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ABSTRACT
Norms constitute a powerful coordination mechanism among het-
erogeneous agents. We propose means to specify and explicitly
manage the normative positions of agents (permissions, prohibi-
tions and obligations), with which distinct deontic notions and their
relationships can be captured. Our rule-based formalism includes
constraints for more expressiveness and precision and allows the
norm-oriented programming of electronic institutions: normative
aspects are given a precise computational interpretation.Our for-
malism has been conceived as a machine language to which other
higher-level normative languages can be mapped, allowing their
execution.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence ]: Applications and Expert Systems—
Law; I.2.11 [Artificial Intelligence ]: Distributed Artificial Intelli-
gence—Multi-agent systems

General Terms
Languages

Keywords
Norms, Electronic institutions, Multi-agent system programming

1. INTRODUCTION
A major challenge in multi-agent system (MAS) research is the

design and implementation ofopenmulti-agent systems in which
coordination must be achieved among self-interested agents de-
fined with different languages by several designers. Norms can
be used for this purpose as a means to regulate the observablebe-
haviour of agents as they interact in pursuit of their goals [13, 2, 3,
8]. There is a wealth of socio-philosophical and logic-theoretical
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literature on the subject of norms (e.g., [11, 12]), and, more re-
cently, much attention is being paid to more pragmatic and imple-
mentational aspects of norms, that is, how norms can be givena
computational interpretation and how norms can be factoredin in
the design and execution of MASs (e.g. [1, 6, 7]).

A normative position [11] is the “social burden” associatedwith
individual agents, namely, their obligations, permissions and pro-
hibitions. Depending on what agents do, their normative posi-
tions may change – for instance, permissions/prohibitionscan be
revoked, or obligations, once fulfilled, may be removed. Ideally,
norms, once captured via some suitable formalism, should bedi-
rectly executed, thus realising a computational, normative environ-
ment wherein agents interact. This is what we mean bynorm-
oriented programming. We try to make headway along this di-
rection by introducing an executable language to specify agents’
normative positionsand manage their changes as agents interact
via speech acts [10].

In this paper we present a language that acts as a “machine lan-
guage” for norms on top of which higher-level normative languages
can be accommodated. This language can represent distinct flavours
of deontic notions and relationships. Although our language is rule-
based, we achieve greater flexibility, expressiveness and precision
than production systems by allowing constraints to be part of our
rules and states of affairs. In this way, normative positions can be
further refined. Hence, constraints are considered as first-class cit-
izens in our language.

Although in this paper we restrict to a particular class of MASs,
namely electronic institutions [4], our work sets the foundations to
specify and implement open regulated MASs via norms.

Our main goal is to produce a language that supports the spec-
ification of coordination mechanisms in multi-agent systems by
means of norms. For this purpose, we identify below the desirable
features we expect in candidate languages.

Explicit management of normative positions. As a result of agents’
observable, social interactions, their normative positions [11] change.
Hence, the first requirement of our language is to support theex-
plicit managementof agents’ normative positions.
General purpose. We require that our language captures different
deontic notions along with their relationships. In other words, the
language must be ofgeneral purposeso that it helps MAS design-
ers to encode any axiomatisation, and thus specify the widest range
of normative systems as possible.
Pragmatic. We pursue a “machine language” for norms on top of
which higher-level languages can be accommodated. Along this
direction, and from a language designer’s point of view, it is fun-
damental to identify thenorm patterns(e.g., conditional obliga-
tion, time-based permissions and prohibitions, continuous obliga-
tion, and so on) in the literature to ensure that the languagesupports
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their encoding1. In this way, we shall guarantee the expressiveness
of our language, and also address pragmatic concerns by providing
design patternsto guide and ease MAS design.
Declarative. In order to ease MAS programming, we shall also
require our language to bedeclarative, with an implicit execution
mechanism to reduce the number of issues designers ought to con-
centrate on. As an additional benefit, we expect its declarative na-
ture to facilitate verification of properties of the specifications.

