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Chapter 23

MaxSAT, Hard and Soft Constraints
Chu Min Li and Felip Manyà

23.1. Introduction

MaxSAT is an optimization version of SAT which consists in finding an assign-
ment that maximizes the number of satisfied clauses. It is an NP-hard problem
that has shown a remarkable activity in the SAT community over the past few
years, where some SAT solving techniques have been adapted to MaxSAT and
incorporated into contemporary MaxSAT solvers. Examples of such SAT solving
techniques include lazy data structures, variable selection heuristics, unsatisfiable
core extraction, non-chronological backtracking and clause learning.

SAT solvers provide little information on unsatisfiable instances; they just
report that no solution exists. However, assignments violating a minimum number
of constraints, or satisfying all the hard constraints and as many soft constraints as
possible, can be considered acceptable solutions in real-life scenarios. To cope with
this limitation of SAT, MaxSAT, and in particular weighted MaxSAT and Partial
MaxSAT, are becoming an alternative for naturally representing and efficiently
solving over-constrained problems.

There are two approaches to solving MaxSAT: approximation and heuristic
algorithms, which compute near-optimal solutions, and exact algorithms, which
compute optimal solutions. Heuristic algorithms are fast and do not provide any
guarantee about the quality of their solutions, while approximation algorithms
are not so fast but provide a guarantee about the quality of their solutions.

Regarding exact algorithms, we distinguish between SAT-based algorithms
and branch-and-bound algorithms. SAT-based algorithms solve MaxSAT by solv-
ing a sequence of SAT instances and are presented in a separate chapter of this
handbook. The solving techniques that implement branch-and-bound algorithms
are the main focus of this chapter, and are explained in detail in subsequent
sections.

Nowadays, we count with remarkable results on theoretical, logical and al-
gorithmic aspects of MaxSAT solving. Moreover, the existence of a MaxSAT
evaluation, which is held annually since 2006, has been decisive for developing
new MaxSAT technology and applications.
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The structure of the chapter is as follows. In Section 23.2, we introduce
background definitions. In Section 23.3, we present the branch and bound scheme
and explain how this scheme can be improved with good quality lower bounds,
clever variable selection heuristics and suitable data structures. In Section 23.4,
we survey the complete logical calculus for MaxSAT defined so far, which are
based on resolution and tableaux. In Section 23.5, we review the main MaxSAT
approximation algorithms. In Section 23.6, we present the MaxSAT Evaluation.
In Section 23.7, we review other contributions to MaxSAT that have appeared
in the literature. In Section 23.8, we survey the works on MinSAT, which is the
dual problem of MaxSAT. In Section 23.9, we give the conclusions and point out
some future research directions.

23.2. Preliminaries

In propositional logic, a variable xi may take values 0 (for false) or 1 (for true).
A literal li is a variable xi or its negation x̄i. The complementary of literal li
is xi if li = x̄i, and is x̄i if li = xi. A clause is a disjunction of literals, and a
CNF formula is a multiset of clauses. In MaxSAT, we represent CNF formulas as
multisets of clauses instead of sets of clauses because duplicated clauses cannot
be collapsed into one clause. For instance, the multiset {x1, x1, x1, x1 ∨ x2, x2},
where a clause is repeated, has a minimum of two unsatisfied clauses.

A weighted clause is a pair (Ci, wi), where Ci is a disjunction of literals and
wi, its weight, is a positive number, and a weighted CNF formula is a multiset of
weighted clauses. The length of a (weighted) clause is the number of its literals.
The size of (weighted) CNF formula ϕ, denoted by |ϕ|, is the sum of the length
of all its clauses.

An assignment of truth values to the propositional variables satisfies a literal
xi if xi takes the value 1 and satisfies a literal x̄i if xi takes the value 0, satisfies a
clause if it satisfies at least one literal of the clause, and satisfies a CNF formula
if it satisfies all the clauses of the formula. An empty clause, denoted by 2,
contains no literals and cannot be satisfied. An assignment for a CNF formula ϕ
is complete if all the variables occurring in ϕ have been assigned; otherwise, it is
partial.

The MaxSAT problem for a CNF formula ϕ is the problem of finding an
assignment that maximizes the number of satisfied clauses. In this sequel we often
use the term MaxSAT meaning MinUNSAT. This is because, with respect to exact
computations, finding an assignment that minimizes the number of unsatisfied
clauses is equivalent to finding an assignment that maximizes the number of
satisfied clauses. Notice that an upper (lower) bound in MinUNSAT is greater
(smaller) than or equal to the minimum number of clauses that can be unsatisfied
by an interpretation. MaxSAT is called Max-kSAT when all the clauses have at
most k literals per clause.

MaxSAT instances ϕ1 and ϕ2 are equivalent if ϕ1 and ϕ2 have the same
number of unsatisfied clauses for every complete assignment of ϕ1 and ϕ2.

We will also consider three extensions of MaxSAT which are more well-suited
for representing and solving over-constrained problems: Weighted MaxSAT, Par-
tial MaxSAT, and weighted Partial MaxSAT.
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The weighted MaxSAT problem for a weighted CNF formula ϕ is the problem
of finding an assignment that maximizes the sum of weights of satisfied clauses
(or equivalently, that minimizes the sum of weights of unsatisfied clauses).

The Partial MaxSAT problem for a CNF formula, in which some clauses are
declared to be relaxable or soft and the rest are declared to be non-relaxable or
hard, is the problem of finding an assignment that satisfies all the hard clauses
and the maximum number of soft clauses.

The weighted Partial MaxSAT problem is the combination of Partial MaxSAT
and weighted MaxSAT. In weighted Partial MaxSAT, soft clauses are weighted,
and solving a weighted Partial MaxSAT instance amounts to find an assignment
that satisfies all the hard clauses and maximizes the sum of weights of satisfied
soft clauses (or equivalently, that minimizes the sum of weights of unsatisfied soft
clauses).

