can concurrently take part in multiple scenes; that is, they may per-
form several activities at the same time. For example, a human agent may participate
in a skype call, in a meeting, and may also send and receive text messages at the same
time. Similarly, a software agent in an auction house may simultaneously bid in several
auctions that run in parallel. Certainly, these various activities can be interrelated in the
sense that a text message may influence the agent’s behaviour in the meeting and skype
call, and the selling price in one auction may influence what an agent chooses to bid
in another. In this respect, any model of social intelligence should be able to account,
for each agent, for a set of different processes that share memory so that performance
in one activity may influence performance in others. Each such process represents an
agent playing a single role within an instance of a scene, and the number of such pro-
cesses may change over time as different instances of scenes are created and terminated
at different points in time. Thus, we introduce the notion of agent processes, which
effectively capture the representation of state. In the AgProc schema, we define these
processes, which have the owning agent, an identifier, the role of the agent, and the set
of roles that the agent is allowed to take on at some later time.

[Id]

AgProc
name : Agent
place : Id
role : Role
allowedroles : P Role

role ∈ allowedroles

Given this, we can give a more precise account of the contextualisation of actions we
had mentioned before. In order to define the state of a scene during its execution, we
introduce the notion of a scene instance, which requires a record of the history of moves



272 M. d’Inverno et al.

and the binding contexts in which utterances (speech acts) were made. A FrameContext
represents the instantiation of variables in schemes, a MoveContext defines the move
and the frame context in which a speech act occurred, and a generic Context is the
sequence (or history) of such move contexts that have occurred since the beginning of
the instantiation of the scene.

[FrameContext]
MoveContext == ConvPlace × FrameContext × ConvPlace
Context == seq MoveContext

In addition to an identifier and the conversation context, any scene instance includes
the scene of which it is an instance, the current conversation place and the set of agent
processes involved in the scene instance. The predicates in the SceneInst schema guar-
antee that the scene instance is consistent with the data structures of its scene. In par-
ticular, we require that the current conversation place to be well-defined (within the
conversation places of the scene), and that the number of agents in the scene instance is
within the allowable range of the scene.

SceneInst
scene : Scene
position : ConvPlace
agents : P AgProc
context : Context
sid : Id
exitingAgents : P AgProc

position ∈ scene.places
∀ r : Role • #({a : agents • (a.name, a.role)} � {r})

∈ scene.limits r

3.2 Making a Move in Group Interaction

The last element of our proposal is to identify the operations that a framework enabling
the interoperability of socially aware agents needs to support. We have identified many
such operations but, due to space constraints, here we only discuss the key operation
Speak, which processes an atomic action of an agent: a speech act. Another twelve
operations — dealing with the environment in which interactions take place (such as
initialising an environment or creating a scene instance), or corresponding to voluntary
acts of agents (such as joining a scene instance or allowing an agent to change roles) —
are dealt with in a similar fashion; details can be found elsewhere [1].

Thus, using the definitions above we can specify how to process a speech act through
the Speak schema below. In particular, we specify what happens when a speech act i is
uttered successfully. Line by line, the Speak schema states the following. First, this is an
operation that changes the state of the scene instance. We define the variable nextmoves,
which is the set of potential next conversation places and the associated schemes that
label them. The variable test is the potential new history that would be defined if a
move took place. It is needed to see whether constraints are satisfied. The first predicate



Weaving a Fabric of Socially Aware Agents 273

states that we generate the set of pairs of possible next moves from the current position
and their associated schemes. The second predicate makes use of the function proceed,
which takes a set of pairs described in nextmoves and an illocution, and returns a frame
context and next position if one can be found that matches the illocution. In other words,
this ensures that the illocution defines a specific move. The next predicate generates a
test context using the generated frame context and destination place. Next, we determine
whether the constraints of the scheme are satisfied within this test context (by making
use of the predicate sat.) The position is updated as is the context, and the actions that
label the move to the next position are queued for action.

proceed : P(Scheme × ConvPlace) → Illocution →
(FrameContext × ConvPlace)

sat : P((P CLFormula) × Context)

