
Heuristic Supervised Approach

for Record Linkage

Javier Murillo1, Daniel Abril2,3, and Vicenç Torra3
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Abstract. Record linkage is a well known technique used to link records
from one database to records from another database which make refer-
ence to the same individuals. Although it is usually used in database
integration, it is also used in the data privacy field for the disclosure risk
evaluation of protected datasets. In this paper we compare two differ-
ent supervised algorithms which rely on distance-based record linkage
techniques, specifically using the Choquet integral’s fuzzy integral to
compute the distance between records. The first approach uses a linear
optimization problem which determines the optimal fuzzy measure for
the linkage. While, the second approach is a kind of gradient algorithm
with constraints for the fuzzy measures’ identification. We show the ad-
vantages and drawbacks of both algorithms and also in which situations
they will work better.

Keywords: Fuzzy measure, Choquet integral, Record linkage, Heuris-
tic, Optimization.

1 Introduction

Record Linkage is the task of identifying records from different databases (or
data sources in general) that refers to the same entity. This technique was firstly
used for database integration in [14] and further developed in [24,16], and it is
nowadays a popular technique used by statistical agencies, research communities,
and corporations. The main applications of record linkage are database and
datasets integration [1,10,29,30], data cleaning and quality control [5,31]. An
example of the last application is the detection of duplicate records between
several datasets [15]. However, more recently, in the context of data privacy [21],
record linkage has emerged as an important technique to evaluate the disclosure
risk of protected data [26,32]. By identifying the links between the protected
dataset and the original one, we can evaluate the re-identification risk of the
protected data [12].

Among record linkage approaches we have focused on those based on a
distance function between records, that is, it links records by their closeness.
There are previous works [28,4,3] that have considered the use of different
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parameterized distances together with a supervised learning approach. This
supervised approach relies on an optimization problem which finds the best com-
bination of distance’s parameters in order to maximize the number of correct
re-identifications. In this paper we compare two different supervised learning
approaches relying on distance-based record linkage for data privacy which are
based on the Choquet integral [9,27]. Both supervised approaches allow the use
of a fuzzy measure to weight the attributes in the datasets. However, one is
based on an adaptation of the gradient descent algorithm proposed by Grabisch
in [17] and the other is based on a linear optimization problem [2]. That means
that the first one will find the parameters of a local minimum in a reasonable
time, while the other approach will find the optimal parameters that give the
maximum number of re-identifications. The goal of this comparison is to analyse
if the Grabisch heuristic method can achieve similar results than the optimiza-
tion problem. These results are based on the number of correct linkages between
the records from two databases, the computational time needed and whether
weights are much fitted for the training set, producing overfitting.

The paper is organized as follows. Section 2 introduces the record linkage
techniques in the data privacy context. In Section 3 we define both supervised
approaches that are compared. Section 4 shows the results of the comparison
taking into account all the factors mentioned. Finally, Section 5 concludes the
paper and present the future work.

2 Record Linkage in Data Privacy

In data privacy, record linkage can be used to re-identify individuals from a
protected dataset. It serves as an evaluation of the protection method used by
modeling the possible attack to be performed on the protected dataset.

A dataset X can be viewed as a matrix with N rows (records) and V columns
(attributes), where each row refers to a single individual. The attributes in a
dataset can be classified, depending on their capability to identify unique indi-
viduals, as follows:

– Identifiers : attributes that can be used to identify the individual unambigu-
ously. A typical example of identifier is the passport number.

– Quasi-identifiers : attributes that are not able to identify a single individ-
ual when they are used alone. However, when combining several quasi-
identifier attributes, they can unequivocally identify an individual. Among
the quasi-identifier attributes, we distinguish between confidential (Xc) and
non-confidential (Xnc), depending on the kind of information that they pro-
vide. An example of non-confidential quasi-identifier attribute would be the
zip code, while a confidential quasi-identifier might be the salary.

Before releasing the data, a protection method ρ is applied, leading to a pro-
tected dataset X ′. This protection method will protect the non-confidential
quasi-identifiers X ′nc = ρ(Xnc). However, to ensure the privacy, identifiers are
either remover or encrypted. The confidential quasi-identifiers are not modified
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because they are interesting for third parties. Therefore, the protected dataset,
X ′ = X ′nc||Xc can be published and made available. This scenario, which was
first used in [12] to compare several protection methods, has also been adopted
in other works like [26].