Notice that MaxSAT could be defined as weighted MaxSAT restricted to
formulas whose clauses have weight 1, and as Partial MaxSAT in the case that
all the clauses are declared to be soft.

Finally, we introduce the integer linear programming (ILP) formulation of
weighted MaxSAT, which is used to compute lower bounds and upper bounds. Let
ϕ = {(C1, w1), . . . , (Cm, wm)} be a weighted MaxSAT instance over the proposi-
tional variables x1, . . . , xn. With each propositional variable xi, we associate a
variable yi ∈ {0, 1} such that yi = 1 if variable xi is true and yi = 0, otherwise.
With each clause Cj , we associate a variable zj ∈ {0, 1} such that zj = 1 if clause
Cj is satisfied and zj = 0, otherwise. Let I+j be the set of indices of unnegated
variables in clause Cj , and let I−j be the set of indices of negated variables in
clause Cj . The ILP formulation of the weighted MaxSAT instance ϕ is defined
as follows:

maxF (y, z) =

m∑
j=1

wjzj

subject to ∑
i∈I+

j

yi +
∑
i∈I−

j

(1− yi) ≥ zj j = 1, . . . ,m

yi ∈ {0, 1} i = 1, . . . , n

zj ∈ {0, 1} j = 1, . . . ,m

Assume now that, with each clause Cj , we associate a variable zj ∈ {0, 1}
such that zj = 1 if clause Cj is unsatisfied and zj = 0, otherwise. Then, the
ILP formulation of the minimization version of weighted MaxSAT (i.e.; weighted
MinUNSAT) for the instance ϕ is defined as follows:

minF (y, z) =

m∑
j=1

wjzj

subject to ∑
i∈I+

j

yi +
∑
i∈I−

j

(1− yi) + zj ≥ 1 j = 1, . . . ,m
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yi ∈ {0, 1} i = 1, . . . , n

zj ∈ {0, 1} j = 1, . . . ,m

The linear programming (LP) relaxation of both formulations is obtained by
allowing the integer variables to take real values in [0, 1].

Ansótegui and Gabàs [AG13] reported an extensive empirical investigation
that indicates that solving MaxSAT instances by translating them into ILP and
applying a Mixed Integer Programming (MIP) solver is competitive on crafted
instances.

Weighted Partial MinSAT for an instance ϕ is the problem of finding an
assignment in which the sum of the weights of the satisfied soft clauses is minimal,
and all the hard clauses are satisfied. Weighted MinSAT is Weighted Partial
MinSAT when there are no hard clauses. Partial MinSAT is Weighted Partial
MinSAT when all the soft clauses have the same weight. MinSAT is Partial
MinSAT when there are no hard clauses.

23.3. Branch and Bound Algorithms

There are competitive exact MaxSAT solvers —as the ones developed by [AH14a,
AMP03, AMP05, AMP08, HLO08, Kue10, LHdG08, LMP07, LS07, LSL08,
PPC+08, RG07, SZ04, XZ04, XZ05, ZSM03]— that implement variants of the
following branch and bound (BnB) scheme for solving the minimization version
of MaxSAT: Given a MaxSAT instance ϕ, BnB explores the search tree that repre-
sents the space of all possible assignments for ϕ in a depth-first manner. At every
node, BnB compares the upper bound (UB), which is the best solution found
so far for a complete assignment, with the lower bound (LB), which is the sum
of the number of clauses which are unsatisfied by the current partial assignment
plus an underestimation of the number of clauses that will become unsatisfied if
the current partial assignment is completed. If LB ≥ UB, the algorithm prunes
the subtree below the current node and backtracks chronologically to a higher
level in the search tree. If LB < UB, the algorithm tries to find a better solution
by extending the current partial assignment by instantiating one more variable.
The optimal number of unsatisfied clauses in the input MaxSAT instance is the
value that UB takes after exploring the entire search tree.

Figure 23.1 shows the pseudo-code of a basic solver for MaxSAT. We use the
following notation:

• simplifyFormula(ϕ) is a procedure that transforms ϕ into an equivalent and
simpler instance by applying inference rules.

• #emptyClauses(ϕ) is a function that returns the number of empty clauses
in ϕ.

• LB is a lower bound of the minimum number of unsatisfied clauses in ϕ if
the current partial assignment is extended to a complete assignment. We
assume that its initial value is 0.

• underestimation(ϕ) is a function that returns an underestimation of the
minimum number of non-empty clauses in ϕ that will become unsatisfied
if the current partial assignment is extended to a complete assignment.
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Require: MaxSAT(ϕ, UB) : A MaxSAT instance ϕ and an upper bound UB
1: ϕ← simplifyFormula(ϕ);
2: if ϕ = ∅ or ϕ only contains empty clauses then
3: return #emptyClauses(ϕ);
4: end if
5: LB ← #emptyClauses(ϕ) + underestimation(ϕ);
6: if LB ≥ UB then
7: return UB;
8: end if
9: x← selectVariable(ϕ);

10: UB ← min(UB,MaxSAT(ϕx̄, UB));
11: return min(UB,MaxSAT(ϕx, UB));
Ensure: The minimal number of unsatisfied clauses in ϕ

Figure 23.1. A basic branch and bound algorithm for MaxSAT

• UB is an upper bound of the number of unsatisfied clauses in an optimal
solution. An elementary initial value for UB is the total number of clauses
in the input formula, or the number of clauses which are unsatisfied by an
arbitrary interpretation. Another alternative is to solve the LP relaxation
of the ILP formulation of the input instance and take as upper bound the
number of unsatisfied clauses in the interpretation obtained by rounding
variable yi, for 1 ≤ i ≤ n, to an integer solution in a randomized way
by interpreting the values of yi ∈ [0, 1] as probabilities (set propositional
variable xi to true with probability yi, and set propositional variable xi

to false with probability 1− yi). Nevertheless, most of the solvers take as
initial upper bound the number of unsatisfied clauses that can be detected
by executing the input formula in a local search solver during a short period
of time.

• selectVariable(ϕ) is a function that returns a variable of ϕ following an
heuristic.

