

Logic, Algebra and Truth Degrees

BERN, SWITZERLAND

28-31 AUGUST 2018

Proceedings

University of Bern

Institute of Mathematics
Institute of Informatics

b UNIVERSITÄT BERN

Contents

Committees	i
Preface	iii
Program Overview	v
Invited Speakers	1
Logics of information and belief, coalgebraically Marta Bílková	3
Embedding lattice-ordered bi-monoids in involutive commutative residuated lattices <i>Nikolaos Galatos (joint work with Adam Přenosil)</i>	4
Regular properties and the existence of proof systems <i>Rosalie Iemhoff</i>	5
Relational semantics, ordered algebras, and quantifiers for deductive systems Tommaso Moraschini (joint work with Ramon Jansana)	6
Contributed Papers	11
First order Gödel logics with propositional quantifiers	13
Maximality of First-order logics based on finite MTL-chains	17
Partial fuzzy modal logic with a crisp and total accessibility relation <i>Libor Behounek and Antonín Dvořák</i>	20
MacNeille transferability of finite lattices Guram Bezhanishvili, John Harding, Julia Ilin, and Frederik M. Lauridsen	24
Epistemic MV-Algebras	27
Manuela Busaniche, Penélope Cordero, and Ricardo Óscar Rodríguez	
General neighborhood and Kripke semantics for modal many-valued logics Petr Cintula, Paula Menchón, and Carles Noguera	31
Hereditarily structurally complete positive logics	35

Maximality in finite-valued Łukasiewicz logics defined by order filters Marcelo Coniglio, Francesc Esteva, Joan Gispert, and Lluís Godo	39
On an implication-free reduct of MV _n chains <i>Marcelo Coniglio, Tommaso Flaminio, Francesc Esteva, and Lluís Godo</i>	43
A fuzzy-paraconsistent version of basic hybrid logic Diana Costa and Manuel A. Martins	47
Functionality property in partial fuzzy logic	51
Omitting types theorem in mathematical fuzzy logic Denisa Diaconescu and Petr Cintula	55
Skolemization and Herbrand theorems for lattice-valued Logics Denisa Diaconescu, Petr Cintula, and George Metcalfe	58
Residuated structures with functional frames Wesley Fussner and Alessandra Palmigiano	60
IUL ^{<i>fp</i>} enjoys finite strong standard completeness	63
Partially-ordered multi-type algebras, display calculi and the category of weakening relations <i>Peter Jipsen, Fei Liang, M. Andrew Moshier, and Apostolos Tzimoulis</i>	67
A many-sorted polyadic modal logic Ioana Leustean and Natalia Moangă	70
Epimorphisms in varieties of square-increasing residuated structures	74
Epimorphisms, definability and cardinalities	77
Residuated lattices and the Nelson identity <i>Umberto Rivieccio, Thiago N. Silva, and Matthew Spinks</i>	81
Modal logics for reasoning about weighted graphs Igor Sedlar and Amanda Vidal Wandelmer	84
Deciding active structural completeness Michał Stronkowski	87
Non axiomatizability of the finitary Łukasiewicz modal logic <i>Amanda Vidal</i>	89
Implicational tonoid logics and their relational semanticsEunsuk Yang and J. Michael Dunn	93

On an implication-free reduct of MV_n chains

Marcelo E. Coniglio¹, Francesc Esteva², Tommaso Flaminio², and Lluis Godo²

 ¹ Dept. of Philosophy - IFCH and CLE University of Campinas, Campinas, Brazil coniglio@cle.unicamp.br
 ² IIIA - CSIC, Bellaterra, Barcelona, Spain {esteva,tommaso,godo}@iiia.csic.es

Abstract

Let \mathbf{L}_{n+1} be the MV-chain on the n+1 elements set $\mathbf{L}_{n+1} = \{0, 1/n, 2/n, \dots, (n-1)/n, 1\}$ in the algebraic language $\{\rightarrow, \neg\}$ [3]. As usual, further operations on \mathbf{L}_{n+1} are definable by the following stipulations: $1 = x \rightarrow x$, $0 = \neg 1$, $x \oplus y = \neg x \rightarrow y$, $x \odot y = \neg(\neg x \oplus \neg y)$, $x \land y = x \odot (x \rightarrow y)$, $x \lor y = \neg(\neg x \land \neg y)$. Moreover, we will pay special attention to the also definable unary operator $*x = x \odot x$.