Speak
ΔSceneInst
i? : Illocution
nextmoves : P(Scheme × ConvPlace)
test : seq(ConvPlace × FrameContext × ConvPlace)
actionstodo! : seq ALFormula

nextmoves = {s : Scheme; c : ConvPlace |
c ∈ (ran({position} � scene.moves)) •

((scene.label(position, c)).scheme, c)}
nextmoves ∈ (dom proceed)

test = context � 〈(position, first (proceed nextmoves i?),
second (proceed nextmoves i?))〉

sat((scene.label (position, position′)).constraints, test)
position′ = second (proceed nextmoves i?)
context′ = test
actionstodo! = (scene.label (position, position′)).actions

4 Conclusion

In this paper we have explored fundamental intuitions underpinning the notion of social
intelligence, and on those grounds have outlined a framework to construct computa-
tional environments that support open interoperability among autonomous entities. We
discussed the conceptual assumptions, data structures, constructs and functionalities —
for joint activity definition and execution, and for agent flow — of the framework and
illustrated their formalisation.

In particular, our framework allows us to incorporate new functionality into mixed
societies of human and agents. For instance, such functionality might be used by a
group of friends in Facebook to coordinate their weekly outings; by an NGO to set-up a
fund raising campaign, by a group of companies and services to run a supply network,
or by game designers to create and manage web-supported participatory role-playing



274 M. d’Inverno et al.

games. Although in this paper we have only provided a formalisation of conceptual
aspects, the framework may be supported by an associated computational architecture
and corresponding development tools and methodologies. By using the Z specification
language, which lends itself well to supporting implementations that directly implement
specifications, we address these concerns, and provide a foundational basis for different
implementations.

This paper thus provides an outline of those core elements that we believe are neces-
sary in any framework that enables such open interoperability. It is an outline only due
to space constraints, but the complete specification (in which this draws) [1] does pro-
vide full detail. As an outline, however, the specification is especially valuable, since it
does not overcommit, but allows different reifications of the framework to suit different
purposes, and at the same time provides a minimal set of core elements. Indeed, we
believe that to contend with open, concurrent, regulated and socially aware interoper-
ability, all those features that we have included are necessary. We have thus been careful
not to include any accessory materials and have preferred to err on the side of abstrac-
tion, rather than commit to features that are dispensable. Finding the right balance here
is a challenge, but one we believe we have met in this paper.

Acknoledgements. This work has been supported by the projects EVE(TIN2009-
14702-C02-01) and AT (CSD2007-0022). We are all immensely grateful to Carme Roig
for her tolerance, patience and support. Finally, thanks to Marc Esteva for discussions
on his work on AMELI and electronic institutions in general.

References

1. A framework for communication in open systems. Technical report,
http://www.mediafire.com/?mfpq42e0l94eqa8

2. Arcos, J.L., Esteva, M., Noriega, P., Rodrı́guez-Aguilar, J.A., Sierra, C.: Engineering open
environments with electronic institutions. Eng. Appl. of AI 18(2), 191–204 (2005)

3. Boile, J., Cardella, M., Blanyalet, S., Juric, M., Carey, S., Chandran, P., Coene, Y., Geminiuc,
K., Zirn, M.: BPEL Cookbook. Packt Publishing (2006)

4. Cardelli, L., Gordon, A.: Mobile Ambients. In: Nivat, M. (ed.) FOSSACS 1998. LNCS,
vol. 1378, pp. 140–155. Springer, Heidelberg (1998)

5. D’inverno, M., Luck, M., Georgeff, M.P., Kinny, D., Wooldridge, M.: The dMARS ar-
chitechure: A specification of the distributed multi-agent reasoning system. Autonomous
Agents and Multi-Agent Systems 9(1–2), 5–53 (2004)

6. Finin, T., Labrou, Y., Mayfield, J.: Kqml as an agent communication language. In: Bradshaw,
J. (ed.) Software Agents. MIT Press (1995)

7. FIPA: Fipa 97 specification version 2.0 part 2. Tech. rep., FIPA - Foundation for Intelligent
Physical Agents (1998)

8. Gasser, L., Braganza, C., Herman, N.: MACE: A flexible test-bed for distributed AI research,
pp. 119–152. Pitman (1987)

9. Spivey, M.: The Z Notation, 2nd edn. Prentice Hall (1992)

http://www.mediafire.com/?mfpq42e0l94eqa8

	Weaving a Fabric of Socially Aware Agents
	Introduction
	Social Intelligence
	Languages
	Roles and Relationships
	Interaction and Communication
	Conversations and Scenes
	Weaving the Society

	State of an Open System
	Agent Processes
	Making a Move in Group Interaction

	Conclusion
	References