• ϕx (ϕx̄) is the formula obtained by setting the variable x to true (false);
i.e., by applying the one-literal rule to ϕ using the literal x (x̄).

Modern MaxSAT solvers implement the basic algorithm augmented with pow-
erful inference techniques, good quality lower bounds, clever variable selection
heuristics, and efficient data structures. Partial MaxSAT solvers are also aug-
mented with learning of hard clauses, and non-chronological backtracking.

23.3.1. Improving the Lower Bound with Underestimations

The simplest method to compute a lower bound, when solving the minimization
version of MaxSAT, consists in just counting the number of clauses which are
unsatisfied by the current partial assignment [BF99]. One step forward is to
incorporate an underestimation of the number of clauses that will become unsat-
isfied if the current partial assignment is extended to a complete assignment. The
most basic method was defined by Wallace and Freuder [WF96]:

LB(ϕ) = #emptyClauses(ϕ) +
∑

x occurs in ϕ

min(ic(x), ic(x̄)),
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where ϕ is the CNF formula associated with the current partial assignment, and
ic(x) (ic(x̄)) —inconsistency count of x (x̄)— is the number of unit clauses of ϕ
that contain x̄ (x). In other words, that underestimation is the number of disjoint
inconsistent subformulas in ϕ formed by a unit clause with a literal l and a unit
clause with the complementary of l.

Lower bounds dealing with longer clauses include the star rule and UP. In the
star rule [SZ04, AMP04], the underestimation of the lower bound is the number of
disjoint inconsistent subformulas of the form {l1, . . . , lk, l̄1∨· · ·∨ l̄k}. When k = 1,
the star rule is equivalent to the inconsistency counts of Wallace and Freuder.

In UP [LMP05], the underestimation of the lower bound is the number of
disjoint inconsistent subformulas that can be detected with unit propagation.
UP works as follows: It applies unit propagation until a contradiction is derived.
Then, UP identifies, by inspecting the implication graph, a subset of clauses from
which a unit refutation can be constructed, and tries to identify new contradic-
tions from the remaining clauses. The order in which unit clauses are propagated
has a clear impact on the quality of the lower bound [LMP06].

UP can be enhanced with failed literal detection as follows: Given a MaxSAT
instance ϕ and a variable x occurring positively and negatively in ϕ, UP is ap-
plied to both ϕ ∧ {x} and ϕ ∧ {x̄}. If UP derives a contradiction from ϕ ∧ {x}
and another contradiction from ϕ ∧ {x̄}, then the union of the two inconsistent
subsets identified by UP, once we have removed the unit clauses x and x̄, is an
inconsistent subset of ϕ. UP enhanced with failed literal detection does not need
the occurrence of unit clauses in the input formula for deriving a contradiction.
While UP only identifies unit refutations, UP enhanced with failed literal detec-
tion identifies non-unit refutations too. Since applying failed literal detection to
every variable is time consuming, it is applied to a reduced number of variables
in practice [LMP06].

MaxSAT solvers like ahmaxsat [AH14a], MaxSatz [LMP07], and Mini-
MaxSat [HLO08] apply either UP or UP enhanced with failed literal detection.
Nowadays, UP-based lower bounds are the prevailing approach to computing un-
derstimations in branch-and-bound MaxSAT solvers. This technique has also
been applied to solve the maximum clique problem [JLM17, LFX13, LJM17,
LJX15, LQ10].

Darras et al. [DDDL07] developed a version of UP in which the computation
of the lower bound is made more incremental by saving some of the small size
disjoint inconsistent subformulas detected by UP. They avoid to redetect the
saved inconsistencies if they remain in subsequent nodes of the proof tree, and
are able to solve some types of instances faster. Lin et al. [LSL08] defined an
improved version of UP that, besides being incremental, guarantees that the lower
bound computed at a node of the search tree is not smaller than the lower bound
computed at the parent of that node. Abramé and Habet [AH14c] proposed
an improved implementation of UP in ahmaxsat that undoes propagations in a
non-chronological order and can produce smaller inconsistent subsets. Shen and
Zhang [SZ04] defined a lower bound, called LB4, which is similar to UP but
restricted to Max-2SAT instances and using a static variable ordering.

A variant of UP enhanced with failed literal detection was implemented in
the solver akmaxsat [Kue10]. It can be the case that UP derives a contradiction
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from ϕ ∧ {l} but not from ϕ ∧ {l}. In fact, this shows that l follows from ϕ.
If ϕ′ is the result of applying UP to ϕ ∧ {l}, then the algorithms tries to find
another failed literal l′ in ϕ′. If UP derives a contradiction from both ϕ∧{l′} and
ϕ ∧ {l′}, the algorithm stops and identifies an inconsistent subset. If UP derives
a contradiction from ϕ ∧ {l′} but not from ϕ ∧ {l′}, the same process is repeated
on the formula resulting of applying UP to ϕ ∧ {l′} until an inconsistent subset
is detected or no more failed literals can be found.

Another approach to computing underestimation is based on first reduc-
ing the MaxSAT instance to be solved to an instance of another problem, and
then solve a relaxation of the obtained instance. For example, the solvers
Clone [PD07, PPC+08] and SR(w) [RG07], reduce MaxSAT to the minimum
cardinality problem. Since the minimum cardinality problem is NP-hard for a
CNF formula ϕ and can be solved in time linear in the size of a deterministic de-
composable negation normal form (d-DNNF) compilation of ϕ, Clone and SR(w)
solve the minimum cardinality problem of a d-DNNF compilation of a relaxation
of ϕ. The worst-case complexity of a d-DNNF compilation of ϕ is exponential in
the treewidth of its constraint graph, and Clone and SR(w) obtain a relaxation
of ϕ with bounded treewidth by renaming different occurrences of some variables.