In fact, the aim of this paper is to study the $\{^*, \neg, \lor\}$ -reducts of the MV-chains \mathbf{L}_{n+1} , that will be denoted as \mathbf{L}_{n+1}^* , i.e. the algebra on \mathbf{L}_{n+1} obtained by replacing the implication operator \rightarrow by the unary operation * which represents the square operator $^*x = x \odot x$ and which has been recently used in [4] to provide, among other things, an alternative axiomatization for the four-valued matrix logic $J_4 = \langle \mathbf{L}_4, \{1/3, 2/3, 1\} \rangle$. In this contribution we make a step further in studying the expressive power of the * operation, in particular we will focus on the question for which natural numbers n the structures \mathbf{L}_{n+1} and \mathbf{L}_{n+1}^* are term-equivalent. In other words, for which n the Lukasiewicz implication \rightarrow is definable in \mathbf{L}_{n+1}^* , or equivalenty, for which n \mathbf{L}_{n+1}^* is in fact an MV-algebra. We also show that, in any case, the matrix logics $\langle \mathbf{L}_{n+1}^*, F \rangle$, where F is an order filter, are algebraizable. What we present here is a work in progress.

Term-equivalence between L_{n+1} and L_{n+1}^*

Let X be a subset of L_{n+1} . We denote by $\langle X \rangle^*$ the subalgebra of \mathbf{L}_{n+1}^* generated by X (in the reduced language $\{^*, \neg, \lor\}$). For $n \ge 1$ define recursively $(^*)^n x$ as follows: $(^*)^1 x = ^*x$, and $(^*)^{i+1}x = ^*((^*)^i x)$, for $i \ge 1$.

A nice feature of the \mathbf{L}_{n+1}^* algebras is that we can always define terms characterising the principal order filters $F_a = \{b \in \mathbf{L}_{n+1} \mid a \leq b\}$, for every $a \in \mathbf{L}_{n+1}$.

Proposition 1. For each $a \in L_{n+1}$, the unary operation Δ_a defined as

$$\Delta_a(x) = \begin{cases} 1 & \text{if } x \in F_a \\ 0 & \text{otherwise} \end{cases}$$

is definable in \mathbf{L}_{n+1}^* . As a consequence, for every $a \in L_{n+1}$, the operation χ_a that corresponds to the characteristic function of a (i.e. $\chi_a(x) = 1$ if x = a and $\chi_a(x) = 0$ otherwise) is definable as well.

Proof. The case a = 1 corresponds to the Monteiro-Baaz Delta operator and, as is well-known, it can be defined as $\Delta_1(x) = (*)^n x$. For a = 0 define $\Delta_a(x) = \Delta_1(x) \vee \neg \Delta_1(x)$; then $\Delta_a(x) = 1$ for every x. Now, assume 0 < a = i/n < 1. It is not difficult to show that one can always find a sequence of terms (operations) $t_1(x), \ldots, t_m(x)$ over $\{*, \neg\}$ such that $t_1(t_2(\ldots(t_m(x))\ldots)) = 1$

if $x \in F_a$ while $t_1(t_2(\ldots(t_m(x))\ldots)) < 1$ otherwise. Then $\Delta_a(x) = \Delta_1(t_1(t_2(\ldots(t_m(x))\ldots)))$ for every x.