2. A RULE LANGUAGE FOR NORMS
The building blocks of our language are first-order terms (de-

noted asτ ) and implicitly, universally quantified atomic formulae
(denoted asα) without free variables . We shall make use of num-
bers and arithmetic functions to build terms; arithmetic functions
may appear infix, following their usual conventions2. We also em-
ploy arithmetic relations (e.g., =, 6=, and so on) as predicate sym-
bols, and these will appear in their usual infix notation withtheir
usual meaning. Atomic formulae with arithmetic relations repre-
sentconstraintson their variables and have a special status, as we
explain below. We give a definition of our constraints, a subset of
atomic formulae: a constraintγ is an atomic formula of the form
τ C τ ′, whereC∈ {=, 6=, >,≥,<,≤}. We need to differenti-
ate ordinary atomic formula from constraints. We shall useα′ to
denote atomic formulae that arenot constraints.

Intuitively, a state of affairs is a set of atomic formulae. As we
will show below, they can store the state of the environment3, ob-
servable agent attributes and the normative positions of agents: a
state of affairs∆ = {α0, . . . , αn} is a a finite and possibly empty
set of implicitly, universally quantified atomic formulae.

Our rules are constructs of the formLHS RHS, whereLHS
contains a representation of parts of the current state of affairs
which, if they hold, will cause the rule to be triggered.RHSdepicts
the updates to the current state of affairs, yielding the next state of
affairs. The grammar in Fig. 1 defines our rules, wherex is a vari-
able name andLHS∗

is a LHS without set
constructors (see be-
low). The Us repre-
sent the updates: they
add (via operator⊕)

R ::= LHS RHS
LHS ::= LHS∧ LHS | ¬(LHS∧ LHS) | Lit

RHS ::= U ∧ RHS | U

Lit ::= α | ¬α | x = {α′ | LHS∗}
U ::= ⊕α | 	α

Figure 1: Grammar for Rules
or remove (via operator	) atomic formulaeαs. Furthermore, we
make use of a special kind of term, called aset constructor, rep-
resented as{α′ | LHS∗}. This construct is useful when we need
to refer to allα′s for which LHS∗ holds,e.g.,{p(A,B) | A >

20 ∧ B < 100} is the set of atomic formulaep(A,B) such that
A > 20 andB < 100.

We need to refer to the set of constraints that belongs to a state
of affairs. We callΓ = {γ0, . . . , γn} the set of all constraints in
∆. Given a state of affairs∆, relationshipconstrs(∆, Γ) holds iff
Γ is the smallest set such that for everyγ ∈ ∆ thenγ ∈ Γ. In the
definitions below we rely on the concept ofsubstitution, that is, the
set of values for variables in a computation, as well as the concept
of its application to a term [5].

We now define the semantics of our rules as relationships be-
tween states of affairs: rules map an existing state of affairs to a
new state of affairs. We adopt the usual semantics of production
rules, that is, we exhaustively apply each rule by matching its LHS
against the current state of affairs and use the values of variables

1Work available inhttp://www.iiia.csic.es/∼andres/NOPLforEIs.pdf
2We adopt Prolog’s convention using strings starting with a capital letter to represent
variables and strings starting with a small letter to represent constants.
3We refer to thestate of the environmentas the set of atomic formulae that represent
aspects of the environment in a given point in time.

obtained in this match to instantiate theRHSvia s∗: s∗(∆, LHS 
RHS, ∆′) holds iff s∗l (∆, LHS, {σ1, . . . , σn}) andsr (∆, RHS·σi ,

∆′), 1 ≤ i ≤ n,n ∈ IN , hold. That is, two states of affairs∆
and∆′ are related by a ruleLHS RHSiff we obtain all different
substitutions{σ1, . . . , σn} that make the left-hand side match∆
and apply these substitutions toRHS(that is,RHS· σi ) in order to
build ∆′.

Our rules areexhaustivelyapplied on the state of affairs thus con-
sidering all matching atomic formulae. We thus need relationship
s∗l (∆, LHS, Σ) which obtains inΣ = {σ0, . . . , σn} all possible
matches of the left-hand side of a rule:s∗l (∆, LHS, Σ) holds, iff
Σ = {σ1, . . . , σn} is the largest non-empty set such thatsl(∆, LHS
, σi), 1 ≤ i ≤ n, n ∈ IN , holds. We now define the semantics
of the LHS of a rule: sl(∆, LHS, σ) holds between state∆, the
left-hand side of a ruleLHSand a substitutionσ depending on the
format ofLHS:

1. sl (∆, LHS∧ LHS′, σ) holds iffsl (∆, LHS, σ′) andsl(∆, LHS′, σ′′) hold
andσ = σ′ ∪ σ′′.

2. sl (∆,¬ LHS, σ) holds iff sl(∆, LHS, σ) does not hold.