In data privacy, record linkage can be used to re-identify individuals between
the protected dataset and a part or the whole original dataset as an evaluator of
disclosure risk. There are two main approaches of record linkage. The Proba-
bilistic record linkage (PRL) [20] and the Distance-based record linkage
(DBRL) [25], which links each record a to the closest record in b, by means of
a distance function. Both approaches have been used extensively in the area of
data privacy to evaluate the disclosure risk of protected data. Nevertheless, the
work in this paper is focused on distance-based record linkage, specifically using
the Choquet integral as a distance. This is further described in the next section.

2.1 Record Linkage Based on the Choquet Integral

The main point of distance-based record linkage is the definition of a distance.
In this paper we consider the parametrization of distance-based record linkage.
This distance parameterization allows us to weight data attributes in order to
express the importance of the variables in the linkage process.

It is well known that the multiplication of the Euclidean distance by a constant
will not change the results of any record linkage algorithm. Due to this, we
can express the Euclidean distance used for attribute-standardized data as a
weighted mean of the distances for the attributes.

We will use V X
1 , . . . , V X

n and V Y
1 , . . . , V Y

n to denote the set of variables of file
X and Y , respectively. Using this notation, we express the values of each variable
of a record a in X as a = (V X

1 (a), . . . , V X
n (a)) and of a record b in Y as b =

(V Y
1 (b), . . . , V Y

n (b)). V X
i corresponds to the mean of the values of variable V X

i .
In a formal way, we redefine the Euclidean distance as follows,

d
2
(a, b) =

n∑

i=1

1

n

(
V X
i (a)− V X

i

σ(V X
i )

− V Y
i (b)− V Y

i

σ(V Y
i )

)2

In addition, we will refer to each squared term of this distance as,

d2
i (a, b) =

(
V X
i (a)− V X

i(a)

σ(V X
i )

− V Y
i (b) − V Y

i(b)

σ(V Y
i )

)2

Using these expressions we can define the squared of the Euclidean distance as
follows.

Definition 1. Given two datasets X and Y the square of the Euclidean distance
for attribute-standardized data is defined by:

d2AM(a, b) = AM(d21(a, b), . . . , d
2
n(a, b)),

where AM is the arithmetic mean AM(c1, . . . , cn) =
∑

i ci/n.

In general, any aggregation operator C [27] might be used in the place of arith-
metic mean. So, we can consider the following generic distance.
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d2C(a, b) = C(d21(a, b), . . . , d
2
n(a, b))

From this definition, it is straightforward to consider weighted versions of the
Euclidean distance. In this case we have focused on fuzzy measures of the Cho-
quet integral, these permit us to represent, in the computation of the distance,
information like redundancy, complementariness, and interactions among the
variables, which are not used in other parametrized distances. Therefore, tools
that use fuzzy measures to represent background knowledge permit us to con-
sider variables that, for example, are not independent.

Definition 2. Let μ be an unconstrained fuzzy measure on the set of variables
V , i.e. μ(∅) = 0, μ(V ) = 1, and μ(A) ≤ μ(B) when A ⊆ B for A ⊆ V , and
B ⊆ V . Then, the Choquet integral distance is defined as:

d2CIµ(a, b) = CIµ(d1(a, b)
2, . . . , dn(a, b)

2) (1)

where CIμ(c1, . . . , cn) =
∑n

i=1(cs(i) − cs(i−1))μ(As(i)), given that cs(i) indicates
a permutation of the indexes so that 0 ≤ cs(1) ≤ . . . ≤ cs(i−1), cs(0) = 0, and
As(i) = {cs(i), . . . , cs(n)}.
The interest of this variation is that we do not need to assume that all the
attributes are equally important in the re-identification. This would be the case
if one of the attributes is a key-attribute, e.g. an attribute where V X

i = V Y
i . In

this case, the corresponding weight would be assigned to one, and all the others
to zero. Such an approach would lead to 100% of re-identifications. Moreover the
interaction of coalitions of variables is taken into account by the fuzzy measure.

