Norm-Oriented Programming of Electronic Institutions

A. Garcia-Camino,
J.-A. Rodriguez-Aguilar, C. Sierra
IIIA-CSIC, Campus UAB, 08193 Bellaterra, Spain

{andres,jar,sierral@iia.csic.es

ABSTRACT

Norms constitute a powerful coordination mechanism amaetg h
erogeneous agents. We propose means to specify and dyplici
manage the normative positions of agents (permissionitpro
tions and obligations), with which distinct deontic notscend their
relationships can be captured. Our rule-based formalishudes
constraints for more expressiveness and precision and'satioe
norm-oriented programming of electronic institutions:rmative
aspects are given a precise computational interpreta@am.for-
malism has been conceived as a machine language to which othe
higher-level normative languages can be mapped, allowhieg t
execution.

t

Categories and Subject Descriptors

1.2.1 [Artificial Intelligence]: Applications and Expert Systems—
Law; 1.2.11 [Artificial Intelligence]: Distributed Artificial Intelli-
gence—Multi-agent systems

General Terms
Languages

Keywords

Norms, Electronic institutions, Multi-agent system p@mming

1. INTRODUCTION

A major challenge in multi-agent system (MAS) research & th
design and implementation openmulti-agent systems in which
coordination must be achieved among self-interested agiat
fined with different languages by several designers. Norars ¢
be used for this purpose as a means to regulate the obsebeble
haviour of agents as they interact in pursuit of their goa8; P, 3,
8]. There is a wealth of socio-philosophical and logic-ttetical

>kThis work was partially funded by the Spanish Science anthif@logy Ministry as
part of the Web-i-2 project (TIC-2003-08763-C02-00). Gar€amino enjoys an I13P
grant from the Spanish Council for Scientific Research (§SIC

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

AAMAS’06May 8-12 2006, Hakodate, Hokkaido, Japan.

Copyright 2006 ACM 1-59593-303-4/06/000555.00.

*

W. Vasconcelos
Dept. of Computing Science, University of Aberdeen,
Aberdeen AB24 3UE, United Kingdom

wvasconcel os@cm org

literature on the subject of norms.¢, [11, 12]), and, more re-
cently, much attention is being paid to more pragmatic angém
mentational aspects of norms, that is, how norms can be given
computational interpretation and how norms can be factoreal
the design and execution of MASSs (e.g. [1, 6, 7]).

A normative position [11] is the “social burden” associatgth
individual agents, namely, their obligations, permissiamd pro-
hibitions. Depending on what agents do, their normative-pos
tions may change — for instance, permissions/prohibitizars be
revoked, or obligations, once fulfilled, may be removed. allje
norms, once captured via some suitable formalism, shouldi-be
rectly executed, thus realising a computational, norreagiwiron-
ment wherein agents interact. This is what we meamabsm-
oriented programming We try to make headway along this di-
rection by introducing an executable language to specignesy
normative positionsand manage their changes as agents interact
via speech acts [10].

In this paper we present a language that acts as a “machine lan
guage” for norms on top of which higher-level normative laages
can be accommodated. This language can represent distivatfs
of deontic notions and relationships. Although our languiagule-
based, we achieve greater flexibility, expressiveness egugon
than production systems by allowing constraints to be paciio
rules and states of affairs. In this way, normative posgioan be
further refined. Hence, constraints are considered ascfass cit-
izens in our language.

Although in this paper we restrict to a particular class of 882
namely electronic institutions [4], our work sets the foations to
specify and implement open regulated MASSs via norms.

Our main goal is to produce a language that supports the spec-
ification of coordination mechanisms in multi-agent systeloy
means of norms. For this purpose, we identify below the dbkir
features we expect in candidate languages.

Explicit management of normative positions As aresult of agents’
observable, social interactions, their normative pos#tid 1] change.
Hence, the first requirement of our language is to supporexie
plicit managemenof agents’ normative positions.