3. sl (∆, α′, σ) holds iffα′·σ ∈ ∆ andconstrs(∆,Γ) andsatisfiable(Γ·
σ) hold.

4. sl (∆, γ, σ) holds iff constrs(∆,Γ) andsatisfiable((Γ ∪ {γ}) · σ)
hold.

5. sl (∆, x = {α′ | LHS∗}, σ) holds iffσ = {x/{α′ ·σ1, . . . , α′ ·σn}}
for the largestn ∈ IN such thatsl (∆, α′ ∧ LHS∗, σi ), 1 ≤ i ≤ n

Cases 1-3 depict the semantics of atomic formulae and how their
individual substitutions are combined to provide the semantics for
a conjunction. Case 4 formalises the semantics of our constraints
when they appear on the left-hand side of a rule: we apply the
substitutionσ to them (thus reflecting any values of variables given
by the matchings of atomic formula), then check satisfiability of
constraints.4 Case 5 specifies the semantics forset constructors: x

is the set of atomic formulae that satisfy the conditions of the set
constructor.

We now define the semantics of theRHSof a rule: Relation
sr (∆, RHS, ∆′) mapping a state∆, the right-hand side of a rule
RHSand a new state∆′ is defined as:

1. sr (∆, (U ∧ RHS), ∆′) holds iff both sr (∆, U, ∆1) andsr (∆1, RHS,
∆′) hold.

2. sr (∆,⊕α′, ∆′) holds iff ∆′ = ∆ ∪ {α′}.

3. sr (∆,⊕γ,∆′) = true iff constrs(∆, Γ) andsatisfiable(Γ∪{γ})
hold and∆′ = ∆ ∪ {γ}.

4. sr (∆,	α, ∆′) holds iff ∆′ = ∆ \ {α}

Case 1 decomposes a conjunction and builds the new state by merg-
ing the partial states of each update. Case 2 caters for the insertion
of atomic formulaeα′ which do not conform to the syntax of con-
straints. Case 3 defines how a constraint is added to a state∆:
the new constraint is checked whether it can be satisfied withcon-
straintsΓ and then it is added to∆′. Case 4 caters for the removal
of atomic formulae.

We extends∗ to handle sets of rules:s∗(∆0, {R1, . . . , Rn}, ∆n )
holds iff s∗(∆i−1, Ri , ∆i), 1 ≤ i ≤ n hold.

The semantics above define an infinite sequence of states〈∆0,
∆1, . . .〉 if s∗(∆i , {R1, . . . , Rn}, ∆i+1), that is,∆i+1 (obtained
by applying the rules to∆i ) is used to obtain∆i+2 and so on.
Fig. 2 illustrates how
this sequence can ac-
commodate the inter-
vention of agents send-
ing/receiving messages.
The diagram shows an
initial state∆0 (pos-

∆0 V

∆0

α0
1, · · · , α0

n

l l
ag1 · · ·ag

n

∗
 ∆1 V · · ·

Figure 2: Semantics as a Sequence of∆’s

sibly empty) that is offered (represented by “V”) to a set of agents
{ag1, . . . , ag

n
}. These agents exchange messages, adding a record

4Our work builds on standard technologies for constraint solving – in particular, we
have been experimenting with SICStus Prolog constraint satisfaction libraries.
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(via “l”) {α0
1, . . . , α

0
n} of these messages to∆0. After the agents

add their utterances, then the rules are exhaustively applied (repre-
sented by “

∗
 ”) to ∆0 ∪ {α0

1, . . . , α
0
n}. The resulting state∆1 is,

on its turn, offered to agents, and so on.
Our work extendselectronic institutions(EIs) [4], providing them

with an explicit normative layer. There are two major features in
EIs : thestatesandillocutions(i.e., messages) uttered (i.e., sent) by
those agents taking part in the EI. IllocutionsI are termsp(ag, r,

ag′, r′, τ, t) wherep is an illocutionary particle (e.g., inform,ask);
ag, ag′ are agent identifiers;r , r ′ are role labels;τ is a term with
the actual content of the message andt ∈ IN is a time stamp. We
shall refer to illocutions that may have uninstantiated (free) vari-
ables asillocution schemes, denoted bȳI. Another important con-
cept in EIs that we employ here is that of ascene. Scenes offer
means to break down larger protocols into smaller ones with spe-
cific purposes.