As for the operations χ_a , define $\chi_1 = \Delta_1$, $\chi_0 = \neg \Delta_{1/n}$, and if 0 < a < 1, then define $\chi_a = \Delta_a \wedge \neg \Delta_{a-1/n}$.

It is now almost immediate to check that the following implication-like operation is definable in every \mathbf{L}_{n+1}^* : $x \Rightarrow y = 1$ if $x \leq y$ and 0 otherwise. Indeed, \Rightarrow can be defined as

$$x \Rightarrow y = \bigvee_{0 \le i \le j \le n} (\chi_{i/n}(x) \land \chi_{j/n}(y)).$$

Actually, one can also define Gödel implication on \mathbf{L}_{n+1}^* by putting $x \Rightarrow_G y = (x \Rightarrow y) \lor y$.

On the other hand, it readily follows from Proposition 1 that all the \mathbf{L}_{n+1}^* algebras are simple. Indeed, if $a > b \in \mathbf{L}_{n+1}$ would be congruent, then $\Delta_a(a) = 1$ and $\Delta_a(b) = 0$ should be so. Recall that an algebra is called *strictly simple* if it is simple and does not contain proper subalgebras. It is clear then that in the case of \mathbf{L}_{n+1} and \mathbf{L}_{n+1}^* algebras, they are strictly simple if $\{0, 1\}$ is their only proper subalgebra.

Remark 2. It is well-known that \mathbf{L}_{n+1} is strictly simple iff n is prime. Note that, for every n, if $\mathbf{B} = (B, \neg, \rightarrow)$ is an MV-subalgebra of \mathbf{L}_{n+1} , then $\mathbf{B}^* = (B, \lor, \neg, \ast)$ is a subalgebra of \mathbf{L}_{n+1}^* as well. Thus, if \mathbf{L}_{n+1} is not strictly simple, then \mathbf{L}_{n+1}^* is not strictly simple as well. Therefore, if n is not prime, \mathbf{L}_{n+1}^* is not strictly simple. However, in contrast with the case of \mathbf{L}_{n+1} , n being prime is not a sufficient condition for \mathbf{L}_{n+1}^* being strictly simple. In Lemma 7 below we will provide some examples of prime n for which \mathbf{L}_{n+1}^* is not strictly simple, in view of Theorem 6.

Lemma 3. \mathbf{L}_{n+1}^* is strictly simple iff $\langle (n-1)/n \rangle^* = \mathbf{L}_{n+1}^*$.

Proof. The 'only if' direction is trivial. In order to prove the converse, assume that $\langle a_1 \rangle^* = \mathbf{L}_{n+1}^*$ for $a_1 = (n-1)/n$. For $i \geq 1$ let $a_{i+1} = t_i(a_i)$ such that $t_i(x) = *x$ if x > 1/2, and $t_i(x) = \neg x$ otherwise. Since \mathbf{L}_{n+1}^* is finite, there is $1 \leq i < j$ such that $a_j = a_i$ and so $A_1 := \{a_i \mid i \geq 1\} = \{a_i \mid 1 \leq i \leq k\}$ for some k such that $a_i \neq a_j$ if $1 \leq i, j \leq k$. Let $A = A_1 \cup A_2 \cup \{0, 1\}$ where $A_2 = \{\neg a \mid a \in A_1\}$. Since *1 = 1 and *x = 0 if $x \leq 1/2$, A is the domain of a subalgebra \mathbf{A} of \mathbf{L}_{n+1}^* over $\{^*, \neg, \lor\}$ such that $a_i \in A$, hence $\langle a_1 \rangle^* \subseteq \mathbf{A}$. But $\mathbf{A} \subseteq \langle a_1 \rangle^*$, by construction. Therefore $\mathbf{A} = \langle a_1 \rangle^* = \mathbf{L}_{n+1}^*$.

