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Abstract

T-norm based fuzzy logics are usu-
ally considered as truth preserving,
that is, taking 1 as the only truth
value to be preserved in inferences.
In this paper we study t-norm based
fuzzy logics preserving degrees of
truth, that is, preserving the lower
bounds of the truth degrees of the
premises. These logics are axiom-
atizable by using a restricted form
of Modus Ponens together with the
rule of Adjunction for ∧ and their
properties turn out to be very difer-
ent from the ones satisfied by the
truth preserving logics. For instance,
they are selfextensional (but not
Fregean) and with few exceptions
they are not algebraizable (not even
protoalgebraic).

Keywords: many-valued logics,
residuated lattices, protoalgebraic
logics, substructural logics

1 Introduction

From the algebraic semantics point of view,
most of the fuzzy (and substructural) log-
ics studied in the literature given by distin-
guished subvarieties K of the variety RL of
residuated lattices1 (like those of BL, MV,
MTL, Heyting algebras, etc.) are defined by
taking 1 (the maximum of any algebra of a

1In this paper we assume a residuated lattice to be
bounded, commutative and integral.

given variety) as the only truth value to be
preserved by inference, in the sense of yield-
ing valid consequences from valid premises.
We will refer to them as truth preserving logics
and will denote them by `K. Truth preserving
logics `K are algebraizable in the sense of Blok
and Pigozzi [2], and thus there is a nice cor-
respondence between varieties of residuated
lattices and axiomatic extensions of Höhle’s
Monoidal Logic ML (or Ono’s FLew), i.e., the
truth preserving logic of residuated lattices.

The intended role played above by residuated
lattices corresponds to truth-value structures,
but indeed truth preserving logics do not take
full advantage of being many-valued, as they
only focus on the truth value 1 (the truth)
and not on other intermediate truth values. A
possible way to circumvent this inconvenience
while keeping the truth preserving framework
is to introduce truth-constants into the lan-
guage. Actually, in this way the expanded
language allows one to have formulas of the
kind r → ϕ which, when evaluated to 1, ex-
press that the truth value of ϕ is greater or
equal than r. This methodology actually goes
back to Pavelka [21] where he built a proposi-
tional many-valued logic which turned out to
be equivalent to the expansion of  Lukasiewicz
logic by adding a truth constant r for each real
r ∈ [0, 1] into the language, together with a
number of additional axioms. This logic was
further developed by Nóvak [19] and Hájek
[17], and more recently a similar approach has
been applied in [8, 10] to study the expan-
sions with truth constants of other fuzzy log-
ics including Gödel, Product, Nilpotent Mini-
mum logics as well as other continuous t-norm
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based logics. All these expansions, like the
truth preserving logics `K, have been shown
to be algebraizable.

In this paper, following the approach initiated
in [13] for the particular case of  Lukasiewicz
logic, we aim at going beyond the truth pre-
serving framework in order to exploit many-
valuedness by focussing on the notion of infer-
ence |=6

K which results from preserving lower
bounds of truth values, and hence not only
preserving the value 1. In this setting the lan-
guage remains the same as in truth preserving
logics `K, but what changes is the inference
relation. This kind of inference corresponds to
the so-called logics preserving degrees of truth,
discussed at length in [11, 13, 20], and follows
a very general pattern which could be consid-
ered for any class of truth structures endowed
with an ordering relation.2

Notation: Throughout the paper we fix the
following propositional (algebraic) language
L = 〈∧ ,∨, ? ,→ , 1 , 0〉 with connectives of
arity 〈2, 2, 2, 2, 0, 0〉. We will use the nota-
tion ϕn to denote ϕ ? n. . . ? ϕ. Operations
interpreted in a specific algebra will be de-
noted with the same symbol. Fm will de-
note the formula algebra (of this similarity
type), and Fm its universe. If A is an algebra,
Hom(Fm,A) will denote the set of all homo-
morphisms from Fm to A, in other words,
the set of evaluations of formulas in the al-
gebra A, and CoA will denote the set of all
congruences of A.