We differentiate seven kinds of atomic formulae in our stateof
affairs∆, with the following intuitive meanings:

1. oav(o, a, v) – object (or agent)o has an attributea with valuev .

2. att(s, w, I) – an agent attempted to get illocutionI accepted at statew of
scenes.

3. utt(s,w, I) – I was accepted as a legal utterance atw of s.

4. ctr(s, w, ts ) – the execution of scenes reached statew at timets .

5. obl(s, w, Ī) – Ī ought to be uttered atw of s.

6. per(s, w, Ī) – Ī is permittedto be uttered atw of s.

7. prh(s, w, Ī) – Ī is prohibitedatw of s.

We only allow fully ground attributes, illocutions and state control
formulae (cases 1-4 above) to be present5; however, in formulae 5-7
s andw may be variables and̄I may contain variables. We shall use
formulae 4 to represent state change in a scene in relationship with
global time passing. We shall use formulae 5–7 above to represent
normative positions of agents within EIs.

Thus, we can write rules for prohibiting (or permitting) actions
by default, for permitting (or prohibiting) certain actions and for
choosing which actions will be prevented or only sanctioned. For
example, in the context of a Dutch auction [9], agents can be pre-
vented from making unsupported bids or only sanctioned:�

α0 ∧ ¬ (α1 ∧ T2 > T) ∧ oav(Ag, credit, C ) ∧ C < P
�
 ⊕α2

where8<: α0 = utt(dutch, w3, inform(Au, auct, A, buyer , offer(It, P), T))
α1 = utt(dutch, w3, inform(Au, auct, A, buyer , offer(It, P), T2))
α2 = prh(dutch, w4, inform(A, buyer ,Au, auct, bid(It, P2), T3))

The rule above prevents agents from issuing bids in a Dutch auc-
tion they cannot afford (their credit is insufficient). It states that if
agentAg ’s credit is less thanP (the last offer the auctioneer called
for itemIt , at statew3 of scenedutch), then agentAg is prohibited
to bid.�

X =
�

α0 α1 ∧ ¬ (α2 ∧ T2 > T1) ∧ T0 > T1

	
∧

| X |= 1 ∧ oav(A1, credit, C ) ∧ C < P

�
 0@ 	oav(A1, credit,C )∧

⊕oav(A1, credit, C2) ∧ ⊕α3∧
⊕(C2 = C − P ∗ 0.1) ∧⊕(P2 = P ∗ 1.2)

1A
where8><>: α0 = utt(dutch, w4, inform(A1, buyer , Au, auct, bid(It, P), T0))

α1 = utt(dutch, w3, inform(Au, auct, all, buyer , offer(It, P), T1)),
α2 = utt(dutch, w3, inform(Au, auct, all, buyer , offer(It, P), T2))
α3 = obl(dutch, w5, inform(Au, auct, all, buyer ,offer(It, P2), T3))

The previous rule punishes agents when issuing a winning bid
they cannot pay for. More precisely, the rule punishes agentA1

by decreasing his credit a 10% of the value of the good being auc-
tioned. Theoav predicate on theLHS of the rule represents the
current credit of the offending agent. The rule also adds an obliga-
tion for the auctioneer to restart the bidding round along with the

5We allow agents to utter whatever they want (viaatt formulae). However, the illegal
utterances may be discarded and/or may cause sanctions, depending on the semantics
of the specified deontic notions. Theutt formulae are thusconfirmationsof theatt
formulae that turn illocutions into legal.

constraint that the new offer should be greater than 120% theold
price.

These examples illustrate how our language addresses the ex-
plicit management of normative positions and the pragmaticcon-
cerns raised in the desiderata.

3. CONCLUSIONS AND FUTURE WORK
In this paper we have introduced a formalism for the explicit

management of the normative position of agents in electronic insti-
tutions. Ours is a rule language in which constraints can be speci-
fied and changed at run-time, conferring expressiveness andpreci-
sion on our constructs. The semantics of our formalism defines a
kind of production system in which rules are exhaustively applied
to a state of affairs, leading to the next state of affairs. The nor-
mative positions are updated via rules, depending on the messages
agents send. Our formalism addresses the points of a desiderata for
normative languages introduced above.

We would like to generalise our language to cope with arbitrary
actions, rather than just speech acts among agents – this would al-
low our work to address any type of open multi-agent system. We
would also like to improve the semantics of the language in order to
support the use of temporal operators for the management of time
along the lines of [6].
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