3 Supervised Learning Approaches for Record Linkage

In this section we describe the two learning processes used on this work. Firstly,
we describe the optimization problem approach and then we introduce the heuris-
tic approach, which is based on a gradient descent algorithm. Both approaches
take as input a matrix formed by n+1 columns ( n attributes + target value) and
m rows (each row represent one example). The output of both algorithms are the
coefficients of the fuzzy measure that maximizes the number of re-identifications.

3.1 Linear Optimization Problem

We start discussing the notation we have used.
Let X represent the original file, and Y the protected file, both with variables

V1, . . . , Vn. Then, Vk(ai) represents the kth variable of the ith record. Using this
notation, for all ai ∈ X we have ai = (V1(ai), . . . , Vn(ai)) and for all bi ∈ Y we
have bi = (V1(bi), . . . , Vn(bi)). For the application of the record linkage algorithm
we will consider the sets of values d(Vk(ai), Vk(bj)) for all pairs of records ai ∈ X
and bj ∈ Y .

For the sake of simplicity in the formalization of the process, we presume that
each record ai of X is the protected version of bi of Y . That is, files are aligned.
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Then, two records are correctly linked using an aggregation operator C

when the aggregation of the values d(Vk(ai), Vk(bi)) for all k is smaller than
d(Vk(ai), Vk(bj)) for all i �= j. In optimal conditions this should be true for all
records ai.

We have formalized the learning process into an optimization problem with an
objective function and some constraints. As the correct linkage will not always
be satisfied because of the errors in the data cause by the protection method
a relaxation is needed. The relaxation is based on the concept of blocks. We
consider a block as the set of equations concerning record ai. Therefore, we
define a block as the set of all the distances between one record of the original
data and all the records of the protected data. Then, we assign to each block
a variable Ki. Therefore, we have as many Ki as the number of rows of our
original file. Besides, we need for the formalization a constant C that multiplies
Ki to overcome the inconsistencies and satisfies the constraint.

The rationale of this approach is as follows. The variable Ki indicates, for
each block, if all the corresponding constraints are accomplished (Ki = 0) or
not (Ki = 1). Then, we want to minimize the number of blocks non compliant
with the constraints. This way, we can find the best weights that minimize the
number of violations, or in other words, we can find the weights that maximize
the number of re-identifications between the original and protected data.

Using these variables Ki and the constant C, we have that all pairs i �= j
should satisfy

C(d(V1(ai), V1(bj)), . . . , d(Vn(ai), Vn(bj)))−
−C(d(V1(ai), V1(bi)), . . . , d(Vn(ai), Vn(bi))) + CKi > 0

As Ki is only 0 or 1, we use the constant C as the factor needed to really
overcome the constraint. In fact, the constant C expresses the minimum distance
we require between the correct link and the other incorrect links. The larger it
is, the more correct links are distinguished from incorrect links.

Using these constraints and the Choquet integral aggregation operator
d2CIμ(a, b), explained in Definition 2, the minimization problem is defined in a
generic form as:

Minimize

N∑

i=1

Ki

Subject to :

N∑

i=1

N∑

j=1

CIµ(d(V1(ai), V1(bj)), . . . , d(Vn(ai), Vn(bj)))−

− CIµ(d(V1(ai), V1(bi)), . . . , d(Vn(ai), Vn(bi))) + CKi > 0

Ki ∈ {0, 1}
μ(∅) = 0

μ(V ) = 1

μ(A) ≤ μ(B) when A ≤ B

where N is the number of records, and n the number of variables. This problem is
considered a mixed integer linear problem, because it is dealing with integer and
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real-valued variables in the objective function and in the constraints, respectively.
See more details of the implementation and complexity in [2].

3.2 Gradient Descent Algorithm

Inspired in HLMS (Heuristic Least Mean Squares), a gradient descent algorithm,
introduced by Grabisch in [17], we introduce an new record linkage process
relying on it. HLMS takes as input a training dataset P like the following:

P =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
1 . . . x1

i . . . x1
n T 1

.

.

.
. . .

.

.

.
xz
1 . . . xz

i . . . xz
n T z

.

.

.
. . .

.

.