Xing and Zhang [XZ05] reduce the MaxSAT instance to the ILP formulation
of the minimization version of MaxSAT (c.f. Section 23.2), and then solve the LP
relaxation. An optimal solution of the LP relaxation provides an underestimation
of the lower bound because the LP relaxation is less restricted than the ILP
formulation. In practice, they apply that lower bound computation method only
to nodes containing unit clauses. If each clause in the MaxSAT instance has more
than one literal, then yi = 1

2 for all 1 ≤ i ≤ n and zj = 0 for all 1 ≤ j ≤ m
is an optimal solution of the LP relaxation. In this case, the underestimation is
0. Nevertheless, LP relaxations do not seem to be as competitive as the rest of
approaches.

23.3.2. Improving the Lower Bound with Inference

Another approach to improve the quality of the lower bound consists in applying
inference rules that transform a MaxSAT instance ϕ into an equivalent but simpler
MaxSAT instance ϕ′. In the best case, inference rules produce new empty clauses
in ϕ′ that allow to increment the lower bound. In contrast with the empty clauses
derived when computing underestimations, the empty clauses derived with infer-
ence rules do not have to be recomputed at every node of the current subtree so
that the lower bound computation is more incremental.

A MaxSAT inference rule is sound if it transforms an instance ϕ into an
equivalent instance ϕ′. It is not sufficient to preserve satisfiability as in SAT, ϕ and
ϕ′ must have the same number of unsatisfied clauses for every possible assignment.
Unfortunately, unit propagation, which is the most powerful inference technique
applied in DPLL-style SAT solvers, is unsound for MaxSAT as the next example
shows: The set of clauses {x1, x1 ∨ x2, x1 ∨ x2, x1 ∨ x3, x1 ∨ x3} has a minimum
of one unsatisfied clause (setting x1 to false), but two empty clauses are derived
by applying unit propagation.

MaxSAT inference rules are also called transformation rules in the literature
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because the premises of the rule are replaced with the conclusion when a rule
is applied. If the conclusion is added to the premises as in SAT, the number of
clauses which are unsatisfied by an assignment might increase.

The amount of inference enforced by existing BnB MaxSAT solvers at each
node of the proof tree is poor compared with the inference enforced by DPLL-
style SAT solvers. The simplest inference enforced, when branching on a literal
l, consists in applying the one-literal rule: The clauses containing l are removed
from the instance and the occurrences of l are removed from the clauses in which
l appears, but the existing unit clauses and the new unit clauses derived as a
consequence of removing the occurrences of l are not propagated as in unit prop-
agation. That inference is typically enhanced with the MaxSAT inference rules
described in the rest of this section.

First, we present simple inference rules that have proved to be useful in a num-
ber of solvers [AMP03, AMP05, BF99, SZ04, XZ05], and then some more sophis-
ticated inferences rules which are implemented in solvers like ahmaxsat [AH14a],
akmaxsat [Kue10], MaxSatz [LMP07], and MiniMaxSat [HLO08]. Some simple
inference rules are:

• The pure literal rule [BF99]: If a literal only appears with either positive
or negative polarity in a MaxSAT instance, all the clauses containing that
literal are removed.

• The dominating unit clause rule [NR00]: If the number of clauses (of any
length) in which a literal l appears is not greater than the number of
unit clauses in which l appears, all the clauses containing l and all the
occurrences of l are removed.

• The complementary unit clause rule [NR00]: If a MaxSAT instance contains
a unit clause with the literal l and a unit clause with the literal l, these
two clauses are replaced with one empty clause.

• The almost common clause rule [BR99]: If a MaxSAT instance contains a
clause x ∨D and a clause x ∨D, where D is a disjunction of literals, then
both clauses are replaced with D. In practice, this rule is applied when D
contains at most one literal.

The resolution rule applied in SAT (i.e., derive D∨D′ from x∨D and x∨D′)
preserves satisfiability but not equivalence, and therefore cannot be applied to
MaxSAT instances, except for some particular cases like the almost common
clause rule. We refer the reader to Section 23.4 for a complete resolution calculus
for MaxSAT, and devote the rest of this section to present some sound MaxSAT
resolution rules that can be applied in polynomial time.

We start by presenting the star rule: If ϕ1={l1, l̄1 ∨ l̄2, l2} ∪ ϕ′, then
ϕ2={2, l1 ∨ l2} ∪ ϕ′ is equivalent to ϕ1. This rule, which can be seen as the
inference counterpart of the underestimation of the same name, can also be pre-
sented as follows: 

l1
l1 ∨ l2
l2

 =⇒
{
l1 ∨ l2

}
(23.1)

Notice that the rule detects a contradiction from l1, l̄1 ∨ l̄2, l2 and, therefore,
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replaces these clauses with an empty clause. In addition, the rule adds the clause
l1∨l2 to ensure the equivalence between ϕ1 and ϕ2. For any assignment containing
either l1 = 0, l2 = 1, or l1 = 1, l2 = 0, or l1 = 1, l2 = 1, the number of unsatisfied
clauses in {l1, l̄1 ∨ l̄2, l2} is 1, but for any assignment containing l1 = 0, l2 = 0,
the number of unsatisfied clauses is 2. Notice that even when any assignment
containing l1 = 0, l2 = 0 is not the best assignment for the subset {l1, l̄1 ∨ l̄2, l2},
it can be the best for the whole formula. By adding l1 ∨ l2, the rule ensures that
the number of unsatisfied clauses in ϕ1 and ϕ2 is also the same when l1 = 0, l2 = 0.