2 Definitions, basic properties and
axiomatization

In this section we will consider for each vari-
ety K of residuated lattices, two logics: the
truth preserving one (the most studied in
fuzzy logic) and the truth degree preserving
one (the one that the paper deals with). Fol-
lowing modern algebraic logic literature (see
for instance [5, 15, 23]), in this paper we iden-
tify a logic L with its consequence relation,
which can be denoted as `L or similar sym-

2The proofs of the theorems stated in this paper
will appear in a more extended paper under prepara-
tion [3].

bols. This is a relation `L ⊆ P (Fm) × Fm,
and we use the common relational notation
and write Γ `L ϕ which is to be interpreted
as “ϕ follows from Γ in the logic L”.

Traditionally, the substructural (fuzzy) logic
associated in the literature with each subvari-
ety K of RL is the logic `K which will be called
the logic that preserves truth with re-
spect to the class K (where truth is repre-
sented by the constant 1). This logic has K as
its algebraic counterpart; more precisely, `K

is a (finitely and regularly) algebraizable logic
having K as its equivalent algebraic semantics,
with defining equation3 x≈1 and equivalence
formula x ↔ y := (x→ y) ? (y → x). From
this it follows that `K is the (finitary) logic
determined by the two clauses

(i) ϕ0, . . . , ϕn−1 `K ψ ⇐⇒
K |= ϕ0 ≈ 1 & . . . & ϕn−1 ≈ 1 ⇒ ψ ≈ 1,

(ii) ∅ `K ψ ⇐⇒ K |= ψ ≈ 1,

where the symbol |=, when written without
any sub- or superscript, stands for first-order
(or quasiequational) satisfaction, and & and
⇒ are the symbols for first-order conjunction
and implication; the first clause amounts to
saying that

ϕ0, . . . , ϕn−1 `K ψ ⇐⇒
∀A ∈ K ,∀v ∈ Hom(Fm,A) ,
if v(ϕi) = 1 for all i < n, then v(ψ) = 1.

Following the discussion in the introduction,
we associate with each subvariety K of RL an-
other logic, which will be our main object of
study:

Definition 2.1. The logic |=6
K , which we call

the logic that preserves degrees of truth
with respect to K, is defined as follows, for
Γ ∪ {ψ} ⊆ Fm:

1. For Γ = {ϕ0, . . . , ϕn−1}, n > 1,
ϕ0, . . . , ϕn−1 |=6

K ψ ⇐⇒
∀A ∈ K ,∀v ∈ Hom(Fm,A) ,∀a ∈ A ,
if v(ϕi) > a for all i < n then v(ψ) > a.
3We will use the notation x ≈ y for equations and

x 4 y will stand for x ∧ y ≈ x.
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2. ∅ |=6
K ϕ when for all A ∈ K, for all v ∈

Hom(Fm,A), v(ϕ) = 1.

3. For an infinite Γ ⊆ Fm, Γ |=6
K ψ when

there exist ϕ0, . . . , ϕn−1 ∈ Γ such that
ϕ0, . . . , ϕn−1 |=6

K ψ

It is obvious that this definition actually
yields a finitary logic, that is, a finitary conse-
quence relation on the set of formulas. It also
follows from clauses 3 and 1 that |=6

K really
preserves degrees of truth with respect to K,
that is, it satisfies, for all Γ ∪ {ψ} ⊆ Fm,

Γ |=6
K ψ =⇒

∀A ∈ K ,∀v ∈ Hom(Fm,A) ,∀a ∈ A ,
if v(γ) > a for all γ ∈ Γ then v(ψ) > a.

When the set of premises is finite, it is easy to
show that |=6

K admits the following equivalent
expressions.

Lemma 2.2. If {ϕ0, . . . , ϕn−1, ψ} ⊆ Fm
then then relation ϕ0, . . . , ϕn−1 |=6

K ψ is
equivalent to each one of the following state-
ments:

• ϕ0 ∧ · · · ∧ ϕn−1 |=6
K ψ.

• K |= ϕ0 ∧ · · · ∧ ϕn−1 4 ψ.

The logics `K and |=6
K have a quite different

behaviour but, of course, they also have some
tight relations, as described next. Indeed, as a
consequence of Definition 2.1 and Lemma 2.2,
if {ϕ0, . . . , ϕn−1, ψ} ⊆ Fm then the following
equivalences hold:

• ∅ |=6
K ϕ ⇐⇒ ∅ `K ϕ

• ϕ0, . . . , ϕn−1 |=6
K ψ ⇐⇒

∅ `K ϕ0 ∧ · · · ∧ ϕn−1 → ψ .

Hence the two logics have the same theorems
(or tautologies), and furthermore |=6

K is deter-
mined by the theorems of `K.