Fact: Under the current hypothesis (namely, $\langle a_1 \rangle^* = \mathbf{L}_{n+1}^*$): if n is even then n = 2 or n = 4. Indeed, suppose that $\langle a_1 \rangle^* = \mathbf{L}_{n+1}^*$ and n is even. If n = 2 or n = 4 then clearly \mathbf{L}_{n+1}^* is strictly simple. Now, assume n > 4. Observe that: (1) for any $a \in \mathbf{L}_{n+1}^* \setminus \{0, 1\}$, *a = i/n such that i is even; and (2) if i < n is even then $\neg(i/n) = (n - i)/n$ such that n - i is even. That being so, if $i/n \in (A_1 \cup A_2) \setminus \{a_1, \neg a_1\}$ (recall the process described above) then i is even. But then, for instance, $3/n \notin \mathbf{A} = \langle a_1 \rangle^* = \mathbf{L}_{n+1}^*$, a contradiction. This proves the Fact.

From the **Fact**, assume now that n is odd, and let a = ((n+1)/2)/n and b = ((n-1)/2)/n. Since $\neg a = b$, $\neg b = a$ and $a, b \in A$ then, by construction of A, there is $1 \le i \le k$ such that either $a = a_i$ or $b = a_i$. If $a = a_i$ then $a_{i+1} = *a = 1/n$ and so $a_{i+2} = \neg a_{i+1} = \neg 1/n = (n-1)/n = a_1$. Analogously it can be proven that, if $b = a_i$ then $a_1 = a_j$ for some j > i. This shows that $A_1 = \{a_1, \ldots, a_k\}$ is such that $a_{k+1} = a_1$ (hence $a_k = 1/n$). Now, let $c \in \mathbf{L}_{n+1}^* \setminus \{0, 1\}$ such that $c \ne a_1$. If $c \in A_1$ then the process of generation of A from c will produce the same set A_1 and so $\mathbf{A} = \mathbf{L}_{n+1}^*$, showing that $\langle c \rangle = \mathbf{L}_{n+1}^*$. Otherwise, if $c \in A_2$ then $\neg c \in A_1$ and, by the same argument as above, it follows that $\langle c \rangle = \mathbf{L}_{n+1}^*$. This shows that \mathbf{L}_{n+1}^* is strictly simple. \Box

Lemma 4. If \mathbf{L}_{n+1} is term-equivalent to \mathbf{L}_{n+1}^* then \mathbf{L}_{n+1}^* is strictly simple.

Proof. If \mathbf{L}_{n+1} is term-equivalent to \mathbf{L}_{n+1}^* then \odot is definable in \mathbf{L}_{n+1}^* , and hence $\langle (n-1)/n \rangle^* =$ \mathbf{L}_{n+1}^* . Indeed, we can obtain $(n-i-1)/n = ((n-1)/n) \odot ((n-i)/n)$ for $i=1,\ldots,n-1$, and $1 = \neg 0$. By Lemma 3 it follows that \mathbf{L}_{n+1}^* is strictly simple.

Corollary 5. If \mathbf{L}_{n+1} is term-equivalent to \mathbf{L}_{n+1}^* then n is prime.

Proof. If \mathbf{L}_{n+1} is term-equivalent to \mathbf{L}_{n+1}^* then \mathbf{L}_{n+1}^* is strictly simple, by Lemma 4. By Remark 2 it follows that n must be prime. \square

Theorem 6. \mathbf{L}_{n+1} is term-equivalent to \mathbf{L}_{n+1}^* iff \mathbf{L}_{n+1}^* is strictly simple.