This rule can be generalized in such a way that it captures unit resolution
refutations in which clauses and resolvents are used exactly once:

l1
l̄1 ∨ l2
l̄2 ∨ l3
· · ·

l̄k ∨ lk+1

l̄k+1


=⇒


l1 ∨ l̄2
l2 ∨ l̄3
· · ·

lk ∨ l̄k+1


(23.2)

The last two rules consume two unit clauses for deriving one contradiction.
Next, we define two inference rules that capture unit resolution refutations in
which (i) exactly one unit clause is consumed, and (ii) the unit clause is used
twice in the derivation of the empty clause. The second rule is a combination of
the first rule with a linear derivation.

l1
l̄1 ∨ l2
l̄1 ∨ l3
l̄2 ∨ l̄3

 =⇒

 l1 ∨ l̄2 ∨ l̄3
l̄1 ∨ l2 ∨ l3

 (23.3)



l1
l̄1 ∨ l2
l̄2 ∨ l3
· · ·

l̄k ∨ lk+1

l̄k+1 ∨ lk+2

l̄k+1 ∨ lk+3

l̄k+2 ∨ l̄k+3


=⇒



l1 ∨ l̄2
l2 ∨ l̄3
· · ·

lk ∨ l̄k+1

lk+1 ∨ l̄k+2 ∨ l̄k+3

l̄k+1 ∨ lk+2 ∨ lk+3


(23.4)

MaxSatz implements the almost common clause rule, Rule 23.1, Rule 23.2,
Rule 23.3 and Rule 23.4. Some of these rules are also applied in the solvers
ahmaxsat and akmaxsat.

Independently and in parallel to the definition of the rules of MaxSatz, similar
inference rules were defined for weighted MaxSAT by Heras and Larrosa [LH05,
HL06], and were implemented in Max-DPLL [LHdG08]. These rules were inspired
by the soft local consistency properties defined in the constraint programming
community [dGLMS03]. The rules implemented in Max-DPLL are the almost
common clause rule, chain resolution and cycle resolution. Chain resolution,
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which allows one to derive a new empty clause, is defined as follows:

 (l1, w1),
(l̄i ∨ li+1, wi+1)1≤i<k,
(l̄k, wk+1)

 =⇒


(li,mi −mi+1)1≤i≤k,
(l̄i ∨ li+1, wi+1 −mi+1)1≤i<k,
(li ∨ l̄i+1,mi+1)1≤i<k,
(l̄k, wk+1 −mk+1),
(2,mk+1)

 (23.5)

where wi, 1 ≤ i ≤ k + 1, is the weight of the corresponding clause, and mi =
min(w1, w2, . . . , wi). Chain resolution is equivalent to Rule 23.2 if it is applied to
unweighted MaxSAT.

Cycle resolution, which allows one to derive a new unit clause and whose
application is restricted to k = 3 in Max-DPLL, is defined as follows:

{
(l̄i ∨ li+1, wi)1≤i<k,
(l̄1 ∨ l̄k, wk)

}
=⇒



(l̄1 ∨ li,mi−1 −mi)2≤i≤k,
(l̄i ∨ li+1, wi −mi)2≤i<k,
(l̄1 ∨ li ∨ l̄i+1,mi)2≤i<k,
(l1 ∨ l̄i ∨ li+1,mi)2≤i<k,
(l̄1 ∨ l̄k, wk −mk),
(l̄1,mk)


(23.6)

An analysis of the impact of cycle resolution on the performance of MaxSAT
solvers can be found in [LMMP08, LMMP09, LMMP10].

A more general inference scheme is implemented in MiniMaxSat [HLO07,
HLO08]. It detects a contradiction with unit propagation and identifies an un-
satisfiable subset. Then, it creates a refutation for that unsatisfiable subset and
applies the MaxSAT resolution rule defined in Section 23.4 if the size of the largest
resolvent in the refutation is smaller than 4.

The lower bound computation methods based on unit propagation rep-
resent the different derivations of unit clauses in a graph, called implication
graph [LMP07]. Looking at that graph, solvers identify the clauses which are
involved in the derivation of a contradiction. In contemporary MaxSAT solvers,
this graph is also used to decide whether the clauses involved in a contradiction
match with the premises of the above mentioned inference rule.

Abramé and Habet [AH15b] showed that in some cases it is better not to
apply MaxSAT resolution to certain inconsistent subsets of clauses because the
transformations derived do not allow to detect further inconsistent subsets. They
also showed that in other cases further inconsistent subsets can be detected if
MaxSAT resolution is applied locally [AH14b].

23.3.3. Variable Selection Heuristics

Most of the exact MaxSAT solvers incorporate variable selection heuristics that
take into account the number of literal occurrences in such a way that each oc-
currence has an associated weight that depends on the length of the clause that
contains the literal. MaxSAT heuristics give priority to literals occurring in binary
clauses instead of literals occurring in unit clauses as SAT heuristics do.
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Let us see as an example the variable selection heuristic of MaxSatz [LMP07]:
Let neg1(x) (pos1(x)) be the number of unit clauses in which x is negative (pos-
itive), neg2(x) (pos2(x)) be the number of binary clauses in which x is negative
(positive), and let neg3(x) (pos3(x)) be the number of clauses containing three
or more literals in which x is negative (positive). MaxSatz selects the variable x
such that (neg1(x)+4∗neg2(x)+neg3(x))*(pos1(x)+4∗pos2(x)+pos3(x)) is the
largest. Once a variable x is selected, MaxSatz applies the following value selec-
tion heuristic: If neg1(x)+4∗neg2(x)+neg3(x) < pos1(x)+4∗pos2(x)+pos3(x),
set x to true; otherwise, set x to false. The solver ahmaxsat [AH14a] implements
a variant of this variable selection heuristic.

Earlier MaxSAT solvers (AMP [AMP03], Lazy [AMP05], MaxSolver [XZ05],
Max-DPLL [LHdG08], . . . ) incorporate variants of the two-sided Jeroslow rule
that give priority to variables occurring often in binary clauses. MaxSolver
changes the weights as the search proceeds.

23.3.4. Data Structures

Data structures for SAT have been naturally adapted to MaxSAT. We can divide
the solvers into two classes: solvers like ahmaxsat, akmaxsat and MaxSatz rep-
resenting formulas with adjacency lists, and solvers like Lazy and MiniMaxSat
which use data structures with watched literals. Lazy data structures are particu-
larly good when there is a big number of clauses; for example, in Partial MaxSAT
solvers with clause learning.