As an immediate consequence of this relation-
ship we obtain the following relations between
the two logics:

• ϕ =||=6
K ψ ⇐⇒ `K ϕ↔ ψ ,

• the logic `K is an extension of the logic
|=6

K .

This extension is in general strict as one can
easily notice, e.g., ϕ `K ϕ ? ϕ trivally holds,
while in general ϕ 6|=6

K ϕ ? ϕ.

Next we will obtain a Hilbert style axioma-
tization of the logic |=6

K . For each variety K
of residuated lattices, we denote by TAUT (K)
the set of tautologies (theorems) of `K, which
is also the set of tautologies (theorems) of
|=6

K . This set of formulas is semantically de-
termined ( by ϕ ≈ 1 true in K) and does not
depend on any particular axiomatization of
`K. Actually, it is known that `K can be ax-
iomatized by taking all formulas in TAUT (K)
as axioms and the sole rule of Modus Ponens.

Formally, we take an inference rule to be any
set of pairs 〈Γ , ϕ〉 where Γ is a finite set of
formulas. In order to exhibit an axiomatiza-
tion of the logic |=6

K we consider the following
two rules of inference:

(Adj-∧)
{〈{ϕ,ψ} , ϕ ∧ ψ〉

: ϕ,ψ ∈ Fm}
.

(MP-r)
{〈{ϕ,ϕ→ ψ} , ψ〉

: ϕ,ψ ∈ Fm and
ϕ→ ψ ∈ TAUT (K)

}
.

Notice that the rule (MP-r), a restricted form
of Modus Ponens, can be applied only when
the premise of the form ϕ → ψ belongs to
TAUT (K), that is, it is a tautology of `K.

Theorem 2.3 (Completeness). The logic |=6
K

is the logic defined by the axiomatic system
having all the formulas in TAUT (K) as ax-
ioms, and the rules (Adj-∧) and (MP-r) as
rules of inference.

Given an axiomatic presentation for `K that
uses some axioms AX(K) and only the ordi-
nary rule of Modus Ponens

{〈{ϕ,ϕ→ψ} , ψ〉
:

ϕ ,ψ ∈ Fm
}

, the set AX(K) can replace the
set TAUT (K) as the set of axioms of `6

K . This
is so because each application of Modus Po-
nens in a proof of a theorem of `K will in
fact be an application of (MP-r), therefore the
same proof will be a proof in `6

K . This is the
case for many varieties of t-norm-based log-
ics such as BL, MTL, MV, Product, Gödel,
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WNM or the variety generated by any finite
family of continuous t-norms.

As regards to filters, it is well known that the
filters Fi`K

(A) of the truth preserving logic
`K over an algebra A ∈ K are the implica-
tive filters of A, i.e., those lattice filters closed
under modus ponens. On the other hand, it
can be shown that the filters Fi|=6

K
(A) of the

logic preserving degrees of truth |=6
K over A

are just the lattice filters of A. Formally, this
implies the following proposition such that
Γ |=〈A,F 〉 ϕ holds by definition iff for all
v ∈ Hom(Fm,A), if v(γ) ∈ F for all γ ∈ Γ ,
then v(ϕ) ∈ F .

Proposition 2.4. The logic |=6
K is the in-

tersection of the logics |=〈A,F 〉 where A ∈
K and F is a lattice filter of A.

Let K be a variety of residuated lattices, A ∈
K, and let F ⊆ A be a non-empty order filter
(or increasing subset). Then recall that the
following conditions are equivalent: 1. F is
an implicative filter. 2. F is closed under ?.
3. F is a lattice filter such that for all a ∈ A,
if a ∈ F then a2 = a ? a ∈ F .

Since both logics are defined from the class
K, they are characterized by their filters on
the algebras in K. Therefore, using the above
equivalent conditions, we have the following
characterization of `K in terms of |=6

K .

Corollary 2.5. `K is the extension of |=6
K ob-

tained by adding to it any one of the following
rules:

(MP) ϕ ,ϕ→ ψ ` ψ.

(Adj?) ϕ ,ψ ` ϕ ? ψ.

(square-closing) ϕ ` ϕ2.

After the axiomatic presentation found for
|=6

K in Theorem 2.3, this Corollary can also
be (informally) read as saying that |=6

K is
obtained from `K by weakening the rules of
Modus Ponens and Adjunction, namely, re-
stricting the rule of Modus Ponens and re-
placing Adjunction for ? by Adjunction for ∧.