Proof. The 'only if' part is Lemma 4. For the 'if' part, since \mathbf{L}_{n+1}^* is strictly simple then, for each $a, b \in L_{n+1}$ where $a \notin \{0, 1\}$ there is a definable term $\mathbf{t}_{a,b}(x)$ such that $\mathbf{t}_{a,b}(a) = b$. Otherwise, if for some $a \notin \{0,1\}$ and $b \in L_{n+1}$ there is no such term then $\mathbf{A} = \langle a \rangle^*$ would be a proper subalgebra of \mathbf{L}_{n+1}^* (since $b \notin \mathbf{A}$) different from $\{0, 1\}$, a contradiction. By Proposition 1 the operations $\chi_a(x)$ are definable for each $a \in L_{n+1}$, then in \mathbf{L}_{n+1}^* we can define Lukasiewicz implication \rightarrow as follows:

$$x \to y = (x \Rightarrow y) \lor \left(\bigvee_{n > i > j \ge 0} \chi_{i/n}(x) \land \chi_{j/n}(y) \land \mathbf{t}_{i/n, a_{ij}}(x)\right) \lor \left(\bigvee_{n > j \ge 0} \chi_1(x) \land \chi_{j/n}(y) \land y\right)$$

where $a_{ij} = 1 - i/n + j/n$.

where $a_{ij} = 1 - i/n + j/n$.

We have seen that n being prime is a necessary condition for \mathbf{L}_{n+1} and \mathbf{L}_{n+1}^* being termequivalent. But this is not a sufficient condition: in fact, there are prime numbers n for which \mathbf{L}_{n+1} and \mathbf{L}_{n+1}^* are not term-equivalent.

Lemma 7. If n is a prime Fermat number greater than 5 then \mathbf{L}_{n+1} and \mathbf{L}_{n+1}^* are not termequivalent.

Proof. Recall that a Fermat number is of the form $2^{2^k} + 1$, with k being a natural number. We are going to prove that if n is a prime Fermat number and $a_1 = (n-1)/n$, then $\langle a_1 \rangle^*$ is a proper subalgebra of \mathbf{L}_{n+1}^* (recall Theorem 6 and Lemma 3). Thus, let n > 5 be a prime Fermat number, that is, a prime number of the form $n = 2^m + 1$ with $m = 2^k$ and k > 1. The (m-1)-times iterations of * applied to a_1 produce ((n+1)/2)/n, that is: $(*)^{m-1}(a_1) = ((n+1)/2)/n$. Since *(((n+1)/2)/n) = 1/n, the constructive procedure for generating the algebra $\langle a_1 \rangle^*$ described in the proof of Lemma 3 shows that $\langle a_1 \rangle^* = \mathbf{A}$ has 2m+2 elements: m elements in A_1 , plus m elements in A_2 corresponding to their negations, plus 0 and 1. Since $2m+2 < 2^m+1 = n$ as n > 5, $\langle a_1 \rangle^*$ is properly contained in \mathcal{L}_{n+1} , and it is different from $\{0, 1\}$.

The first Fermat prime number greater than 5 is n = 17. It is easy to see that

$$\langle 16/17 \rangle^* = \{0, 1/17, 2/17, 4/17, 8/17, 9/17, 13/17, 15/17, 16/17, 1\}$$

Actually, we do not have a full characterisation of those prime numbers n for which \mathbf{L}_{n+1} and \mathbf{L}_{n+1}^* are term-equivalent. But computational results show that for prime numbers until 8000, about 60% of the cases yield term-equivalence.

Algebraizability of $\langle \mathbf{L}_{n+1}^*, F_{i/n} \rangle$

Given the algebra \mathbf{L}_{n+1}^* , it is possible to consider, for every $1 \leq i \leq n$, the matrix logic $\mathbf{L}_{i,n+1}^* = \langle \mathbf{L}_{n+1}^*, F_{i/n} \rangle$. In this section we will shown that all the $\mathbf{L}_{i,n+1}^*$ are algebraizable in the sense of Blok-Pigozzi [1], and the quasivarieties associated to $\mathbf{L}_{i,n+1}^*$ and $\mathbf{L}_{j,n+1}^*$ are the same, for every i, j.