.

xN
1 . . . xN

i . . . xN
n TN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

where xj
i is the value of sample j for attribute i, and T j its target value.

The algorithm finds the fuzzy measure μ that minimized the difference
Cμ({xj

1, x
j
2, ..., x

j
n})−T j ∀j . The error made in the approximation can be calcu-

lated as:

E(μ) =

N∑

j=1

(Cµ({xj
1, x

j
2, ..., x

j
n})− T j)2

The formula represents simply the squared difference between the target T j and
the Choquet integral of sample j using μ, summed over all training examples. The
direction of steepest descent along the error surface can be found by computing
the derivative of E with respect to each component of the vector μ.

�E(μ) ≡ [
δE

δμ(1)

,
δE

δμ(2)

, . . . ,
δE

δμ(n)

]

Since the gradient specifies the direction of steepest increase of E, the training
rule for gradient descent is:

μ(i) ← μ(i) − λ�E(μ(i))

Here λ is a positive constant called the learning rate, which determines the step
size in the gradient descent search. The negative sign is present because we want
to move the attributes of the aggregation operator in the direction that decreases
E. The record linkage problem cannot be addressed directly with HLMS since the
target value is unknown. To simplify notation let Vk(ai) = xi

k and Vk(bi) = x′ik.
As in the previous approach we have divided the problem in blocks, so a block
Dk is now defined as follows:

Dk =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

(xk
1 − x′1

1)
2 . . . (xk

i − x′1
i )

2 . . . (xk
n − x′1

n)
2

.

.

.
. . .

.

.

.

(xk
1 − x′z

1)
2 . . . (xk

i − x′z
i )

2 . . . (xk
n − x′z

n)
2

.

.

.
. . .

.

.

.

(xk
1 − x′N

1 )2 . . . (xk
i − x′N

i )2 . . . (xk
n − x′N

n )2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The original dataset hasN different blocks, one for each row inX . The algorithm
must find the fuzzy measure μ that makes for block k that the value of

Cµ({(xk
1 − x′z

1)
2, . . . , (xk

i − x′z
i )

2, . . . , (xk
n − x′z

n)
2}) (2)

to be minimum when k == z.
The approach used for each block k is the following:

The fuzzy measure is initialized to the equilibrium state (μi =
|i|
n ). The Choquet

integral of each row in Dk is calculated. If the minimum of the Choquet integral
is for row k, then proceed with the next block. If the minimum of the Choquet
integral is not for row k, calculate the gradient direction that makes the value
of the Choquet minimum increases and the gradient of the Choquet integral for
row k decreases.

The algorithm for this approach is shown in Algorithm (1).

Algorithm 1. Description of the heuristic algorithm for record linkage
Let X be the original database and X′ the protected one with N samples and n attributes each.

——————– Initialization ———————
for i ∈ P(X) do

μi = |i|
|X|

end for
—————– For each Block ——————
for i ∈ [1..N ] do

———– For each row in Xi ∈ X ————–
dj ← (Xi −X′

j)
2 ∀j ∈ [1..N ]

s = {j|C(dj) ≤ C(di) ∀ j ∈ [1..N ]}
—————– Update step ——————
for all j ∈ s do

Update the fuzzy measure, so that the difference C(di)− C(dj) decreases
end for
———– Monotonicity check ————
Check monotonicity

end for
return μ

The algorithm does not guarantee the convergence to a global minimum.
Some other minor modifications were done to the algorithm with no significant
improvement.

4 Results

In this section we have compared both approaches; the heuristic algorithm for
record linkage (HRLA) and the Choquet integral optimization algorithm (d2CI)
over different protected files. This comparison is divided in two parts to tackle the
optimization problem. In the first part we have focused on the scores’ comparison,
in terms of the number of correct linkages and also the required times taken from
both approaches. In the second part we have focused on the overfitting problem,
testing both approaches with a small set for training and a big set for test.
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To do our experiments we have applied different protection methods to an
amount of records, randomly selected, from the original file. This file was selected
from the Census dataset[8] of the European CASC project [7], which contains
1080 records and 13 variables, and has been extensively used in other works,
such as [4,13,22].

