Available online at www.sciencedirect.com

ScienceDirect

Engineering Applications of
ARTIFICIAL
INTELLIGENCE

ELSEVIER

Engineering Applications of Artificial Intelligence 21 (2008) 183-199
www.elsevier.com/locate/engappai

Enacting agent-based services for automated procurement

A. Giovannucci®®, J.A. Rodriguez-Aguilar®, A. Reyes®, F.X. Noria®, Jesus Cerquides®

AIIIA-CSIC Campus UAB, Bellaterra, Spain
®Intelligent Software Components, S.A. 08190 Sant Cugat del Vallés, Barcelona, Spain
“Department de Matemadtica Aplicada i Analisi, Universitat de Barcelona, Barcelona, Spain

Received 18 September 2006; accepted 10 April 2007
Available online 2 July 2007

Abstract

Negotiation events in industrial procurement involving multiple, highly customisable goods pose serious challenges to buying agents
when trying to determine the best set of providing agents’ offers. Typically, a buying agent’s decision involves a large variety of
constraints that may involve attributes of a very same item as well as attributes of different, multiple items. In this paper we present
iBundler, an agent-aware service offered to buying agents to help them determine the optimal bundle of received offers based on their
business rules. In this way, buying agents are relieved with the burden of solving too hard a problem and concentrate on strategic issues.
iBundler is intended as a negotiation service for buying agents and as a winner determination service for reverse combinatorial auctions
with side constraints. Furthermore, we assess the computational cost added by employing agent technology in the development of

iBundler to characterise the type of negotiation scenarios that it can acceptably handle.

© 2007 Elsevier Ltd. All rights reserved.

Keywords: Negotiation; e-Commerce; Open agent systems; Scalability; Artificial intelligence; Agents; Integer programming; Optimization

1. Introduction

With the advent of the Internet, agent researchers
envisioned a promising future to software agents in a large
variety of e-commerce settings. Business automation,
decision-making and enterprise integration have been
widely claimed, among others, as suitable tasks for agents.
Time has proven those expectations were too enthusiastic
in general, but in our view there are indeed e-commerce
scenarios where agent technology can prove valuable
(Hohner et al., 2003). In particular, agent technology can
contribute to the automation of complex tasks and to the
assistance of parties involved in intricate decision-making
processes in procurement scenarios. One particular, key
procurement activity carried out by most companies
concerns the negotiation of both direct and indirect goods
and services.

*Corresponding author.
E-mail addresses: andrea@iiia.csic.es (A. Giovannucci),
jar(iiia.csic.es (J.A. Rodriguez-Aguilar), toni@isoco.com (A. Reyes),
fxn@isoco.com (F.X. Noria), cerquide@maia.ub.es (J. Cerquides).

0952-1976/$ - see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.engappai.2007.04.006

Although negotiation is a key procurement mechanism,
most agent-based services deployed have focused on
infrastructure issues related to negotiation protocols and
ontologies. Thus, the lack of agent-based decision support
for trading agents that help improve current trading
practices hinders the adoption of agent technology in
procurement scenarios.

Furthermore, while a significant number of agent-based
applications for electronic commerce have been presented
to the agent community during the last years, little
attention has been devoted to analysing the practical
benefits and shortcomings of agent technology when
applied to such domain. Little effort has been devoted to
study the applicability of state-of-the-art agent technology
to develop actual-world e-commerce applications. Thus, we
believe that it is necessary to assess the computational cost
added by agent technology in this type of applications so
that we can diagnose the improvements required by state-
of-the-art agent technology.

For this purpose we report on a case study that intends
to shed some light on both matters. In this paper we fully
describe iBundler (introduced in Giovannucci et al., 2004),

www.elsevier.com/locate/engappai
dx.doi.org/10.1016/j.engappai.2007.04.006
mailto:andrea@iiia.csic.es
mailto:jar@iiia.csic.es
mailto:toni@isoco.com
mailto:fxn@isoco.com
mailto:cerquide@maia.ub.es

184 A. Giovannucci et al. | Engineering Applications of Artificial Intelligence 21 (2008) 183199

an agent-aware decision support service acting as a
combinatorial negotiation solver (solving the winner
determination problem) for both multi-item, multi-unit
negotiations and auctions. Thus, the service can be
employed by both buying agents and auctioneers in
combinatorial negotiations and combinatorial reverse
auctions (Sandholm et al., 2002), respectively. To the best
of our knowledge, iBundler represents the first agent-aware
service for multi-item, multi-unit negotiations. In fact,
iBundler was designed to be employed as: (1) an open agent
platform within the Agentcities. RDT' project that could
be discovered, communicate, and offer services to any
FIPA compliant agent (FIPA, http://www.fipa.org); (2) an
agent facade to Quotes (Reyes-Moro et al.,, 2003), a
commercial negotiation tool, to allow for the participation
of third-party business agents in actual-world procurement
events. In both cases, we study the computational cost of
agent awareness for the iBundler negotiation service so that
its users are aware of the type of negotiation scenarios that
iBundler can acceptably handle when buying and providing
agents are involved. This exercise has also included the
determination of those general or domain-dependent
measures that can help reduce the cost of the service. At
this aim, we have measured the performance in time and
memory of iBundler through a wide range of artificially
generated negotiation scenarios. For each negotiation
scenario we sampled at several stages both the time and
memory that iBundler employed to handle it. We have
interestingly observed that the management of ontologies is
a rather delicate issue that actually causes a significant
overload. Furthermore, we have also observed that the
design of highly expressive, compact bidding languages can
definitely help cut down the computational cost for any
agent-aware negotiation service considering combinatorial
scenarios.

The paper is organised as follows. Section 2 introduces
the market scenario where buyers and traders are to
negotiate, along with the requirements, preferences, and
constraints they may need to express. Next, a formal model
of the problem faced by the buyer (auctioneer) based on
the description in Section 3 is provided. Thereafter, Section
4 details the computational realisation of the agent service
as an agency. The description of the service focuses on the
agency’s architecture, the AUML specification of the
interaction protocol offered by the service to trading
agents, and ontological issues that needed to be considered
in order to offer buying and providing agents the
expressiveness required to enact their business rules. Next,
Section 5 details the evaluation scenarios arranged to test
iBundler, and presents and thoroughly discusses the tests’
results. Finally, Section 6 summarises our contributions
and draws conclusions on our evaluation.

'The Agentcities. RDT project’s objectives were to create an on-line,
distributed test-bed to explore and validate the potential of agent tech-
nology for future dynamic service environments (http://www.agentcities.
org/EURTD).

2. Market scenario

Although the application of combinatorial auctions
(CA) to e-procurement scenarios (particularly reverse
auctions) may be thought as straightforward, the fact is
that there are multiple new elements that need to be taken
into consideration. These are new requirements explained
by the nature of the process itself.

While in direct auctions, the items to be sold are
physically concrete (they do not allow configuration), in a
negotiation involving highly customisable goods, buyers
need to express relations and constraints between attributes
of different items. On the other hand, multiple sourcing is
common practice, either for safety reasons or because offer
aggregation is needed to cope with high-volume demands.
This introduces the need to express constraints on
providers and on the contracts they may be awarded.
Not forgetting the provider side, providers may also
impose constraints or conditions over their offers.

Consider a buyer intending to buy 200 chairs (any
colour/model is fine) for the opening of a new restaurant,
and at that aim we employ an e-procurement solution that
launches a reverse auction. If we employ a state-of-the-art
CA solver, a possible resolution might be to buy 199 chairs
from provider A and 1 chair from provider B, simply
because it is 0.1% cheaper and it was not possible to
specify that in case of buying from more than one provider
a minimum of 20 chairs purchase is required. On the other
hand, the optimum solution might tell us to buy 50 blue
chairs from provider A and 50 pink chairs from provider B.
Why? Because although we had no preference over the
chairs’ colour, we could not specify that regarding the
colour chosen all chairs must be of the same colour.
Although simple, this example shows that without model-
ling natural constraints, solutions obtained are seen as
mathematically optimal, but unrealistic.

Next, we identify the capabilities required by buyers in
the above-outlined negotiation scenario to express their
preferences:

(1) Negotiate over multiple items. A negotiation event is
usually started with the preparation of a request for
quotation (RFQ) form, which details the requirements
(including attribute values as well as drawings and
technical documentation) for the list of requested items
(goods or services).

(2) Offer aggregation. An RFQ item can be multiply
sourced (acquired from several providers), either because
not a single provider can satisfy the whole demand or
because of buyers’ explicit constraints (see below).

(3) Business sharing constraints. Buyers might be inter-
ested to restrict the number of providers that may have
each RFQ item awarded, either for security or strategic
reasons. It is also common practice to constraint the
contract volume a single provider may gain per item.