Observe that the operation $x \approx y = 1$ if x = y and $x \approx y = 0$ otherwise is definable in \mathbf{L}_{n+1}^* . Indeed, it can be defined as $x \approx y = (x \Rightarrow y) \land (y \Rightarrow x)$. Also observe that $x \approx y = \Delta_1((x \Rightarrow_G y) \land (y \Rightarrow_G x))$ as well.

In order to prove the main result of this section, we state the following:

Lemma 8. For every n, the logic $L_{n+1}^* := L_{n,n+1}^* = \langle \mathbf{L}_{n+1}^*, \{1\} \rangle$ is algebraizable.

Proof. It is immediate to see that the set of formulas $\Delta(p,q) = \{p \approx q\}$ and the set of pairs of formulas $E(p,q) = \{\langle p, \Delta_0(p) \rangle\}$ satisfy the requirements of algebraizability. \Box

Blok and Pigozzi [2] introduce the following notion of equivalent deductive systems. Two propositional deductive systems S_1 and S_2 in the same language are *equivalent* if there are translations $\tau_i : S_i \to S_j$ for $i \neq j$ such that: $\Gamma \vdash_{S_i} \varphi$ iff $\tau_i(\Gamma) \vdash_{S_j} \tau_i(\varphi)$, and $\varphi \dashv_{S_i} \tau_j(\tau_i(\varphi))$. From very general results in [2] it follows that two equivalent logic systems are indistinguishable from the point of view of algebra, namely: if one of the systems is algebraizable then the other will be also algebraizable w.r.t. the same quasivariety. This will be applied to $L_{i,n+1}^*$.

Lemma 9. The logics L_{n+1}^* and $L_{i,n+1}^*$ are equivalent, for every n and for every $1 \le i \le n-1$. *Proof.* It is enough to consider the translation mappings $\tau_1 : L_{n+1}^* \to L_{i,n+1}^*$, $\tau_1(\varphi) = \Delta_1(\varphi)$, and $\tau_{i,2} : L_{i,n+1}^* \to L_{n+1}^*$, $\tau_{i,2}(\varphi) = \Delta_{i/n}(\varphi)$.

Finally, as a direct consequence of Lemma 8, Lemma 9 and the observations above, we can prove the following result.

Theorem 10. For every n and for every $1 \le i \le n$, the logic $L_{i,n+1}^*$ is algebraizable.

As an immediate consequence of Theorem 10, for each logic $L_{i,n+1}^*$ there is a quasivariety $\mathcal{Q}(i,n)$ which is its equivalent algebraic semantics. Moreover, by Lemma 9 and by Blok and Pigozzi's results, $\mathcal{Q}(i,n)$ and $\mathcal{Q}(j,n)$ coincide, for every i, j. The question of axiomatising $\mathcal{Q}(i,n)$ is left for future work.

Acknowledgments The authors acknowledge partial support by the H2020 MSCA-RISE-2015 project SYSMICS. Coniglio also acknowledges support by the CNPq grant 308524/2014-4. Flaminio acknowledges support by the Ramon y Cajal research program RYC-2016-19799. Esteva, Flaminio and Godo also acknowledge the FEDER/MINECO project TIN2015-71799-C2-1-P.

References

- W.J. Blok, D. Pigozzi Algebraizable Logics Mem. Amer. Math. Soc., vol. 396, Amer. Math. Soc., Providence, 1989.
- [2] W.J. Blok, D. Pigozzi, Abstract algebraic logic and the deduction theorem, manuscript, 1997. (See http://orion.math.iastate.edu/dpigozzi/ for the updated version, 2001).
- [3] R. Cignoli, I.M.L. D'Ottaviano, D. Mundici, *Algebraic Foundations of Many-valued Reasoning*. Kluwer, Dordrecht, 2000.
- [4] M. E. Coniglio, F. Esteva, J. Gispert, L. Godo, Maximality in finite-valued Łukasiewicz logics defined by order filters. Submitted. arXiv:1803.09815v2, 2018.