General purpose We require that our language captures different
deontic notions along with their relationships. In otherds) the
language must be gfeneral purposeso that it helps MAS design-
ers to encode any axiomatisation, and thus specify the widege

of normative systems as possible.

Pragmatic. We pursue a “machine language” for norms on top of
which higher-level languages can be accommodated. Aloisg th
direction, and from a language designer’s point of views ifun-
damental to identify thenorm patterns(e.g, conditional obliga-
tion, time-based permissions and prohibitions, contisuoioliga-
tion, and so on) in the literature to ensure that the langsagports

670

their encodind. In this way, we shall guarantee the expressiveness
of our language, and also address pragmatic concerns biglprgv
design patternso guide and ease MAS design.

Declarative. In order to ease MAS programming, we shall also
require our language to kieclarative with an implicit execution
mechanism to reduce the number of issues designers oughito c
centrate on. As an additional benefit, we expect its dedlarab-
ture to facilitate verification of properties of the spedifions.

2. ARULE LANGUAGE FOR NORMS

The building blocks of our language are first-order terms (de
noted asr) and implicitly, universally quantified atomic formulae
(denoted agx) without free variables . We shall make use of num-
bers and arithmetic functions to build terms; arithmetiadtions
may appear infix, following their usual conventién§Ve also em-
ploy arithmetic relationsg.g, =, #, and so on) as predicate sym-
bols, and these will appear in their usual infix notation wfihir
usual meaning. Atomic formulae with arithmetic relatioepne-
sentconstraintson their variables and have a special status, as we
explain below. We give a definition of our constraints, a stilog
atomic formulae: a constraint is an atomic formula of the form
T < 7', where< € {=,#,>,>,<,<}. We need to differenti-
ate ordinary atomic formula from constraints. We shall as¢o
denote atomic formulae that amet constraints.

Intuitively, a state of affairs is a set of atomic formulaes ¥e
will show below, they can store the state of the environfhesti-
servable agent attributes and the normative positions efitag a
state of affairsA = {aw, ..., an} is a a finite and possibly empty
set of implicitly, universally quantified atomic formulae.

Our rules are constructs of the foraHS ~~ RHS whereLHS
contains a representation of parts of the current state fafraf
which, if they hold, will cause the rule to be triggerdHSdepicts
the updates to the current state of affairs, yielding the stte of
affairs. The grammar in Fig. 1 defines our rules, wheis a vari-

able name andHS R = LHS~s RHS

is a LHS without set |LHS == LHSALHS | =(LHSALHS) | Lit
RHS := UARHS| U

constructors (see bey” | ° T | —a | © = {a’ | LHS'}

low). TheUsrepre-| u := @a| ca

sent the updates: they
add (via operatorp) Figure 1: Grammar for Rules

or remove (via operatop) atomic formulaens. Furthermore, we
make use of a special kind of term, calledet constructarrep-
resented aga’ | LHS'}. This construct is useful when we need
to refer to alla’s for which LHS* holds,e.g.{p(A,B) | 4 >

20 A B < 100} is the set of atomic formulag(A, B) such that

A > 20andB < 100.

We need to refer to the set of constraints that belongs tota sta
of affairs. We calll’ = {~o,...,v»} the set of all constraints in
A. Given a state of affaird, relationshipconstrs(A, T') holds iff
T is the smallest set such that for evene A theny € T'. In the
definitions below we rely on the conceptsafbstitution that is, the
set of values for variables in a computation, as well as tineept
of its application to a term [5].

We now define the semantics of our rules as relationships be-
tween states of affairs: rules map an existing state ofraftai a
new state of affairs. We adopt the usual semantics of pramfuct
rules, that is, we exhaustively apply each rule by matchimghlS
against the current state of affairs and use the values @thlas

LWork available irht t p://wwv. iiia.csic.es/~andres/ NOPLforEls. pdf
2we adopt Prolog’s convention using strings starting witlapital letter to represent
variables and strings starting with a small letter to repnésonstants.

