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Abstract

Let  L
n+1 be the MV-chain on the n+ 1 elements set  L

n+1 = {0, 1/n, 2/n, . . . , (n� 1)/n, 1}
in the algebraic language {!,¬} [3]. As usual, further operations on  L

n+1 are definable by
the following stipulations: 1 = x ! x, 0 = ¬1, x � y = ¬x ! y, x � y = ¬(¬x � ¬y),
x ^ y = x � (x ! y), x _ y = ¬(¬x ^ ¬y). Moreover, we will pay special attention to the also
definable unary operator ⇤x = x� x.

In fact, the aim of this paper is to study the {

⇤,¬,_}-reducts of the MV-chains  L
n+1, that

will be denoted as  L⇤
n+1, i.e. the algebra on  L

n+1 obtained by replacing the implication operator
! by the unary operation ⇤ which represents the square operator ⇤x = x � x and which has
been recently used in [4] to provide, among other things, an alternative axiomatization for the
four-valued matrix logic J4 = h L4, {1/3, 2/3, 1}i. In this contribution we make a step further in
studying the expressive power of the ⇤ operation, in particular we will focus on the question for
which natural numbers n the structures  L

n+1 and  L⇤
n+1 are term-equivalent. In other words,

for which n the  Lukasiewicz implication ! is definable in  L⇤
n+1, or equivalenty, for which n

 L⇤
n+1 is in fact an MV-algebra. We also show that, in any case, the matrix logics h L⇤

n+1, F i,
where F is an order filter, are algebraizable. What we present here is a work in progress.

Term-equivalence between  L

n+1 and  L

⇤
n+1

Let X be a subset of  L
n+1. We denote by hXi

⇤ the subalgebra of  L⇤
n+1 generated by X (in

the reduced language {

⇤,¬,_}). For n � 1 define recursively (⇤)nx as follows: (⇤)1x = ⇤x, and
(⇤)i+1x = ⇤((⇤)ix), for i � 1.

A nice feature of the  L⇤
n+1 algebras is that we can always define terms characterising the

principal order filters F
a

= {b 2  L
n+1 | a  b}, for every a 2  L

n+1.

Proposition 1. For each a 2  L
n+1, the unary operation �

a

defined as

�
a

(x) =

⇢
1 if x 2 F

a

0 otherwise.

is definable in  L⇤
n+1. As a consequence, for every a 2  L

n+1, the operation �
a

that corresponds
to the characteristic function of a (i.e. �

a

(x) = 1 if x = a and �
a

(x) = 0 otherwise) is definable
as well.

Proof. The case a = 1 corresponds to the Monteiro-Baaz Delta operator and, as is well-known,
it can be defined as �1(x) = (⇤)nx. For a = 0 define �

a

(x) = �1(x)_¬�1(x); then �
a

(x) = 1
for every x. Now, assume 0 < a = i/n < 1. It is not di�cult to show that one can always find a
sequence of terms (operations) t1(x), . . . , tm(x) over {⇤,¬} such that t1(t2(. . . (tm(x)) . . .)) = 1
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if x 2 F
a

while t1(t2(. . . (tm(x)) . . .)) < 1 otherwise. Then �
a

(x) = �1(t1(t2(. . . (tm(x)) . . .)))
for every x.

As for the operations �
a

, define �1 = �1, �0 = ¬�1/n, and if 0 < a < 1, then define
�
a

= �
a

^ ¬�
a�1/n.

It is now almost immediate to check that the following implication-like operation is definable
in every  L⇤

n+1: x ) y = 1 if x  y and 0 otherwise. Indeed, ) can be defined as

x ) y =
_

0ijn

(�
i/n

(x) ^ �
j/n

(y)).

Actually, one can also define Gödel implication on  L⇤
n+1 by putting x )

G

y = (x ) y) _ y.
On the other hand, it readily follows from Proposition 1 that all the  L⇤

n+1 algebras are
simple. Indeed, if a > b 2  L

n+1 would be congruent, then �
a

(a) = 1 and �
a

(b) = 0 should be
so. Recall that an algebra is called strictly simple if it is simple and does not contain proper
subalgebras. It is clear then that in the case of  L

n+1 and  L⇤
n+1 algebras, they are strictly simple

if {0, 1} is their only proper subalgebra.

Remark 2. It is well-known that  L
n+1 is strictly simple i↵ n is prime. Note that, for every

n, if B = (B,¬,!) is an MV-subalgebra of  L
n+1, then B⇤ = (B,_,¬, ⇤) is a subalgebra of

 L⇤
n+1 as well. Thus, if  L

n+1 is not strictly simple, then  L⇤
n+1 is not strictly simple as well.

Therefore, if n is not prime,  L⇤
n+1 is not strictly simple. However, in contrast with the case of

 L
n+1, n being prime is not a su�cient condition for  L⇤

n+1 being strictly simple. In Lemma 7
below we will provide some examples of prime n for which  L⇤

n+1 is not strictly simple, in view
of Theorem 6.