To solve the Choquet optimization problem , we used the simplex optimizer al-
gorithm from the IBM ILOGCPLEX tool [19], (version 12.1). The problem is first
expressed into the MPS (Mathematical Programming System) format by means
of the R statistical software1 , and then, it was processed with the optimization
solver. The HRLA was completely programmed in the R statistical software.

4.1 Precision Comparison

The first part of the comparison is made with two different protected files us-
ing Microaggregation [11], a well-known microdata protection method, which
broadly speaking, provides privacy by means of clustering the data into small
clusters of size k, and then replacing the original data by the centroid of their
corresponding clusters. The parameter k determines the protection level: the
greater the k, the greater the protection and at the same time the greater the
information loss.

We have considered two protected files of 400 records, which were protected
with two different protection levels.

– M4− 28 : 4 variables, first 2 variables with k = 2, and last 2 with k = 8.
– M5− 38 : 5 variables, first 3 variables with k = 3, and last 2 with k = 8.

Note that, we have applied two different protection degrees to different attributes
of the same file. The values used range from 2 to 8. This is especially interesting
when variables have different sensitivity.

Table 1 shows the percentage of re-identifications and the consumed time
in the training step of both presented approaches (d2CI and HRLA). It is
clear that both supervised approaches have obtained better results than the
arithmetic mean (d2AM). However, if we make a comparison between them, we
can see that the HRLA has an error between 2% and 5% respect to the optimum
value, achieved by d2CI. Recall that the HRLA is initialized with an equilibrium
fuzzy measure. Therefore, in the first iteration the HRLA is at least as good
as the Euclidean distance (d2AM). It is worth mention that, since HRLA is an
algorithm that finds the local minimum of a function, the results shown in that
table correspond to the average of ten runs with the same configuration.

We have also compared training computational times of all the approaches.
Table 1 shows that in almost all the situations, the time required by theHRLA to
achieve similar results than d2CI is much lower than the optimization algorithm.
However, we have to remember that the time’s factor of the HRLA approach
could be different depending on the learning rate and the number of iterations
which are parameters of the algorithm set up in its initialization.

1 http://www.r-project.org/

http://www.r-project.org/
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Table 1. Percentage of re-identifications and computational time

Dataset d2AM d2CI HRLA

% Re-identifications
M4-28 68.50 93.75 91.75
M5-38 39.75 91.25 86.75

Computational Time
M4-28 - 30 minutes 20 minutes
M5-38 - 4 days 20 minutes

4.2 Overfitting

In the last part of this algorithm comparison, we have evaluated the scenario
where an attacker would have a small amount of samples of the original database
with its correct linkage between those samples and the samples in the public
protected database. Therefore, the attacker is able to find the set of weights
that achieve more number of linkages between the known samples (training set)
and then, with those obtained weights, he/she is able to try the re-identification
between the rest of records (test set) of two datasets in order to discover new
confidential information.

In this experiment we have anonymized the whole original file (Census) by
means of four different protection methods with several degrees of protection.
The selected protection methods are briefly explained below; RankSwapping
[23], where the values of a variable Vi are ranked in ascending order; then each
ranked value is swapped with another ranked value randomly chosen within a
restricted range. AdditiveNoise [6] which consists of adding Gaussian noise to
the original data to get the masked data. If the standard deviation of the original
variable is σ, noise is generated using a N(0, ρσ) distribution. Finally, we have
also considered the JPEG [18], The idea is to regard a numerical microdata file
as an image (with records being rows, variables being columns, and values being
pixels) and then use this lossy compression algorithm, and then the compressed
image is interpreted as a masked microdata file.

We suppose that the attacker has a prior knowledge, so, a linkage of 200
records between the original and the protected files (labeled training set) could be
made. Then, using a supervised approach the set of Choquet integral coefficients
are learned to re-identify the rest of records (880 records), i.e., the test set.