3We refer to thestate of the environmess the set of atomic formulae that represent
aspects of the environment in a given point in time.

obtained in this match to instantiate tRélSvias™: s* (A, LHS ~

RHS A") holds iffsj (A, LHS, {01, . ..,0,}) ands, (A, RHS o,

A),1 <4 < n,n € IN, hold. That is, two states of affaira

andA’ are related by a ruleHS ~~ RHSiff we obtain all different
substitutions{c1, ..., o, } that make the left-hand side mateh
and apply these substitutionsRiHS(that is,RHS: ;) in order to
build A’.

Our rules arexhaustivelapplied on the state of affairs thus con-
sidering all matching atomic formulae. We thus need retestiip
s;(A,LHS X) which obtains inX = {oo,...,0,} all possible
matches of the left-hand side of a rulgi (A, LHS X) holds, iff
¥ ={o1,...,0n}isthe largest non-empty set such thgiA, LHS
,0i),1 < i < n,n € IN, holds. We now define the semantics
of the LHS of a rule: s;(A,LHS o) holds between statd, the
left-hand side of a ruléHS and a substitutioa depending on the
format of LHS:

1. s;(A,LHSA LHS, o) holds iffs; (A, LHS, o’) ands; (A, LHS', o’) hold
ando =o' Uo”.

2. s;(A, = LHS, o) holds iff s;(A, LHS, o) does not hold.

3. s(A,a’, o) holdsiffa’-0 € Aandconstrs(A,T') andsatis fiable(T-
o) hold.

4. si(A,~, o) holds iff constrs(A,T') andsatis fiable((I' U {~v}) - o)
hold.

5. s8;(A,z = {a’ | LHS*},0) holdsiffoc = {z/{a’-01,...,a"-0,}}

for the largesth € IN suchthat; (A, o’ ALHS*,0;),1<i<n

Cases 1-3 depict the semantics of atomic formulae and haw the
individual substitutions are combined to provide the semarfor
a conjunction. Case 4 formalises the semantics of our cingdr
when they appear on the left-hand side of a rule: we apply the
substitutions to them (thus reflecting any values of variables given
by the matchings of atomic formula), then check satisfighoif
constraints. Case 5 specifies the semantics$et constructorsz
is the set of atomic formulae that satisfy the conditionshef $et

constructor.
We now define the semantics of tliRHSof a rule: Relation
s-(A,RHS A’) mapping a staté\, the right-hand side of a rule

RHSand a new statd\’ is defined as:
1. s,.(A, (U A RHS, A’) holds iff boths, (A, U, Ay) ands, (A1, RHS
A’) hold.
s+ (A, ®a’, A') holdsiff A’ = A U {'}.
sr (A, v, A’) = trueiff constrs(A,T') andsatisfiable(T'U {v})
hold andA’ = A U {~}.
4. s, (A, 60, A") holdsiff A" = A\ {a}
Case 1 decomposes a conjunction and builds the new staterby me
ing the partial states of each update. Case 2 caters for $betion
of atomic formulaex” which do not conform to the syntax of con-
straints. Case 3 defines how a constraint is added to a Atate
the new constraint is checked whether it can be satisfiedaeith
straintsI” and then it is added td". Case 4 caters for the removal
of atomic formulae.
We extends™ to handle sets of rules? (Ao, {Ru, . .
holds iff s* (Ai—1,Rs, As), 1 < 4 < n hold.
The semantics above define an infinite sequence of staites
Ah .. > if s* (AL, {Rl7 ey Rn}7 Ai+1), that iS,Ai+1 (obtained
by applying the rules ta\;) is used to obtaim\;;> and so on.

Fig. 2 illustrates how

this sequence can act+

2.
3.