23.4. Complete Inference in MaxSAT

23.4.1. MaxSAT Resolution

A natural extension to MaxSAT of the resolution rule applied in SAT was defined
by Larrosa and Heras [LH05]:

x ∨A
x ∨B

A ∨B
x ∨A ∨B
x ∨A ∨B

However, two of the conclusions of this rule are not in clausal form, and the
application of distributivity results into an unsound rule: Assume that A = a1,
and B = b1∨ b2. Then, the interpretation that assigns false to x and a1, and true
to b1 and b2 unsatisfies one clause from the premises (x ∨ a1) and unsatisfies two
clauses from the conclusion of the rule (x ∨ a1 ∨ b1, x ∨ a1 ∨ b2). Since the rule
does not preserve the number of unsatisfied clauses, it is unsound.

Independently and in parallel, Bonet et al. [BLM06, BLM07], and Heras and
Larrosa [HL06] defined a sound version of the previous rule with the conclusions
in clausal form:
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x ∨ a1 ∨ · · · ∨ as
x ∨ b1 ∨ · · · ∨ bt

a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt
x ∨ a1 ∨ · · · ∨ as ∨ b1
x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ b2
· · ·
x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt−1 ∨ bt
x ∨ b1 ∨ · · · ∨ bt ∨ a1
x ∨ b1 ∨ · · · ∨ bt ∨ a1 ∨ a2
· · ·
x ∨ b1 ∨ · · · ∨ bt ∨ a1 ∨ · · · ∨ as−1 ∨ as

This inference rule concludes, apart from the conclusion where a variable has
been cut, some additional clauses that contain one of the premises as subclause.
We say that the rule cuts the variable x. The tautologies concluded by the rule
are removed, and the repeated literals in a clause are collapsed into one.

Notice that an instance of MaxSAT resolution not only depends on the two
premises and the cut variable (like in resolution), but also on the order of the
literals in the premises. Notice also that, like in resolution, this rule concludes a
new clause not containing the variable x, except when this clause is a tautology.

Bonet et al. [BLM06, BLM07] proved the completeness of MaxSAT resolu-
tion: By saturating successively w.r.t. all the variables, one derives as many empty
clauses as the minimum number of unsatisfied clauses in the MaxSAT input in-
stance. Saturating w.r.t. a variable amounts to apply the MaxSAT resolution rule
to clauses containing that variable until every possible application of the inference
rule only introduces clauses containing that variable (since tautologies are elim-
inated). Once a MaxSAT instance is saturated w.r.t. a variable, all the clauses
containing that variable are not considered to saturate w.r.t. another variable.
We refer to [BLM07] for further technical details and for the weighted version of
the rule.

We consider the multiset of clauses ϕ = {x1, x1 ∨ x2, x1 ∨ x3, x3} to illustrate
how a variable saturation algorithm works. We start by considering variable
x1 and resolve the first two clauses, obtaining {x2, x1 ∨ x2, x1 ∨ x3, x3}. We
then resolve the second and third clause and get a saturation of ϕ w.r.t. x1:
{x2, x2 ∨ x3, x1 ∨ x2 ∨ x3, x1 ∨ x2 ∨ x3, x3}. From now on, we only consider the
clauses not containing x1: C1 = {x2, x2∨x3, x3}, and ignore the clauses containing
x1: {x1 ∨ x2 ∨ x3, x1 ∨ x2 ∨ x3}. We continue by resolving the first two clauses
of C1; we get {x3, x2 ∨ x3, x3}, which is a saturation of C1 w.r.t. x2. Hence,
C2 = {x3, x3} is the resulting multiset of clauses not containing x2 and ignore
{x2 ∨ x3}, which is the multiset of clauses containing x2. Finally, we resolve
{x3, x3} and get the empty clause. Since all the variables have been saturated,
the minimum number of unsatisfied clauses in ϕ is 1.

The use of restrictions of MaxSAT resolution has not been limited to branch-
and-bound solvers. Narodytska and Bacchus [NB14] used MaxSAT resolution
in SAT-based MaxSAT solvers, avoiding the use of cardinality constraints and
obtaining very competitive results on industrial instances.
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There exists no polynomial-size resolution proof of the pigeon hole principle
(PHP). However, Ignatiev et al. [IMM17] showed that there exist polynomial-
size MaxSAT resolution proofs of PHP if PHP is encoded as a Partial MaxSAT
instance using the dual rail encoding. Indeed, the combination of the dual rail
encoding and MaxSAT resolution is a stronger proof system than either general
resolution or conflict-driven clause learning [BBI+18].

MaxSAT resolution has been extended to the multiple-valued clausal forms
known as signed CNF formulas [BHM00]. The defined signed MaxSAT resolu-
tion rules are complete and provide a logical framework for weighted constraint
satisfaction problems (WCSP) [ABLM07b]. Besides, some restrictions of the
rules enforce the defined local consistency properties for WCSPs in a natural
way [ABLM07a, ABLM13].

23.4.2. Clause MaxSAT Tableaux

The clause SAT tableau calculus [D’A99, Häh01], which is is unsound for
MaxSAT, was reformulated to become a sound and complete MaxSAT calcu-
lus [LMS16b]. Roughly speaking, the main differences are that the extension
rule is applied in a branch until all its clauses have been expanded regardless of
the contradictions already detected in that branch, and that clauses and literals
cannot be used more than once in a branch.

A clause MaxSAT tableau for a multiset of clauses ϕ = {C1, . . . , Cm} is a
tree with a finite number of branches whose nodes are labelled with clauses that
are declared to be either active or inactive in each branch. It is constructed by a
sequence of applications of the following rules:

Initialize: A tree with a single branch with m nodes such that each node is labelled
with a clause of ϕ is a clause MaxSAT tableau for ϕ. Such a tableau is called
initial tableau and its clauses are declared to be active.

Extension: Given a clause MaxSAT tableau T for ϕ, a branch B of T , and a
node of B labelled with an active clause l1 ∨ · · · ∨ lr with r ≥ 2, the tableau
obtained by creating r sibling nodes below B and labelling each node with
a different unit clause from {l1, . . . , lr} is a clause MaxSAT tableau for ϕ.
Clause l1 ∨ · · · ∨ lr becomes inactive in the new branches, and unit clauses
l1, . . . , lr are declared to be active.