Lemma 3.  L⇤
n+1 is strictly simple i↵ h(n� 1)/ni⇤ =  L⇤

n+1.

Proof. The ‘only if’ direction is trivial. In order to prove the converse, assume that ha1i⇤ =  L⇤
n+1

for a1 = (n � 1)/n. For i � 1 let a
i+1 = t

i

(a
i

) such that t
i

(x) = ⇤x if x > 1/2, and
t
i

(x) = ¬x otherwise. Since  L⇤
n+1 is finite, there is 1  i < j such that a

j

= a
i

and so
A1 := {a

i

| i � 1} = {a
i

| 1  i  k} for some k such that a
i

6= a
j

if 1  i, j  k. Let
A = A1 [ A2 [ {0, 1} where A2 = {¬a | a 2 A1}. Since ⇤1 = 1 and ⇤x = 0 if x  1/2, A is
the domain of a subalgebra A of  L⇤

n+1 over {⇤,¬,_} such that a1 2 A, hence ha1i
⇤
✓ A. But

A ✓ ha1i
⇤, by construction. Therefore A = ha1i

⇤ =  L⇤
n+1.

Fact: Under the current hypothesis (namely, ha1i⇤ =  L⇤
n+1): if n is even then n = 2 or n = 4.

Indeed, suppose that ha1i⇤ =  L⇤
n+1 and n is even. If n = 2 or n = 4 then clearly  L⇤

n+1 is strictly
simple. Now, assume n > 4. Observe that: (1) for any a 2  L⇤

n+1 \ {0, 1},
⇤a = i/n such that i

is even; and (2) if i < n is even then ¬(i/n) = (n� i)/n such that n� i is even. That being so,
if i/n 2 (A1 [A2) \ {a1,¬a1} (recall the process described above) then i is even. But then, for
instance, 3/n /2 A = ha1i

⇤ =  L⇤
n+1, a contradiction. This proves the Fact.

From the Fact, assume now that n is odd, and let a = ((n + 1)/2)/n and b = ((n � 1)/2)/n.
Since ¬a = b, ¬b = a and a, b 2 A then, by construction of A, there is 1  i  k such that either
a = a

i

or b = a
i

. If a = a
i

then a
i+1 = ⇤a = 1/n and so a

i+2 = ¬a
i+1 = ¬1/n = (n�1)/n = a1.

Analogously it can be proven that, if b = a
i

then a1 = a
j

for some j > i. This shows that
A1 = {a1, . . . , ak} is such that a

k+1 = a1 (hence a
k

= 1/n). Now, let c 2  L⇤
n+1\{0, 1} such that

c 6= a1. If c 2 A1 then the process of generation of A from c will produce the same set A1 and
so A =  L⇤

n+1, showing that hci =  L⇤
n+1. Otherwise, if c 2 A2 then ¬c 2 A1 and, by the same

argument as above, it follows that hci =  L⇤
n+1. This shows that  L⇤

n+1 is strictly simple.

Lemma 4. If  L
n+1 is term-equivalent to  L⇤

n+1 then  L⇤
n+1 is strictly simple.

2
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Proof. If  L
n+1 is term-equivalent to  L⇤

n+1 then � is definable in  L⇤
n+1, and hence h(n�1)/ni⇤ =

 L⇤
n+1. Indeed, we can obtain (n� i� 1)/n = ((n� 1)/n)� ((n� i)/n) for i = 1, . . . , n� 1, and

1 = ¬0. By Lemma 3 it follows that  L⇤
n+1 is strictly simple.

Corollary 5. If  L
n+1 is term-equivalent to  L⇤

n+1 then n is prime.

Proof. If  L
n+1 is term-equivalent to  L⇤

n+1 then  L⇤
n+1 is strictly simple, by Lemma 4. By

Remark 2 it follows that n must be prime.

Theorem 6.  L
n+1 is term-equivalent to  L⇤

n+1 i↵  L⇤
n+1 is strictly simple.

Proof. The ‘only if’ part is Lemma 4. For the ‘if’ part, since  L⇤
n+1 is strictly simple then,

for each a, b 2  L
n+1 where a /2 {0, 1} there is a definable term t

a,b

(x) such that t
a,b

(a) = b.
Otherwise, if for some a /2 {0, 1} and b 2  L

n+1 there is no such term then A = hai⇤ would be a
proper subalgebra of  L⇤

n+1 (since b 62 A) di↵erent from {0, 1}, a contradiction. By Proposition 1
the operations �

a

(x) are definable for each a 2  L
n+1, then in  L⇤

n+1 we can define  Lukasiewicz
implication ! as follows:

x ! y = (x ) y) _

0

@
_

n>i>j�0

�
i/n

(x) ^ �
j/n

(y) ^ t
i/n,aij

(x)

1

A
_

0

@
_

n>j�0

�1(x) ^ �
j/n

(y) ^ y

1

A

where a
ij

= 1� i/n+ j/n.