3 Classification in the hierarchies
of abstract algebraic logic

In this section we investigate the location of
the logic |=6

K inside the two general hierarchies
of logics considered in abstract algebraic logic,
the Frege hierarchy and the Leibniz hier-
archy ; see [12, 15] for more details on the
hierarchies. The Frege hierarchy is organized,
so to speak, around the kind of replacement
properties of the logic, while the Leibniz hi-
erarchy is organized around properties of the
so-called Leibniz operator on the filters of the
logic.

The basic, largest class in the Frege hierar-
chy is that of selfextensional logics [23],
which are the logics L whose interderivability
relation a`L is a congruence of the formula
algebra. This means that L satisfies the fol-
lowing weak form of the replacement property :
for any α, β, ϕ(x, ~y) ∈ Fm,

if α a`L β
then ϕ(α, ~y) a`L ϕ(β, ~y).

It turns out that all our logics belong to this
class:

Proposition 3.1. For each variety K of
residuated lattices, the consequence relation
|=6

K is selfextensional.

A smaller class in this hierarchy is that of
Fregean logics. A logic L is Fregean when for
each theory T of L, the interderivability rela-
tion of L modulo T is a congruence of Fm.
This corresponds to the following strong form
of the replacement property : for any theory T
of L, any α, β, ϕ(x, ~y) ∈ Fm,

if T, α `L β and T, β `L α

then T, ϕ(α, ~y) `L ϕ(β, ~y).

Fregean logics were introduced in [14, 22], and
have been extensively studied in the context
of protoalgebraic logics in [6, 7], see also [5].

Proposition 3.2. Let K be a variety of resid-
uated lattices. Then the following conditions
are equivalent:

1. The logic |=6
K is Fregean.
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2. K is a variety of Heyting algebras.

Thus, as far as the Frege hierarchy is con-
cerned, our class of (selfextensional) logics is
divided into two groups: those generated by a
class of Heyting algebras, which are Fregean,
and the rest, which are not.

Now we focus our attention on the Leibniz
hierarchy. This hierarchy is much richer and
more complex than the Fregean one, and most
of its classes can be defined or characterized in
several ways, although the majority of them
concern several properties of the Leibniz op-
erator . This operator corresponds to the
mapping F 7−→ ΩAF restricted to the set of
all L-filters on a fixed algebra A, where ΩAF ,
called the Leibniz congruence, is the largest
of all the congruences of A that are compati-
ble with F in the sense that they do not relate
elements inside F with elements outside F ,
that is, ΩAF = max{θ ∈ CoA : if 〈a, b〉 ∈ θ
and a ∈ F then b ∈ F}. It can be shown [2]
that such congruence always exists and can
be characterized syntactically.

The largest class of logics in the Leibniz hier-
archy is the class of protoalgebraic logics.
They can be defined in a number of equiva-
lent ways. We first consider them as the logics
such that the monotonicity condition

if G ⊆ F then ΩAG ⊆ ΩAF (M)

holds for every algebra A and every pair of
filters F,G of the logic over A.

It has been shown in [13, Theorem 3.11]
that condition (M) fails in the variety of
MV-algebras, and hence |=6

MV, the logic
which preserves degrees of truth associated
to  Lukasiewicz’s infinite-valued logic, is non-
protoalgebraic. Another argument shows that
(M) fails in the product algebra associated
with the negative cone of the linearly lexi-
cographically ordered abelian group Z ×l Z
(see [4]). This last fact proves that |=6

Π , the
logic which preserves degrees of truth associ-
ated to Product logic, is non-protoalgebraic
as well.

It is obvious that non-protoalgebraic logics
must always yield instances of algebras and

filters where (M) fails. However, in our opin-
ion this is not the best strategy to prove non-
protoalgebraicity. The difficulty is that there
are varieties (e.g. MV and Π) where the Leib-
niz operator is monotonic over lattice filters
in a generator of the variety (e.g., when the
generator is a simple algebra) while there are
other algebras in the variety where the mono-
tonicity fails. Next we provide an equational
characterization of protoalgebraicity that has
the advantatge that it is enough to check it in
the algebras generating the variety. The proof
relies on another general method of character-
izing the protoalgebraicity of |=6