(4) Constraints over single items. Every RFQ item is
described by a list of negotiable attributes. Since: (a) there
exists a degree of flexibility in specifying each of these

http://www.fipa.org
http://www.agentcities.org/EURTD
http://www.agentcities.org/EURTD

A. Giovannucci et al. | Engineering Applications of Artificial Intelligence 21 (2008) 183199 185

attributes (e.g. several values are acceptable); and (b)
multiple offers referring the very same item can be finally
accepted; buyers need to impose constraints over attribute
values. For instance, say that the deadline for the
recep‘tion of item A is 2 weeks. Although items may
arrive any given day within 2 weeks, once the first units
arrive, the rest of units might be required to arrive no more
than 3 days later.

(5) Constraints over multiple items. In daily industrial
procurement, accepting certain configuration for one item
might affect the configuration of a different item (e.g. to
ensure compatibility between products). Hence, buyers
need to express constraints and relationship between
attributes of different RFQ items.

(6) Specification of providers’ capacities. Buyers cannot
risk to award contracts to providers beyond their
capabilities. Towards this aim, they must require to have
providers’ capacities per item declared.

Analogously, next we detail the expressiveness of the
bidding language required by providers:

(7) Combinatorial offers. Economy efficiency is enhanced
if providers are allowed to offer (bid on) combination of
goods. They might lower the price, or improve service
assets if they achieve to get more business.

(8) Multiple bids. Providers might be interested in
offering alternate conditions/configurations for the very
same good, i.e., offering alternatives for a same request.

(9) Multi-unit offering. Each provider requires to specify
his willingness to sell over/below a minimum/maximum
number of units.

(10) Homogeneous offers. Combinatorial offering may
produce inefficiencies when combined with multi-unit
offering. Thus a provider may wind up with an award of
a small number of units for a certain item, and a large
number of units for a different item, being both part of the
very same offer (e.g. 10 chairs and 200 tables). It is
desirable for providers to be able to specify homogeneity
with respect to the number of units for complementary
items.

(11) Packing constraints. It is often not possible to serve
an arbitrary number of units (e.g. a provider cannot sell 27
units because his items come in 25-unit packages). Thus,
providers require to specify their packing sizes.

(12) Complementary and exclusive offers. Providers
usually submit XOR bids, i.e., exclusive offers that cannot
be simultaneously accepted. Also, they may wish to
indicate that an offer is selected only if another offer
is also selected. This type of bidding, hereafter referred
to as AND bids, allows to express volume-based dis-
counts (e.g. first 1000 units at 2.5 EUR p.u. and then
2 EUR each).

Although many more constraints and features might
be considered, we believe these do address well the nature
of the problem. Therefore, the numbered list above
must be regarded as the list of requirements we would
like the negotiation service proposed in this work to
capture.

3. Formal model

In this section we provide a formal model of the problem
faced by the buyer (auctioneer) based on the description in
Section 2. But before, some definitions are in place.

Items. The buyer (auctioneer) has a vector of items A =
(A, ..., 4n) standing for the list of requested items so that a
buyer can negotiate over multiple items according to
requirement 1 in Section 2. He specifies how many units of
each item he wants U = (u,...,uy),u; € RT. He also
specifies the minimum percentage of units of each item
M = (my,...,my),m; €[0,1], and the maximum percen-
tage of units of each item M = (ii1y,...,m,,),m; € [0,1],
m;>=m;, that can be allocated to a single provider.
Furthermore, he specifies the minimum number of pro-
viders S = (s1,...,5x),5 € N, and the maximum number
of providers S = (51,...,5,),5 € N,5>s;, that can be
simultaneously allocated each item. In this way the buyer
can express his business sharing constraints as stated by
requirement 3. Finally, a tuple of weights W = (wy,...,
wi), 0<w; <1, contains the degree of importance assigned
by the buyer to each item.

Item attributes. Given an item 4; € A, let (a;,...,a;)
denote its attributes. Thus, items may have multiple
attributes as needed by requirement 1.

Providers’ capacities. Let Il = (ny,...,n,) be a tuple of
providers. Given a provider 7; € I the tuple C'=
(¢f,...,c)) stands for the minimum capacity of the
provider, namely the minimum number of units of each
item that the provider is capable of serving. Analogously,
the tuple C'=(¢l,...,¢) stands for the maximum
capacity of the provider, i.e. the maximum number of
units of each item that the provider is capable of providing.
Notice that in this way providers can state their capacities
as needed by requirement 6.

Bid. The providers in IT submit a tuple of bids B =

(B',...,B"). A bid is a tuple B/ = (4, P/, M/, M’ D),
where A/ = (A{ ,..., A7) are tuples of bid values per item,
where 47 = (5!

IR

i k . .
.,0]) € RY, 1<i<m, assigns values to

the attributes of item /;; P/ = (p],. ..
unitary prices per item; M7 = (m{,...,m}),m/ € R, is the
minimum number of units per item offered by the bid;
M =i, ...
number of units of each item offered by the bid; and D/ =

,pl),pl € R, are the

Ji), ml € RT,ml>m!, is the maximum

(d{ yens ,d,f;l) are the bucket or batch increments in units for
each item ranging from the minimum number of units
offered up to the maximum number of units. Given a bid

B/ € B, we say that B/ does not offer item A; € A iff

m! = m! = 0. Notice that the way we define bid allows to
express combinatorial bids over multiple items, multi-unit
offering per item, and packing constraints as needed by
requirements 9, 10, and 11 in Section 2.

In order to model homogeneity constraints, as needed by

requirement 10, we define a function 4 : B — 2. Given a

186 A. Giovannucci et al. | Engineering Applications of Artificial Intelligence 21 (2008) 183199

bid B/ € B, h(B’) = {4;,,...,4;} indicates that the bid is
homogeneous with respect to the items in A4(B’). In other
words, if the buyer (auctioneer) picks up bid B/ the number
of units allocated for the items in /(B’) must be equal.

Furthermore, in order to relate providers to their bids we
define function p : IT x B — {0, 1} such that p(m;, B/) = 1
indicates that provider m; is the owner of bid B/. This
function satisfies the following properties:

® VB/ € B Ix; € IT such that p(ni, B) =1, and '
e given a bid B/ € B if 3n;, ny € II such that p(m;, B =1
and p(ng, B/) = 1 then ©; = my.

The conditions above impose that each bid belongs to a
single provider, but each provider may own multiple bids
(as needed by requirement 8 above).

XOR bids. Let xor:2% — {0,1} be a function that
defines whether a subset of bids must be considered as an
XOR bid. Only bids owned by the very same provider can
be part of an XOR bid. More formally xor(#)=1=
In el such that p(n,B)=1VB € #. Thus, fi. if
3B/, B¥ € B xor({B’, B¥}) = 1 both bids are mutually ex-
clusive, and thus cannot be simultaneously selected by the
buyer.

AND bids. Let and : 2% — {0,1} be a function that
defines whether an ordered tuple of bids must be
considered as an AND bid. Thus, given an ordered tuple
of bids (B/1,..., B/*) such that and((B ... B/*)) =1 then
the buyer can only select a bid B/,1<i>k, whenever
B/, ..., B/ are also selected. Furthermore, all bids in an
AND bid belong to the very same provider. Put formally,
and(#)=1= A n eIl such that p(n,B’)=1VB e A.
AND bids are intended to provide the means for the buyer
to express volume-based discounts. However, they should
be regarded as a generalisation of the bidding via price-
quantity graphs in (Sandholm, 2002b).

Notice that XOR bids and AND bids capture the
expressiveness needed by requirement 12. While XOR bids
allow to express exclusive offers, AND bids allow to
express complementary offers.

Based on the definitions above we can formally
introduce the decision problem to be solved to provide
support to the buyer (auctioneer):

(Multi-attribute, multi-unit combinatorial reverse auc-
tion). The multi-attribute, multi-unit combinatorial reverse
auction winner determination problem (MMCRAWDP)
accounts for the maximisation for the following expression:

m

n
oy > wi Viglpl, 4). (1)
=1 i=1
subject to the following constraints:

1. ¢/ € 0U[m!,m!]. This constraint forces that when bid
B/ is selected as a winning bid, the allocated number of
units of each item ¢/ has to fit between the minimum
and maximum number of units offered by the provider.

2. ¢/modd/ = 0. The number of allocated units ¢/ to a
bid B’ for item /; must be a multiple of the batch !
specified by the bid.

3. Ej":lq{- =u; (there is no free disposal). The total
number of units allocated for each item must equal
the number of units requested by the buyer.

4. V. € Ilq] - p(my, B') € {0} U[ck, ¢F]. For each item, the
number of units allocated to a provider cannot exceed
his capacities.

5. Vmy € I1q) - p(ny, BY) € {0} U [m; - us, ;- u;]. The total
number of units allocated per provider cannot exceed
or be below the maximum and minimum percentages
that can be allocated per provider specified by the
buyer. ‘ '

6. VA;, 1 € h(B') ¢/ =¢]. For homogeneous bids, the
number of units allocated to the items declared
homogeneous must be the same.