Contradiction: Given a clause MaxSAT tableau T for ϕ, a branch B of T , and
two nodes of B labelled with two active unit clauses l and l, the tableau
obtained by appending a node labelled with an empty clause below B is a
clause MaxSAT tableau for ϕ. The empty clause becomes active and unit
clauses l and l become inactive.

A clause MaxSAT tableau is completed when all its branches are saturated,
in the sense that all its active clauses are empty and unit clauses, and the con-
tradiction rule cannot be further applied in any branch. The cost of a branch in
a completed tableau T is the number of empty clauses in it, and the cost of T is
the minimum cost among all its branches.

The soundness and completeness of the clause MaxSAT tableau calculus
states that the minimum number of clauses that can be unsatisfied in a mul-
tiset of clauses ϕ is k iff the cost of a completed clause MaxSAT tableau for ϕ
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is k. Thus, the systematic construction of a completed clause MaxSAT tableau
for ϕ provides an exact method for MaxSAT, and each completed tableau is a
proof.

x1

x2

x3

x1 ∨ x2

x1 ∨ x3

x2 ∨ x3

x2

2

x3

2

x3x2

x1

2

x3

2

x2

x1

2

x3

2

x3x2

2

x1

x3

2

x2

2

Figure 23.2. A completed clause MaxSAT tableau for ϕ = {x1, x2, x3, x1∨x2, x1∨x3, x2∨x3}.

Figure 23.2 shows a completed clause MaxSAT tableau T for the multiset of
clauses ϕ = {x1, x2, x3, x1 ∨ x2, x1 ∨ x3, x2 ∨ x3}. The saturated branches of the
tableau have cost 2 except for branches 3 and 6 (counting from left to right) that
have cost 3. The active clauses in each branch are: {2,2, x1, x3} (branch 1),
{2,2, x1, x2} (branch 2), {2,2,2} (branch 3), {2,2, x2, x3} (branch 4),
{2,2, x2, x3} (branch 5), {2,2,2} (branch 6), {2,2, x1, x2} (branch 7), and
{2,2, x1, x3} (branch 8). Therefore, the minimum number of unsatisfied clauses
in ϕ is 2.

Inspired on the previous calculus, as well as in the clause MinSAT calculus
defined in [LMS16a], Argelich et al. [ALMS18] defined a proof procedure that
implements a sound and complete clause tableau-style calculus for both MaxSAT
and MinSAT. The expansion rules preserves adequately the number of unsatis-
fied clauses in the generated subproblems. The leaf nodes of a completed tableau
contain a number of empty clauses ranging between the minimum and the max-
imum number of unsatisfied clauses in the input formula, and there is at least
one branch with the minimum value and at least one branch with the maximum
value.

Casas-Roma et al. [CHM17] defined a complete natural deduction calculus for
MaxSAT which was inspired on the previous clause MaxSAT tableau calculus.
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23.5. Approximation Algorithms

Heuristic local search algorithms 1 are often quite effective at finding near-optimal
solutions. Actually, most of the exact MaxSAT solvers use a local search algorithm
to compute an initial upper bound. However, these algorithms, in contrast with
approximation algorithms, do not come with rigorous guarantees concerning the
quality of the final solution or the required maximum runtime. Informally, an
algorithm approximately solves an optimization problem if it always returns a
feasible solution whose measure is close to optimal, for example, within a factor
bounded by a constant or by a slowly growing function of the input size. Given
a constant α, an algorithm is an α-approximation algorithm for a maximization
(minimization) problem if it provides a feasible solution in polynomial time which
is at least (most) α times the optimum, considering all the possible instances of
the problem.

The first MaxSAT approximation algorithm, with a performance guaran-
tee of 1

2 , is a greedy algorithm that was devised by Johnson in 1974 [Joh74].
This result was improved in 1994 by Yannakakis [Yan94], and Goemans and
Williamson [GW94b], who described 3/4–approximation algorithms for MaxSAT.
Then, Goemans and Williamson [GW94b] proposed a .878-approximation algo-
rithm for Max2SAT (which gives a .7584-approximation for MaxSAT [GW95])
based on semidefinite programming [GW94a]. Since then other improvements
have been achieved, but there is a limit on approximability: Hastad [Has97]
proved that, unless P = NP , no approximation algorithm for MaxSAT (even for
Max3SAT) can achieve a performance guarantee better than 7/8. Interestingly,
Karloff and Zwick [KZ97] gave a 7/8 approximation algorithm for Max3SAT,
showing that the constant 7/8 is tight. The most promising approaches from
a theoretical and practical point of view are based on semidefinite program-
ming [GvHL06]. We refer the reader to the survey of Anjos [Anj05] to learn
more about how to approximate MaxSAT with semidefinite programming.

23.6. The MaxSAT Evaluation

The MaxSAT Evaluation [ALMP08, ALMP11a, ALMP11b] is an affiliated event
of the International Conference on Theory and Applications of Satisfiability Test-
ing. It has been held annually since 2006 and has been decisive for promoting
and advancing MaxSAT solving.

The main goals of the MaxSAT Evaluation are to assess the state of the art
in the field of MaxSAT solvers, collect and re-distribute a heterogeneous MaxSAT
benchmark set for further scientific evaluations, and promote MaxSAT as a viable
option for solving instances of a wide range of NP-hard optimization problems.
In the beginning, only exact solvers were evaluated. Ultimately, an evaluation of
non-exact solvers is also conducted.

Until 2016, the MaxSAT Evaluation had the random, crafted and industrial
categories and the unweighted MaxSAT, weighted MaxSAT, partial MaxSAT and
weighted partial MaxSAT tracks. Since 2017, it has two tracks: unweighted and

1We do not include a section about local search and MaxSAT because there is a chapter on
local search in the handbook.
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weighted. The unweighted track combines the industrial and crafted unweighted
and unweighted partial MaxSAT categories from previous MaxSAT evaluations.
Purely randomly generated instances are not included. The weighted track com-
bines the industrial and crafted weighted and weighted partial MaxSAT categories
from previous MaxSAT evaluations. All benchmarks contain soft clauses with dif-
ferent weights. Purely randomly generated instances are not included.