9y R’ﬂ}7 An)

commodate the inter{ |Ag = |, ... o~ A= -
vention of agents send- T T
ing/receiving messages. ag, ---ag,

The diagram shows arr_ -
initial state A, (pos- Figure 2: Semantics as a Sequence/s

sibly empty) that is offered (represented by ") to a set of agents
{ag,,...,ag,}. These agents exchange messages, adding a record

4our work builds on standard technologies for constraingisgl— in particular, we
have been experimenting with SICStus Prolog constrairgfaation libraries.

671

(via“]" {af,..., a5} of these messages fv,. After the agents
add their utterances, then the rules are exhaustivelyepfiepre-
sented by €™y to Ao U {?,...,a2}. The resulting staté\; is,
on its turn, offered to agents, and so on.

Our work extendglectronic institutiongEls) [4], providing them
with an explicit normative layer. There are two major featun
Els : thestatesandillocutions(i.e., messages) uttered,, sent) by
those agents taking part in the El. lllocutiohare termsp(ag, r,
ag',r',T,t) wherep is an illocutionary particled.g, inform,ask;
ag,ag’ are agent identifiers;, »’ are role labelsy is a term with
the actual content of the message ang IV is a time stamp. We
shall refer to illocutions that may have uninstantiateedjrvari-
ables asllocution schemesdenoted byl. Another important con-
cept in Els that we employ here is that okeene Scenes offer
means to break down larger protocols into smaller ones vpigh s
cific purposes.

We differentiate seven kinds of atomic formulae in our stite
affairs A, with the following intuitive meanings:

1. oav(o, a, v) — object (or agentp has an attribute with valuewv.

2. att(s,w,l) —an agent attempted to get illocutibraccepted at stater of
scenes.

. utt(s, w,) —1 was accepted as a legal utterancevadf s.

. ctr(s, w, ts) — the execution of scenereached state at timet,.

. obl(s, w, 1) —1ought to be uttered ab of s.

. per(s, w, 1) —Tis permittedto be uttered atv of s.

. prh(s,w,1) —Tis prohibitedat w of s.

We only allow fully ground attributes, illocutions and statontrol
formulae (cases 1-4 above) to be presgmiwever, in formulae 5-7
s andw may be variables aridnay contain variables. We shall use
formulae 4 to represent state change in a scene in relatfowith
global time passing. We shall use formulae 5-7 above to septe
normative positions of agents within Els.

Thus, we can write rules for prohibiting (or permitting) iacis
by default, for permitting (or prohibiting) certain act®mnd for
choosing which actions will be prevented or only sanctioneor
example, in the context of a Dutch auction [9], agents canrbe p
vented from making unsupported bids or only sanctioned:

(a0 A= (a1 AT2> T) A oav(Ag, credit, C)A C < P) ~ Doz
where

N o oA w

ag = utt(dutch, wz, inform(Au, auct, A, buyer, offer(It, P), T'))
a1 = utt(dutch, wz, inform(Au, auct, A, buyer, offer(It, P), T2))
as = prh(dutch, wa, inform(A, buyer, Au, auct, bid(It, Ps), T3))

The rule above prevents agents from issuing bids in a Dutch au
tion they cannot afford (their credit is insufficient). lasts that if
agentAg'’s credit is less tha® (the last offer the auctioneer called
for item It, at statews of scenaiutch), then agentlg is prohibited
to bid.

X:{ch|o¢1/\—\(a2/\T2>T1)/\To>T1 }/\ -
| X |= 1A oav(A1, credit, C) N C < P
Soav(Ay, credit, C)A
®oav(Ay, credit, C2) N azA
B(Co=C —Px01)ANP(P2 =P x1.2)
where
ap = utt(dutch, wy, inform (A, buyer, Au, auct, bid(It, P), To))
a1 = utt(dutch, ws, inform(Au, auct, all, buyer, offer(It, P), T1)),
ag = utt(dutch, ws, inform(Au, auct, all, buyer, offer(It, P), T2))
ag = obl(dutch, ws, inform(Au, auct, all, buyer, offer (It, P2), T3))