7. VA€ A> x,k € [54,5;]]. The number of providers to
be awarded each item cannot exceed or be below the
maximum and minimum number of total providers
specified by the buyer.

8. and ((B/",...,B/*))=1= yp/ii>... >p/ Bids being
part of an AND bid can only be selected if the bids
preceding them in the AND bid are selected too.

9. VB’ C B such that xor(B') = 13 i 53/ <1. XOR bids
cannot be jointly selected.

10. a-vyy+b=6/,>a" - vyy+b" where a,b,a’,b’ € R. In-
tra-item constraints are modelled through this expres-
sion. It indicates that only those bids whose value for
the attribute item related to the decision variable that
satisfy the expression can be selected.

1. c-vyy+d=vyp=c vy +d where ¢,d,c’,d" € R. In-
ter-item constraints are modelled through this expres-
sion. It puts into relation decision variables of
attributes belonging to different items.

Here

ey, €{0,1},1<j<n, are decision variables for the bids in
B;

° xik € {0,1},1<i<m, 1 <k<r, are decision variables to
decide whether provider m; is selected for item 4;;

® g/ e NU({0}, 1 <j<n, 1 <i<m, are decision variables on
the number of units to select from B’ for item A;;

o VV,:RT xR x R* - R, 1<i<m, are the bid valua-
tion functions for each item; and

e v;; stands for a decision variable for the value of
attribute a; of item 4;.

® a b,a’ b’ c,c',d,d" are buyer-defined constant values.

Observe that the constraints coming along Eq. (1)
attempt at capturing the requirements in Section 2 as
follows: constraint 1 makes possible multi-unit offering
(requirement 9); constraint 2 ensures that packing con-
straints are fulfilled (requirement 11); constraint 3 makes
possible that several offers can be aggregated to fulfil the
demand (requirement 2); constraint 4 exploits the specifica-

A. Giovannucci et al. | Engineering Applications of Artificial Intelligence 21 (2008) 183199 187

tion of providers’ capacities (requirement 6); constraints 5
and 7 ensure that business sharing constraints (require-
ments 5 and 7) are not violated; constraint 6 ensures that
homogeneous offers are selected according to requirement
10; constraint 8 and 9 ensure that complementary and
exclusive offers are selected as expected (requirement 12);
constraints 10 and 11 map the constraints over single items
and multiple items in requirements 4 and 5.

Finally, there are several aspects that make our model
differ from related work. Firstly, traditionally all CA
models assume that the buyer (auctioneer) equally prefers
all items. Such constraint is not considered in our model,
allowing the buyer to express his preferences over items.
Secondly, multi-attribute auctions and CAs with side
constraints have been separately dealt with. On the one
hand, Bichler (Bichler and Kalagnanam, 2005) extensively
deals with multi-attribute auctions, including a rich bidding
language. On the other hand, Sandholm et al. (2002) focus
on multi-item, multi-unit CAs with side constraints where
items are not multi-attribute. We have attempted at
formulating a model which unites both. Lastly, to the best
of our knowledge neither inter-item nor intra-item con-
straints have been dealt with in the literature at the
attribute level (Kalagnanam and Parkes, 2004) though they
help us better cope with multiple sourcing scenarios.

4. Implementation

This section details the realisation of the agent service as
an agency. Firstly, we present the implementation of the
winner determination problem with side constraints as the
core of the service. Secondly, we describe the architecture
of the iBundler agency, along with a description of the
protocols and the ontology employed by its agents.

4.1. Winner determination

Consider the problem faced by a buying agent aiming at
choosing the optimal set of offers sent over by providing
agents taking into account the features of the negotiation
scenario described in Section 2. For this purpose he must
solve the optimisation problem posed by Eq. (1) in Section
3. The problem is essentially an extension of the CA
problem in the sense that it implements a larger number of
constraints and supports richer bidding models. The CA
problem is known to be NP-complete, and consequently
solving methods are of crucial importance.

In general terms, we identify three main approaches that
have been followed in the literature to fight the complexity
of this problem:

e As reported in Kelly and Steinberg (2000), attempts to
make the combinatorial auction design problem tract-
able through specific restrictions on the bidding
mechanism have taken the approach of considering
specialised structures that are amenable to analysis. But
such restrictions violate the principle of allowing

arbitrary bidding, and thus may lead to reductions in the
economic outcome.

® A second approach sacrifices optimality by employing
approximate algorithms (Hoos and Boutilier, 2000;
Zurel and Nissam, 2001). However, and due of the
intended actual-world usage of our service, it is difficult
to accept the notion of sub-optimality.

® A third approach consists in employing an exact or
complete algorithm that guarantees the global optimal
solution if this exists. Although theoretically impracti-
cal, the fact is that effective complete algorithms for the
CA problem have been developed.

Many of the works reviewed in the literature adopt
global optimal algorithms as a solution to the CA because
of the drawbacks pointed out for incomplete methods.
Basically two approaches have been followed: traditional
Operations Research (OR) algorithms and new problem-
specific algorithms (Sandholm, 2002a; Fujishima et al.,
1999). It is always an interesting exercise to study the
nature of the problem in order to develop problem-specific
algorithms that exploit problem features to achieve
effective search reduction. However, as indicated in Holte
(2001) and Rothkopt et al. (1995), the CA problem is an
instance of the multi-dimensional knapsack problem
MDKP, a mixed integer program well studied by the OR
literature. It is not surprising, as reported in Andersson et
al. (2000), that many of the main features of these problem-
specific, new algorithms are re-discoveries of traditional
methods in the OR community. In fact, our formulation of
the problem can be regarded as similar to the binary multi-
unit combinatorial reverse auction winner determination
problem in Sandholm et al. (2002) with side constraints
Sandholm and Suri (2001). Besides, expressing the problem
as a mixed integer programming problem with side
constraints enables its resolution by standard algorithms
and commercially available, thoroughly debugged and
optimised software which have shown to perform satisfac-
torily for large instances of the CA problem.

With these considerations in mind, the core of our
service has been implemented as a mixed integer program-
ming problem. We have implemented two versions: a
version using ILOG CPLEX 9.0; and another version using
i1ISOCQO’s Java MIP modeller that integrates the GLPK
library (Makhorin, 2001). In both cases it takes the shape
of a software component. Hereafter, we shall refer to this
component as the iBundler solver. Therefore, this compo-
nent solves the maximisation problem in Eq. (1)

4.2. Architecture

The iBundler service has been implemented as an agency
composed of agents and software components that co-
operatively interact to offer a decision-support service for
highly-constrained negotiation scenarios. iBundler can act
as a combinatorial negotiation solver for both multi-item,
multi-unit negotiations and auctions. Thus, the service can

188 A. Giovannucci et al. | Engineering Applications of Artificial Intelligence 21 (2008) 183—-199

IBUNDLER
AGENCY

BUYER
(auctioneer)

PROVIDER#1 PROVIDER#2

SOLVER

Fig. 1. Architecture of the iBundler agency.

be employed by both negotiating agents and auctioneers in
CA. Fig. 1 depicts the components of the agency, along
with the fundamental connections of buyers and providers
with the service. Next, we make explicit the main
functionality of its members:

Logger agent. 1t represents the interface of the iBundler
agency to the world. The Logger agent is in charge of
facilitating registration and deregistration with the iBun-
dler service to users (both buyers and providers) as well as
their subsequent access to the service via log in and log out.

Manager agent. Agent devoted to providing the solution
of the problem of choosing the set of bids that best matches
a user’s requirements. There exists a single Manager agent
per user (buying agent or auctioneer), created by the
Logger agent, offering the following services: brokering
service to forward buying agents’ requirements (RFQs) to
selected providing agents capable of fulfilling them;
collection of bids; winner determination in a combinatorial
negotiation/auction; award of contracts on behalf of
buying agents. Furthermore, the manager agent is also
responsible for: bundling each RFQ and its bids into a
negotiation problem in FIPA-compliant (FIPA,, http://
www.fipa.org) format to be conveyed to the Translator
agent; and to extract the solution to the negotiation
problem handled back by the Translator agent. Observe
that Fig. 1 shows the interplay of buying and providing
agents with the Manager as the sole access point to the
iBundler agency.

Translator agent. It creates an XML document repre-
senting the negotiation problem in a format understand-
able by the Solver departing from the FIPA-compliant
description received from the Manager. It also translates
the solution returned by the Solver into an object of the
ontology employed by user agents. It is the bridge between
the language spoken by user agents and the language
spoken by solver.

Solver component. The iBundler component itself ex-
tended with the offering of an XML Ilanguage for
expressing offers, constraints, and requirements. The
XML specification is parsed into an MIP formulation

and solved using available MIP solvers as described in
Section 4.1. Therefore, this component solves the optimisa-
tion problem posed by Eq. (1) in Section 3.