Table 2 shows the results of the training and the test steps. Note the lack of
training results in the Euclidean distance approach, since it does not require a
learning step. Besides, the hyphen indicates that the corresponding computation
was not finished, because it needed more than 300 hours. In the training process
evaluation we have considered the time need to learn the parameters and the
precentage of re-identifications. The minimum consumed times are in bold, most
achieved by the HRLA, so the optimization problem has needed more than 14
minutes. However, it has achieved the best performance in the training set (9%
of improvement at most). With respect to the test step the heuristic algorithm
for record linkage has achieved an improment of at most 6% compared with
the optimization problem, this is a clear indicator of overfitting. Nevertheless,
HRLA has achiveved similar re-identification results than d2AM . This is due
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Table 2. Percentage of re-identifications and time consumed

d2AM d2CI HRLA
Dataset Train Test Time Train Test Time Train Test
Rankswap-20 14.00 2.61 − − − 14min 14.50 2.73
Rankswap-15 24.50 9.89 − − − 14min 26.00 8.98
Rankswap-12 43.50 17.50 − − − 14min 44.50 17.73
Rankswap-5 94.00 78.86 4min 97.5 77.61 14min 94.50 79.20
Rankswap-4 95.50 85.23 9sec 100.00 80.91 14min 97.00 85.11
Mic3-9 83.00 60.23 18min 89.50 57.16 14min 83.00 60.11
Mic3-5 91.00 77.39 1.5min 96.50 74.66 14min 93.00 76.93
Mic3-8 82.50 65.00 5min 91.00 62.95 14min 83.00 65.11
Mic4-4 84.50 61.48 2min 88.00 58.52 14min 84.50 61.70
Mic4-8 70.00 37.27 13min 75.50 35.68 14min 70.00 37.16
Mic4-5 80.00 52.50 37min 85.00 50.45 14min 80.00 52.50
Micz-3 0.00 0.23 3sec 0.00 0.11 14min 0.00 0.23
MicMull-3 54.50 22.50 2.5days 64.50 21.70 14min 58.00 23.52
Noise-16 87.00 70.11 1days 92.50 67.50 14min 87.00 70.11
Noise-12 92.00 86.59 22min 97.00 80.57 14min 93.00 86.82
Noise-1 100.00 100.00 4sec 100.00 99.66 14min 100.00 100.00
Jpeg-80 84.50 76.93 2.5hours 94.50 73.30 15min 85.50 76.48
Jpeg-65 58.50 40.00 15days 67.00 36.59 15min 58.50 40.00

to the fact that HRLA is initialized with the equilibrated weights and they
were slightly changed by this algorithm. Although all the protection processes
are different, they mainly rely on the addition of noise to each variable, so a
distance function as the Euclidean distance can clearly re-identify some of the
records, obviously always depending on the amount of noise added, that is the
protection degreed applied for the method.

5 Conclusions

In this paper we have introduced an adaptation of the gradient descent algorithm
proposed by Grabisch in order to use it as a disclosure risk evaluation in the data
privacy context. The use of this heuristic algorithm was motivated on the high
computational times required to find the fuzzy measures by another previously
presented non-heuristic method which relies on a linear optimization problem.
We have evaluated and compared both of them in two different ways.

The first part of the evaluation is focused on a scenario where original and
protected files are available, and an evaluation of the protected dataset is per-
formed. This is the worst scenario, where all the information is known, so, a
good estimation of the disclosure risk is obtained. This comparison shows that
although the linear optimization process (d2CI) guarantees the convergence to
the optimal solution, it requires a lot of time, from seconds to hours or even
days depending on the level of protection applied, while the time required by
the HRLA remains low and stable. Regarding to the results in this comparison
we have achieved an error rate from 2% to 5% higher for HRLA.

The second part of this work cope with the overfitting problem. In this scenario
the results show that when the training dataset is small, the linear optimization
problem get better results for training data than HRLA, while for test data the
results are worst. This suggest that there is an overfitting of the data.
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To sum up, if we have an exhaustive disclosure risk evaluation and we have
enough computational resources and time it is recommended to use the optimiza-
tion approach so we will have the optimal weights to analyse the risk and we
can also analyse more efficiently if there is some attribute or a set of them that
disclose more information than the others. Otherwise, if the resources needed
are not available we can use the heuristic approach, that provide a good approx-
imation to the optimal solution.

In view of the results, some additional tasks remains as future work. Firstly, to
program the HRLA approach in C++ and be able to make a fairer comparison
between two compiled approaches. Lastly, to use the fuzzy measures returned by
HRLA as a first solution of the linear optimization process, to see if the amount
of time required to solve the hard datasets reduces.
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