We have seen that n being prime is a necessary condition for  L
n+1 and  L⇤

n+1 being term-
equivalent. But this is not a su�cient condition: in fact, there are prime numbers n for which
 L
n+1 and  L⇤

n+1 are not term-equivalent.

Lemma 7. If n is a prime Fermat number greater than 5 then  L
n+1 and  L⇤

n+1 are not term-
equivalent.

Proof. Recall that a Fermat number is of the form 22
k

+ 1, with k being a natural number.
We are going to prove that if n is a prime Fermat number and a1 = (n� 1)/n, then ha1i

⇤ is a
proper subalgebra of  L⇤

n+1 (recall Theorem 6 and Lemma 3). Thus, let n > 5 be a prime Fermat
number, that is, a prime number of the form n = 2m +1 with m = 2k and k > 1. The (m� 1)-
times iterations of ⇤ applied to a1 produce ((n+ 1)/2)/n, that is: (⇤)m�1(a1) = ((n+ 1)/2)/n.
Since ⇤(((n + 1)/2)/n) = 1/n, the constructive procedure for generating the algebra ha1i

⇤

described in the proof of Lemma 3 shows that ha1i⇤ = A has 2m+2 elements: m elements in A1,
plus m elements in A2 corresponding to their negations, plus 0 and 1. Since 2m+2 < 2m+1 = n
as n > 5, ha1i⇤ is properly contained in  L

n+1, and it is di↵erent from {0, 1}.

The first Fermat prime number greater than 5 is n = 17. It is easy to see that

h16/17i⇤ = {0, 1/17, 2/17, 4/17, 8/17, 9/17, 13/17, 15/17, 16/17, 1}.

Actually, we do not have a full characterisation of those prime numbers n for which  L
n+1 and

 L⇤
n+1 are term-equivalent. But computational results show that for prime numbers until 8000,

about 60% of the cases yield term-equivalence.

3

45



Algebraizability of h L

⇤
n+1, Fi/n

i

Given the algebra  L⇤
n+1, it is possible to consider, for every 1  i  n, the matrix logic

 L⇤
i,n+1 = h L⇤

n+1, Fi/n

i. In this section we will shown that all the  L⇤
i,n+1 are algebraizable in the

sense of Blok-Pigozzi [1], and the quasivarieties associated to  L⇤
i,n+1 and  L⇤

j,n+1 are the same,
for every i, j.

Observe that the operation x ⇡ y = 1 if x = y and x ⇡ y = 0 otherwise is definable
in  L⇤

n+1. Indeed, it can be defined as x ⇡ y = (x ) y) ^ (y ) x). Also observe that
x ⇡ y = �1((x )

G

y) ^ (y )

G

x)) as well.
In order to prove the main result of this section, we state the following:

Lemma 8. For every n, the logic  L⇤
n+1 :=  L⇤

n,n+1 = h L⇤
n+1, {1}i is algebraizable.

Proof. It is immediate to see that the set of formulas �(p, q) = {p ⇡ q} and the set of pairs of
formulas E(p, q) = {hp,�0(p)i} satisfy the requirements of algebraizability.

Blok and Pigozzi [2] introduce the following notion of equivalent deductive systems. Two
propositional deductive systems S1 and S2 in the same language are equivalent if there are
translations ⌧

i

: S
i

! S
j

for i 6= j such that: � `

Si ' i↵ ⌧
i

(�) `
Sj ⌧

i

('), and ' a`

Si ⌧j(⌧i(')).
From very general results in [2] it follows that two equivalent logic systems are indistinguishable
from the point of view of algebra, namely: if one of the systems is algebraizable then the other
will be also algebraizable w.r.t. the same quasivariety. This will be applied to  L⇤

i,n+1.

Lemma 9. The logics  L⇤
n+1 and  L⇤

i,n+1 are equivalent, for every n and for every 1  i  n�1.

Proof. It is enough to consider the translation mappings ⌧1 :  L⇤
n+1 !  L⇤

i,n+1, ⌧1(') = �1('),
and ⌧

i,2 :  L⇤
i,n+1 !  L⇤

n+1, ⌧i,2(') = �
i/n

(').

Finally, as a direct consequence of Lemma 8, Lemma 9 and the observations above, we can
prove the following result.

Theorem 10. For every n and for every 1  i  n, the logic  L⇤
i,n+1 is algebraizable.

As an immediate consequence of Theorem 10, for each logic  L⇤
i,n+1 there is a quasivariety

Q(i, n) which is its equivalent algebraic semantics. Moreover, by Lemma 9 and by Blok and
Pigozzi’s results, Q(i, n) and Q(j, n) coincide, for every i, j. The question of axiomatising
Q(i, n) is left for future work.
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