Our design manages to separate concerns among the
three members of the agency. On the one hand, the
Manager is strictly devoted to coordination. It represents
the facade of the service. Besides, since every negotiation
requested by a buyer makes the agency create an instance
of the Manager, the service can cope with asynchronous
and multiple accesses to the service. The Translator agent is
in charge of relieving both Managers and Solver from the
burden of translating FIPA-compliant specifications into
the language required by Solver. Notice that the fact of
having only one Translator agent represents a bottle-neck
in the overall process when many buyers access the service
concurrently. Such Ilimitation could be overcome by
creating multiple instances of Translator Agents and
Solvers on different machines. However, in this work we
focused on the service performances in managing big size
negotiation scenarios, not on multiple concurrent accesses
to the service. We leave such issue as a possible future
development.

To implement the iBundler agency we used the following
technologies: JADE (Caire, 2002) as the software tool to
implement agents, and as the platform where the agency
resides (connected to the Agentcities network as a node);
Tomcat (http://jakarta.apache.org/tomcat/) as J2EE server
to build web interfaces for human traders; and FIPA in
building agents, messages, ontology and protocols.

In the following section, we make explicit the interplay
of protocols involved in the whole interaction to compose
the protocol of the service.

4.3. Interaction protocol

The type of negotiation protocol we consider is an
extension of a Contract Net protocol (FIPA, 2003) between
a buying agent and some providing agents that involves
several interaction protocols involving the agents intro-
duced in Section 4.2. Fig. 2 depicts the interaction

http://www.fipa.org
http://www.fipa.org
http://jakarta.apache.org/tomcat/

A. Giovannucci et al. | Engineering Applications of Artificial Intelligence 21 (2008) 183199 189

iBUNDLER-Protocol

| buyer |

[requesf(RF IP-CFP
|

| monoger| |Tronslofor |

A
deadline
DG

inform-resulf | |

[S
SIE . I_.
IP-AWARD 5

Fig. 2. iBundler FIPA interaction protocol.

protocols involved in the interplay of buyers and provides
with iBundler. Notice that the interaction protocols are
expressed in AUML (Agent Unified Modelling Language)
(Odell et al., 2000) following the FIPA interaction protocol
library specification compiled in (FIPA, 2003).

Observe that the specification in Fig. 2 involves four roles,
namely buyer, manager, translator, and provider. Whereas
multiple agents can act as providers, the remaining roles can
be uniquely adopted by a single agent each. Notice too that
the iBundler interaction protocol is composed of several
interleaved interaction protocols, namely:

IP-RFQ. Held between a buyer and the manager agent
created by the Logger agent after registration. The buyer
delivers an RFQ to his manager agent requesting to obtain
the optimal set of offers from the available providers. In
case it is not possible to obtain a solution to the problem,
the received response is an empty bid set.

IP-CFP. Prior to delivering the optimal set of offers, the
manager interacts with the available providers to request
their offers under the rules of this CFP interaction
protocol. If no offers are received the manager refuses to
deliver the optimal set of offers in the context of the IP-

RFQ interaction protocol. Otherwise, the manager agrees
on providing the service and proceeds ahead by starting out
an instance of the IP-Request-Solution interaction proto-
col. The protocol winds up with the notification of contract
awards to selected providers according to the buyer’s
decision. In the case in which no optimal solution could be
found, the buyer is sent an empty bid set and the IP-CFP
protocol is ended communicating a Reject-Proposal to
each provider involved. Notice that the manager mediates
between buyer and providers.

IP-Request solution. This interaction protocol held
between the manager and the translator agent within the
iBundler agency aims at calculating the optimal set of
offers considering the offers submitted by providers, along
with the buyer’s requirements and constraints. The result
delivered by the translator is further conveyed by the
manager to the buyer in the context of the interleaved IP-
RFQ interaction protocol.

IP-AWARD. At the end of the IP-RFQ interaction
protocol the buyer obtains the optimal set of offers. He
may request also to receive all offers. Thereafter, if the
buyer received a non-empty optimal set of offers (k>0 in
Fig. 2), the buyer initiates the IP-AWARD interaction
protocol in order to request the manager to award
contracts to selected providers. Observe that the contract
award distribution is autonomously composed by the
buyer, and thus the buyer may decide to either ignore or
alter the optimal set.

Fig. 3 illustrates an actual interaction of a buying agent
with iBundler when conducting a negotiation with a limited
number (three) of providing agents. Notice that the
interactions depicted among buying agents, iBundler, and
providing agents have been captured with the aid of the
Sniffer tool (TILAB, 2005) provided by Jade.

The visualisation depicted by Jade’s Sniffer is analogous
to a UML sequence diagram, though the exchange of

prov prov prov
- _id_er_IJ _ider2 _iderz | M - -
REQUEST:0 (864 8.0)

FP:L (015 0_0
CFP1 (015 0.1)
depi1 015 0.2

*
PROPOSE:1 (015 727 (0_2)
PROPOSE:1 (015 437 0_1)
PROPOSE:L (015 267 (0_0)

Aﬁfiii'ﬁ (564 514 srﬂl

-

v

L A

S I ST S SR OVI S S

REQUEST 2 (392 4_0
AGREE:2 (392 127 410)
INFORM:2 (392 638 4.0

=
v v

INFORM:0 (884 581 § 0)°
REQUEST.3 (858 8.0)
AGHEES (858 139 E0)
ACCEPT-PROPOSAL (01500 727)
ACCEPT-PROPOSAL:L 15 /0.1 267)
ACCEPT-PROPOSALL (015 0.2 437)
| INFORM:1 (015 738 0.0}
INFORM:1 (015 061 0_1)
INFORM:1 (015 118 0.2)

2 INFO&G (358 481 §-0)

Fig. 3. Monitoring the iBundler interaction protocol.

b 4

e
=
Yy

190 A. Giovannucci et al. | Engineering Applications of Artificial Intelligence 21 (2008) 183199

messages occurs between agents instead of objects.
Furthermore, each interaction is assigned a step number
corresponding to its position within the ordered sequence
of messages it belongs to (as shown along the left-hand side
of the central picture).

The servicing of iBundler proceeds as follows. At step 1,
the buying agent (labelled as user in Fig. 2) sends his RFQ
to the manager agent (manager) in the iBundler agency. At
that point, the manager spawns an auxiliary agent, the so-
called collector agent (collector), and delegates to him the
collection of bids from providing agents. Once created, the
collector requests bids from providing agents providerl,
provider2 and provider3 by starting CFP (call for
proposal) FIPA protocols (steps 2—4) that include the
RFQ. Notice though that such CFP filters out the buying
agent’s constraints enclosed in the RFQ to hide them away
from providers. These subsequently submit their bids to the
collector via propose performatives (steps 5—7). Once bids
are collected, the manager constructs the combinatorial
problem to be solved from the RFQ submitted by the
buying agent and all bids collected from providers.
Furthermore, he agrees on providing an optimal solution
to the buying agent (step 8). Next, the manager asks the
translator agent (translator) for a solution to the combi-
natorial problem (step 9). Upon reception, the translator
translates the combinatorial problem into an XML-based
problem specification which is shipped to the Solver
component. It solves the optimisation problem described
in Section 3 and returns the optimal solution to the
translator as an XML-based document, so that it can be
forwarded by the translator as a FIPA message to the
manager (step 11). The optimal solution is finally sent over
to the buying agent (step 12) so that he can employ it to
decide which providers to award a contract, and for which
items and units. The buyer’s decision is made available
to the manager (step 13), who requests the collector
to award the contract to the selected providers, thus
terminating the CFP protocol started out at step 2. Finally,
the manager acknowledges the buyer that the contract
has been indeed awarded to the providers, and on the terms
he selected.

Notice that the manager creates the collector to ease
implementation—since it is rather complex to extend the
FIPA-compliant protocols offered by Jade to take advan-
tage of FIPA-compliant protocols as offered by Jade, and
to better control synchronisation over messages exchanged
among all agents involved in the interaction with the
iBundler service.

To summarise, the usage of the iBundler service requires
the interleaving of several protocols, namely (agents
involved in parentheses): (1) request for optimal solution
for an RFQ (buyer and manager—messages 1, 8, 12); (2)
collection of bids and awards (collector and providers—
messages 2—7 and 15-20); (3) request for optimal solution
for RFQ and collected bids (manager and translator—
messages 9-11); (4) request for contract award (buyer and
manager—messages 13, 14, 21).