K : the exis-
tence of a set of formulas ∆(x, y) in two vari-
ables such that

∅ |=6
K ∆(x, x) and x,∆(x, y) |=6

K y. (P)

Since |=6
K is finitary and conjunctive (in the

sense of Lemma 2.2), the set ∆(x, y) can ac-
tually be reduced to just one formula δ(x, y).
We are going to see that we can always take
(x→ y)n ? (y→ x)n, for some n ∈ ω, as the
formula δ(x, y). Notice that in general there
is no uniqueness, up to equivalence in |=6

K ,
of the formula δ(x, y) satisfying (P); for in-
stance, for classical propositional logic we can
consider either the formula x→ y or the for-
mula x ↔ y, which are not equivalent in this
logic. In the next result and the following
ones, note that for terms ϕ,ψ, the expression
ϕ 4 ψ is, on a lattice, actually equivalent to
an equation.

Consider the variety Protn ⊆ RL defined by
the equation:

x ∧ (
(x→ y)n ? (y→ x)n

)
4 y (Protn)

Next we state some equivalent presentations.

Theorem 3.3. If n > 1, any of the following
equations can replace (Protn) in the definition
of the variety Protn inside RL:

x ∧ yn ≈ x ? yn (SCn)

x ∧ (x→ y)n 4 y (MPn)

x ∧ (x→ y)n ∧ (y→ x)n 4 y (SMPn)

The significance of the family of classes Protn
lies in the following important result:
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Theorem 3.4. Let K be a variety of resid-
uated lattices. Then the following conditions
are equivalent:

1. The logic |=6
K is protoalgebraic.

2. There is an n ∈ ω such that K satisfies the
equation x∧ (

(x→y)n ? (y→x)n
)
4y, that

is, such that K ⊆ Protn.

Let us consider the following equations

x ∨ (¬xn)≈ 1 (EMn)

xn ∧ yn ≈ xn ? yn (IMCn)

xn ≈ xn+1 (En)

The varieties of residuated lattices given by
these equations will be denoted, respectively,
by EMn, IMCn and En. The varieties EMn and
En have been widely considered in the litera-
ture, see [16, Chapter 11], as the variety gen-
erated by the simple n-contractive residuated
lattices and as the variety of the n-contractive
residuated lattices. The other names have
been chosen so as to follow the associations
SC: “Strong Contraction”, MP: “Modus Po-
nens”, SMP: “Symmetric Modus Ponens”,
Prot: “Protoalgebraic”, and IMC: “Idempo-
tent Meet Contraction” (cf. Lemma 3.5).

It is straightforward to check that for every
K ∈ {EM,Prot, IMC,E}, if n 6 m then Kn ⊆
Km. Moreover, for n = 0 all previous classes
coincide with the variety that has only the
trivial algebra, except in the case of SC, where
SC0 = RL. For n = 1 it is not difficult to show
that EM1 is the class of Boolean algebras and
that Prot1 = IMC1 = E1 is the class of Heyting
algebras.

It is well known that in every residuated lat-
tice the set of idempotent elements of A is
closed under join, and that in general this is
not the case for meet, as Example 4 in [9]
proves. However, it is easy to show:

Lemma 3.5. If A ∈ En, then the following
conditions are equivalent:

1. A |= xn ∧ yn ≈ xn ? yn.

2. A |= xn ∧ yn ≈ (x ∧ y)n.

3. The set of idempotent elements of A is
closed under meet.

Therefore the variety IMCn could also be in-
troduced using (En) together with any of the
conditions stated in the previous lemma. It
is obvious that in all MTL algebras the set
of idempotent elements is closed under meet,
but notice that the class of residuated lattices
with this property is strictly bigger than MTL,
as witnessed for instance by Example 5 in [9].

Theorem 3.3 allows to show that Protn ⊆ En.
However we can do better:

Lemma 3.6. Let n > 1. Then, EMn ⊆
Protn ⊆ IMCn ⊆ En.

In the next result we establish, among several
things, that the inclusions are proper. There,
the term “ordinal sum” is used in the sense
of linearly ordered semihoops; see [1, 18]. By
MTL and BL we denote the classes of MTL
algebras and of BL algebras, respectively.

Theorem 3.7. Let n > 2.

1. The equations (Protn), (IMCn) and (En),
and their equivalents, are preserved under
the operation of ordinal sums, while (EMn)
is not.