The previous rule punishes agents when issuing a winning bid

they cannot pay for. More precisely, the rule punishes agant
by decreasing his credit a 10% of the value of the good beiog au
tioned. Theoav predicate on théHS of the rule represents the
current credit of the offending agent. The rule also addshdiga-
tion for the auctioneer to restart the bidding round alonthhe

Swe allow agents to utter whatever they want (vid formulae). However, the illegal
utterances may be discarded and/or may cause sanctiors)dieg on the semantics
of the specified deontic notions. Thet formulae are thusonfirmationsof the att
formulae that turn illocutions into legal.

constraint that the new offer should be greater than 120%lthe
price.

These examples illustrate how our language addresses the ex
plicit management of normative positions and the pragniic
cerns raised in the desiderata.

3. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced a formalism for the explicit
management of the normative position of agents in eleatriosti-
tutions. Ours is a rule language in which constraints carpbeis
fied and changed at run-time, conferring expressivenesgraat
sion on our constructs. The semantics of our formalism define
kind of production system in which rules are exhaustivelglizol
to a state of affairs, leading to the next state of affairse Tibr-
mative positions are updated via rules, depending on theages
agents send. Our formalism addresses the points of a dasider
normative languages introduced above.

We would like to generalise our language to cope with arbjtra
actions, rather than just speech acts among agents — thid aieu
low our work to address any type of open multi-agent systera. W
would also like to improve the semantics of the languagedieioro
support the use of temporal operators for the managemeirhef t
along the lines of [6].

4. REFERENCES

[1] A. Artikis, L. Kamara, J. Pitt, and M. Sergot. A Protocalrf
Resource Sharing in Norm-Governed Ad Hoc Networks.
volume 3476 oLNCS Springer-Verlag, 2005.

[2] R. Axelrod.The complexity of cooperation: agent-based
models of competition and collaboratioArinceton studies
in complexity. Princeton University, New Jersey, 1997.

[3] F. Dignum. Autonomous Agents with Normatrtificial
Intelligence and Law7(1):69-79, 1999.

[4] M. Esteva.Electronic Institutions: from Specification to
DevelopmentPhD thesis, Universitat Politecnica de
Catalunya (UPC), 2003. IIIA monography Vol. 19.

[5] M. Fitting. First-Order Logic and Automated Theorem
Proving Springer-Verlag, New York, U.S.A., 1990.

[6] A. Garcia-Camino, P. Noriega, and J. A. Rodriguez-fegu
Implementing Norms in Electronic Institutions. Rrocs. 4th
AAMAS 2005.

[7] A. Garcia-Camino, J. A. Rodriguez-Aguilar, C. Siemad
W. Vasconcelos. A Distributed Architecture for Norm-Aware
Agent Societies. AUCS/TR0503, Dept of Computing Sc.,
Univ. of Aberdeen, Aberdeen, UK, 2005.

[8] F. Lopez y LopezSocial Power and Norms: Impact on agent
behaviour PhD thesis, Univ. of Southampton, June 2003.

[9] P. NoriegaAgent-Mediated Auctions: The Fishmarket

Metaphor PhD thesis, Universitat Autbnoma de Barcelona

(UAB), 1997. IlIA monography \Vol. 8.

J. SearleSpeech Acts, An Essay in the Philosophy of

Language Cambridge University Press, 1969.

[11] M. Sergot. A Computational Theory of Normative Pogitso
ACM Trans. Comput. Logj@(4):581-622, 2001.

[12] Y. Shoham and M. Tennenholtz. On Social Laws for
Artificial Agent Societies: Off-line DesigrArtificial
Intelligence 73(1-2):231-252, 1995.

[13] M. Wooldridge.An Introduction to Multiagent System¥hn
Wiley & Sons, Chichester, UK, Feb. 2002.

[10]

672