4.4. Ontology

Although research on automated negotiation in multi-
agent systems has concentrated on the design of negotia-
tion protocols and their associated strategies, ontological
aspects of negotiation protocols have recently started to
attract researchers’ attention (see Tamma et al., 2002;
Tamma, 2003 and the results of the ADMIT project
Agentcities Consortium, 2002). In Tamma et al. (2002) and
Tamma (2003)) we find an ontological approach to
automated negotiation founded on the following concepts:
negotiation protocol (rules followed by participants during
a negotiation process), party (participants, be them either
human agents, software agents or even organisations
of agents), process (way to reach an agreement on some
issue by modifying negotiation attributes), (negotiation)
object, offer (possible combination of values associated
to the negotiation attributes which represent an expre-
ssion of will), negotiation rule (set of rules that govern a
specific negotiation protocol). Although satisfactory en-
ough for most concepts, particularly as to negotiation
protocols regarded as processes and rules, in this work
we had to enrich the concepts of offer and object in
order to accommodate the expressiveness required by
the actual-world constraints described in Section 2 for
bids and RFQs, respectively. To the best of our knowledge,
no ontology defined in prior work allows the expressive-
ness that buying and providing agents require. In other
words, there is no adequate ontology for multi-item,
multi-unit combinatorial reverse auctions with side con-
straints. Thus we had to define an ad hoc ontology for the
iBundler service.

The ontology has been defined with the aid of Protege
2000 (Protege, 2005). Furthermore, the conversion from
ontological objects to Java classes is realised via the
beangenerator Protege 2000 plug-in (Acklin, 2005). The
automatically generated Java classes fulfil with the JADE
specification in Caire (2002).

Figs. 4-7 provide graphical representations (as shown by
the Ontoviz Protégé plug-in) of the core concepts in
the iBundler ontology, namely, and respectively, the RFQ,
ProviderResponse, Problem, and Solution concepts. Table 1
lists the sub-protocols in the iBundler interaction protocol
depicted in Fig. 2 wherein such concepts are employed,
along with the concrete messages conveying them.

The RFQ concept is employed by buying agents to
express their requests for bids. Fig. 4 shows that an RFQ is
composed of a sequence of Request concepts, one per
requested item. In this way, we allow a buying agent to
negotiate over multiple items to fulfil requirement 1 in
Section 2. A sequence of global constraints (GlobalCon-
straint concept) relating separate, requested items may be
part of an RFQ. There are two types of GlobalConstraint
concepts: constraints that allow to express linear relation-
ships between different attributes of the very same or sepa-
rate item(s) (AttributeRelation concept) and constraints
on the values of an item’s attribute (AttributeVariation

A. Giovannucci et al. | Engineering Applications of Artificial Intelligence 21 (2008) 183199

191

Concept

s

Constraint globalConstraints | Class* | GlobalConstraint
type [String requests I Class* I Request
id \ Integer

AID

addresses | String*

resolvers | Class* | AID

name l

String

isa globalCon{raints* \\\requests*
P N
v Request
GlobalConstraint requestConstraints | Class* | RequestConstraint
weight Float
.'/’
isa isa /,/. requestConstraints*
. ,///
AttributeRelation S
- £ id_attribute_a | Integer 2
Attribute Variation = = v
variation | Float A uttrbute ¢ | Integer =
d I Tnteger _d Float RequestConstraint
: b Float
type ‘ String c Float
isa isa
Numproviders Perprovider
max | Integer floatMin | Float
min | Integer floatMax | Float
type | String | | type | String
Fig. 4. RFQ concept representation.
PRResponse
bids | Class* | Bid
bidConstraints | Class* | BidConstraint
capacities | Class* | Capacity
ad | Class | AID
/’/ .'/ \‘\
L — ald// capacities” bids* “~.__ bidConstraints* isa
‘/f))f S
z - ™~
C Bid % -
: - Spacky - : - N ProviderResponse
1] resolvers* min | Integer Sl | Class® | Sl BidConstraint roviderld [Integer
/ max | Integer | | singleBidConstraints | Class* | SingleBidConstraint P a | Inte e?
id i Integer id Integer 9
Vg "\
singleBidConstraints* ', bidltems* isa isa
|
Biditem
bucket | Integer
min | Integer ANDConstraint XORConstraint
SingleBidConstraint cost I Float bidlds [Integer* bidlds | Integer*
max \ Integer type [Stnng type i Stnng
id | Integer
isa
Homogeneity
type Stnng
biditemIds | Integer

Fig. 5. Bid concept representation.

192 A. Giovannucci et al. | Engineering Applications of Artificial Intelligence 21 (2008) 183—-199

Eoriceot Solve
e | problems | Class* | Problem
isa problems*®
Problem
Isa responses| Class* | ProviderResponse
fq | Class | RFQ
7 1ig | responses”
! !_\‘
A
- RFQ ProviderResponse
id [Integer .
’ prowderldl Integer
requests | Class* | Request i T ioteger
globalConstraints | Class* | GlobalConstraint 9

Fig. 6. Problem concept representation.

Solution
id | Integer
solutionsPerProvider | Class* | SolutionPerProvider

solutionsPerProvider*

SolutionPerProvider
ad | Class [AD
id | Integer
bidSolutions | Class* | BidSolution

/

aid ""\.\ bidSolutions*
addresse't:;m| Sting® |\ BidSohtion
9 | (esolvers® | bidsFixed] Class® | BiditemFixed
resolvers| Class* [AID | / ‘
: ‘ id | Integer
name | String
bidsFixed*
Y
BiditemFixed
cost | Float
quantity | Integer
id | Integer

Fig. 7. Solution concept representation.

Table 1
Use of ontological concepts in Fig. 2

Concept Sub-protocol Message

RFQ IP-RFQ request(RFQ)

Provider Response IP-CFP propose(offer)

Problem IP-Request-Solution request(problem)

Solution IP-Request-Solution inform-result
IP-RFQ inform(offers)

concept). In this way, we obtain the expressiveness needed
by requirements 4 and 5. A sequence of constraints on
individual items (RequestConstraint concept) may be also
part of an RFQ. Constraints on individual items can serve
to limit the range of providers (NumProviders concept) to
which the item can be awarded or the range of percentage
of units to be awarded to the very same provider

(PerProvider concept). These concepts provide the expres-
siveness needed by requirement 3.

Notice that all the constraints specified in an RFQ stand
for the buyer’s business rules.

On the provider side, providing agents express their
offers in terms of the ProviderResponse concept, which in
turn is composed of several elements: a list of Bid concepts
(each Bid allows to express a bid per either a single
requested item or a bundle of items) (and so combinatorial
bids are possible as needed by requirement 7 in Section 2);
constraints on the production/servicing capabilities of the
bidding provider (Capacity concept) (to capture the needs
of requirement 6 in Section 2); constraints on bundles of
bids formulated with the BidConstraint concept (each
BidConstraint in turn can be of exclusive —xor— or
volume-based discount type —and—, corresponding respec-
tively to the XOR and AND concepts) that allows to
express the relationships of requirement 12 in Section 2;
and their capacities through a sequence of Capacity
concepts as needed by requirement 6. Whereas constraints
on bundles of bids put into relation separate bids,
constraints on individual bids (expressed as Single BidCon-
straint concepts) allow to relate the values offered for
separate items within the very same bid. As an example,
homogeneity constraints can be declared by providers
within some bid to make buyers aware that the quantity of
items they can select per item must be the same, or else the
provider will not concede his bid. Such constraint maps to
the Homogeneity concept, a particular type of SingleBid-
Constraint. The Homogeneity concept allows to express
homogeneous offers as needed by requirement 10.

Notice that since a Provider Response concept is com-
posed of a list of Bid concepts, each provider is allowed to
submit multiple bids as needed by requirement 8 in Section
2. Furthermore, a Bid concept is composed of a sequence of
Bidltem concepts, each one representing a provider’s offer
per item. Each Bidltem concept allows a provider to
express his multi-unit offering, as needed by requirement 9,
and his packing constraints, as needed by requirement 11.

It is important to notice that the concepts defined so far
in our ontology ensure, as mentioned above, the expres-
siveness needed by the requirements in Section 2.

Once the manager collects all offers submitted by
providers, he wraps up the RFQ concept as received from
the buyer along with the offers as ProviderResponse
concepts to compose the negotiation problem to be solved
by the Solver component. The resulting concept, Problem,
is depicted in Fig. 6.

Finally, the solution produced by the Solver component
is transformed by the translator agent into a Solution
concept (see Fig. 7) that is handed over to the manager.
The Solution concept contains the specification of the
optimal set of offers calculated by Solver. Thus Solution
contains a list of SolutionPerProvider concepts, each one
containing the bids selected in the optimal bid set per
provider, as a list of BidSolution concepts, along with
the provider’s agent identifier, as an AID concept. Each

A. Giovannucci et al. | Engineering Applications of Artificial Intelligence 21 (2008) 183199 193

BidSolution in turn is composed of a list of BidltemFixed
concepts containing the number of units selected per bid
along with the bid’s total cost.

So far we have concentrated on ontological concepts
referring to entities with a complex structure that can be
defined in terms of slots. Hereafter we shall draw our
attention to agent actions, i.e. the special concepts that
indicate actions that can be performed by agents in the
iBundler agency, as well as buyers and providers.

Thus, the Logger agent offers the services associated to
the following actions:

Login. Action requested by trading agents when logging
in with the iBundler agency.