We refer the reader to https://maxsat-evaluations.github.io/2018/ for addi-
tional information and the results of the last edition of the MaxSAT Evaluation.

23.7. Other Contributions to MaxSAT

First of all, we should mention a variety of applications of MaxSAT in a range of
real-world domains as diverse as bioinformatics [GL12, MAGL11], circuit design
and debugging [SMV+07], community detection in complex networks [JMRS17],
diagnosis [DG12], FPGA routing [XRS03], planning [ZB12], scheduling [BGSV15],
team formation [MNRS17] and time tabling [AN14], among many others.

Other research topics that have appeared in the literature and contain sub-
stantial contributions to the field of MaxSAT solving include the definition of
clause clause learning schemes in branch-and-bound solvers [AH16, AM06b] that
are not yet competitive enough to solve industrial instances, the creation of robust
MaxSAT solutions [BBMV13], the definition of efficient encodings from MaxCSP
to MaxSAT [ACLM12], the extension of MaxSAT to many-valued logic [ALM17]
and the definition of MaxSAT formalisms that deal with blocks of soft clauses
instead of individual soft clauses [AM06a, HMM15].

23.8. The MinSAT Problem

Given the success of MaxSAT, the community has started to look into MinSAT.
At first sight, one could think that the solving techniques and encodings to be
used in MinSAT are very similar to the ones used in MaxSAT and, therefore,
that there is no need of investigating MinSAT from a problem solving perspec-
tive. However, most of the research conducted so far indicates that they may
be quite different, as well as that the performance profile of MaxSAT and Min-
SAT is also different for several optimization problems represented into these for-
malisms [ALMZ14, IMM14, LZMS12]. It is also worth mentioning that MinSAT
is meaningful for both satisfiable and unsatisfiable instances, whereas MaxSAT is
only meaningful for unsatisfiable instances. A closely related problem has been
analyzed in [IMPMS13, IMPM16].

The work on MinSAT for solving optimization problems may be divided into
the following categories:

• Transformations between MinSAT and MaxSAT: Reductions from MinSAT
to partial MaxSAT were defined in [LMQZ10], but these reductions do
not generalize to weighted partial MinSAT. This drawback was overcome
with the definition of the natural encoding [K1̈2], which was improved
in [ZLMA12]. Reductions of weighted partial MinSAT to Group MaxSAT
were evaluated in [HMPMS12].
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• Encodings from weighted MaxCSP to MinSAT: Efficient encodings were
defined in [ALMZ13]. Using the MaxSAT direct encoding [ACLM12], we
must add one clause for every no-good, while using the MinSAT direct
encoding [ALMZ13], we must instead add one clause for every good. This
implies, for instance, that for representing the constraint X = Y , we need
a number of clauses linear in the domain size in MinSAT, and a quadratic
number of clauses in MaxSAT. We are in the opposite situation if we want
to represent the constraint X ̸= Y , So, it seems that MaxSAT and MinSAT
could be complementary in some scenarios [ALMZ13].

• Complete logical calculi: MaxSAT resolution is sound for MinSAT but
to get completeness the elimination of variables must be defined differ-
ently [LM15]. After saturating a variable x, the clauses containing the
variable x are ignored in MaxSAT but, in MinSAT, the resulting clauses
of eliminating the occurrences of both x and x must also be considered in
the saturation of the next variable. In this way, after saturating all the
variables, the number of empty clauses derived is equal to the maximum
number of clauses that can be unsatisfied. In the case of clause tableaux,
the clause MaxSAT calculus is unsound for MinSAT because the exten-
sion rule does not preserve the maximum number of unsatisfied clauses. A
sound and complete clause MinSAT calculus was defined in [LMS16a].

• MinSAT solvers: The only existing branch-and-bound MinSAT solver,
MinSatz [LZMS11, LZMS12], is based on MaxSatz and implements up-
per bounds that exploit clique partition algorithms and MaxSAT technol-
ogy. There exist two SAT-based MinSAT solvers of this class [ALMZ12,
HMPMS12]. They differ with SAT-based MaxSAT solvers in the way of re-
laxing soft clauses. A local search MinSAT solver was described in [AH15a].

23.9. Conclusions

We have presented an overview about MaxSAT and focused on the solving tech-
niques that have proved to be useful in terms of performance. When we wrote
the chapter on MaxSAT for the first edition of this handbook, MaxSAT solving
was still an incipient research topic but nowadays can be considered a mature
research topic with a variety of applications and also of open problems.

From the perspective of branch-and-bound MaxSAT solvers, the main chal-
lenge is to build a solver as competitive as SAT-based MaxSAT solvers on indus-
trial instances. A first step in this direction could be the definition of a powerful
clause learning mechanism for soft clauses. From a logical perspective, an inter-
esting research avenue is the study of the proof complexity of logical calculi for
MaxSAT to find proof systems more efficient that the proof systems used in SAT
solving. From a knowledge representation perspective, an interesting research
path is to find clever encodings of combinatorial optimization problems and un-
derstand the impact of modeling on the performance of MaxSAT solvers, as well
as the definition of richer formalisms like non-clausal MaxSAT.
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[AH14c] A. Abramé and D. Habet. Maintaining and handling all unit propa-
gation reasons in exact Max-SAT solvers. In Proceedings of the Sev-
enth Annual Symposium on Combinatorial Search, SOCS, Prague,
Czech Republic, 2014.
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[AMP03] T. Alsinet, F. Manyà, and J. Planes. Improved branch and bound
algorithms for Max-SAT. In Proceedings of the 6th International
Conference on the Theory and Applications of Satisfiability Testing,
2003.

19
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signed CNF formulas. In D. Basin, M. D’Agostino, D. Gabbay,
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