2. EMn  Protn  IMCn  En.

3. MTL ∩ EMn  MTL ∩ Protn  MTL ∩
IMCn = MTL ∩ En.

4. BL ∩ EMn  BL ∩ Protn = BL ∩ En.

5. If A is an MTL chain, then A ∈ Protn if
and only if A is an ordinal sum of simple
n-contractive MTL chains.

We note that the restriction to chains in The-
orem 3.7 is unavoidable. This necessity is wit-
nessed for instance by the algebra given in [9,
Example 5], since it is in Prot2 but it is not
an ordinal sum of simple n-contractive ones.

As a consequence of Theorem 3.7 we have that

1. If K is a variety of residuated lattices such
that |=6

K is protoalgebraic then there ex-
ists an n ∈ ω such that K ⊆ En. In par-
ticular, it follows that if K is any of the
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varieties MV,Π,BL,MTL or RL then |=6
K is

non-protoalgebraic.

2. If K is a variety of residuated lattices such
that |=6

K is protoalgebraic then in all alge-
bras of K the set of idempotent elements is
closed under meet.

3. If K ⊆ MTL, then the logic |=6
K is pro-

toalgebraic if and only if there exists a
natural n such that all chains in K are
ordinal sums (as semihoops) of simple n-
contractive MTL chains (i.e., such that
K ⊆ Ω(MTL ∩ EMn) where Ω is the op-
erator used in [18]). Notice that not all
finite MTL chains define a protoalgebraic
logic; for instance, the nilpotent minimum
chain N4 with four elements does not.

4. If K ⊆ BL, then the logic |=6
K is protoalge-

braic if and only if there exists a natural n
such that K ⊆ En. In particular any finite
BL chain defines a protoalgebraic logic.

5. If K is the variety generated by a family
of continous t-norms, then K defines a pro-
toalgebraic logic if and only if K is the va-
riety of Gödel algebras (which is, in fact
algebraizable).

6. The equation (Protn) (and its equiva-
lent forms) gives a characterization of or-
dinal sums (as semihoops) of simple n-
contractive MTL chains that is alternative
(possibly simpler) than the one stated in
[18, Prop. 4.24]. In this paper these ordi-
nal sums were characterized using (both)
equations xn ≈ xn+1 and (yn → x) ∨ (

x→
(x ? y)

)≈ 1.

Now we investigate when the logics preserving
degrees of truth are equivalential. By defini-
tion |=6

K is equivalential when there is a set
of formulas E(x, y) in two variables satisfying
the condition (P) and the condition

E(x, y) ∪ E(z, w) |=6
K E(x ◦ z, y ◦ w) (E)

where ◦ ∈ {?,∧,∨,→}. Unlike in the case
of protoalgebraic logics, in equivalential logics
the set E(x, y) is unique up to equivalence. In
our case, since |=6

K is finitary and conjunctive,

if E(x, y) is finite we can assume it to be just
one formula ε(x, y).

Theorem 3.8. Let K be a variety of residu-
ated lattices and let n > 1. Then the following
conditions are equivalent:

1. K ⊆ Protn.

2. For every algebra A and every F ∈
Fi|=6

K
(A) , ΩAF =

{〈a, b〉 ∈ A× A : (a↔
b)n ∈ F}

.

3. The logic |=6
K is equivalential, with

ε(x, y) := (x↔ y)n.

Taking into account that Protn ⊆ En, we have:

Corollary 3.9. Let K be a variety of resid-
uated lattices. Then the following conditions
are equivalent:

1. The logic |=6
K is protoalgebraic.

2. For every algebra A and F ∈ Fi|=6
K

(A) it
holds that ΩAF = {〈a, b〉 ∈ A × A : (a ↔
b)n ∈ F for every n ∈ ω}.

3. The logic |=6
K is equivalential.

Finally, it is interesting to notice that all log-
ics |=6

K preserving degrees of truth are selfex-
tensional, and all logics `K preserving truth
are algebraizable. In the next result we also
see that these properties “separate” the two
groups: a logic in one group cannot have the
characteristic property of the other group un-
less it actually belongs to it.

Theorem 3.10. Let K be a variety of resid-
uated lattices. Then the following conditions
are equivalent:

1. The logic |=6
K is algebraizable.

2. |=6
K = `K.

3. The logic `K is selfextensional.

4. K is a variety of Heyting algebras, i.e., K ⊆
Prot1.
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