Logout. Action requested by trading agents when logging
out of the iBundler agency.

Register. Action requested by trading agents when signing
for the iBundler agency. They must provide information
about themselves. At the end of the registration, the Logger
provides them with a user name and a password.

Unregister. Action requested by trading agents when
unregistering with the iBundler agency. They must provide
information about themselves. All the brokering informa-
tion associated to them is erased by the Logger.

As to the manager, it offers four core services via the
following actions:

GetAllBids. The buyer specifies an RFQ along with a list
of providers. The manager agent forwards the query to all
the providers and delivers back all the responses to the
buyer.

Solve. The buyer sends to the manager an RFQ along
with a list of ProviderResponse concepts representing
providers’ offers. The manager composes a Problem out
of the RFQ and ProviderResponses to subsequently request
the translator agent for a Solution. In this way, the buyer is
relieved from the intricate construction of a Problem
involving the creation of crossed references between RFQ
and the Bid concepts in each Provider Response. Once the
Solution is received by the manager it is forwarded to the
buyer.

Manage. The buyer sends to the manager an RFQ along
with a list of providers. The manager sends a filtered
version of the RFQ (removing the buyer’s private
constraints) to available providers, collects all their offers,
constructs a Problem to ask the translator for a Solution,
which is conveyed to the buyer once calculated.

Buy. The buyer constructs a Solution concept and
subsequently asks the manager to the bids and providers
in the list of SolutionsPerProvider. Notice that the buyer
may employ the same Solution concept recommended by
the manager as an optimal solution.

Finally, providers do offer their services through the
following actions:

RequestForQuotations. Request for offers received from
the manager for a filtered version of the RFQ sent by the
buyer.

BuySolution. Order to buy selected offers received from
the manager.

5. On the cost of agent-awareness

The applicability analysis of agent technology in the
literature primarily focuses on scalability issues as robust-
ness, system performance with large populations of agents
and ontology engineering. Brazier et al. (2001) address the
problem of scalability in naming services and location
services. Besides, they analyse the concept of scalability in
multi agent systems (MAS) and discuss scalability for
many existing multi-agent frameworks. Deters (2001)
studies the problems derived from large number of agents
running in a MAS, agent resource consumption, the
exchange of great number of messages, identifying agent
hosting and message routing as bottle-necks. Furthermore,
he performs some scalability experiments. An important
result in Deters (2001) is that the main deficiencies of JESS
(http://herzberg.ca.sandia.gov/jess/) derive from serialisa-
tion processes. Kahn investigates how timing of sequential
agent registration and lookup varies as the total number of
registered agents increases in COABS (Kahn and Della
Torre Cicalese, 2003). The works in Klein et al. (2003)) and
Fedoruk and Deters (2002) analyse robustness and fault
tolerance, whereas Yoo (2002) exemplifies ad hoc, domain-
dependent agent technology scaling techniques. On the
other hand, the literature on ontology scalability focuses
on three major issues: the size of ontology contents, the
complexity of ontology construction and knowledge re-
usability (Jarrar and Meersman, 2002; Wache et al., 2004).
In particular, Jarrar states that experience shows that
“unscalable solutions emerging from academic research
often fails at the industrial level” (Jarrar and Meersman,
2002).

Thus, we believe that it is an urging necessity to report
on practical deployments of actual-world agent-based
applications in order to: (1) progressively derive best
methodological practices; and (2) assess the improvements
required by state-of-the-art agent technologies to be
adopted at industry level. Particularly since much of the
research effort on agent technology does not consider the
application of widely employed agent frameworks and
programming tools to real-world problems.

We consider iBundler as representative of the main
trends on the state-of-the-art agent programming tools
and platforms. Firstly, because it is based on the FIPA
specification standard, that is surely the most widely
adopted by the agent community.> Secondly, the con-
siderations emerging from the experiments derived in this
paper are related to the FIPA nature of the agent platform,
not to a particular JADE implementation. Thus, the results
in Section 5 are not limited to the JADE framework, being
valid for all the FIPA-compliant agent frameworks.

0GM (www.ogm.org) is another standardisation effort based on
CORBA IDL interface. This solution is efficient for agent migration and
client-server applications, but less suitable than FIPA-compliant plat-
forms for peer-to-peer applications. For an interesting comparison refer to
OMG and FIPA standardisation for agent technology: competition or
convergence? (1999).

http://herzberg.ca.sandia.gov/jess/
http://www.ogm.org

194 A. Giovannucci et al. | Engineering Applications of Artificial Intelligence 21 (2008) 183—-199

In this section we detail the way we conducted our
evaluation. Firstly, in Section 5.1 we describe how to
generate artificial negotiation scenarios for testing pur-
poses. Next, in Section 5.2 we detail the different stages
considered through our evaluation process. In Section 5.3,
we analyse time performance, and finally, in Section 5.4,
the memory use through all the evaluation stages.

In order to run our tests we employed the following
technology: a PC with a Pentium IV processor, 3.1 Ghz,
1GB RAM running a Linux Debian (kernel v.2.6)
operating system (http://www.debian.org); Java SDK
1.4.2.04 (http://java.sun.com); JADE v.2.6; and ILOG
CPLEX 9.0 (http://www.ilog.com).

5.1. Artificial negotiation scenarios

In order to evaluate the agent service performance, the
time needed by iBundler to receive an RFQ from a Buyer
agent and to collect the different bids from providers is
considered of no interest. Because they depend on some
uncontrolled variables (e.g. the time needed by providers to
send their bids and the network delay). Thus, our
evaluation starts from the moment at which all the required
data (RFQ and bids) are available to the Manager agent.
We tried to simulate such an ideal situation generating
multiple data sets in separate files, each one standing for a
different input negotiation problem composed of FIPA
messages, each one containing both an RFQ and the bids
received as a response to this. In this way we can use the file
stream as if it was the incoming message stream, and
perform all the subsequent message manipulation as if the
message had been received from a socket.

Another important consideration has to do with the way
we sampled time and memory. We established checkpoints
through the process carried out by iBundler when solving a
negotiation problem. Such checkpoints partition the
process into several stages. We observed time and memory
at the beginning and at the end of these stages.

In order to automate the testing it was necessary to
develop a generator of artificial negotiation scenarios
involving multiple units of multiple items. The generator
is fed with mean and variance values for the following
parameters: number of providers participating in the
negotiation; number of bids per provider (number of bids
each provider sends to the Manager agent); number of RFQ
items (number of items to be negotiated by the Buyer
agent); number of items per bid (number of items within
each bid sent by a provider); number of units per item per
bid; and bid cost per item. In this first experimental scenario
we did not generate neither inter-item nor intra-item
constraints.

The generator starts by randomly creating a set of
winning combinatorial offers. After that, it generates the
rest of bids for the negotiation scenario employing normal
distributions based on the values set for the parameters
above. Thus, in some sense, the negotiation scenario can be
regarded as a set of winning combinatorial bids surrounded

by noisy bids (far less competitive bids). Notice that the
generator directly outputs the RFQ and bids composing an
artificial negotiation scenario in FIPA format. In this
manner, both RFQ and bids can be directly fed into
iBundler as buyers’ and providers’ agent messages.

We have analysed the performance of iBundler through a
large variety of negotiation scenarios artificially generated
by differently setting the parameters above. The data
representing each negotiation scenario are saved onto a file,
named by a string of type 4. B.C.D, where A stands for the
number of providers, B stands for the number of bids per
provider, C stands for the number of RFQ items, and D
stands for the number of items per bid. For instance,
250.20.100.20 represents the name of a data set generated
for 250 providers, 20 bids per provider, 100 RFQ items,
and 20 items per bid.

The artificial negotiation scenarios we have generated
and tested result from all the possible combinations of the
following values:

@ Number of providers: 25, 50, 75, 100;

® Number of bids per provider: 5, 10, 15, 20;
e Number of RFQ items: 5, 10, 15, 20;

e Number of items per bid: 5, 10, 25, 50.

5.2. Evaluation stages

In order to introduce the evaluation stages that we
considered, it is necessary to firstly understand how JADE
manipulates messages and ontological objects. In particu-
lar we summarise the process of sending and receiving
messages (for a complete description refer to the JADE
documentation). Fig. 8 graphically summarises the activ-
ities involved in sending and receiving messages. In the
figure, the squared boxes represent data, whereas the
rounded boxes represent processes.

JADE agents receive messages as serialised objects in
string format. JADE decodes the string into a Java class,
the ACLMessage JADE class (which represents a FIPA
ACL Message). One of these class fields is the content field,
which usually contains either the action to be performed or

\ MESSAGE RECEPTION |

Serialized
Object
(String)

CONTENT -" ntology objec
DECODING (Java class)

\ MESSAGE SENDING |

Oftology obje¢t | CONTENT ACLMessage MESSAGE seriqlized
ENCODING |7 (Java class)—* ENCODING T/ (gm;‘)

Fig. 8. Message life cycle in JADE.

http://www.debian.org
http://java.sun.com
http://www.ilog.com

A. Giovannucci et al. | Engineering Applications of Artificial Intelligence 21 (2008) 183199 195

the result of a performed action. Next, JADE extracts the
content of the message. The content is once more a string,
on which JADE needs to perform an ontology check to
decode it. As a result, a Java object representing the
ontological object is built upon the content field, guaran-
teeing that the ontological structure is not violated.

As to the dual case, i.e. when a JADE agent sends a
message, the process works the other way around. JADE
encodes the ontological object representing the commu-
nication content into a string that sets the content field of
the ACLMessage class. During this process JADE verifies
that the message content matches perfectly with an
ontology object. Once the content field is set, the agent
sends the message: the ACLMessage class is decoded into a
string that is sent through a socket.

Considering the process above, we sampled both the
time and memory use through the following stages of the
iBundler’s solving process:

o Atl: JADE decodes all the FIPA messages contained in
the data set file containing the input negotiation
problem, converting them into instances of the ACL-
Message Java class.

® Ar2: the Manager agent composes the problem by
creating an instance of the Problem Java ontology class
and setting its fields after merging the RFQ and the
collected bids.

® Ar3: the ACLMessage to be sent to the Translator
Agent is filled with the Java class representing the
Problem ontology class. At this stage an ontology check
occurs.

® Ar4: the above-mentioned ACLMessage is now encoded
by the Manager agent, and subsequently sent to the
Translator agent through a socket. Once received,
the Translator agent decodes it into an ACLMessage
class.

® At5: the Translator agent extracts from the received
message the Problem ontology class containing the RFQ
and all the collected Bids. Another ontology check is
involved in this phase.

® Ar6: this stage is devoted to the transformation of the
Problem ontology class into a matrix-based format to be
processed by the Solver component.

® At7: at this stage the Solver component solves the MIP
problem using ILOG CPLEX.

o Ar8: the output generated by Solver in matrix-based
format is decoded by the Translator agent into the
Solution ontology class.

® A19: the Translator agent fills the response message with
the Solution ontology class, encodes the corresponding
ACLMessage class, and sends it. After that, the
Manager agent decodes the message upon reception.

® Az10: the Manager agent extracts the Solution concept
from the received 4 CLMessage. The last ontology check
occurs.

® Arll: the solution is decomposed into different parts,
one per provider owning an awarded bid.

® Ar12: the solution containing the set of winning offers is
sent from the Manager agent to the Buyer agent. Note
that this object is small with respect to the original
problem since it only contains the winning bids.

5.3. Time performance

Next we show the variation in time performance per
stage by varying the different degrees of freedom available
to create an artificial negotiation scenario. In particular, we
consider the following types of negotiation scenarios:

e 100.20.100.X: the number of items contained in a single
bid varies (where X takes on the 5,10,25, and 50
values).

e 100.X.100.50: the number of bids each provider sends
varies (where X takes on the 5,10, 15, and 20 values).

® X.20.100.50: the number of providers varies (where X
takes on the 25, 50,75, and 100 values).

Fig. 9 depicts the time spent in each of the described
stages, considering different number of bids per provider.
We experimented similar trends varying the number of
items and the number of providers.® These results suggest
that the variables’ sensitivity is similar in all cases, i.e.
varying the number of items per bid, the number of providers
or the number of bids per provider leads to similar trends.
Therefore, the stages that are more time-consuming are
quite the same in every possible configuration: for instance,
stage Ar10 is always the most time-consuming, no matter
the parameter being varied. Moreover, we can observe
similar trends for the rest of stages (from Atl to Atr10).
Hence, it seems that the time distribution along the
different stages can be regarded as independent from the
parameter setting.

Fig. 10 illustrates the average percentage, over all the
performed trials, of the total time that each stage
consumes. We observe that: (1) The Arl, Ar3, Atd, Ar5,
A19, At10 stages are the most time-consuming (92% of
the total time). Since these stages involve ontology
checking and message encoding and decoding, we can
conclude that these activities are a bottle-neck. (2) The
solver time (A¢7) is almost a negligible part of the total
time. (3) Manipulating classes (stages A2, At6, At8 and
Atr11) and solving the combinatorial problem (A¢7) are not
as time-consuming as encoding and decoding messages and
ontology objects.

Fig. 11 depict the accumulated time spent on all stages
for a collection of negotiation scenarios, which we refer to
as the total time. More precisely, Fig. 11 depicts config-
urations whose total time lies between 30 and 50s. It is
conceivable to regard them as the edge values, although it

*The way in which the times varies increasing these parameters is not
linear. Anyway we did not study deeply this aspect, since the main
question for us is the difference of these times with respect to the solver
component time by itself.

196 A. Giovannucci et al. | Engineering Applications of Artificial Intelligence 21 (2008) 183—-199

Edt1
mdt2
Odt3
Odt4
W dt5
dOdt6
Wdt7
Odt8
W dt9
Edt10
Odt11
Edt12

time (sec.)

Fig. 9. Time performance.

dt11
dt10 dri2

dt3
dt9 12%

12%

dt8
~0%

dts
16%

Fig. 10. Average time per evaluation stage.

is a very arbitrary matter. Some observations follow from winner determination problem is small with respect to
analysing the figures above: agent related tasks.

e Using the solver component we can easily solve problems of
® The agent-awareness of iBundler is costly. We observe more than 2000 bids in less than 1 min, whereas the agent

that the percentage of total time employed to solve the service can handle in reasonable time less than 750 bids.

75.5.50.25
25.15.100.25
75.20.25.5
75.10.50.10
100.15.10.5
75.20.10.5
50.20.100.5
75.10.100.5
25.15.50.25
75.15.50.5
100.10.50.5
50.15.50.10
50.5.100.25
75.10.25.10
100.5.100.5
50.15.25.10
75.15.25.5
75.5.100.10
50.10.100.10
100.10.25.5
100.5.50.10
50.15.100.5
50.20.50.5

A. Giovannucci et al. | Engineering Applications of Artificial Intelligence 21 (2008) 183199
l : : : 148
| \ | | 146
| \ \ | 145
| \ \ I 143
l 1 I I 142
| \ I I 141
| \ | | 141
41
41

40

40
L 40
[139

37
37

[136
*35
[135
*34
[133
| \ \ 133
*32
: | | 131
0 10 20 30 40 50 60

Memory (Mbytes)

Total Time (sec.)

Fig. 11. Time performance for negotiation scenarios on the edge of acceptability.

SOLVER

OSOLVER
H IBUNDLER AGENCY

75.20.25.10

100.10.50.25
75.10.100.50

50.20.100.10
75.15.100.50
100.15.100.50

100.20.100.25
100.20.100.50

Fig. 12. Memory use.

o Therefore, small and medium-size negotiation scenarios 5.4. Memory use
can be soundly tackled with iBundler. Nonetheless, time

performance significantly impoverishes when handling
large-size negotiation scenarios.

197

In this case we found similar results when comparing the
Solver component with iBundler. The amount of memory

198 A. Giovannucci et al. | Engineering Applications of Artificial Intelligence 21 (2008) 183199

required in the worst case is quite the same for both cases.
The memory consumption in both cases is highly
dependent on the ontology structure. It is not surprising
that the memory peak is similar in both cases, as the
information quantity to represent is actually the same. The
biggest amount of information is used to represent all the
bids. Both Solver and JADE have to load in memory the
information representing a problem, namely an RFQ and
the received bids (the former as a Java object and the latter
as a file containing matrices). Fig. 12 compares the memory
use for the iBundler agency and Solver.

6. Conclusions

This paper describes the implementation of the iBundle-
r service, an innovative agent-aware decision support
service for negotiation scenarios that operates as a winner
determination solver for both multi-item, multi-unit
negotiations and auctions. Although the current imple-
mentation is largely inspired on the interaction with
professional buyers through the development of the
sourcing (Aberdeen Group, 2002) solution described in
Reyes-Moro et al. (2003), it is our belief that iBundler is
general enough to effectively empower agents to conduct
from simple to largely sophisticated negotiations in open
agent environments. Notice that the implementation of
iBundler contributes along two main directions. On the one
hand, we have incorporated actual-world side constraints
to the winner determination problem for CA. On the other
hand, we have realised a new ontology that accommodates
both operational constraints and attribute-value con-
straints for buying and providing agents, offering a highly
expressive bidding language.

The tests that we ran show that offering iBundler as an
agent service implies a significant time overload, while the
memory use is only slightly affected. The main cause of
such an overload is related to the encoding and the
decoding of ontological objects and messages. The message
serialisations and deserialisations, along with ontology
checkings heavily overload the system as the dimensions of
the negotiation scenario grow. We propose several actions
to alleviate this effect. Firstly, we have observed that the
main amount of information is gathered in representing
bids. Their presence in objects and messages is the foremost
cause of iBundler’s time overload. Thus, a suitable work-
around would be to use, at ontology design time, a more
synthetic bidding language, in which bids can be expressed
more concisely. For instance, introducing a preprocessing
phase in which equal (and even similar) bids are grouped,
in order to obtain a more compact representation. The
resulting ontology would generate more tractable objects.
Secondly, it would be also helpful to improve the
performances of the JADE modules devoted to the
ontology checking and serialisation processes. All in all
iBundler can satisfactorily handle small and medium-size
negotiation scenarios. Thus, although the automation of
the negotiation process with agents helps in saving time in

managing negotiations, the scalability in terms of time
response of iBundler is limited.

Acknowledgements

This work has been supported by project Web-i(2) (TIC-
2003-08763-C02-01). Andrea Giovannucci enjoys the
BEC.09.01.04/05-164 CSIC scholarship.

References

Aberdeen Group, 2002. Making e-sourcing strategic: from tactical
technology to core business strategy. Technical report, Aberdeen
Group.

Acklin, B.V., 2005. Java protege beangenerator.
page.php?id =34).

Agentcities Consortium, 2002. Demonstration documentation for check-
point 1. Technical Report Deliverable D5.4, IST-2000-28385.

Andersson, A., Tenhunen, M., Ygge, F., 2000. Integer programming for
combinatorial auction winner determination. In: Proceedings of the
Fourth International Conference on Multi-Agent Systems (ICMAS),
Boston, MA, pp. 39-46.

Bichler, M., Kalagnanam, J., 2005. Configurable offers and winner
determination in multi-attribute auctions. European Journal of
Operational Research 160 (2).

Brazier, F., van Steen, M., Wijngaards, N., 2001. On MAS scalability. In:
Proceedings of Second International Workshop on Infrastructure for
Agents, MAS, and Scalable MAS, Montreal, Canada, pp. 121-126.

Caire, G., 2002. Jade tutorial. Application-defined content languages and
ontologies. Technical report, TILAB S.p.A.

Deters, R., 2001. Scalability & multi-agent systems. In: Proceedings of
Second International Workshop on Infrastructure for Agents, MAS,
and Scalable MAS, Montreal, Canada.

Fedoruk, A., Deters, R., 2002. Improving fault-tolerance by replicating
agents. In: AAMAS °02: Proceedings of the First International Joint
Conference on Autonomous Agents and Multiagent Systems. ACM,
New York, pp. 737-744.

FIPA, Fipa. (http://www.fipa.org).

FIPA, 2003. FIPA interaction protocol library specification. Technical
Report DC00025F, Foundation for Intelligent Physical Agents.

Fujishima, Y., Leyton-Brown, K., Shoham, Y., 1999. Taming the
computational complexity of combinatorial auctions: optimal and
approximate approaches. In: Proceeding of the Sixteenth International
Joint Conference on Artificial Intelligence (IJCAI’99), pp. 548-553.

Giovannucci, A., Rodriguez-Aguilar, J.A., Reyes-Moro, A., Noria, F.X.,
Cerquides, J., 2004. Towards automated procurement via agent-aware
negotiation support. In: Third International Joint Conference on
Autonomous Agents and Multiagent Systems, New York.

Hohner, G., Rich, J., Ng, E., Reid, G., Davenport, A.J., Kalagnanam,
J.R., Lee, H.S., An, C., 2003. Combinatorial and quantity-discount
procurement auctions benefit mars, incorporated and its suppliers.
Interface 33 (1), 23-35.

Holte, R.C., 2001. Combinatorial auctions, knapsack problems, and hill-
climbing search. In: Lecture Notes in Computer Science, vol. 2056.
Springer, Heidelberg.

Hoos, H.H., Boutilier, C., 2000. Solving combinatorial auctions using
stochastic local search. In: Proceedings of AAAI-2000.

Jarrar, M., Meersman, R., 2002. Scalability and knowledge reusability in
ontology modeling. In: Milutinovic, V. (Ed.), Proceedings of the
International conference on Infrastructure for e-Business, e-Education,
e-Science, and e-Medicine, vol. SSGRR2002s. SSGRR education
center, Rome, Italy.

Kahn, M.L., Della Torre Cicalese, C., 2003. COABS grid scalability
experiments. Autonomous Agents and Multi-Agent Systems 7 (1-2),
171-178.

(http://acklin.nl/

http://acklin.nl/page.php?id34
http://acklin.nl/page.php?id34
http://www.fipa.org

A. Giovannucci et al. | Engineering Applications of Artificial Intelligence 21 (2008) 183199 199

Kalagnanam, J., Parkes, D.C., 2004. Auctions, bidding, and exchange
design. In: Handbook of Quantitative Supply Chain Analysis:
Modeling in the E-Business Era. Dordrecht, D. Simchi-Levi, Wu,
Shen (Eds.), Kluwer Academic Publishers.

Kelly, F., Steinberg, R., 2000. A combinatorial auction with multiple
winners for universal service. Management Science 46, 586—596.

Klein, M., Rodriguez-Aguilar, J., Dellarocas, C., 2003. Using domain-
independent exception handling services to enable robust open
multi-agent systems: the case of agent death. Autonomous Agents
and Multi-Agent Systems 7 (1-2), 179-189.

Makhorin, A., 2001. Glpk—gnu linear programming toolkit. (http://
www.gnu.org/directory/GNU/glpk.html).

Odell, J., van Dyke Parunak, H., Bauer, B., 2000. Extending UML for
agents. In: Proceedings of the Agent-Oriented Information Systems
Workshop, Austin, TX. Seventeenth National Conference on Artificial
Intelligence, pp. 3-17.

OMG and FIPA standardisation for agent technology: competition or
convergence? 1999. (http://www.cordis.lu/infowin/acts/analysys/products/
thematic/agents/ch2/ch2.htm).

Protege, 2005. Protege 2000. (http://protege.stanford.edu).

Reyes-Moro, A., Rodriguez-Aguilar, J.A., Lopez-Sanchez, M., Cerquides, J.,
Gutiérrez-Magallanes, D., 2003. Embedding decision support in e-sourcing
tools: quotes, a case study. Group Decision and Negotiation 12, 347-355.

Rothkopt, M.H., Pekec, A., Harstad, R.M., 1995. Computationally manage-
able combinatorial auctions. Management Science 8 (44), 1131-11147.

Sandholm, T.W., 2002a. Algorithm for optimal winner determination in
combinatorial auctions. Artificial Intelligence 135, 1-54.

Sandholm, T.W., 2002b. emediator: a next generation electronic
commerce server. Computational Intelligence 18 (4), 656-676 (special
issue on agent technology for electronic commerce).

Sandholm, T.W., Suri, S., 2001. Side constraints and non-price attributes
in markets. In: International Joint Conference on Artificial Intelligence
(IJCAI), Seattle, WA. Workshop on Distributed Constraint Reasoning.

Sandholm, T.W., Suri, S., Gilpin, A., Levine, D., 2002. Winner
determination in combinatorial auction generalizations. In: First
Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS’02), Bologna, Italy, pp. 69-76.

Tamma, V., 2003. An experience in using ontologies for automated
negotiation. In: Presentation at the Agentcities Information Day 4.
Tamma, V., Wooldridge, M., Dickinson, I., 2002. An ontology for
automated negotiation. In: First Joint Conference on Autonomous

Agents and Multiagent Systems (AAMAS’02), Bologna, Italy.

TILAB, 2005. Jade, the java agent development framework. (http://
jade.tilab.com).

Wache, H., Serafini, L., Garcia-Castro, R., 2004. D2.1.1 survey of
scalability techniques for reasoning with ontologies. Technical report,
Knowledge Web.

Yoo, M.-J., 2002. An industrial application of agents for dynamic
planning and scheduling. In: AAMAS ’02: Proceedings of the First
International Joint Conference on Autonomous Agents and Multia-
gent Systems, ACM, New York, pp. 264-271.

Zurel, E., Nissam, N., 2001. An efficient approximate allocation algorithm
for combinatorial auctions. In: Proceedings of the ACM Conference
on Electronic Commerce, Tampa, Florida.

http://www.gnu.org/directory/GNU/glpk.html
http://www.gnu.org/directory/GNU/glpk.html
http://www.cordis.lu/infowin/acts/analysys/products/thematic/agents/ch2/ch2.htm
http://www.cordis.lu/infowin/acts/analysys/products/thematic/agents/ch2/ch2.htm
http://protege.stanford.edu
http://jade.tilab.com
http://jade.tilab.com

	Enacting agent-based services for automated procurement
	Introduction
	Market scenario
	Formal model
	Implementation
	Winner determination
	Architecture
	Interaction protocol
	Ontology

	On the cost of agent-awareness
	Artificial negotiation scenarios
	Evaluation stages
	Time performance
	Memory use

	Conclusions
	Acknowledgements
	References

